Skip to main content
Log in

Position tracking control for permanent magnet linear motor via fast nonsingular terminal sliding mode control

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, for the position control problem of permanent magnet linear motors, a fast nonsingular terminal sliding mode control (FNTSMC) method based on the finite-time disturbance observer (FTDO) is proposed. By employing a fast nonsingular terminal sliding surface, the FNTSMC is designed. Besides, a FTDO is applied to estimate the disturbance and the estimation is served as compensation for the controller. A rigorous analysis based on the Lyapunov stability theory is provided to prove that the proposed control method can achieve faster dynamic response characteristic and higher steady accuracy than the linear sliding mode control method and the PID control method. Numerical simulation results are explored to illustrate the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ji, J., Yan, S., Zhao, W., Liu, G., Zhu, X.: Minimization of cogging force in a novel linear permanent-magnet motor for artificial Hearts. IEEE Trans. Magn. 49(7), 3901–3904 (2013)

    Article  Google Scholar 

  2. Kim, J., Choi, S., Cho, K., Nam, K.: Position estimation using linear hall sensors for permanent magnet linear motor systems. IEEE Trans. Ind. Electron. 63(12), 7644–7652 (2016)

    Article  Google Scholar 

  3. Chen, S., Tan, K., Huang, S., Teo, C.: Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay. IEEE/ASME Trans. Mechatron. 15(4), 586–594 (2010)

    Article  Google Scholar 

  4. Tan, K., Huang, S., Lee, T.: Robust adaptive numerical compensation for friction and force ripple in permanent magnet linear motors. IEEE Trans. Magn. 38(1), 221–228 (2002)

    Article  Google Scholar 

  5. Lu, Q., Zhang, X., Chen, Y., Huang, X., Ye, Y., Zhu, Z.: Modeling and investigation of thermal characteristics of a water-cooled permanent-magnet linear motor. IEEE Trans. Ind. Appl. 51(3), 2086–2096 (2015)

    Article  Google Scholar 

  6. Cao, R., Cheng, M., Zhang, B.: Speed control of complementary and modular linear flux-switching permanent-magnet motor. IEEE Trans. Ind. Electron. 62(7), 4056–4064 (2015)

    Article  Google Scholar 

  7. Utkin, V.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  8. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)

    Book  MATH  Google Scholar 

  9. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  10. Cucuzzella, M., Ferrara, A.: Practical second order sliding modes in single-loop networked control of nonlinear systems. Automatica 89, 235–240 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, S., Li, S.: Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, S., Zheng, W., Sun, J., Wang, J.: Second-order sliding mode controller design and its implementation for buck converters. IEEE Trans. Ind. Inform. 14(5), 1990–2000 (2018)

    Article  Google Scholar 

  13. Qi, W., Zong, G., Karimi, H.R.: Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2951–2960 (2018)

    Article  MathSciNet  Google Scholar 

  14. Weng, Y., Gao, X.: Adaptive sliding mode decoupling control with data-driven sliding surface for unknown MIMO nonlinear discrete systems. Circuits Syst. Signal Process. 36(3), 969–997 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weng, Y., Gao, X.: Data-driven robust output tracking control for gas collector pressure system of coke ovens. IEEE Trans. Ind. Electron. 64(5), 4187–4198 (2017)

    Article  Google Scholar 

  16. Du, H., Zhai, J., Chen, M., Zhu, W.: Robustness analysis of a continuous higher-order finite-time control system under sampled-data control. IEEE Trans. Autom. Control 64(6), 2488–2494 (2019)

  17. Du, H., Jiang, C., Wen, G., Zhu, W., Cheng, Y.: Current sharing control for parallel DC–DC buck converters based on finite-time control technique. IEEE Trans. Ind. Inform. 15(4), 2186–2198 (2019)

    Article  Google Scholar 

  18. Shen, H., Li, F., Yan, H., Karimi, H.R., Lam, H.K.: Finite-time event-triggered Hontrol for T–S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Article  Google Scholar 

