Skip to main content
Log in

Helium-induced weld cracking in austenitic and martensitic steels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1 MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the “tritium trick” technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. S. Rosenbaum, “Treatise on Materials Science and Technology”, Vol. 7 (Academic Press, New York, 1975).

    Google Scholar 

  2. J. O. Stiegler and L. K. Mansur, Ann. Rev. Mater. Sci. 9 (1979) 405.

    Article  CAS  Google Scholar 

  3. R. S. Barnes, Nature 206 (1965) 1307.

    Article  CAS  Google Scholar 

  4. D. R. Harries, J. Nucl. Mater. 82 (1979) 635.

    Article  Google Scholar 

  5. M. M. Hall Jr, A. G. Hins, J. R. Summers and D. E. Walker, “Weldment: Physical Metallurgy and Failure Phenomena, Proceedings of the Fifth Bolton Landing Conference” (General Electric Co, Schenectady, New York, 1978) p. 365.

    Google Scholar 

  6. S. D. Atkin, ADIP Semiannual Progress Report (September 1981) p. 110.

  7. W. R. Kanne, C. L. Angerman and B. J. Eberhard, DP-147,0 (E.I. du Pont de Nemours, Savannah River Laboratory, Aiken, SC, 1987).

    Google Scholar 

  8. B. A. Chin, R. J. Neuhold and J. L. Straalsund, Nucl. Technol. 57 (1982) 426.

    Article  CAS  Google Scholar 

  9. Annual Books and ASTM Standards, “Standard Guide for Simulation of Helium Effects in Irradiated Materials”, Vol. 12.02, E492-83 (American Society for Testing and Materials, Philadelphia, PA) pp. 808–11.

  10. B. M. Oliver, J. G. Bradley and H. Iv. Farrar, Geochim Cosmochim. Acta 48 (1984) 1625.

    Article  Google Scholar 

  11. H. T. Lin, PhD dissertation, Auburn University (1989).

  12. D. W. James and G. M. Leak, Phil. Mag. 12 (1965) 491.

    Article  CAS  Google Scholar 

  13. D. Hull and D. Rimmer, ibid. 4 (1959) 673.

    Article  CAS  Google Scholar 

  14. M. V. Speight and J. E. Harries, Metal Sci. J. 1 (1967) 83.

    Article  CAS  Google Scholar 

  15. J. Weertman, Scripta Metall. 7 (1973) 4129.

    Article  Google Scholar 

  16. M. V. Speight and W. Beere, Metal Sci. J. 9 (1975) 190.

    Article  Google Scholar 

  17. R. Raj and M. F. Ashby, Acta Metall. 23 (1975) 653.

    Article  Google Scholar 

  18. H. Trinkaus, Ber. Bunsenges. Phys. Chem. 82 (1978) 249.

    Article  CAS  Google Scholar 

  19. H. Riedel, “Fracture at High Temperature” (Springer-Verlag, New York, 1987).

    Book  Google Scholar 

  20. R. L. Rickett, W. F. White, C. S. Walton and J. C. Butler, Trans. ASM 44 (1952) 138.

    Google Scholar 

  21. K. Masubuchi, “Analysis of Welded Structures” (Pergamon Press, New York, 1980) p. 189.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H.T., Chin, B.A. Helium-induced weld cracking in austenitic and martensitic steels. J Mater Sci 26, 2063–2070 (1991). https://doi.org/10.1007/BF00549168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549168

Keywords

Navigation