Skip to main content
Log in

Diffuse microdamage in bone activates anabolic response by osteoblasts via involvement of voltage-gated calcium channels

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Matrix damage sustained by bone tissue is repaired by the concerted action of bone cells. Previous studies have reported extracellular calcium ([Ca2+]E) efflux to originate from regions of bone undergoing diffuse microdamage termed as “diffuse microdamage-induced calcium efflux” (DMICE). DMICE has also been shown to activate and increase intracellular calcium ([Ca2+]I) signaling in osteoblasts via the involvement of voltage-gated calcium channels (VGCC). Past studies have assessed early stage (< 1 h) responses of osteoblasts to DMICE. The current study tested the hypothesis that DMICE has longer-term sustained effect such that it induces anabolic response of osteoblasts.

Materials and methods

Osteoblasts derived from mouse calvariae were seeded on devitalized bovine bone wafers. Localized diffuse damage was induced in the vicinity of cells by bending. The response of osteoblasts to DMICE was evaluated by testing gene expression, protein synthesis and mineralized nodule formation.

Results

Cells on damaged bone wafers showed a significant increase in RUNX2 and Osterix expression compared to non-loaded control. Also, RUNX2 and Osterix expression were suppressed significantly when the cells were treated with bepridil, a non-selective VGCC inhibitor, prior to loading. Significantly higher amounts of osteocalcin and mineralized nodules were synthesized by osteoblasts on diffuse damaged bone wafers, while bepridil treatment resulted in a significant decrease in osteocalcin production and mineralized nodule formation.

Conclusion

In conclusion, this study demonstrated that DMICE activates anabolic responses of osteoblasts through activation of VGCC. Future studies of osteoblast response to DMICE in vivo will help to clarify how bone cells repair diffuse microdamage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta HS, Zioupos P (2008) Fracture of bone tissue: the ‘hows’ and the ‘whys’. Med Eng Phys 30:1209–1226

    CAS  PubMed  Google Scholar 

  2. Frost H (1960) Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull 8:35

    Google Scholar 

  3. Sahar ND, Hong SI, Kohn DH (2005) Micro- and nano-structural analyses of damage in bone. Micron 36:617–629

    PubMed  Google Scholar 

  4. Seref-Ferlengez Z, Kennedy OD, Schaffler MB (2015) Bone microdamage, remodeling and bone fragility: how much damage is too much damage? Bonekey Rep 4:644

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wasserman N, Brydges B, Searles S, Akkus O (2008) In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone 43:856–861

    PubMed  Google Scholar 

  6. Carter DR, Hayes WC (1977) Compact bone fatigue damage: a microscopic examination. Clin Orthop Relat Res 127:265–274

    Google Scholar 

  7. Burr DB, Turner CH, Naick P, Forwood MR, Ambrosius W, Hasan MS, Pidaparti R (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31:337–345

    CAS  PubMed  Google Scholar 

  8. Sobelman OS, Gibeling JC, Stover SM, Hazelwood SJ, Yeh OC, Shelton DR, Martin RB (2004) Do microcracks decrease or increase fatigue resistance in cortical bone? J Biomech 37:1295–1303

    CAS  PubMed  Google Scholar 

  9. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB (2009) Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res 24:597–605

    CAS  PubMed  Google Scholar 

  10. Taylor D, Hazenberg JG, Lee TC (2007) Living with cracks: damage and repair in human bone. Nat Mater 6:263–268

    CAS  PubMed  Google Scholar 

  11. Lee TC, Staines A, Taylor D (2002) Bone adaptation to load: microdamage as a stimulus for bone remodelling. J Anat 201:437–446

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB (2010) Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone 47:766–772

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan YX, Gong YW, Guo Y, Lv Q, Guo C, Zhuang Y, Zhang Y, Li R, Zhang XZ (2012) Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS One 7:e35709

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo Y, Zhang CQ, Zeng QC, Li RX, Liu L, Hao QX, Shi CH, Zhang XZ, Yan YX (2012) Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential. Biomed Eng Online 11:80

    PubMed  PubMed Central  Google Scholar 

  15. Letechipia JE, Alessi A, Rodriguez G, Asbun J (2010) Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling? Med Hypotheses 75:196–198

    CAS  PubMed  Google Scholar 

  16. Turner CH, Forwood MR, Otter MW (1994) Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 8:875–878

    CAS  PubMed  Google Scholar 

  17. Sun X, McLamore E, Kishore V, Fites K, Slipchenko M, Porterfield DM, Akkus O (2012) Mechanical stretch induced calcium efflux from bone matrix stimulates osteoblasts. Bone 50:581–591

    CAS  PubMed  Google Scholar 

  18. Sun X, Hoon Jeon J, Blendell J, Akkus O (2010) Visualization of a phantom post-yield deformation process in cortical bone. J Biomech 43:1989–1996

    CAS  PubMed  Google Scholar 

  19. Jung H, Best M, Akkus O (2015) Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels. Bone 76:88–96

    PubMed  Google Scholar 

  20. Yamauchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616

    CAS  PubMed  Google Scholar 

  21. Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207–1221

    CAS  PubMed  Google Scholar 

  22. Batra NN, Li YJ, Yellowley CE, You L, Malone AM, Kim CH, Jacobs CR (2005) Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech 38:1909–1917

