Skip to main content
Log in

RBF-ARX model-based two-stage scheduling RPC for dynamic systems with bounded disturbance

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

With directly considering the unknown and bounded disturbance, a RBF-ARX model-based two-stage scheduling quasi-min–max robust predictive control (RBF-ARX-TRPC) algorithm for output-tracking control is proposed for a class of smooth nonlinear systems with unknown steady-state knowledge. Firstly, from the RBF-ARX model that is identified using input/output data of the system, the two local linearization state-space models that consider the bounded disturbance and a polytopic uncertain LPV state-space model are built to approximate the present and future system’s nonlinear dynamics, respectively. Based on the state-space models, the RBF-ARX-TRPC algorithm is designed without relying on the system steady-state knowledge. In the RBF-ARX-TRPC algorithm, the future nonlinear behavior of the system is forced to vary within the region constructed by the polytopic uncertain LPV state-space model. Closed-loop stability is guaranteed when the algorithm is implemented in a receding horizon fashion by including a Lyapunov constraint in the formulation. The comparative experiments demonstrate the effectiveness of the proposed strategy on a continuously stirred tank reactor (CSTR) simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ławryńczuk M (2014) Computationally efficient model predictive control algorithms: a neural network approach. In: Kacprzyk J (ed) Part of the studies in systems, decision and control book series, vol 3. Springer, Cham

    Google Scholar 

  2. Grüne L, Pannek J (2017) Nonlinear model predictive control. In: Nonlinear Model Predictive Control. Springer, pp 45–69

  3. Darby ML, Nikolaou M (2012) MPC: Current practice and challenges. Control Eng Pract 20(4):328–342

    Article  Google Scholar 

  4. Ławryńczuk M (2014) Explicit nonlinear predictive control algorithms with neural approximation. Neurocomputing 129:570–584

    Article  Google Scholar 

  5. Bloemen H, Van Den Boom T, Verbruggen H (2001) Model-based predictive control for Hammerstein? Wiener systems. Int J Control 74(5):482–495

    Article  MathSciNet  MATH  Google Scholar 

  6. Kothare MV, Balakrishnan V, Morari M (1996) Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10):1361–1379

    Article  MathSciNet  MATH  Google Scholar 

  7. Wan ZY, Kothare MV (2003) An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica 39(5):837–846

    Article  MathSciNet  MATH  Google Scholar 

  8. Lu Y, Arkun Y (2000) Quasi-min-max MPC algorithms for LPV systems. Automatica 36(4):527–540

    Article  MathSciNet  MATH  Google Scholar 

  9. Lu Y, Arkun Y (2002) A scheduling quasi–min-max model predictive control algorithm for nonlinear systems. J Process Control 12(5):589–604

    Article  Google Scholar 

  10. Li D, Xi Y (2011) Constrained feedback robust model predictive control for polytopic uncertain systems with time delays. Int J Syst Sci 42(10):1651–1660

    Article  MathSciNet  MATH  Google Scholar 

  11. Mayne DQ, Seron MM, Rakovic SV (2005) Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2):219–224

    Article  MathSciNet  MATH  Google Scholar 

  12. Yan Z, Wang J (2014) Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks. IEEE Trans Neural Netw Learning Syst 25(3):457–469

    Article  MathSciNet  Google Scholar 

  13. He D-F, Huang H, Chen Q-X (2014) Quasi-min¨Cmax MPC for constrained nonlinear systems with guaranteed input-to-state stability. J Franklin Inst 351(6):3405–3423

    Article  MathSciNet  MATH  Google Scholar 

  14. Bemporad A, Borrelli F, Morari M (2003) Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans Autom Control 48(9):1600–1606

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding B, Pan H (2017) Dynamic output feedback-predictive control of a Takagi-Sugeno model with bounded disturbance. IEEE Trans Fuzzy Syst 25(3):653–667

    Article  Google Scholar 

  16. Park J-H, Kim T-H, Sugie T (2011) Output feedback model predictive control for LPV systems based on quasi-min–max algorithm. Automatica 47(9):2052–2058

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding B, Xi Y, Cychowski MT, O’Mahony T (2008) A synthesis approach for output feedback robust constrained model predictive control. Automatica 44(1):258–264

