Skip to main content
Log in

Advances in Lyapunov theory of Caputo fractional-order systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A lemma widely used for Lyapunov stability analysis of Caputo fractional-order systems (CFOSs): let \(x(t)\in {\mathbb {R}}^n\) be a vector of differentiable functions, then for any time instant \(t\ge t_0\), \(1/2\,_{t_0}^CD_t^\alpha [x^T(t)Px(t)]\le x^T(t)P\,{_{t_0}^CD}_t^\alpha x(t)\), for any \(\alpha \in (0,1]\), where \(P\in {\mathbb {R}}^{n\times n}\) is a positive definite matrix, is pointed out not applicable, due to the fact that the solution of a CFOS may be not differentiable, even if the vector field function is analytic. To make up for this blank, we apply the most recent results on the continuation and smoothness of solutions to prove the following estimation for the Caputo fractional derivative of any quadratic Lyapunov function: \(_{0}^CD_t^\alpha [x^{T}(t)Px(t)]\le x^T(t)P{_{0}^CD}_t^\alpha x(t)+ [{_{0}^CD}_t^\alpha x^T(t)]Px(t)\), \(\alpha \in (0,1)\), where x(t) is a real solution of the CFOS \({_{0}^C}D_{t}^{\alpha }x=f(t,x)\), \(x(0)=x_0\), with some certain hypotheses. Moreover, a few other unclear concerns about existing results on the Lyapunov theory of CFOSs are eliminated. Finally, numerical examples are provided to illustrate these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Matignon, D.: Représentations en variables d état de modéles de guides d ondes avec dérivation fractionnaire. Ph.D. Thesis, Université Paris (1994)

  2. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 50, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-oerder nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lakshmikantham, V., Leela, S., Sambandham, M.: Lyapunov theory for fractional differential equations. Commun. Appl. Anal. 12, 365–376 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Burton, T.A.: Fractional differential equations and Lyapunov functionals. Nonlinear Anal. 74, 5648–5662 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boroujeni, E.A., Momeni, H.R.: Observer based control of a class of nonlinear fractional order systems using LMI. World Acad. Sci. Eng. Technol. 6, 779–782 (2012)

    Google Scholar 

  8. N’Doye, I., Voos, H., Darouach, M.: Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE J. Emerg. Sel. Top. Circuits Syst. 3, 442–450 (2013)

    Article  Google Scholar 

  9. Aguila-Camacho, N., Duarte-Mermound, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chen, H., Chen, Y.Q., Chen, W., Yang, F.: Output tracking of nonholonomic mobile robots with a model-free fractional-order visual feedback. IFAC-PapersOnline 49, 736–741 (2016)

    Article  Google Scholar 

  11. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2209–2217 (2017)

    Article  Google Scholar 

  12. Wu, R., Feckan, M.: Stability analysis of impulsive fractional-order systems by vector comparison principle. Nonlinear Dyn. 82, 2007–2019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duarte-Mermound, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov funtions to prove uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernández-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Muñoz-Vega, R., Hernández-Martínez, E.G.: Lyapunov functions for a class of nonlinear systems using caputo derivative. Commun. Nonlinear Sci. Numer. Simul. 43, 91–99 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fernández-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Muñoz-Vega, R., Hernández-Martínez, E.G.: Corrigendum to “Lyapunov functions for a class of nonlinear systems using caputo derivative”. Commun. Nonlinear Sci. Numer. Simul. 43, 91–99 (2017)]. Commun. Nonlinear Sci. Numer. Simul. 56, 596–597 (2018)

  16. Wu, C.: Stability and Control of Caputo Fractional Order Systems. UWSpace. http://hdl.handle.net/10012/12815 (2018). Accessed 8 Jan 2018

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  18. Li, C., Sarwar, S.: Existence and continuation of solutions for Caputo type fractional differential equations. Electron. J. Differ. Equ. 2016, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hanneken, J.W., Narahari Achar, B.N., Puzio, R., Vaught, D.M.: Properties of the Mittag–Leffler function for negative alpha. Phys. Scr. T136, 014037 (2009)

    Article  Google Scholar 

  20. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 1998, 57–71 (1999)

    Google Scholar 

  21. Tavazoei, S.M., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102–113 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaojiao Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Wu, C. Advances in Lyapunov theory of Caputo fractional-order systems. Nonlinear Dyn 97, 2521–2531 (2019). https://doi.org/10.1007/s11071-019-05145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05145-9

Keywords

Navigation