Skip to main content
Log in

Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We provide several Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior. Our results generalize and improve various known versions of the Ingham–Fatou–Riesz theorem and the Wiener–Ikehara theorem. Using local pseudofunction boundary behavior enables us to relax boundary requirements to a minimum. Furthermore, we allow possible null sets of boundary singularities and remove unnecessary uniformity conditions occurring in earlier works; to this end, we obtain a useful characterization of local pseudofunctions. Most of our results are proved under one-sided Tauberian hypotheses; in this context, we also establish new boundedness theorems for Laplace transforms with pseudomeasure boundary behavior. As an application, we refine various results related to the Katznelson–Tzafriri theorem for power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Allan, A. G. O’Farrell and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537–545.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837–852.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser/Springer, Basel, 2011.

    Book  MATH  Google Scholar 

  4. J. J. Benedetto, Spectral Synthesis, Academic Press, New York–London, 1975.

    Book  MATH  Google Scholar 

  5. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  6. H. Bremermann, Distributions, Complex Variables and Fourier Transforms, Addison-Wesley, Reading, MA, 1965.

    MATH  Google Scholar 

  7. R. Carmichael, A. Kamiński and S. Pilipović, Boundary Values and Convolution in Ultradistribution Spaces, World Scientific Publishing, Hackensack, NJ, 2007.

    Book  MATH  Google Scholar 

  8. R. Carmichael and D. Mitrović, Distributions and Analytic Functions, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1989.

    MATH  Google Scholar 

  9. R. Chill, Tauberian theorems for vector-valued Fourier and Laplace transforms, Studia Math. 128 (1998), 55–69.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Debruyne and J. Vindas, On PNT equivalences for Beurling numbers, Monatsh. Math. 184 (2017), 401–424.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Delange, Généralisation du théorème de Ikehara, Ann. Sci. Ecole Norm. Sup. 71 (1954), 213–242.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. G. Diamond and W.-B. Zhang, A PNT equivalence for Beurling numbers, Funct. Approx. Comment. Math. 46 (2012), 225–234.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Dimovski, S. Pilipović and J. Vindas, New distribution spaces associated to translationinvariant Banach spaces, Monatsh. Math. 177 (2015), 495–515.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Dimovski, S. Pilipović and J. Vindas, Boundary values of holomorphic functions in translationinvariant distribution spaces, Complex Var. Elliptic Equ. 60 (2015), 1169–1189.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Estrada and J. Vindas, On Romanovski’s lemma, Real Anal. Exchange 35 (2010), 431–443.

    Google Scholar 

  16. R. Estrada and J. Vindas, A general integral, Dissertationes Math. 483 (2012), 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, Providence, RI, 1994.

    Book  MATH  Google Scholar 

  18. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  19. A. E. Ingham, On Wiener’s method in Tauberian theorems, Proc. Lond. Math. Soc. (2) 38 (1935), 458–480.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Karamata, Über einen Satz von Heilbronn und Landau, Publ. Inst. Math. (Beograd) 5 (1936), 28–38.

    MATH  Google Scholar 

  21. Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  22. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313–328.

    Google Scholar 

  23. J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108–115.

    Google Scholar 

  24. J. Korevaar, A century of complex Tauberian theory, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 475–531.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Korevaar, Tauberian Theory. A Century of Developments, Springer-Verlag, Berlin, 2004.

    Book  MATH  Google Scholar 

  26. J. Korevaar, Distributional Wiener–Ikehara theorem and twin primes, Indag. Math. (N.S.) 16 (2005), 37–49.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Korevaar, A Tauberian theorem for Laplace transforms with pseudofunction boundary behavior, in Complex Analysis and Dynamical Systems II, American Mathematical Society, Providence, RI, 2005, pp. 233–242,.

    Google Scholar 

  28. J. Korevaar, The Wiener–Ikehara theorem by complex analysis, Proc. Amer. Math. Soc. 134 (2006), 1107–1116.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), 693–696.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. J. Newman, Analytic Number Theory, Springer, New York, 1998.

    MATH  Google Scholar 

  31. S. Pilipović, B. Stanković and J. Vindas, Asymptotic Behavior of Generalized Functions, World Scientific, Hackensack, NJ, 2012.

    MATH  Google Scholar 

  32. T. J. Ransford, Some quantitative Tauberian theorems for power series, Bull. Lond. Math. Soc. 20 (1988), 37–44.

    Article  MathSciNet  MATH  Google Scholar 

  33. Sz. Gy. Révész and A. de Roton, Generalization of the effective Wiener–Ikehara theorem, Int. J. Number Theory 9 (2013), 2091–2128.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Romanovski, Essai d’une exposition de l’integrale de Denjoy sans nombres transfini, Fund. Math. 19 (1932), 38–44.

    Article  MATH  Google Scholar 

  35. W. Rudin, Lectures on the Edge-of-the-Wedge Theorem, American Mathematical Society, Providence, RI, 1971.

    Book  MATH  Google Scholar 

  36. J.-C. Schlage-Puchta and J. Vindas, The prime number theorem for Beurling’s generalized numbers. New cases, Acta Arith. 153 (2012), 299–324.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.

    MATH  Google Scholar 

  38. D. Seifert, A quantified Tauberian theorem for sequences, Studia Math. 227 (2015), 183–192.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  40. J. Vindas and R. Estrada, Distributional point values and convergence of Fourier series and integrals, J. Fourier Anal. Appl. 13 (2007), 551–576.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor & Francis, London, 2002.

    MATH  Google Scholar 

  42. V. S. Vladimirov, Y. N. Drozhzhinov and B. I. Zavialov, Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers Group, Dordrecht, 1988.

    Book  Google Scholar 

  43. D. Zagier, Newman’s short proof of the prime number theorem, Amer. Math. Monthly 104 (1997), 705–708.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. H. Zemanian, Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications, Dover, New York, 1987.

    MATH  Google Scholar 

  45. W.-B. Zhang, Wiener-Ikehara theorems and the Beurling generalized primes, Monatsh. Math. 174 (2014), 627–652.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasson Vindas.

Additional information

G. Debruyne gratefully acknowledges support by Ghent University, through a BOF Ph.D. grant

The work of J. Vindas was supported by the Research Foundation–Flanders, through the FWO-grant number 1520515N

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debruyne, G., Vindas, J. Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior. JAMA 138, 799–833 (2019). https://doi.org/10.1007/s11854-019-0045-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0045-3

Navigation