Skip to main content

Advertisement

Log in

Characterization of Motor and Non-Motor Behavioral Alterations in the Dj-1 (PARK7) Knockout Rat

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a neurodegenerative disorder that encompasses a constellation of motor and non-motor symptoms. The etiology of the disease is still poorly understood because of complex interactions between environmental and genetic risk factors. Using animal models to assess these risk factors may lead to a better understanding of disease manifestation. In this study, we assessed the Dj-1 knockout (KO) genetic rat model in a battery of motor and non-motor behaviors. We tested the Dj-1 KO rat, as well as age-matched wild-type (WT) control rats, in several sensorimotor tests at 2, 4, 7, and 13 months of age. The Dj-1-deficient rats were found to rear and groom less, and to have a shorter stride length than their WT counterparts, but to take more forelimb and hindlimb steps. In non-motor behavioral tasks, performed at several different ages, we evaluated the following: olfactory function, anxiety-like behavior, short-term memory, anhedonia, and stress coping behavior. Non-motor testing was conducted as early as 4.5 months and as late as 17 months of age. We found that Dj-1 KO animals displayed deficits in short-term spatial memory as early as 4.5 months of age during place preference testing, as well as impaired coping strategies in the forced swim test, which are consistent with a parkinsonian-like phenotype. In some instances, effects of chronic stress were evaluated in the Dj-1-deficient rats, as an initial test of an environmental challenge combined with a genetic disposition for PD. Although some of the results were mixed with differential effects across several of the behaviors, the combination of the changes we observed indicates that the Dj-1 KO rat may be a promising model for the assessment of the prodromal stage of Parkinson’s disease, but further evaluation is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson's disease: a community-based, prospective study. Neurology 56:730–736

    Article  CAS  PubMed  Google Scholar 

  • Aarsland D, Marsh L, Schrag A (2009) Neuropsychiatric symptoms in Parkinson's disease. Mov Disord 24:2175–2186

    Article  PubMed  PubMed Central  Google Scholar 

  • Agid Y, Graybiel AM, Ruberg M, Hirsch E, Blin J, Dubois B, Javoy-Agid F (1990) The efficacy of levodopa treatment declines in the course of Parkinson's disease: do nondopaminergic lesions play a role? Adv Neurol 53:83–100

    CAS  PubMed  Google Scholar 

  • Alberts JR, Galef BG Jr (1971) Acute anosmia in the rat: a behavioral test of a peripherally-induced olfactory deficit. Physiol Behav 6:619–621

    Article  CAS  PubMed  Google Scholar 

  • Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, Ko HS, Sasaki M, Ischiropoulos H, Przedborski S, Dawson TM, Dawson VL (2007) DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 104:14807–14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer J (1975) Rodent sex differences in emotional and related behavior. Behav Biol 14:451–479

    Article  CAS  PubMed  Google Scholar 

  • Aviles-Olmos I, Limousin P, Lees A, Foltynie T (2013) Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain 136:374–384

    Article  PubMed  Google Scholar 

  • Balestrino R, Martinez-Martin P (2017) Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson's disease. J Neurol Sci 373:173–178

    Article  PubMed  Google Scholar 

  • Beeler JA, Cao ZF, Kheirbek MA, Zhuang X (2009) Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology 34:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284:6476–6485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boesveldt S, Verbaan D, Knol DL, Visser M, van Rooden SM, van Hilten JJ, Berendse HW (2008) A comparative study of odor identification and odor discrimination deficits in Parkinson's disease. Mov Disord 23:1984–1990

    Article  PubMed  Google Scholar 

  • Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF (2013) Factors influencing behavior in the forced swim test. Physiol Behav 118:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boger HA, Granholm AC, McGinty JF, Middaugh LD (2010) A dual-hit animal model for age-related parkinsonism. Prog Neurobiol 90:217–229

    Article  CAS  PubMed  Google Scholar 

  • Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  PubMed  Google Scholar 

  • Bonnet AM, Loria Y, Saint-Hilaire MH, Lhermitte F, Agid Y (1987) Does long-term aggravation of Parkinson's disease result from nondopaminergic lesions? Neurology 37:1539–1542

    Article  CAS  PubMed  Google Scholar 

  • Braun AA, Skelton MR, Vorhees CV, Williams MT (2011) Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague-Dawley rats: effects of anxiolytic and anxiogenic agents. Pharmacol Biochem Behav 97:406–415

