Skip to main content
Log in

Fracture mechanics model for subthreshold indentation flaws

Part I Equilibrium fracture

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fracture mechanics model for subthreshold indentation flaws is. described. The model describes the initiation and extension of a microcrack from a discrete deformation-induced shear “fault” (shear crack) within the contact zone. A stress-intensity factor analysis for the microcrack extension in residual-contact and applied-stress fields is used in conjunction with appropriate fracture conditions, equilibrium in Part I and non-equilibrium in Part II, to determine critical instability configurations.

In Part I, the K-field relations are used in conjunction with the Griffith requirements for crack equilibrium in essentially inert environments to determine: (i) the critical indentation size (or load) for spontaneous radial crack pop-in from a critical shear fault under the action of residual stresses alone; (ii) the inert strengths of surfaces with subthreshold or postthreshold flaws. The theory is fitted to literature data for silicate glasses. These fits are used to “calibrate” dimensionless parameters in the fracture mechanics expressions, for later use in Part II. The universality of the analysis in its facility to predict the main features of crack initiation and propagation in residual and applied fields will be demonstrated. Special emphasis is placed on the capacity to account for the significant increase in strength (and associated scatter) observed on passing from the postthreshold to the subthreshold domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Olshansky and R. D. Maurer, J. Appl. Phys. 47 (1976) 4497.

    Article  CAS  Google Scholar 

  2. D. Kalish and B. K. Tariyal, J. Amer Ceram. Soc. 61 (1978) 518.

    Article  CAS  Google Scholar 

  3. T. P. Dabbs, D. B. Marshall and B. R. Lawn, ibid. 63 (1980) 224.

    Article  Google Scholar 

  4. T. P. Dabbs and B. R. Lawn, Phys. Chem. Glasses 23 (1982) 93.

    Google Scholar 

  5. B. R. Lawn, T. P. Dabbs and C. J. Fairbanks, J. Mater. Sci. 18 (1983) 2785.

    Article  Google Scholar 

  6. T. P. Dabbs, C. J. Fairbanks and B. R. Lawn, ASTM STP 844, (American Society for Testing and Material Philadelphia, 1984) p. 142.

    Google Scholar 

  7. H. Multhopp, B. R. Lawn and T. P. Dabbs, “Deformation of Ceramic Materials II”, edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1984) p. 681.

    Chapter  Google Scholar 

  8. T. P. Dabbs and B. R. Lawn, J. Amer. Ceram. Soc. 68 (1985) 563.

    Article  CAS  Google Scholar 

  9. B. R. Lawn, D. B. Marshall and T. P. Dabbs, Strength of Glass, edited by C. R. Kurkjian (Plenum, New York, 1985) p. 249.

    Google Scholar 

  10. J. T. Hagan, J. Mater. Sci. 14 (1979) 2975.

    Article  CAS  Google Scholar 

  11. Idem., ibid. 15 (1980) 1417.

    Article  CAS  Google Scholar 

  12. H. M. Chan and B. R. Lawn, J. Amer. Ceram. Soc. 71 (1988) 29.

    Article  CAS  Google Scholar 

  13. B. R. Lawn and A. G. Evans, J. Mater. Sci. 12 (1977) 2195.

    Article  CAS  Google Scholar 

  14. K. E. Puttick, J. Phys. D 11 (1978) 595.

    Article  CAS  Google Scholar 

  15. B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 62 (1979) 347.

    Article  CAS  Google Scholar 

  16. S. S. Chiang, D. B. Marshall and A. G. Evans, J. Appl. Phys. 53 (1982) 312.

    Article  CAS  Google Scholar 

  17. K. Jakus, J. E. Ritter, S. R. Choi, T. Lardner and B. R. Lawn, J. Non-Cryst. Solids 102 (1988) 82.

    Article  CAS  Google Scholar 

  18. R. Hill, “The Mathematical Theory of Plasticity” (Oxford University Press, London, 1950) Ch. 5, eqn (8).

    Google Scholar 

  19. D. B. Marshall and B. R. Lawn, J. Mater. Sci. 14 (1979) 2001.

    Article  Google Scholar 

  20. B. R. Lawn, A. G. Evans and D. B. Marshall, J. Amer. Ceram. Soc. 63 (1980) 574.

    Article  CAS  Google Scholar 

  21. D. B. Marshall, B. R. Lawn and P. Chantikul, J. Mater. Sci. 14 (1979) 2225.

    Article  Google Scholar 

  22. T. P. Dabbs, B. R. Lawn and P. L. Kelly, Phys. Chem. Glasses 23 (1982) 58.

    CAS  Google Scholar 

  23. A. Arora, D. B. Marshall, B. R. Lawn and M. V. Swain, J. Non-Cryst. Solids 31 (1979) 415.

    Article  CAS  Google Scholar 

  24. J. Lankford, J. Mater. Sci. 16 (1981) 1177.

    Article  CAS  Google Scholar 

  25. B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

    Article  CAS  Google Scholar 

  26. D. B. Marshall, B. R. Lawn and A. G. Evans, J. Amer. Ceram. Soc. 65 561 (1982).

    Article  CAS  Google Scholar 

  27. T. P. Dabbs and B. R. Lawn, ibid. 65 (1982) C-37.

    Article  Google Scholar 

  28. B. R. Lawn, T. Jensen and A. Arora, J. Mater. Sci. 11 (1976) 573.

    Article  Google Scholar 

  29. B. R. Lawn and T. R. Wilshaw, ibid. 10 (1975) 1049.

    Article  Google Scholar 

  30. D. B. Marshall and B. R. Lawn, J. Amer. Ceram. Soc. 63 (1980) 532.

    Article  Google Scholar 

  31. P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 322.

    Article  Google Scholar 

  32. B. R. Lawn, D. B. Marshall, G. R. Anstis and T. P. Dabbs, J. Mater. Sci. 16 (1981) 2846.

    Article  Google Scholar 

  33. G. I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55.

    Article  Google Scholar 

  34. Y-W. Mai and B. R. Lawn, Ann. Rev. Mater. Sci. 16 (1986) 415.

    Article  CAS  Google Scholar 

  35. G.C. Sih, “Handbook of Stress Intensity Factors” (Lehigh University Press, Bethlehem, Pa., 1973).

    Google Scholar 

  36. B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975).

    Google Scholar 

  37. T. J. Chuang, personal communication.

  38. C. J. Fairbanks, unpublished work.

  39. T. P. Dabbs, PhD Thesis, University of New South Wales, Australia (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lathabai, S., Rödel, J., Dabbs, T. et al. Fracture mechanics model for subthreshold indentation flaws. J Mater Sci 26, 2157–2168 (1991). https://doi.org/10.1007/BF00549183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549183

Keywords

Navigation