Skip to main content
Log in

Superconducting properties of PEO coatings containing MgB2 on niobium

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A study has been carried out of superconductivity in coatings formed on niobium by plasma electrolytic oxidation (PEO) in an electrolyte containing different concentrations of MgB2. From preliminary experiments, a suitable PEO condition was selected. The coatings were examined by analytical scanning electron microscopy and X-ray diffraction. Superconductivity was assessed using magnetic moment-field measurements. At 6 K, superconductivity of the niobium dominated, which revealed strong flux pinning and sudden release. The latter was more gradual following PEO, indicating pinning was a surface effect. Between the critical temperature of niobium (9.25 K) and MgB2 (about 39 K), the diamagnetic behaviour of superconducting MgB2 was present, with earlier flux penetration the closer the temperature to 39 K. The hysteresis loop indicated stronger flux pinning for lower temperatures, as expected for a superconductor.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aliasghari S, Skeldon P, Zhou X, Valizadeh R, Junginger T, Stenning GBG, Burt G (2019) Communication—formation of a superconducting MgB2-containing coating on niobium by plasma electrolytic oxidation. ECS J Solid State Sci Technol 8:N39–N41

    Article  CAS  Google Scholar 

  2. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93

    Article  CAS  Google Scholar 

  3. Clyne TW, Troughton SC (2019) A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int Mater Rev 64:127–162

    Article  CAS  Google Scholar 

  4. Curran JA, Clyne TW (2006) Porosity in plasma electrolytic oxidation coatings. Acta Mater 54:1985–1993

    Article  CAS  Google Scholar 

  5. Zhang X, Aliasghari S, Nemcova A, Burnett TL, Kubena I, Smid M, Thompson GE, Skeldon P, Withers PJ (2016) X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings. ACS Appl Mater Inter 8:8801–8810

    Article  CAS  Google Scholar 

  6. Dunleavy CS, Golosny IO, Curran JA, Clyne TW (2009) Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol 203:3410–3419

    Article  CAS  Google Scholar 

  7. Nomine SC, Troughton AV, Nomine G, Henrion TW (2015) Clyne, High speed video evidence of localised discharge cascades during plasma electrolytic oxidation. Surf Coat Technol 269:125–130

    Article  CAS  Google Scholar 

  8. Troughton SC, Nomine A, Nomine AV, Henrion G, Clyne TW (2015) Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation. Appl Surf Sci 359:405–411

    Article  CAS  Google Scholar 

  9. Monfort F, Berkani A, Matykina RE, Skeldon P, Thompson GE, Habazaki H, Shimizu K (2007) Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corros Sci 49:672–693

    Article  CAS  Google Scholar 

  10. Apelfeld A, Krit B, Ludin V, Morozova N, Vladimirov B, Wu RZ (2017) The characterization of plasma electrolytic coatings on AZ41 magnesium alloy. Surf Coat Technol 322:127–133

    Article  CAS  Google Scholar 

  11. Laveissière M, Cerda H, Roche J, Cassayre L, Arurault L (2019) In-depth study of the influence of electrolyte composition on coatings prepared by plasma electrolytic oxidation of TA6 V alloy. Surf Coat Technol 361:50–62

    Article  CAS  Google Scholar 

  12. Matykina E, Arrabal R, Monfort F, Skeldon P, Thompson GE (2008) Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions. Appl Surf Sci 255:2830–2839

    Article  CAS  Google Scholar 

  13. Lou Bih-Show, Lin Yi-Yuan, Tseng Chuan-Ming, Yu-Chu Lu, Jenq-Gong Du, Lee Jyh-Wei (2017) Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives. Surf Coat Technol 332:358–367

    Article  CAS  Google Scholar 

  14. Apelfeld AV, Ashmarin AA, Borisov AM, Vinogradov AV, Savushkina SV, Shmytkova EA (2017) Formation of zirconia tetragonal phase by plasma electrolytic oxidation of zirconium alloy in electrolyte comprising additives of yttria nanopowder. Surf Coat Technol 328:513–517

    Article  CAS  Google Scholar 

  15. Sundararajan G, Krishna LR (2003) Mechanisms underlying the formation of thick alumina coatings through MAO coating technology. Surf Coat Technol 167(2–3):269–277

    Article  CAS  Google Scholar 

  16. Snizhko LO, Yerokhin AL, Gurevina NL, Patalakha VA, Matthews A (2007) Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films 56:460–464

    Article  CAS  Google Scholar 

  17. Padamsee H (2001) The science and technology of superconducting cavities for accelerators. Supercond Sci Technol 14:R28

    Article  CAS  Google Scholar 

  18. Casalbuoni S, Knabbe EA, Kötzler J, Lilje L, Von Sawilski L, Schmueser P, Steffen B (2005) Surface superconductivity in niobium for superconducting RF cavities. Nucl Instrum. Method A 538:45–64

    Article  CAS  Google Scholar 

  19. Sowa M, Kazek-Kęsik A, Krząkała A, Socha RP, Dercz G, Michalska J, Simka W (2014) Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions. J. Solid State Electrochem 18:3129–3142

    Article  CAS  Google Scholar 

  20. Stojadinović S, Vasilić R (2016) Orange–red photoluminescence of Nb2O5:Eu3+, Sm3+ coatings formed by plasma electrolytic oxidation of niobium. J Alloy Compd 685:881–889

    Article  CAS  Google Scholar 

  21. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  CAS  PubMed  Google Scholar 

  22. Mijatovic D, Brinkman A, Hilgenkamp JWM, Rogalla H, Rijnders AJHM, Blank DHA (2004) Pulsed-laser deposition of MgB2 and B thin films. Appl. Phys. A 79:1243–1246

