Skip to main content
Log in

Study on the chaotic dynamics in yaw–pitch–roll coupling of asymmetric rolling projectiles with nonlinear aerodynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To predict the coning motion forms of a rolling projectile with configurational asymmetries, the nonlinear characteristics for the system are investigated in this paper. The nonlinear dynamic model of rolling projectiles in coning motion is built by considering the nonlinear aerodynamics and roll orientation-dependent aerodynamics. The configurational asymmetry is modeled as a periodically parametric excitation in order to study its effect on the periodic response stability of the rolling projectile. Numerical continuation method is resorted to determine the parametric zone for the steady motions, and the possible stable rotational speeds are discussed. The numerical simulations, Lyapunov exponent spectrum analysis and Poincaré sections are performed to confirm the existence of chaotic coning motion. The results shown in this study not only contribute to an in-depth understanding for the nonlinear dynamics of rolling projectiles but also provide an important reference for the further study of the control design for the yaw–pitch–roll coupling of asymmetric rolling projectiles with nonlinear aerodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Nicolaides, J.D.: On the free flight motion of missiles having slight configurational asymmetries. U. S. Army Ballistic Research Lab, Aberdeen Proving Ground, MD, BRL Rept. 858, 1952, AD 26405; also, Institute of Aeronautical Sciences Paper 395 (1952)

  2. Nicolaides, J.D.: Two nonlinear problems in the flight dynamics of modern ballistic missiles. Report 59-17, Institute of the Aeronautical Sciences (1959)

  3. Price Jr., D.A.: Sources, mechanisms and control of roll resonance phenomena for sounding rockets. J. Spacecr. Rockets 4, 1516–1525 (1967)

    Article  Google Scholar 

  4. Murphy, C.H.: Some special cases of spin-yaw lock-in. J. Guidance Control Dyn. 12, 771–776 (1989)

    Article  Google Scholar 

  5. Ananthkrishnan, N., Raisinghani, S.C.: Steady and quasi-steady resonant lock-in of finned projectiles. J. Spacecr. Rockets 29, 692–696 (1992)

    Article  Google Scholar 

  6. Ananthkrishnan, N., Raisinghani, S.C., Pradeep, S.: Transient resonance of rolling finned projectiles. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 213, 97–103 (1999)

    Article  Google Scholar 

  7. Sharma, A., Ananthkrishnan, N.: Passage through resonance of rolling finned projectiles with center-of-mass offset. J. Sound Vib. 239, 1–17 (2001)

    Article  Google Scholar 

  8. Pepitone, T., Jacobson, I.: Resonant behavior of a symmetric missile having roll orientation-dependent aerodynamics. J. Guidance Control Dyn. 1, 335–339 (1978)

    Article  Google Scholar 

  9. Murphy, C.H., Mermagen, Wm H.: Spin-yaw lock in of a rotationally symmetric missile. J. Guidance Control Dyn. 32, 377–382 (2009)

    Article  Google Scholar 

  10. Li, D., Chang, S., Wang, Z.: Analytical solutions and a novel application: insights into spin-yaw lock-in. J. Guidance Control Dyn. 40, 1472–1481 (2017)

    Article  Google Scholar 

  11. Morote, J.: Resonant lock-in of unguided rockets having nonlinear aerodynamic properties. In: AIAA Paper 2006, p. 830 (2006)

  12. Morote, J., Liaño, G., Jiménez, J.: Nonlinear rolling motion of triform finned missiles. J. Spacecr. Rockets 54, 459–470 (2017)

    Article  Google Scholar 

  13. Liaño, G., Castillo, J.L., García-Ybarra, P.L.: Nonlinear model of the free-flight motion of finned bodies. Aerosp. Sci. Technol. 39, 315–324 (2014)

    Article  Google Scholar 

  14. Liaño, G., Castillo, J.L., García-Ybarra, P.L.: Steady states of the rolling and yawing motion of unguided missiles. Aerosp. Sci. Technol. 59, 103–111 (2016)

    Article  Google Scholar 

  15. Iñarrea, M.: Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit. Chaos Solitons Fractals 40, 1637–1652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Faramin, M.: Chaotic attitude analysis of a satellite via Lyapunov exponents and its robust nonlinear control subject to disturbances and uncertainties. Nonlinear Dyn. 83, 361–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Abdelaziz, Y.A., Shoaib, M.: Numerical analysis of the attitude stability of a charged spacecraft in the Pitch–Roll–Yaw directions. Int. J. Aeronaut. Space Sci. 15, 82–90 (2014)