    Article  CAS  PubMed  Google Scholar 

  • Broeders M, Velseboer DC, de Bie R, Speelman JD, Muslimovic D, Post B, de Haan R, Schmand B (2013) Cognitive change in newly-diagnosed patients with Parkinson's disease: a 5-year follow-up study. J Int Neuropsychol Soc 19:695–708

    Article  PubMed  Google Scholar 

  • Brønnick K, Alves G, Aarsland D, Tysnes OB, Larsen JP (2011) Verbal memory in drug-naive, newly diagnosed Parkinson's disease. The retrieval deficit hypothesis revisited Neuropsychology 25:114–124

    PubMed  Google Scholar 

  • Brown JA, Emnett RJ, White CR, Yuede CM, Conyers SB, O'Malley KL, Wozniak DF, Gutmann DH (2010) Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum Mol Genet 19:4515–4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buter TC, van den Hout A, Matthews FE, Larsen JP, Brayne C, Aarsland D (2008) Dementia and survival in Parkinson disease: a 12-year population study. Neurology 70:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Chandran JS, Lin X, Zapata A, Hoke A, Shimoji M, Moore SO, Galloway MP, Laird FM, Wong PC, Price DL, Bailey KR, Crawley JN, Shippenberg T, Cai H (2008) Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function. Neurobiol Dis 29:505–514

    Article  CAS  PubMed  Google Scholar 

  • Chang JW, Wachtel SR, Young D, Kang UJ (1999) Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson's disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88:617–628

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KR, Healy DG, Schapira AH, National Institute for Clinical Excellence (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  PubMed  Google Scholar 

  • Chen L, Cagniard B, Mathews T, Jones S, Koh HC, Ding Y, Carvey PM, Ling Z, Kang UJ, Zhuang X (2005) Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 280:21418–21426

    Article  CAS  PubMed  Google Scholar 

  • Cookson MR (2012) Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2:a009415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin-Golomb A, Braun AE (1997) Visuospatial dysfunction and problem solving in Parkinson's disease. Neuropsychology 11:44–52

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (1992) Depression and Parkinson's disease: a review. Am J Psychiatry 149:443–454

    Article  CAS  PubMed  Google Scholar 

  • Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC 3rd, Ahmad SO, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK, Sherer TB, Frasier MA (2014) Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis 70:190–203

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Molendijk ML (2016) Coping with the forced swim stressor: towards understanding an adaptive mechanism. Neural Plast 2016:6503162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72-85

  • Doty RL (2012) Olfactory dysfunction in Parkinson disease. Nat Rev Neurol 8:329–339

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Dujardin K, Degreef JF, Rogelet P, Defebvre L, Destee A (1999) Impairment of the supervisory attentional system in early untreated patients with Parkinson's disease. J Neurol 246:783–788

    Article  CAS  PubMed  Google Scholar 

  • Espay AJ, LeWitt PA, Kaufmann H (2014) Norepinephrine deficiency in Parkinson's disease: the case for noradrenergic enhancement. Mov Disord 29:1710–1719

    Article  CAS  PubMed  Google Scholar 

  • Fahn S (1999) Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs later L-DOPA. Arch Neurol 56:529–535

    Article  CAS  PubMed  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  CAS  PubMed  Google Scholar 

  • Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24:9434–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming SM, Tetreault NA, Mulligan CK, Hutson CB, Masliah E, Chesselet MF (2008) Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 28:247–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming SM, Ekhator OR, Ghisays V (2013) Assessment of sensorimotor function in mouse models of Parkinson's disease. J Vis Exp (76). https://doi.org/10.3791/50303

  • Francardo V (2018) Modeling Parkinson's disease and treatment complications in rodents: potentials and pitfalls of the current options. Behav Brain Res 352:142–150

    Article  PubMed  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45:489–496

    Article  CAS  PubMed  Google Scholar 

  • Grimbergen YA, Langston JW, Roos RA, Bloem BR (2009) Postural instability in Parkinson's disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother 9:279–290

    Article  CAS  PubMed  Google Scholar 

  • Halliday G, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson's disease. Acta Neuropathol 115:409–415

    Article  PubMed  Google Scholar 

  • Hemmerle AM, Herman JP, Seroogy KB (2012) Stress, depression and Parkinson's disease. Exp Neurol 233:79–86