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding B (2010) Constrained robust model predictive control via parameter-dependent dynamic output feedback. Automatica 46(9):1517–1523

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee YI, Kouvaritakis B (2001) Receding horizon output feedback control for linear systems with input saturation. IEE Proce-Control Theory Appl 148(2):109–115

    Article  Google Scholar 

  20. Mayne DQ, Raković SV, Findeisen R, Allgöwer F (2009) Robust output feedback model predictive control of constrained linear systems: time varying case. Automatica 45(9):2082–2087

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding B, Zou T (2014) A synthesis approach for output feedback robust model predictive control based-on input–output model. J Process Control 24(3):60–72

    Article  Google Scholar 

  22. Peng H, Ozaki T, Haggan-Ozaki V, Toyoda Y (2003) A parameter optimization method for radial basis function type models. IEEE Trans Neural Netw 14(2):432–438

    Article  MATH  Google Scholar 

  23. Haggan-Ozaki V, Ozaki T, Toyoda Y (2009) An Akaike state-space controller for RBF-ARX models. IEEE Trans Control Syst Technol 17(1):191–198

    Article  Google Scholar 

  24. Peng H, Wu J, Inoussa G, Deng Q, Nakano K (2009) Nonlinear system modeling and predictive control using RBF nets-based quasi-linear ARX model. Control Eng Pract 17(1):59–66

    Article  Google Scholar 

  25. Peng H, Nakano K, Shioya H (2007) Nonlinear predictive control using neural nets-based local linearization ARX model-stability and industrial application. IEEE Trans Control Syst Technol 15(1):130–143

    Article  Google Scholar 

  26. Wu J, Peng H, Ohtsu K, Kitagawa G, Itoh T (2012) Ship’s tracking control based on nonlinear time series model. Appl Ocean Res 36:1–11

    Article  Google Scholar 

  27. Qin Y, Peng H, Zhou F, Zeng X, Wu J (2015) Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model. J Franklin Inst 352(10):4309–4338

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou F, Peng H, Ruan W, Wang D, Liu M, Gu Y, Li L Cubic-RBF-ARX modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process. Neural Comput Appl 1–15

  29. Zhou F, Peng H, Qin Y, Zeng X, Xie W, Wu J (2015) RBF-ARX model-based MPC strategies with application to a water tank system. J Process Control 34:97–116

    Article  Google Scholar 

  30. Bao G, Zeng Z (2016) Global asymptotical stability analysis for a kind of discrete-time recurrent neural network with discontinuous activation functions. Neurocomputing 193:242–249

    Article  Google Scholar 

  31. Bao G, Zeng Z (2017) Region stability analysis for switched discrete-time recurrent neural network with multiple equilibria. Neurocomputing 249:182–190

    Article  Google Scholar 

  32. Peng H, Yang Z-J, Gui W, Wu M, Shioya H, Nakano K (2007) Nonlinear system modeling and robust predictive control based on RBF-ARX model. Eng Appl Artif Intell 20(1):1–9

    Article  Google Scholar 

  33. Peng H, Kitagawa G, Wu J, Ohtsu K (2011) Multivariable RBF-ARX model-based robust MPC approach and application to thermal power plant. Appl Math Model 35(7):3541–3551

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou F, Peng H, Qin Y, Zeng X, Tian X, Xu W (2017) A RBF-ARX model-based robust MPC for tracking control without steady state knowledge. J Process Control 51:42–54

    Article  Google Scholar 

  35. Cuzzola FA, Geromel JC, Morari M (2002) An improved approach for constrained robust model predictive control. Automatica 38(7):1183–1189

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu F (2001) LMI-based robust model predictive control and its application to an industrial CSTR problem. J Process Control 11(6):649–659

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous referees for their valuable comments and suggestions, which substantially improved the original manuscript. This work was supported by the National Natural Science Foundation of China (61773402, 61540037, 71271215, 51575167), the International Science and Technology Cooperation Program of China (2011DFA10440), and the Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Peng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Peng, H., Zeng, X. et al. RBF-ARX model-based two-stage scheduling RPC for dynamic systems with bounded disturbance. Neural Comput & Applic 31, 4185–4200 (2019). https://doi.org/10.1007/s00521-018-3347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3347-y

Keywords

Navigation