Skip to main content
Log in

Nonracemic Dimethylphenyl Glycerol Ethers in the Synthesis of Physiologically Active Aminopropanols

  • Review
  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Six regioisomeric nonracemic dimethylphenyl glycerol ethers were synthesized by asymmetric dihydroxylation of the corresponding allyl dimethylphenyl ethers. The enantioselectivity of the reaction with o-methyl derivatives was lower (down to 34% ee) than with m-methylphenyl ethers (up to 86% ee). Enantiomeric 3-(3,4-dimethylphenoxy)propane-1,2-diols were used to obtain enantiomerically pure physiologically active amino alcohols and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Murakami, H., Top. Curr. Chem., 2007, vol. 269, p. 273. doi https://doi.org/10.1007/s128_2006_072

    Article  CAS  PubMed  Google Scholar 

  2. Calcaterra, A. and D’Acquarica, I., J. Pharm. Biomed. Anal., 2018, vol. 147, p. 323. doi https://doi.org/10.1016/j.jpba.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  3. Berger, F.M., Hubbard, C.V., and Ludwig, B.J., Appl. Microbiol., 1953, vol. 1, p. 146.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansch, C. and Lien, E.J., J. Med. Chem., 1971, vol. 14, p. 653. doi https://doi.org/10.1021/jm00290a001

    Article  CAS  PubMed  Google Scholar 

  5. The Merck Index, O’Neil, M.J., Ed., Whitehouse Station, NJ, USA: Merck, 2006, 14th ed., entries 2178 (a), 4555(b), 5850(c).

  6. Agustian, J., Kamaruddin, A.H., and Bhatia, S., Process Biochem., 2010, vol. 45, p. 1587. doi https://doi.org/10.1016/j.procbio.2010.06.022

    Article  CAS  Google Scholar 

  7. Saddique, F.A., Zahoor, A.F., Yousaf, M., Irfan, M., Ahmad, M., Mansha, A., Khan, Z.A., and Naqvi, S.A.R., Turk. J. Chem., 2016, vol. 40, p. 193. doi https://doi.org/10.3906/kim-1504-65

    Article  CAS  Google Scholar 

  8. Bredikhin, A.A. and Bredikhina, Z.A., Chem. Eng. Technol., 2017, vol. 40, p. 1211. doi https://doi.org/10.1002/ceat.201600649

    Article  CAS  Google Scholar 

  9. Campo, C., Llama, E.F., Bermudez, J.L., and Sinisterra, J.V., Biocatal. Biotransform., 2001, vol. 19, p. 163. doi https://doi.org/10.3109/10242420109105262

    Article  CAS  Google Scholar 

  10. Bredikhina, Z.A., Kurenkov, A.V., Krivolapov, D.B., and Bredikhin, A.A., Tetrahedron: Asymmetry, 2015, vol. 26, p. 577. doi https://doi.org/10.1016/j.tetasy.2015.04.005

    Article  CAS  Google Scholar 

  11. Bredikhin, A.A., Bredikhina, Z.A., Kurenkov, A.V., and Gubaidullin, A.T., Tetrahedron: Asymmetry, 2017, vol. 28, p. 1359. doi https://doi.org/10.1016/j.tetasy.2017.08.013

    Article  CAS  Google Scholar 

  12. Bredikhin, A.A., Zakharychev, D.V., Gubaidullin, A.T., and Bredikhina, Z.A., Cryst. Growth Des, 2018, vol. 18, p. 6627. doi https://doi.org/10.1021/acs.cgd.8b00874

    Article  CAS  Google Scholar 

  13. Hothersall, J.D., Black, J., Caddick, S., Vinter, J.G., Tinker, A., and Baker, J.R., Br. J. Pharmacol., 2011, vol. 164, p. 317. doi https://doi.org/10.1111/j.1476-5381.2011.01269.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Araujo, N., Ferreira da Silva, A., Qing, Y., Lifino, M., Russell, A.J., Small, B., Wade-Martins, R., and Wynne, G.M., Int. Patent Appl. no. WO 2015/004485 A1, 2015.