    Article  CAS  PubMed  Google Scholar 

  • Hemmerle AM, Dickerson JW, Herman JP, Seroogy KB (2014) Stress exacerbates experimental Parkinson's disease. Mol Psychiatry 19:638–640

    Article  CAS  PubMed  Google Scholar 

  • Hennis MR, Marvin MA, Taylor CM 2nd, Goldberg MS (2014) Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson's disease. Neurobiol Dis 62:113–123

    Article  CAS  PubMed  Google Scholar 

  • Herbert MK, Eeftens JM, Aerts MB, Esselink RA, Bloem BR, Kuiperij HB, Verbeek MM (2014) CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord 20:112–115

    Article  PubMed  Google Scholar 

  • Herman JP, Adams D, Prewitt C (1995) Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180–190

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain 133:713–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102:5215–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111:696–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D, Riess O, Kahle PJ, Proikas-Cezanne T, Kruger R (2010) Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PLoS One 5:e9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM (2003) Using executive heterogeneity to explore the nature of working memory deficits in Parkinson's disease. Neuropsychologia 41:645–654

    Article  PubMed  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185

    CAS  PubMed  Google Scholar 

  • Manning-Bog AB, Caudle WM, Perez XA, Reaney SH, Paletzki R, Isla MZ, Chou VP, McCormack AL, Miller GW, Langston JW, Gerfen CR, Dimonte DA (2007) Increased vulnerability of nigrostriatal terminals in DJ-1-deficient mice is mediated by the dopamine transporter. Neurobiol Dis 27:141–150

    Article  CAS  PubMed  Google Scholar 

  • Masters JM, Noyce AJ, Warner TT, Giovannoni G, Proctor GB (2015) Elevated salivary protein in Parkinson's disease and salivary DJ-1 as a potential marker of disease severity. Parkinsonism Relat Disord 21:1251–1255

    Article  PubMed  Google Scholar 

  • McDonald WM, Richard IH, DeLong MR (2003) Prevalence, etiology, and treatment of depression in Parkinson's disease. Biol Psychiatry 54:363–375

    Article  PubMed  Google Scholar 

  • Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer's and Parkinson's diseases. Arch Neurol 55:84–90

    Article  CAS  PubMed  Google Scholar 

  • Molendijk ML, de Kloet ER (2015) Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology 62:389–391

    Article  PubMed  Google Scholar 

  • Nathan BP, Yost J, Litherland MT, Struble RG, Switzer PV (2004) Olfactory function in apoE knockout mice. Behav Brain Res 150:1–7

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overstreet DH (2002) Behavioral characteristics of rat lines selected for differential hypothermic responses to cholinergic or serotonergic agonists. Behav Genet 32:335–348

    Article  PubMed  Google Scholar 

  • Pedersen KF, Larsen JP, Tysnes OB, Alves G (2017) Natural course of mild cognitive impairment in Parkinson disease: a 5-year population-based study. Neurology 88:767–774

    Article  PubMed  Google Scholar 

  • Peng J, Oo ML, Andersen JK (2010) Synergistic effects of environmental risk factors and gene mutations in Parkinson's disease accelerate age-related neurodegeneration. J Neurochem 115:1363–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham TT, Giesert F, Rothig A, Floss T, Kallnik M, Weindl K, Holter SM, Ahting U, Prokisch H, Becker L, Klopstock T, Hrabe de Angelis M, Beyer K, Gorner K, Kahle PJ, Vogt Weisenhorn DM, Wurst W (2010) DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. Genes Brain Behav 9:305–317

    Article  CAS  PubMed  Google Scholar 

  • Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters EC, Berendse HW (2004) Idiopathic hyposmia as a preclinical sign of Parkinson's disease. Ann Neurol 56:173–181

    Article  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Rampersaud N, Harkavyi A, Giordano G, Lever R, Whitton J, Whitton PS (2012) Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions. Neuropeptides 46:183–193

    Article  CAS  PubMed  Google Scholar 

  • Rascol O (2000) The pharmacological therapeutic management of levodopa-induced dyskinesias in patients with Parkinson's disease. J Neurol 247(Suppl 2):II51–II57

    PubMed  Google Scholar 

  • Richard IH (2005) Anxiety disorders in Parkinson's disease. Adv Neurol 96:42–55

