Skip to main content
Log in

New solitary wave solutions in a perturbed generalized BBM equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this manuscript, based on the geometric singular perturbation theory, several new solitary wave solutions in a perturbed generalized Benjamin–Bona–Mahony (BBM) equation are detected by the explicit calculation of the associated Melnikov integrals. These solitary wave solutions are homoclinic to non-trivial steady states and have not been found before. We also determine the zeroth-order approximations to the speeds of these solitary waves explicitly. In the calculations of the Melnikov integrals, the explicit expressions of the unperturbed homoclinic orbits play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. Phi. Mag. 39, 422–443 (1895)

    Article  MATH  Google Scholar 

  2. Johnson, R.S.: A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49–60 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, Z., Yang, C.: The application of bifurcation method to a higher-order KdV equation. J. Math. Anal. Appl. 275, 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wazwaz, A.: Exact solution with compact and non-compact structures for the one-dimensional generalized Benjamin–Bona–Mahony equation. Commun. Nonlinear Sci. Numer. Simul. 10, 855–867 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations. Jpn. J. Ind. Appl. Math. 10, 413–430 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Lecture Notes in Mathematics, vol. 1609. Springer, New York (1995)

    Google Scholar 

  8. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, Y., Du, Z., Wei, L.: Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation. Nonlinear Dyn. 83, 65–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhuang, K., Du, Z., Lin, X.: Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method. Nonlinear Dyn. 80, 629–635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shang, X., Du, Z.: Traveling waves in a generalized nonlinear dispersive-dissipative equation. Math. Methods Appl. Sci. 39, 3035–3042 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 261, 5324–5349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, A., Guo, L., Huang, W.: Existence of kink waves and periodic waves for a perturbed defocusing mKdV equation. Qual. Theory Dyn. Syst. 17, 495–517 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, J., Zhu, W., Chen, G.: Understanding peakons, periodic peakons and compactons via a shallow water wave equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 26, 1650207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xia, B., Qiao, Z., Li, J.: An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions. Commun. Nonlinear Sci. Numer. Simul. 63, 292–306 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dumortier, F., Li, C.: Perturbation from an elliptic Hamiltonian of degree four. IV. Figure eight-loop. J. Differ. Equ. 188, 512–554 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dumortier, F., Li, C.: Perturbation from an elliptic Hamiltonian of degree four. III. Global centre. J. Differ. Equ. 188, 473–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumortier, F., Li, C.: Perturbations from an elliptic Hamiltonian of degree four. I. Saddle loop and two saddle cycle. J. Differ. Equ. 176, 114–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wiggins, S.: Introduction to Applied Nonlinear Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  20. Wiggins, S.: Global Bifurcations and Chaos. Analytical Methods. Springer, New York (1988)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhe Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors acknowledge the financial support of the Natural Science Foundations of China (No. 11771082).

Appendix

Appendix

1.1 The explicit expressions of homoclinic orbits for the unperturbed system (11)

Here, we only give the detailed derivation of the explicit expression of homoclinic orbit for the unperturbed system (11) when \(C\in (-\frac{4}{27}, 0)\). The other cases are similar and hence are omitted.

The homoclinic orbit in this case is determined by

$$\begin{aligned} \frac{dx}{\sqrt{-(x-x_{1})(x-x_{5})(x-x_{3})^{2}}}=\frac{\sqrt{2}}{2}\mathrm{d}\tau , \end{aligned}$$

where \(x=x_{3}\) is solved from \(x^3-x^2-C=0\), and \(x=x_{1}, x=x_{5}\) are determined by \(-\frac{1}{3}x^{3}+\frac{1}{4}x^{4}-Cx=h\) where \(-\frac{4}{27}<C<0\), \(h=u(x_{3})\).

If \(x>x_{3}\), let \(x-x_{3}=\frac{1}{u}>0\), we get

$$\begin{aligned} \frac{-du}{\sqrt{(x_{3}u+1-x_{1}u)(x_{5}u-x_{3}u-1)}}=\frac{\sqrt{2}}{2}\mathrm{d}\tau . \end{aligned}$$

Then, setting \(x_{3}u+1-x_{1}u=v\) gives

$$\begin{aligned} \frac{-\frac{1}{x_{3}-x_{1}}dv}{\sqrt{v[(\frac{v-1}{x_{3}-x_{1}})(x_{5}-x_{3})-1]}}=\frac{\sqrt{2}}{2}\mathrm{d}\tau . \end{aligned}$$

Now let \(\sqrt{v}=w\), one obtains

$$\begin{aligned} \frac{-2}{\sqrt{(x_{5}-x_{3})(x_{3}-x_{1})}}\frac{dw}{\sqrt{w^{2} -\frac{x_{5}-x_{1}}{x_{5}-x_{3}}}}=\frac{\sqrt{2}}{2}\mathrm{d}\tau , \end{aligned}$$

i.e.,

$$\begin{aligned}&\frac{-2}{\sqrt{(x_{5}-x_{3})(x_{3}-x_{1})}}\ln \left| w+\sqrt{w^{2} -\frac{x_{5}-x_{1}}{x_{5}-x_{3}}}\right| \\&\quad =\frac{\sqrt{2}}{2}\tau +\sigma , \end{aligned}$$

where \(\sigma \) is a constant of integral.

