Skip to main content
Log in

Singular cycles connecting saddle periodic orbit and saddle equilibrium in piecewise smooth systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For flows, the singular cycles connecting saddle periodic orbit and saddle equilibrium can potentially result in the so-called singular horseshoe, which means the existence of a non-uniformly hyperbolic chaotic invariant set. However, it is very hard to find a specific dynamical system that exhibits such singular cycles in general. In this paper, the existence of the singular cycles involving saddle periodic orbits is studied by two types of piecewise smooth systems: One is the piecewise smooth systems having an admissible saddle point with only real eigenvalues and an admissible saddle periodic orbit, and the other is the piecewise smooth systems having an admissible saddle-focus and an admissible saddle periodic orbit. Several kinds of sufficient conditions are obtained for the existence of only one heteroclinic cycle or only two heteroclinic cycles in the two types of piecewise smooth systems, respectively. In addition, some examples are presented to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Afraimovic, V.S., Bykov, V.V., Sil’Nikov, L.P.: Origin and structure of the Lorenz attractor. Akad. Nauk SSSR Dokl. 234(2), 336–339 (1977)

    MathSciNet  Google Scholar 

  2. Araújo, V.: Three-Dimensional Flows. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  3. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45(10), 1864–1876 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Bischi, G.I., Chiarella, C., Sushko, I.: Global Analysis of Dynamic Models in Economics and Finance: Essays in Honour of Laura Gardini. Springer, Berlin (2012)

    MATH  Google Scholar 

  6. Carrasco-Olivera, D., Morales, C., San Martn, B.: One-dimensional contracting singular horseshoe. Proc. Am. Math. Soc. 138(11), 4009–4009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chua, L.O., Lin, G.N.: Canonical realization of Chua’s circuit family. IEEE Trans. Circuits Syst. 37(7), 885–902 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, B.: Constructing homoclinic orbits and chaotic attractors. Int. J. Bifurc. Chaos 4(04), 823–841 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, B., Hines, G.: Food chain chaos due to Shilnikov’s orbit. Chaos Interdiscip. J. Nonlinear Sci. 12(3), 533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publications Mathématiques De Linstitut Des Hautes Études Scientifiques 50(1), 59–72 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. Handb. Dyn. Syst. 3, 379–524 (2010)

    Article  MATH  Google Scholar 

  13. Huan, S., Li, Q., Yang, X.S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69(4), 1915–1927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huan, S.M., Yang, X.S.: Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems. Int. J. Bifurc. Chaos 24(12), 1450158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johansson, M., Rantzer, A., Arzen, K.E.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)

    Article  MATH  Google Scholar 

  16. Labarca, R., Pacifico, M.J.: Stability of singular horseshoes. Topology 25(3), 337–352 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leonov, G.A.: General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems. Phys. Lett. A 376(45), 3045–3050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leonov, G.A.: Fishing principle for homoclinic and heteroclinic trajectories. Nonlinear Dyn. 78(4), 2751–2758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Q., Yang, X.S.: New walking dynamics in the simplest passive bipedal walking model. Appl. Math. Model. 36(11), 5262–5271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang, F., Han, M.: Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fractals 45(4), 454–464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  22. Medrano-T, R.O., Baptista, M.S., Caldas, I.L.: Homoclinic orbits in a piecewise system and their relation with invariant sets. Physica D Nonlinear Phenom. 186(3–4), 133–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pisarchik, A., Jaimes-Reátegui, R.: Homoclinic orbits in a piecewise linear Rössler-like circuit. J. Phys. Conf. Ser. 23, 122 (2005)

    Article  MATH  Google Scholar 

  24. Shil’nikov, L., Shil’nikov, A., Turaev, D., Chua, L.: Methods of Qualitative Theory in Nonlinear Dynamics (Part II). World Scientific, Singapore (2001)

    Book  Google Scholar 

  25. Singh, J., Roy, B.: Simplest hyperchaotic system with only one piecewise linear term. Electron. Lett. 55, 378–380 (2019)

    Article  Google Scholar 

  26. Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266(1), 19–23 (2000)

    Article  MathSciNet  Google Scholar 

  27. Tigan, G., Turaev, D.: Analytical search for homoclinic bifurcations in the Shimizu–Morioka model. Physica D Nonlinear Phenom. 240(12), 985–989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, L., Yang, X.S.: Heteroclinic cycles in a class of 3-dimensional piecewise affine systems. Nonlinear Anal. Hybrid Syst. 23, 44–60 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, L., Zhang, X.: Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete Contin. Dyn. Syst. Ser. A 36(5), 2803–2825 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Wu, T., Wang, L., Yang, X.S.: Chaos generator design with piecewise affine systems. Nonlinear Dyn. 84(2), 817–832 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, S., Lü, J., Chen, G., Yu, X.: Design of grid multi-wing butterfly chaotic attractors from piecewise Lü system based on switching control and heteroclinic orbit. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 1335–1338. IEEE (2011)

Download references

Acknowledgements

The first author takes this opportunity to thank Prof. Sebastian Walther (Department of Mathematics, RWTH Aachen University, Germany) for providing a good research environment and office space during the visit in the RWTH Aachen University from July 2018 to July 2019. This study was supported by the National Natural Science Foundation of China (Grant Numbers 11702077 and 11472111), the Natural Science Foundation of Anhui Province (Grant Number 1708085QA12), the Overseas Visiting and Training Foundation of Outstanding Young Talents in the Universities of Anhui Province (Grant Number gxgwfx2018070) and the Talent Fund of Hefei University (Grant Numbers 18-19RC58 and 2018xs03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Song Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, XS. Singular cycles connecting saddle periodic orbit and saddle equilibrium in piecewise smooth systems. Nonlinear Dyn 97, 2469–2481 (2019). https://doi.org/10.1007/s11071-019-05142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05142-y

Keywords

Navigation