    Article  CAS  Google Scholar 

  23. Zhang S, Deng CY, Wang X, Wu YP, Fu Y, Fu XH (2015) Superconducting MgB2 film prepared by chemical vapor deposition at atmospheric pressure of N2. Thin Solid Films 584:300–304

    Article  CAS  Google Scholar 

  24. Ueda K, Naito M (2001) As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy. Appl Phys Lett 79:2046–2048

    Article  CAS  Google Scholar 

  25. Xi XX, Pogrebnyakov AV, Xu SY, Chen K, Cui Y, Maertz EC, Zhuang CG, Li Q, Lamborn DR, Redwing JM, Liu ZK, Soukiassian A, Schlom DG, Weng XJ, Dickey EC, Chen YB, Tian W, Pan XQ, Cybart SA, Dynes RC (2007) MgB2 thin films by hybrid physical-chemical vapor deposition. Physica C 456(1–2):22–37

    Article  CAS  Google Scholar 

  26. Moeckly BH, Ruby WS (2006) Growth of high-quality large-area MgB2 thin films by reactive evaporation. Supercond Sci Technol 19:L21–L24

    Article  CAS  Google Scholar 

  27. Vijayaragavan KS, Putatunda SK, Dixit A, Lawes G (2010) Electroless deposition of superconducting MgB2 films on various substrates. Thin Solid Films 51:658–661

    Article  CAS  Google Scholar 

  28. Jadhav AB, Pawar SH (2003) Electrochemical synthesis of superconducting magnesium diboride films: a novel potential technique. Supercond Sci Technol 16:752–759

    Article  CAS  Google Scholar 

  29. Ochsenkühn-Petropoulou M, Mendrinos L, Altzoumailis A, Argyropoulou R (2005) Production and characterization of MgB2 coatings on various substrates by electrophoretic deposition. J. Mater. Processing Technol. 161(1–2):16–21

    Article  CAS  Google Scholar 

  30. Nath M, Parkinson BA (2006) A simple sol-gel synthesis of superconducting MgB2 nanowires. Adv Mater 18:1865–1868

    Article  Google Scholar 

  31. Peng N, Shao G, Jeynes C, Webb RP, Gwilliam RM, Boudreault G, Astill DM, Liang WY (2003) Ion beam synthesis of superconducting MgB2 thin films. Appl Phys Lett 82:236–238

    Article  CAS  Google Scholar 

  32. Aliasghari S, Skeldon P, Thompson GE (2014) Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Appl. Surf. Sci. 316:463–476

    Article  CAS  Google Scholar 

  33. Young L, Zobel FGR (1966) An ellipsometric study of steady-state high field ionic conduction in anodic oxide films on tantalum, niobium, and silicon. J Electrochem Soc 113:277–283

    Article  CAS  Google Scholar 

  34. Habazaki H, Ogasawara T, Konno H, Skimizu K, Asami K, Saito K, Skeldon P, Thompson GE (2005) Growth of anodic oxide films on oxygen-containing niobium. Electrochim Acta 50:5334–5339

    Article  CAS  Google Scholar 

  35. Jaspard-Mécuson F, Czerwiec T, Henrion G, Belmonte T, Dujardin L, Viola A, Beauvoir J (2012) Tailored aluminium oxide layers by bipolar current adjustment in the plasma electrolytic oxidation (PEO) process. Surf Coat Technol 2007:8677–8682

    Google Scholar 

  36. Rogov Aleksey, Yerokhin Aleksey, Matthews Allan (2017) The role of cathodic current in plasma electrolytic oxidation of aluminum: phenomenological concepts of the “soft sparking” mode. Langmuir 33:11059–11069

    Article  CAS  PubMed  Google Scholar 

  37. Rogov AB, Shayapov VR (2017) The role of cathodic current in PEO of aluminum: influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra. Appl Surf Sci 394:323–332

    Article  CAS  Google Scholar 

  38. Arrabal R, Matykina E, Hashimoto T, Skeldon P, Thompson GE (2009) Characterization of AC PEO coatings on magnesium alloys. Surf Coat Technol 203:2207–2220

    Article  CAS  Google Scholar 

  39. Han Baojun, Yang Yang, Deng Hao, Chen Yaowu, Yang Chubin (2018) Plasma-electrolytic-oxidation coating containing Y2O3 nanoparticles on AZ91 magnesium alloy. Int J Electrochem Sci 13:5681–5697

    Article  CAS  Google Scholar 

  40. Gnedenkov SV, Sinebryukhov SL, Mashtalyar DV, Imshinetskiy IM, Samokhin AV, Tsvetkov YV (2015) Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO2 and SiO2 nanoparticles. J Nanomater 16(1):196

    Google Scholar 

  41. Collings EW, Smith RD (1972) The magnetic susceptibility of niobium. J Less-Comm Met 27:389–401

    Article  CAS  Google Scholar 

  42. Reich S, Leitus G, Felner I (2002) On the magnetism of the normal state in MgB2. J Supercond 15:109–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665593 awarded to UKRI Science and Technology Facilities Council (STFC). They also are grateful to the Material Characterisation Laboratory at ISIS, STFC Rutherford Appleton Laboratory for superconductivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aliasghari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliasghari, S., Skeldon, P., Zhou, X. et al. Superconducting properties of PEO coatings containing MgB2 on niobium. J Appl Electrochem 49, 979–989 (2019). https://doi.org/10.1007/s10800-019-01339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01339-6

Keywords

Navigation