Without loss of generality, let \(X_{5}(x_{5},0)\) be the initial point, that is, \(x(0)=x_{5}\), then

$$\begin{aligned} \sigma =\frac{-2}{\sqrt{(x_{5}-x_{3})(x_{3}-x_{1})}}\ln \sqrt{\frac{x_{5}-x_{1}}{x_{5}-x_{3}}}. \end{aligned}$$

Denote

$$\begin{aligned} \rho =\frac{\sqrt{2(x_{5}-x_{3})(x_{3}-x_{1})}}{4}, \end{aligned}$$

we obtain

$$\begin{aligned} x(\tau )=\frac{2(x_{3}-x_{1})(x_{5}-x_{3})}{(x_{5}-x_{1}) \cosh (2\rho \tau )+2x_{3}-x_{1}-x_{5}}+x_{3}. \end{aligned}$$

Similarly, if \(x<x_{3}\), we can derive

$$\begin{aligned} x(\tau )=x_{3}-\frac{2(x_{3}-x_{1})(x_{5}-x_{3})}{(x_{5}-x_{1}) \cosh (2\rho \tau )+2x_{3}-x_{5}-x_{1}}. \end{aligned}$$

1.2 The detailed calculations of the Melnikov integrals

Case 1 When \(C=0\).

In this case, the Melnikov integral is

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty } \left[ (-2x+3x^{2})y^{2}-\frac{1}{c^{2}}y^{2}\right] \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty } \left( -2x+3x^{2}-\frac{1}{c^{2}}\right) \left( \frac{2}{3}x^{3}-\frac{1}{2}x^{4}\right) \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty } \left( -\frac{2}{3c^{2}}x^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) x^{4}\right. \nonumber \\&\left. +3x^{5} -\frac{3}{2}x^{6}\right) \mathrm{d}\tau , \end{aligned}$$

where \(x(\tau )\) is given in (21).

Consider

$$\begin{aligned} I_{n}= & {} \int ^{+\infty }_{-\infty }x^{n}\mathrm{d}\tau =\int ^{+\infty }_{-\infty }\frac{1}{(a+b\tau ^{2})^{n}}\mathrm{d}\tau \\= & {} 2n\int ^{+\infty }_{-\infty }\frac{b\tau ^{2}+a-a}{(a+b\tau ^{2})^{n+1}}\mathrm{d}\tau \\= & {} 2nI_{n}-2naI_{n+1}, \end{aligned}$$

we thus have

$$\begin{aligned} I_{3}=\frac{3}{4a}I_{2} \quad I_{4}=\frac{5}{6a}I_{3} \quad I_{5}=\frac{7}{8a}I_{4} \quad I_{6}=\frac{9}{10a}I_{5}. \end{aligned}$$

Here, \(x(\tau )=\frac{1}{\frac{3}{4}+\frac{\tau ^{2}}{6}}\), hence we have \(a=3/4\) and \(b=1/6\), and thus,

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty } \left[ -\frac{2}{3c^{2}}\frac{3}{4a} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) \frac{5}{8a^{2}}\right. \nonumber \\&\left. +\frac{105}{64a^{3}}-\frac{189}{256a^{4}}\right] x^{2}\mathrm{d}\tau \\= & {} \left( \frac{2}{27}-\frac{1}{9c^{2}}\right) \int ^{+\infty }_{-\infty }x^{2}\mathrm{d}\tau \\= & {} \left( \frac{2}{27}-\frac{1}{9c^{2}}\right) \frac{4\sqrt{2}\pi }{3}. \end{aligned}$$

Case 2 When \(C=-\frac{2}{27}\).