    PubMed  Google Scholar 

  • Riedel O, Klotsche J, Spottke A, Deuschl G, Forstl H, Henn F, Heuser I, Oertel W, Reichmann H, Riederer P, Trenkwalder C, Dodel R, Wittchen HU (2010) Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson's disease. J Neurol 257:1073–1082

    Article  PubMed  Google Scholar 

  • Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D (2007) Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A 104:13804–13809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseaux MW, Marcogliese PC, Qu D, Hewitt SJ, Seang S, Kim RH, Slack RS, Schlossmacher MG, Lagace DC, Mak TW, Park DS (2012) Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proc Natl Acad Sci U S A 109:15918–15923

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandyk R (1993) The relationship between diabetes mellitus and Parkinson's disease. Int J Neurosci 69:125–130

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Tillerson JL (2000) Intervention strategies for degeneration of DA neurons in parkinsonism: optimizing behavioral assessment of outcome. In: Emerich D, Dean R III, Sandberg P (eds) Central nervous system diseases. Humana, Totowa, p 131

    Chapter  Google Scholar 

  • Schallert T, Whishaw IQ, Ramirez VD, Teitelbaum P (1978) Compulsive, abnormal walking caused by anticholinergics in akinetic, 6-hydroxydopamine-treated rats. Science 199:1461–1463

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, De Ryck M, Whishaw IQ, Ramirez VD, Teitelbaum P (1979) Excessive bracing reactions and their control by atropine and L-DOPA in an animal analog of Parkinsonism. Exp Neurol 64:33–43

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn D, Wilcox RE (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Upchurch M, Wilcox RE, Vaughn DM (1983) Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav 18:753–759

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2009) Neurobiology and treatment of Parkinson's disease. Trends Pharmacol Sci 30:41–47

    Article  CAS  PubMed  Google Scholar 

  • Schrag A, Taddei RN (2017) Depression and anxiety in Parkinson's disease. Int Rev Neurobiol 133:623–655

    Article  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson's disease. Neuroscientist 8:192–197

    CAS  PubMed  Google Scholar 

  • Smith AD, Castro SL, Zigmond MJ (2002) Stress-induced Parkinson's disease: a working hypothesis. Physiol Behav 77:527–531

    Article  CAS  PubMed  Google Scholar 

  • Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tröster AI (2008) Neuropsychological characteristics of dementia with Lewy bodies and Parkinson’s disease with dementia: differentiation, early detection, and implications for “mild cognitive impairment” and biomarkers. Neuropsychol Rev 18:103–119

  • Vingill S, Connor-Robson N, Wade-Martins R (2018) Are rodent models of Parkinson's disease behaving as they should? Behav Brain Res 352:133–141

    Article  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  CAS  PubMed  Google Scholar 

  • Wulsin AC, Herman JP, Solomon MB (2010) Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology 35:1100–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Shen J (2007) Absence of dopaminergic neuronal degeneration and oxidative damage in aged DJ-1-deficient mice. Mol Neurodegener 2:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KM, Blue KV, Mulholland HM, Kurup MP, Kelm-Nelson CA, Ciucci MR (2018) Characterization of oromotor and limb motor dysfunction in the DJ1 −/− model of Parkinson disease. Behav Brain Res 339:47–56

    Article  PubMed  Google Scholar 

  • Zhou W, Zhu M, Wilson MA, Petsko GA, Fink AL (2006) The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 356:1036–1048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Sheila Fleming for expert training in several of the behavioral tasks. This work was supported by the Kerman Family Fund, the Selma Schottenstein Harris Lab for Research in Parkinson’s, the Gardner Family Center for Parkinson’s Disease and Movement Disorders, and the Parkinson’s Disease Support Network - Ohio, Kentucky and Indiana. AMH was supported by National Institutes of Health grant T32 DK059803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim B. Seroogy.

Ethics declarations

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All protocols were approved by the University of Cincinnati Institutional Animal Care and Use Committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyser, T.L., Dourson, A.J., McGuire, J.L. et al. Characterization of Motor and Non-Motor Behavioral Alterations in the Dj-1 (PARK7) Knockout Rat. J Mol Neurosci 69, 298–311 (2019). https://doi.org/10.1007/s12031-019-01358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01358-0

Keywords

Navigation