Skip to main content
Log in

Cellular microstructure and heterogeneous coarsening of δ′ in rapidly solidified Al-Li-Ti alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four melt-spun Al-Li-Ti alloys with ∼2 wt% lithium and 0.10 to 0.35 wt% titanium have been obtained and heat-treated at 473 K for up to 1000 h. Rapid solidification gives rise to a matrix with titanium in solid solution which drastically alters the δ′ coarsening rate. While TEM studies of samples aged for short times show a homogeneous distribution of metastable δ′ phase, as ageing time is increased, and depending on the ribbon section, three different microstructures can be distinguished: (i) on the wheel side, the δ′ distribution is homogeneous; (ii) intermediate regions show δ′ particles delineating cells with narrow walls; (iii) on the gas side, δ′ particles delineate “circular” cells. A higher titanium content in the cell centres than on cell walls has been determined. The coarsening rate of δ′ in microstructure (i) above is slower than in binary Al-Li alloys. Cellular microstructures (ii) and (iii) show the preferential coarsening of δ′ particles on the walls, which is faster the higher the titanium concentration. Taking into account the fact that the partition coefficient of titanium in aluminium in the peritectic region is > 1, an explanation of δ′ phase evolution is given which leads to the conclusion that the effect of titanium in solid solution is to retain vacancies, restricting lithium diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. H. Sanders Jr and E. A. Starke Jr, in Proceedings of 5th International Aluminium-Lithium Conference, Williamsburg, March 1989, edited by T. H. Sanders Jr and E. A. Starke Jr (MCE Publications, Birmingham, 1989) p. 1.

    Google Scholar 

  2. M. Tamura, T. Mori and T. Nakamura, J. Jpn. Inst. Met. 34 (1970) 919.

    Article  CAS  Google Scholar 

  3. S. E. Naess and O. Berg, Z. Metallkde 65 (1974) 599.

    CAS  Google Scholar 

  4. L. F. Mondolfo, “Aluminium Alloys: Structure and Properties” (Butterworths, London, 1976) pp. 6, 27, 385.

    Google Scholar 

  5. H. Jones, Aluminium 54 (1978) 274.

    CAS  Google Scholar 

  6. L. E. Collins, Canad. Metall. Q. 25 (1986) 59.

    Article  CAS  Google Scholar 

  7. H. M. Flower and P. J. Gregson, Mater. Sci. Tech. 3 (1987) 81.

    Article  CAS  Google Scholar 

  8. Z. Di, S. Saji, W. Fujitani and S. Hori, Trans. Jpn. Inst. Met. 28 (1987) 827.

    Article  CAS  Google Scholar 

  9. F. W. Gayle, N. F. Levoy and J. B. Vandersande, J. Met. 5 (1987) 33.

    Google Scholar 

  10. N. F. Levoy and J. B. Vandersande, Metall. Trans. A 20 (1989) 999.

    Article  Google Scholar 

  11. S. Hori, H. Tai and Y. Narita, in Proceedings of 5th International Conference on Rapidly Quenched Metals, Wurzburg, FRG, 1985, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 911.

    Google Scholar 

  12. P. L. Makin and B. Ralph, J. Mater. sci. 19 (1984) 3835.

    Article  CAS  Google Scholar 

  13. M. Lieblich, M. Torralba and G. Champier, J. Physique 48 (1987) 465.

    Article  Google Scholar 

  14. B. Noble and G. E. Thompson, Met. sci. J. 5 (1971) 114.

    Article  CAS  Google Scholar 

  15. S. F. Baumann and D. B. Williams, Scripta Metall. 18 (1984) 611.

    Article  CAS  Google Scholar 

  16. F. H. Samuel and G. Champier, J. Mater. sci. 22 (1987) 3851.

    Article  CAS  Google Scholar 

  17. K. Mahalingam, B. P. Gu, G. L. Liedl and T. H. Sanders Jr, Acta Metall 35 (1987) 483.

    Article  CAS  Google Scholar 

  18. F. H. Samuel, Metall. Trans. A 17 (1986) 73.

    Article  Google Scholar 

  19. J. M. Sater, S. C. Jha and T. H. Sanders Jr, Mater. Sci. Engng 91 (1987) 201.

    Article  CAS  Google Scholar 

  20. H. Jones, ibid. 65 (1984) 145.

    Article  CAS  Google Scholar 

  21. R. W. Cahn and P. Haasen, “Physical Metallurgy” (North-Holland Physics, Amsterdam, 1983).

    Google Scholar 

  22. R. Elliott, “Eutectic Solidification Processing, Crystalline and Glassy Alloys” (Butterworths, London, 1983).

    Google Scholar 

  23. T. B. Massalski, “Binary Alloy Phase Diagrams” (American Society for Metals, Ohio, 1986).

    Google Scholar 

  24. T. M. Mackey and T. F. Kelly, Acta Metall. 36 (1988) 2587.

    Article  CAS  Google Scholar 

  25. H. W. Kerr, J. Cisse and G. F. Bulling, ibid. 22 (1974) 677.

    Article  CAS  Google Scholar 

  26. S. P. Midson and H. Jones, in Proceedings of 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982) p. 1539.

    Google Scholar 

  27. H. Kimura and R. R. Hasiguti, Acta Metall. 9 (1961) 1076.

    Article  Google Scholar 

  28. T. H. Sanders Jr, “Precipitation Mechanisms in Aluminum-Lithium Alloys” (School of Materials Engineering, Purdue University, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieblich, M., Torralba, M. Cellular microstructure and heterogeneous coarsening of δ′ in rapidly solidified Al-Li-Ti alloys. J Mater Sci 26, 4361–4368 (1991). https://doi.org/10.1007/BF00543652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543652

Keywords

Navigation