The Melnikov integral is

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty }\left[ (-2x+3x^{2})y^{2}-\frac{1}{c^{2}}y^{2}\right] \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty }\left( -2x+3x^{2}-\frac{1}{c^{2}}\right) \\&\left( \frac{5}{162}+\frac{2}{3}x^{3}-\frac{1}{2}x^{4}-\frac{4}{27}x\right) \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty } \left[ -\frac{5}{162c^{2}}+\left( \frac{4}{27c^{2}}-\frac{5}{81}\right) x\right. \\&\left. +\frac{7}{18}x^{2}-\left( \frac{2}{3c^{2}}+\frac{4}{9}\right) x^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) x^{4}\right. \\&\left. +3x^{5}-\frac{3}{2}x^{6}\right] \mathrm{d}\tau , \end{aligned}$$

in which

$$\begin{aligned} x(\tau )=\frac{1}{3}-\frac{\sqrt{6}}{3}\mathrm{sech}\left( \frac{\sqrt{3}}{3}\tau \right) . \end{aligned}$$

Denote \(\chi =\frac{\sqrt{6}}{3}\mathrm{sech}(\frac{\sqrt{3}}{3}\tau )\), then

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty } \left[ -\frac{5}{162c^{2}} +\left( \frac{4}{27c^{2}}-\frac{5}{81}\right) x +\frac{7}{18}x^{2}\right. \\&\left. - \left( \frac{2}{3c^{2}}+\frac{4}{9}\right) x^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) x^{4}\right. \\&\left. +3x^{5}-\frac{3}{2}x^{6}\right] \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty }\left[ \left( -\frac{1}{3c^{2}}-\frac{1}{9}\right) \chi ^{2}\right. \\&\left. +\left( \frac{1}{2c^{2}}+\frac{7}{6}\right) \chi ^{4}-\frac{3}{2}\chi ^{6}\right] \mathrm{d}\tau . \end{aligned}$$

Let

$$\begin{aligned} I_{k}=\int ^{+\infty }_{-\infty }\chi ^{k}\mathrm{d}\tau =\int ^{+\infty }_{-\infty } \left( \frac{\sqrt{6}}{3}\mathrm{sech}\left( \frac{\sqrt{3}}{3}\tau \right) \right) ^{k}\mathrm{d}\tau , \end{aligned}$$

it follows from \(\mathrm{sech} p^{2}=1-\mathrm{tanh}p^{2}\) and \(d\mathrm{tanh}p=\mathrm{sech}p^{2}dp\) that

$$\begin{aligned} I_{k}=\eta \int ^{+\infty }_{-\infty }((1-\mathrm{tanh}p^{2}))^{\frac{k-2}{2}}d\mathrm{tanh}p, \end{aligned}$$

where \(p=\frac{\sqrt{3}}{3}\tau \), \(\eta =\sqrt{3}(\frac{\sqrt{6}}{3})^{k}\), which is equivalent to

$$\begin{aligned} I_{k}=\eta \int ^{1}_{-1}((1-\mu ^{2}))^{\frac{k-2}{2}}\mathrm{d}\mu {=}2\eta \int ^{1}_{0}((1-\mu ^{2}))^{\frac{k-2}{2}}\mathrm{d}\mu , \end{aligned}$$

where \(\mu =\mathrm{tanh}p\).

Let

$$\begin{aligned} a_{m}=\int ^{1}_{0}(1-\theta ^{2})^{m}d\theta , \end{aligned}$$

which becomes

$$\begin{aligned} a_{m}=\int ^{\frac{\pi }{2}}_{0}(\cos \gamma )^{2m+1}\mathrm{d}\gamma , \end{aligned}$$

where \(\theta =\sin \gamma \). When \(m=0, 1, 2, 3, \cdots \), it can be calculated that

$$\begin{aligned} a_{m}= & {} \int _{0}^{\frac{\pi }{2}}\left( cos\gamma \right) ^{2m+1}\mathrm{d}\gamma {=}\frac{2m}{2m+1}\int _{0}^{\frac{\pi }{2}}cos\gamma ^{2m-1}d\gamma \\ {}= & {} \cdots =\frac{2m}{2m+1}\frac{2m-2}{2m-11}\cdots \frac{2}{3}\int _{0}^{\frac{\pi }{2}}cos\gamma d\gamma \\= & {} \frac{(2m)!!}{(2m+1)!!}, \end{aligned}$$

and when \(m=\frac{1}{2},\frac{3}{2},\frac{5}{2},\frac{7}{2}, \cdots \),

$$\begin{aligned} a_{m}= & {} \int _{0}^{\frac{\pi }{2}}\left( cos\gamma \right) ^{2m+1}\mathrm{d}\gamma {=}\frac{2m}{2m+1}\int _{0}^{\frac{\pi }{2}}cos\gamma ^{2m-1}\mathrm{d}\gamma \\ {}= & {} \cdots =\frac{2m}{2m+1}\frac{2m-2}{2m-11}\cdots \frac{1}{2}\int _{0}^{\frac{\pi }{2}}cos^{0}\gamma d\gamma \\= & {} \frac{(2m)!!}{(2m+1)!!}\frac{\pi }{2}. \end{aligned}$$

