Skip to main content

Advertisement

Log in

Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In piezoelectric energy harvesters (PEHs) with external magnetic coupling, one main challenge is to obtain a precise magnetic force model to calculate the impacts of the external magnetic force on the vibrational response and energy harvesting performance. A tri-stable piezoelectric energy harvester (TPEH) with two external magnets was considered in this paper. An improved magnetic force model based on the magnetic dipoles theory was originally derived to investigate the formation mechanisms for bi- or tri-stability states at first, and then, a distributed-parameter mathematical model based on the energy method was established by considering the derived nonlinear magnetic force, and was used to investigate the nonlinear dynamic behaviors and power generation performance. Bifurcation analyses were also performed for the equilibrium solution of the derived system model. Experiments were subsequently conducted to validate the theoretical analysis. Simulation and experimental results indicate that the improved model for magnetic force is more applicable compared with the magnetic dipoles model used before. Results also show that the TPEH can significantly enhance the energy harvesting performance compared with the conventional bi-stable piezoelectric energy harvester in a wide frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Saadon, A., Sidek, O.: A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers. Manag. 52(1), 500–504 (2011)

    Article  Google Scholar 

  2. Siddique, A.R.M., Mahmud, S., Heyst, B.V.: A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 106, 728–747 (2015)

    Article  Google Scholar 

  3. Wang, D., Mo, J., Wang, X., Ouyang, H., Zhou, Z.: Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration. Energy Convers. Manag. 171, 1134–1149 (2018)

    Article  Google Scholar 

  4. Zhang, Z., Xiang, H., Shi, Z., Zhan, J.: Experimental investigation on piezoelectric energy harvesting form vehicle-bridge coupling vibration. Energy Convers. Manag. 163, 169–179 (2018)

    Article  Google Scholar 

  5. Guan, M., Liao, W.H.: Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers. Manag. 111, 239–244 (2016)

    Article  Google Scholar 

  6. Wang, W., Cao, J., Zhang, N., Lin, J., Liao, W.H.: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Convers. Manag. 132, 189–197 (2017)

    Article  Google Scholar 

  7. Torah, R., Glynne-Jones, P., Tudor, M., et al.: Self-powered autonomous wireless sensor node using vibration energy harvesting. Meas. Sci. Technol. 19(12), 1–8 (2008)

    Article  Google Scholar 

  8. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1144 (2004)

    Article  Google Scholar 

  9. Zhao, S., Erturk, A.: Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater. Struct. 22, 015002 (2013)

    Article  Google Scholar 

  10. Lumentut, M.F., Howard, I.M.: Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting. Mech. Syst. Signal Process. 36(1), 66–86 (2013)

    Article  Google Scholar 

  11. Yildirim, T., Ghayesh, M.H., Li, W.H., Alici, G.: A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 71, 435–449 (2017)

    Article  Google Scholar 

  12. Twoefe, J., Westermann, H.: Survey on broadband techniques for vibration energy harvesting. J. Intell. Mater. Syst. Struct. 24, 1291 (2013)

    Article  Google Scholar 

  13. Abed, I., Kacem, N., Bouazizi, M.L.: Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation. Smart Mater. Struct. 25, 025018 (2016)

    Article  Google Scholar 

  14. Tran, N., Ghayesh, M., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Firoozy, P., Khadem, S.E., Pourkiaee, S.M.: Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Eng. Sci. 111, 113–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erturk, A., Hoffman, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102-1 (2009)

    Article  Google Scholar 

  17. Kim, P., Seok, J.: Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theory 94, 41–63 (2015)

    Article  Google Scholar 

  18. Palagummi, S., Uan, F.G.: An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester. J. Sound Vib. 324, 330–345 (2015)

    Article  Google Scholar 

  19. Barton, D.A., Burrow, S.G., Clare, L.R.: Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. Trans. ASME 132, 0210091–0210097 (2010)

    Article  Google Scholar 

  20. Halvorsen, E.: Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys. Rev. E 87, 042129 (2013)

    Article  Google Scholar 

  21. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–53 (2011)

    Article  Google Scholar 

  22. Vocca, H., Neri, I., Travasso, F., et al.: Kinetic energy harvesting with bistable oscillators. Appl. Energy 97, 771–776 (2012)

    Article  Google Scholar 

  23. Wang, G.Q., Liao, W.H., Yang, B.Q., Wang, X.B., Xu, W.T., Li, X.L.: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 105, 427–446 (2018)

    Article  Google Scholar 

  24. Gael, S., Hiroki, K., Daniel, G., Benjamin, D.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 075022 (2011)

    Article  Google Scholar 

  25. Wang, G.Q., Liao, W.H.: A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement. J. Intell. Mater. Syst. Struct. 28(3), 392–407 (2017)

    Article  Google Scholar 

  26. Hosseinloo, A.H., Turitsyn, K.: Non-resonant energy harvesting via an adaptive bistable potential. Smart Mater. Struct. 25(1), 015010 (2015)

    Article  Google Scholar 

  27. Zhou, S.X., Cao, J.Y., Inman, D., Lin, J., Liu, S.S., Wang, Z.Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  28. Zhou, S.X., Cao, J.Y., Inman, D., Lin, J., Li, D.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)

    Article  Google Scholar 

  29. Cao, J.Y., Zhou, S.X., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106(17), 173903 (2015)

    Article  Google Scholar 

  30. Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333(21), 5525–5547 (2014)

    Article  Google Scholar 

  31. Zhou, Z.Y., Qin, W.Y., Zhu, P.: Improved efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A Phys. 243, 151–158 (2016)

    Article  Google Scholar 

  32. Aboulfotoh Noha, A., Arafa Mustafa, H., Megahed, Said M.: A self-tuning resonator for vibration energy harvesting. Sens. Actuators A Phys. 201, 328–334 (2013)

    Article  Google Scholar 

  33. Leng, Y.G., Liu, J.J., Zhang, Y.Y., Fan, S.B.: Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation. J. Sound Vib. 406, 146–160 (2017)

    Article  Google Scholar 

  34. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D 239, 640–653 (2010)

    Article  MATH  Google Scholar 

  35. Zhu, P., Ren, X., Qin, W.Y., Zhou, Z.Y.: Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. 87(1), 45–57 (2017)

    Article  Google Scholar 

  36. Ravaud, R., Lemarquand, G., Lemarquand, V., Depollier, C.: Magnetic field produced by a tile permanent shoes polarization is both uniform and tangential. Prog. Electromagn. Res. B 13, 1–20 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant Nos. 51777192, 51277165), Zhejiang Provincial Natural Science Foundation of China (No. Y20E070003), and the Research Grants Council of the Hong Kong Special Administrative Region, China (CUHK14205917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liao, WH., Zhao, Z. et al. Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn 97, 2371–2397 (2019). https://doi.org/10.1007/s11071-019-05133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05133-z

Keywords

Navigation