Skip to main content

Advertisement

Log in

TGF-β Secretion by M2 Macrophages Induces Glial Scar Formation by Activating Astrocytes In Vitro

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transforming growth factor-β (TGF-β) is a key factor that promotes fibrosis or scar formation, which could become an obstacle in the repair of impaired axons in the central nervous system (CNS) of the human body resulting from diseases or injuries. Considering that major pathological reactions occur during this process, we focused on TGF-secreting M2 macrophages to identify the interactions between M2 macrophages and astrocytes (AS) and verify the specific mechanism of fibrosis or glial scar formation. In the present study, we used the Transwell coculturing technique and found an increase in glial fibrillary acidic protein (GFAP), neurocan, IL-13, and TGF-β expression after incubation for 48 h; the expression of these proteins decreased when additional inhibitors of the TGF-β receptor were added. We concluded that fibrosis or glial scar formation would be enhanced by the secretion of neurocan from AS, resulting from the release of TGF-β from M2 macrophages. We also used M2 macrophage–conditioned medium to further confirm this finding in a subsequent experiment. We hope that the findings in this research could provide a foundation for locating new targets for treating CNS diseases or injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 20(7):2427–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bataller R, Brenner DA (2001) Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis 21(3):437–451

    Article  CAS  PubMed  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregg JM, Depaul MA, Filous AR et al (2014) Functional regeneration beyond the glial scar. Exp Neurol 253(1):197–207

    Article  PubMed  Google Scholar 

  • da Silva Alves E, de Aquino Lemos V, Ruiz da Silva F et al (2013) Low-grade inflammation and spinal cord injury: exercise as therapy? Mediat Inflamm 2013:971841

  • Davies SJ, Fitch MT, Memberg SP et al (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390(6661):680–683

    Article  CAS  PubMed  Google Scholar 

  • Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301

    Article  CAS  PubMed  Google Scholar 

  • Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A (2012) Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 35(3):293–311

    Article  CAS  PubMed  Google Scholar 

  • Gooch CL, Pracht E, Borenstein AR (2017) The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol 81:479–484. https://doi.org/10.1002/ana.24897

    Article  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  CAS  PubMed  Google Scholar 

  • Gris P, Tighe A, Levin D, Sharma R, Brown A (2007) Transcriptional regulation of scar gene expression in primary astrocytes. Glia 55(11):1145–1155

    Article  PubMed  Google Scholar 

  • Haan N, Zhu B, Wang J et al (2015) Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation 12(1):1–10

    Article  CAS  Google Scholar 

  • Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S (2017) Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 23(7):818–828

    Article  CAS  PubMed  Google Scholar 

  • Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M, Kapitein LC, Strikis D, Lemmon V, Bixby J, Hoogenraad CC, Bradke F (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331(6019):928–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11(1):56–64

    Article  PubMed  Google Scholar 

  • Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182(2):399–411

    Article  CAS  PubMed  Google Scholar 

  • Karimi S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol 46(2):251–264

    Article  CAS  Google Scholar 

  • Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H (2017) An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xiong ZY, Qian ZM, Zhao TZ, Feng H, Hu S, Hu R, Ke Y, Lin J (2014) Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice. Neurobiol Dis 66(2):74–82

    Article  CAS  PubMed  Google Scholar 

  • Maskey D, Kim HJ, Kim HG, Kim MJ (2012) Calcium-binding proteins and GFAP immunoreactivity alterations in murine hippocampus after 1 month of exposure to 835 MHz radiofrequency at SAR values of 1.6 and 4.0 W/kg. Neurosci Lett 506(2):292–296

    Article  CAS  PubMed  Google Scholar 

  • Merfeld-Clauss S, Lupov IP, Lu H, Feng D, Compton-Craig P, March KL, Traktuev DO (2014) Adipose stromal cells differentiate along a smooth muscle lineage pathway upon endothelial cell contact via induction of activin A. Circ Res 115(9):800–809

    Article  CAS  PubMed  Google Scholar 

  • Nagao M, Ogata T, Sawada Y, Gotoh Y (2016) Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun 7:11102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramer LM, Ramer MS, Bradbury EJ (2014) Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol 13(12):1241–1256

    Article  PubMed  Google Scholar 

  • Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O, Akira S (2013) Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495(7442):524–528

    Article  CAS  PubMed  Google Scholar 

  • Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. Neurosci 30(17):5843–5854

    Article  CAS  Google Scholar 

  • Schachtrup C, Le Moan N, Passino MA et al (2011) Hepatic stellate cells and astrocytes: stars of scar formation and tissue repair. Cell Cycle 10(11):1764–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11(5):400–407

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi K, Yoshioka N, Onaga SH et al (2013) Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. Nat Commun 4(7):2740

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rouabhia M, Zhang Z (2016) Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis. Biochim Biophys Acta Gen Subj 1860(7):1551–1559

    Article  CAS  Google Scholar 

  • Weischenfeldt J, Porse B (2008) Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc 2008(12):pdb.prot5080

    PubMed  Google Scholar 

  • Wong SC, Puaux AL, Chittezhath M, Shalova I, Kajiji TS, Wang X, Abastado JP, Lam KP, Biswas SK (2010) Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol 40(8):2296–2307

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Cai J, Wei H, Zhou M, Xu P, Huang H, Peng W, du F, Gong A, Zhang Y (2016) Scoparone protects against pancreatic fibrosis via TGF-β/Smad signaling in rats. Cell Physiol Biochem 40(1–2):277–286

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ, Habtezion A (2015) Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun 6:7158

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Tackle Key Problems in Science and Technology of Guizhou Province (No. SY [2012] 3119) and the Project for Academic Seedling Cultivation and Innovation Exploration of Zunyi Medical University (No. [2017] 5733-029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Zhang or Tao Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gongyu Song and Rui Yang are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Yang, R., Zhang, Q. et al. TGF-β Secretion by M2 Macrophages Induces Glial Scar Formation by Activating Astrocytes In Vitro. J Mol Neurosci 69, 324–332 (2019). https://doi.org/10.1007/s12031-019-01361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01361-5

Keywords

Navigation