Obviously,

$$\begin{aligned} I_{k}=2\eta \times a_{\frac{k-2}{2}}, \end{aligned}$$

thus

$$\begin{aligned} I_{2}= & {} \int ^{+\infty }_{-\infty }\chi ^{2}\mathrm{d}\tau =\int ^{+\infty }_{-\infty } \left( \frac{\sqrt{6}}{3}\mathrm{sech}\left( \frac{\sqrt{3}}{3}\tau \right) \right) ^{2}\mathrm{d}\tau \\= & {} 2\sqrt{3}\times \left( \frac{\sqrt{6}}{3}\right) ^{2}\times 1{,}\\ I_{4}= & {} \int ^{+\infty }_{-\infty }\chi ^{4}\mathrm{d}\tau =\int ^{+\infty }_{-\infty } \left( \frac{\sqrt{6}}{3}\mathrm{sech}\left( \frac{\sqrt{3}}{3}\tau \right) \right) ^{4}\mathrm{d}\tau \\= & {} 2\sqrt{3}\times \left( \frac{\sqrt{6}}{3}\right) ^{4}\times \frac{2}{3} \end{aligned}$$

and

$$\begin{aligned} I_{6}= & {} \int ^{+\infty }_{-\infty }\chi ^{6}\mathrm{d}\tau =\int ^{+\infty }_{-\infty } \left( \frac{\sqrt{6}}{3}\mathrm{sech}\left( \frac{\sqrt{3}}{3}\tau \right) \right) ^{6}\mathrm{d}\tau \\= & {} 2\sqrt{3}\times \left( \frac{\sqrt{6}}{3}\right) ^{6}\times \frac{2}{3}\times \frac{4}{5}, \end{aligned}$$

which finally gives

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty } \left[ -\frac{5}{162c^{2}}+\left( \frac{4}{27c^{2}}-\frac{5}{81}\right) x +\frac{7}{18}x^{2}\right. \\&\left. -\left( \frac{2}{3c^{2}}+\frac{4}{9}\right) x^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) x^{4}\right. \\&\left. +3x^{5}-\frac{3}{2}x^{6}\right] \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty } \left[ \left( -\frac{1}{3c^{2}}-\frac{1}{9}\right) \chi ^{2}+\left( \frac{1}{2c^{2}}+\frac{7}{6}\right) \chi ^{4}\right. \\&\left. -\frac{3}{2}\chi ^{6}\right] \mathrm{d}\tau \\= & {} 2\sqrt{3}\times \left( -\frac{2}{27}c^{2}+\frac{14}{405}\right) . \end{aligned}$$

Case 3 When \(C=-\frac{4}{27}\).

In this case, \(x(\tau )=\frac{2}{3}-\frac{1}{\frac{3}{4}+\frac{\tau ^{2}}{3}}\). Denote \(\chi (\tau )=\frac{1}{\frac{3}{4}+\frac{\tau ^{2}}{3}}\); direct calculation gives the Melnikov integral

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty }\left[ -\frac{8}{81c^{2}} +\left( \frac{8}{27c^{2}}-\frac{16}{81}\right) x +\frac{8}{9}x^{2}\right. \\&\left. -\left( \frac{2}{3c^{2}}+\frac{8}{9}\right) x^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) x^{4}\right. \\&\left. +3x^{5}-\frac{3}{2}x^{6}\right] \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty } \left[ (-\frac{1}{3c^{2}}\chi ^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) \chi ^{4}\right. \\&\left. +3\chi ^{5}-\frac{3}{2}\chi ^{6}\right] \mathrm{d}\tau . \end{aligned}$$

By further calculation, we get

$$\begin{aligned} M(c)= & {} \int ^{+\infty }_{-\infty } \left[ (-\frac{1}{3c^{2}}\chi ^{3} +\left( \frac{1}{2c^{2}}-\frac{4}{3}\right) \chi ^{4}\right. \\&\left. +3\chi ^{5}-\frac{3}{2}\chi ^{6}\right] \mathrm{d}\tau \\= & {} \int ^{+\infty }_{-\infty }\left[ \frac{2}{27}-\frac{1}{9c^{2}}\right] \chi ^{2}\mathrm{d}\tau \\= & {} \left( \frac{2}{27}-\frac{1}{9c^{2}}\right) \frac{4\pi }{3}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Wu, Y., Yu, Z. et al. New solitary wave solutions in a perturbed generalized BBM equation. Nonlinear Dyn 97, 2413–2423 (2019). https://doi.org/10.1007/s11071-019-05137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05137-9

Keywords

Navigation