    PubMed  Google Scholar 

  23. Jung H, Mbimba T, Unal M, Akkus O (2018) Repetitive short-span application of extracellular calcium is osteopromotive to osteoprogenitor cells. J Tissue Eng Regen Med 12:e1349–e1359

    CAS  PubMed  Google Scholar 

  24. Jung H, Akkus O (2016) Activation of intracellular calcium signaling in osteoblasts colocalizes with the formation of post-yield diffuse microdamage in bone matrix. Bonekey Rep 5:778

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB (1998) Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res 16:322–329

    CAS  PubMed  Google Scholar 

  26. Silva MJ, Brodt MD, Lynch MA, Stephens AL, Wood DJ, Civitelli R (2012) Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice. PLoS One 7:e34980

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lynch JA, Silva MJ (2008) In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation. Bone 42:942–949

    PubMed  PubMed Central  Google Scholar 

  28. Seref-Ferlengez Z, Basta-Pljakic J, Kennedy OD, Philemon CJ, Schaffler MB (2014) Structural and mechanical repair of diffuse damage in cortical bone in vivo. J Bone Miner Res 29:2537–2544

    PubMed  PubMed Central  Google Scholar 

  29. Vashishth D, Koontz J, Qiu SJ, Lundin-Cannon D, Yeni YN, Schaffler MB, Fyhrie DP (2000) In vivo diffuse damage in human vertebral trabecular bone. Bone 26:147–152

    CAS  PubMed  Google Scholar 

  30. Cianferotti L, Gomes AR, Fabbri S, Tanini A, Brandi ML (2015) The calcium-sensing receptor in bone metabolism: from bench to bedside and back. Osteoporos Int 26:2055–2071

    CAS  PubMed  Google Scholar 

  31. Gu Y, Preston MR, Magnay J, El Haj AJ, Publicover SJ (2001) Hormonally-regulated expression of voltage-operated Ca(2+) channels in osteocytic (MLO-Y4) cells. Biochem Biophys Res Commun 282:536–542

    CAS  PubMed  Google Scholar 

  32. Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116:281–290

    CAS  PubMed  Google Scholar 

  33. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GA, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616

    CAS  PubMed  Google Scholar 

  34. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414:773–776

    CAS  PubMed  Google Scholar 

  35. Gupta HS, Wagermaier W, Zickler GA, Raz-Ben Aroush D, Funari SS, Roschger P, Wagner HD, Fratzl P (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5:2108–2111

    CAS  PubMed  Google Scholar 

  36. Lohberger B, Kaltenegger H, Stuendl N, Payer M, Rinner B, Leithner A (2014) Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in human intraoral mesenchymal stromal and progenitor cells. Biomed Res Int 2014:189516

    PubMed  PubMed Central  Google Scholar 

  37. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007) Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101:1266–1277

    CAS  PubMed  Google Scholar 

  38. Lu XL, Huo B, Park M, Guo XE (2012) Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 51:466–473

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cullen PJ, Lockyer PJ (2002) Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 3:339–348

    CAS  PubMed  Google Scholar 

  40. Seo JH, Jin YH, Jeong HM, Kim YJ, Jeong HG, Yeo CY, Lee KY (2009) Calmodulin-dependent kinase II regulates Dlx5 during osteoblast differentiation. Biochem Biophys Res Commun 384:100–104

    CAS  PubMed  Google Scholar 

  41. Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, de Vernejoul MC (2008) Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol 173:773–780

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339:189–195

    CAS  PubMed  Google Scholar 

  43. Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453

    CAS  PubMed  Google Scholar 

  44. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    CAS  PubMed  Google Scholar 

  45. Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Investig 109:1405–1415

    CAS  PubMed  Google Scholar 

  46. Choudhary S, Kumar A, Kale RK, Raisz LG, Pilbeam CC (2004) Extracellular calcium induces COX-2 in osteoblasts via a PKA pathway. Biochem Biophys Res Commun 322:395–402

    CAS  PubMed  Google Scholar 

  47. Yamaguchi T, Chattopadhyay N, Kifor O, Sanders JL, Brown EM (2000) Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun 279:363–368

    CAS  PubMed  Google Scholar 

  48. Choi YH, Gu YM, Oh JW, Lee KY (2011) Osterix is regulated by Erk1/2 during osteoblast differentiation. Biochem Biophys Res Commun 415:472–478

    CAS  PubMed  Google Scholar 

  49. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    CAS  PubMed  Google Scholar 

  50. Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H, Darnay BG, de Crombrugghe B (2010) Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA 107:12919–12924

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science Foundation (NSF CMMI-1233413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Akkus.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Ethical approval

Animals were used in accordance with protocol (2014-0099) approved by the Institutional Animal Care and Use Committee (IACUC) of Case Western Reserve University. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Akkus, O. Diffuse microdamage in bone activates anabolic response by osteoblasts via involvement of voltage-gated calcium channels. J Bone Miner Metab 38, 151–160 (2020). https://doi.org/10.1007/s00774-019-01042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01042-8

Keywords

Navigation