    Article  Google Scholar 

  18. Liu, Y.Z., Chen, L.Q.: Chaos in Planar Attitude Motion of Spacecraft. Springer, Berlin (2013)

    Book  Google Scholar 

  19. Nicolaides, J.D.: A review of some recent progress in understanding catastrophic yaw. Rept. 551, AGARD (1966)

  20. Tanrikulu, O.: Limit cycle and chaotic behavior in persistent resonance of unguided missiles. J. Spacecr. Rockets 36, 859–865 (1999)

    Article  Google Scholar 

  21. Liu, Y.Z., Chen, L.Q.: Chaos in Attitude Dynamics of Spacecraft. Tsinghua University Press, Springer (2012)

    MATH  Google Scholar 

  22. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experiment Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  23. Moon, F.C.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, New York (1992)

    Book  Google Scholar 

  24. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  25. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Grebogi, C., Ott, E., Yorke, J.A.: Are three-frequency quasiperiodic orbits to be expected in typical dynamical systems? Phys. Rev. Lett. 51, 339–342 (1983)

    Article  MathSciNet  Google Scholar 

  27. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors and transient chaos. Phys. D 7, 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luliana, O., Gerhard, D.: A period doubling route to spatiotemporal chaos in a system of Ginzburg–Landau equations for nematic electroconvection. Discrete Contin. Dyn. Syst. B 24, 273–296 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, D.C., Oguamanam, D.C.D.: A numerical study of the dynamics of three-mass system on frictional tracks. Nonlinear Dyn. 94, 2047–2058 (2018)

    Article  Google Scholar 

  30. Yang, Y., Ren, X., Qin, W., et al.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61, 183–192 (2010)

    Article  MATH  Google Scholar 

  31. Luo, A.C.J., Xing, S.Y.: Bifurcation trees of period-3 motions to chaos in a time-delayed Duffing oscillator. Nonlinear Dyn. 88, 2831–2862 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2013)

    MATH  Google Scholar 

  33. Beyn, W.J., Champneys, A., Doedel, E.J., Kuznetov, Y.A., Govaerts, W., Sandstede, B.: Numerical continuation and computation of normal forms. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 149–219. Elsevier, Amsterdam (2001)

    Google Scholar 

  34. Beyn, W.J., Champneys, A., Doedel, E.J., Kuznetov, Y.A., Govaerts, W., Sandstede, B.: Numerical continuation and computation of normal forms. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 149–219. Elsevier, Amsterdam (2001)

    Google Scholar 

  35. Léger, S., Deteix, J., Fortin, A.: A Moore–Penrose continuation method based on a Schur complement approach for nonlinear finite element bifurcation problems. Comput. Struct. 152, 173–184 (2015)

    Article  Google Scholar 

  36. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  37. Yang, S.X., Zhao, L.Y., Yan, X.Y.: Dynamic Stability of Spinning Missiles. National Defense Industry Press, Beijing (2014)

    Google Scholar 

  38. Han, Z.P., Chang, S.J., Shi, J.G.: Nonlinear Motion Theory of Projectile and Rocket. Beijing Institute of Technology Press, Beijing (2016)

    Google Scholar 

  39. Sun, H.D., Yu, J.Q., Zhang, S.Y.: Bifurcation analysis of the asymmetric rolling missiles. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 230, 1273–1283 (2016)

  40. Kuznetsov, N.V., Alexeeva, T.A., Leonov, G.A.: Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations. Nonlinear Dyn. 85, 195–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vallejo, J.C., Sanjuan, M.A.F.: Predictability of Chaotic Dynamics. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  42. Wiggers, V., Rech, P.C.: Chaos, periodicity, and quasiperiodicity in a radio-physical oscillator. Int. J. Bifurc. Chaos 27, 22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Benettin, G., Galgani, L., Giorgilli, A., et al.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: theory. Meccanica 15, 9–20 (1980)

    Article  MATH  Google Scholar 

  44. Benettin, G., Galgani, L., Giorgilli, A., et al.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: numerical application. Meccanica 15, 21–30 (1980)

    Article  MATH  Google Scholar 

  45. Kuznetsov, N.V.: The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 380, 2142–2149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kaplan, J., Yorke, J.: Chaotic behavior of multidimensional difference equations. In: Peitgen, H.O., Walther, H.O. (eds.) Functional Differential Equations and Approximation of Fixed Points. Springer, New York (1979)

    Google Scholar 

Download references

Acknowledgements

Our special thanks go to Arun K. Banerjee for his valuable suggestions to this paper. The work presented in this paper was supported by National Natural Science Foundation of China (Grant Nos. 11472041, 11532002, 11772049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozeng Yue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yue, B., Yang, Z. et al. Study on the chaotic dynamics in yaw–pitch–roll coupling of asymmetric rolling projectiles with nonlinear aerodynamics. Nonlinear Dyn 97, 2739–2756 (2019). https://doi.org/10.1007/s11071-019-05159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05159-3

Keywords

Navigation