  19. Jin, M., Lee, J., Chang, P., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)

    Article  Google Scholar 

  20. Man, Z., Paplinski, A., Wu, H.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, J., Park, J.H., Karimi, H.R., Shen, H.: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans. Cybern. 48(8), 2232–2244 (2018)

    Article  Google Scholar 

  22. Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Inform. 9(4), 1879–1891 (2013)

    Article  Google Scholar 

  23. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, G., Ma, Z.: Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control. IEEE/ASME Trans. Mechatron. 22(6), 2643–2653 (2017)

    Article  Google Scholar 

  25. Sun, G., Wu, L., Man, Z., Ma, Z., Liu, J.: Practical tracking control of linear motor via fractional-order sliding mode. Automatica 94, 221–235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, G., Ma, Z., Yu, J.: Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Trans. Ind. Electron. 65(4), 3386–3394 (2018)

    Article  Google Scholar 

  27. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, X., Man, Z.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(2), 261–264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, J., Wang, H., Man, Z., Jin, J., Fu, M.: Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode. IEEE/ASME Trans. Mechatron. 20(4), 1743–1752 (2015)

    Article  Google Scholar 

  30. Du, H., Chen, X., Wen, G., Yu, X., Lu, J.: Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Trans. Ind. Electron. 65(12), 9916–9927 (2018)

    Article  Google Scholar 

  31. Mo, X., Lan, Q.: Finite-time integral sliding mode control for motion control of permanent-magnet linear motors. Math. Probl. Eng. 4, 389–405 (2013)

    MathSciNet  Google Scholar 

  32. Zhang, L., Wei, C., Jing, L., Cui, N.: Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances. Nonlinear Dyn. 93(4), 2543–2563 (2018)

    Article  MATH  Google Scholar 

  33. Zhang, B., Jia, Y.: Fixed-time consensus protocols for multi-agent systems with linear and nonlinear state measurements. Nonlinear Dyn. 82(4), 1683–1690 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, H., Li, F., Yan, H., Karimi, H.R., Lam, H.K.: Finite-time event-triggered Hontrol for T–S fuzzy Markov jump systems. Nonlinear Dyn. 82(4), 1683–1690 (2015)

    Article  Google Scholar 

  35. Wu, D., Du, H., Wen, G., Lu, J.: Fixed-time synchronization control for a class of master-slave systems based on homogeneous method. IEEE Trans. Circuits Syst. II Express Briefs (2018). https://doi.org/10.1109/TCSII.2018.2886574

  36. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods—an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Article  Google Scholar 

  37. Liu, S., Liu, Y., Wang, N.: Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465–476 (2017)

    Article  MATH  Google Scholar 

  38. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Aurora, C., Ferrara, A.: A sliding mode observer for sensorless induction motor speed regulation. Int. J. Syst. Sci. 38(11), 913–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rinaldi, G., Menon, P., Edwards, C., Ferrara, A.: Sliding mode based dynamic state estimation for synchronous generators in power systems. IEEE Control Syst. Lett. 2(4), 785–790 (2018)

    Article  Google Scholar 

  41. Du, H., Qian, C., Yang, S., Li, S.: Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems. Automatica 49(2), 601–609 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin, X., Li, S., Zou, Y.: Finite-time stabilization of switched linear time-delay systems with saturating actuators. Appl. Math. Comput. 299, 66–79 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Ahn, H., Chen, Y., Dou, Y.: State-periodic adaptive compensation of cogging and coulomb friction in permanent-magnet linear motors. IEEE Trans. Magn. 41(1), 90–98 (2005)

    Article  Google Scholar 

  44. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  47. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61673153, 61304007) and the Fundamental Research Funds for the Central Universities (JZ2017HGPA0163, JZ2016HGXJ0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Du, H., Cheng, Y. et al. Position tracking control for permanent magnet linear motor via fast nonsingular terminal sliding mode control. Nonlinear Dyn 97, 2595–2605 (2019). https://doi.org/10.1007/s11071-019-05150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05150-y

Keywords

Navigation