  15. Nelson, W.L., Wennerstrom, J.E., and Sankar, S.R., J. Org. Chem., 1977, vol. 42, p. 1006. doi https://doi.org/10.1021/jo00426a016

    Article  CAS  PubMed  Google Scholar 

  16. Bredikhin, A.A., Zakharychev, D.V., Bredikhina, Z.A., Kurenkov, A.V., Krivolapov, D.B., and Gubaidullin, A.T., Cryst. Growth Des., 2017, vol. 17, p. 4196. doi https://doi.org/10.1021/acs.cgd.7b00510

    Article  CAS  Google Scholar 

  17. Zaitsev, A.B. and Adolfsson, H., Synthesis, 2006, no. 11, p. 1725. doi https://doi.org/10.1055/s-2006-942378

  18. Heravi, M.M., Zadsirjan, V., Esfandyari, M., and Lashaki, T.B., Tetrahedron: Asymmetry, 2017, vol. 28, p. 987. doi https://doi.org/10.1016/j.tetasy.2017.07.004

    Article  CAS  Google Scholar 

  19. Wang, Z.M., Zhang, X.L., and Sharpless, K.B., Tetrahedron Lett., 1993, vol. 34, p. 2267. doi https://doi.org/10.1016/S0040-4039(00)77590-3

    Article  CAS  Google Scholar 

  20. Bredikhina, Z.A., Kurenkov, A.V., Antonovich, O.A., Pashagin, A.V., and Bredikhin, A.A., Tetrahedron: Asymmetry, 2014, vol. 25, p. 1015. doi https://doi.org/10.1016/j.tetasy.2014.05.008

    Article  CAS  Google Scholar 

  21. Byun, H.S., He, L.L., and Bittman, R., Tetrahedron, 2000, vol. 56, p. 7051. doi https://doi.org/10.1016/s0040-4020(00)00494-4

    Article  CAS  Google Scholar 

  22. Bredikhina, Z.A., Savel’ev, D.V., and Bredikhin, A.A., Russ. J. Org. Chem., 2002, vol. 38, p. 213. doi https://doi.org/10.1023/A:1015561532507

    Article  CAS  Google Scholar 

  23. Swamy, K.C.K., Kumar, N.N.B., Balaraman, E., and Kumar, K., Chem. Rev., 2009, vol. 109, p. 2551. doi https://doi.org/10.1021/cr800278z

    Article  CAS  PubMed  Google Scholar 

  24. Ludwig, B.J., West, W.A., and Currie, W.E., J. Am. Chem. Soc., 1952, vol. 74, p. 1935. doi https://doi.org/10.1021/ja01128a019

    Article  CAS  Google Scholar 

  25. Yale, H.L., Pribyl, E.J., Braker, W., Bergeim, F.H., and Lott, W.A., J. Am. Chem. Soc., 1950, vol. 72, p. 3710. doi https://doi.org/10.1021/ja01164a107

    Article  CAS  Google Scholar 

  26. Sayyed, I.A., Thakur, V.V., Nikalje, M.D., Dewkar, G.K., Kotkar, S.P., and Sudalai, A., Tetrahedron, 2005, vol. 61, p. 2831. doi https://doi.org/10.1016/j.tet.2005.01.074

    Article  CAS  Google Scholar 

  27. Polaske, N.W., Szalai, M.L., Shanahan, C.S., and McGrath, D.V., Org. Lett., 2010, vol. 12, p. 4944. doi https://doi.org/10.1021/ol102081q

    Article  CAS  PubMed  Google Scholar 

  28. Trivedi, R. and Tunge, J.A., Org. Lett., 2009, vol. 11, p. 5650. doi https://doi.org/10.1021/ol902291z

    Article  CAS  PubMed  Google Scholar 

  29. Clark, R.J., Isaacs, A., and Walker, J., Br. J. Pharmacol., 1958, vol. 13, p. 424. doi https://doi.org/10.1111/j.1476-5381.1958.tb00233.x

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Joint Spectral and Analytical Center (Kazan Scientific Center, Russian Academy of Sciences) for technical support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Bredikhina.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 6, pp. 945–953.

Conflict of Interests

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bredikhina, Z.A., Kurenkov, A.V. & Bredikhin, A.A. Nonracemic Dimethylphenyl Glycerol Ethers in the Synthesis of Physiologically Active Aminopropanols. Russ J Org Chem 55, 837–844 (2019). https://doi.org/10.1134/S1070428019060149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019060149

Keywords

Navigation