Skip to main content
Log in

Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel bi-state nonlinear vibration isolator (BS-NVI) consisting of a linear mass–spring–damper and several permanent magnets (PMs). The working state of the BS-NVI can be monostable or bistable depending on the relative position of the PMs. The theoretical model of the BS-NVI is established. The transmissibility of the BS-NVI is derived according to the harmonic balance method. Both the simulation and experimental efforts are performed to study the nonlinear dynamics and vibration isolation performance of the BS-NVI. The results demonstrate that the monostable isolator acts like a quasi-zero-stiffness isolator and exhibits the hardening-spring-liked characteristic. With the change in the relative position of the PMs, the transmissibility and the peak frequency are decreased. However, the bistable isolator undergoes the interwell and intrawell oscillations with the change in the excitation amplitude and frequency. The motion of the bistable isolator can be periodic or chaotic. Due to the snap-through action, the transmissibility of the bistable isolator could be smaller than 1 in part of the resonance region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

BS-NVI:

Bi-state nonlinear vibration isolator

HBM:

Harmonic balance method

HSLDS:

High-static-low-dynamic stiffness

PM:

Permanent magnets

\(\hbox {PM}^{\mathrm{b}}\) :

Base PM

\(\hbox {PM}^{\mathrm{M}}\) :

Moving PM

QZS:

Quasi-zero-stiffness

References

  1. Yan, B., Zhang, X.N., Niu, H.P.: Design and test of a novel isolator with negative resistance electromagnetic shunt damping. Smart Mater. Struct. 21(3), 035003 (2012). https://doi.org/10.1088/0964-1726/21/3/035003

    Article  Google Scholar 

  2. Yan, B., Wang, K., Kang, C.X., Zhang, X.N., Wu, C.Y.: Self-sensing electromagnetic transducer for vibration control of space antenna reflector. IEEE/ASME Trans. Mechatron. 22(5), 1944–1951 (2017). https://doi.org/10.1109/Tmech.2017.2712718

    Article  Google Scholar 

  3. Laalej, H., Lang, Z.Q., Daley, S., Zazas, I., Billings, S.A., Tomlinson, G.R.: Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn. 69(1), 409–421 (2012). https://doi.org/10.1007/s11071-011-0274-1

    Article  Google Scholar 

  4. Mokni, L., Belhaq, M., Lakrad, F.: Effect of fast parametric viscous damping excitation on vibration isolation in SDOF systems. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1720–1724 (2011). https://doi.org/10.1016/j.cnsns.2010.08.031

    Article  MATH  Google Scholar 

  5. Ho, C., Lang, Z.-Q., Billings, S.A.: A frequency domain analysis of the effects of nonlinear damping on the Duffing equation. Mech. Syst. Signal Process. 45(1), 49–67 (2014). https://doi.org/10.1016/j.ymssp.2013.10.027

    Article  Google Scholar 

  6. Virgin, L.N., Santillan, S.T., Plaut, R.H.: Vibration isolation using extreme geometric nonlinearity. J. Sound Vib. 315(3), 721–731 (2008). https://doi.org/10.1016/j.jsv.2007.12.025

    Article  Google Scholar 

  7. Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76(2), 1157–1167 (2014). https://doi.org/10.1007/s11071-013-1199-7

    Article  MathSciNet  Google Scholar 

  8. Hao, Z., Cao, Q.J., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87(2), 987–1014 (2016). https://doi.org/10.1007/s11071-016-3093-6

    Article  Google Scholar 

  9. Wang, X.L., Zhou, J.X., Xu, D.L., Ouyang, H.J., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87(1), 633–646 (2016). https://doi.org/10.1007/s11071-016-3065-x

    Article  Google Scholar 

  10. Wang, Y., Li, S., Neild, S.A., Jiang, J.Z.: Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn. 88(1), 635–654 (2016). https://doi.org/10.1007/s11071-016-3266-3

    Article  Google Scholar 

  11. Esin, M., Pasternak, E., Dyskin, A.V.: Stability of chains of oscillators with negative stiffness normal, shear and rotational springs. Int. J. Eng. Sci. 108, 16–33 (2016). https://doi.org/10.1016/j.ijengsci.2016.08.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, C.R., Yu, K.P.: A high-static-low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4441-5

    Article  Google Scholar 

  13. Ding, H., Chen, L.Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4697-9

    Article  Google Scholar 

  14. Ding, H., Ji, J., Chen, L.Q.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019). https://doi.org/10.1016/j.ymssp.2018.11.057

    Article  Google Scholar 

  15. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  16. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  17. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  18. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008). https://doi.org/10.1016/j.jsv.2007.12.019

    Article  Google Scholar 

  19. Kovacic, I., Brennan, M.J., Lineton, B.: Effect of a static force on the dynamic behaviour of a harmonically excited quasi-zero stiffness system. J. Sound Vib. 325(4), 870–883 (2009). https://doi.org/10.1016/j.jsv.2009.03.036

    Article  Google Scholar 

  20. Gatti, G., Kovacic, I., Brennan, M.J.: On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator. J. Sound Vib. 329(10), 1823–1835 (2010). https://doi.org/10.1016/j.jsv.2009.11.019

    Article  Google Scholar 

  21. Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014). https://doi.org/10.1016/j.ijmecsci.2014.02.019

    Article  Google Scholar 

  22. Lan, C.C., Yang, S.A., Wu, Y.S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333(20), 4843–4858 (2014). https://doi.org/10.1016/j.jsv.2014.05.009

    Article  Google Scholar 

  23. Lu, Z.Q., Chen, L.Q., Brennan, M.J., Yang, T.J., Ding, H., Liu, Z.G.: Stochastic resonance in a nonlinear mechanical vibration isolation system. J. Sound Vib. 370, 221–229 (2016). https://doi.org/10.1016/j.jsv.2016.01.042

    Article  Google Scholar 

  24. Lu, Z.Q., Shao, D., Ding, H., Chen, L.Q.: Power flow in a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. Shock Vib. 2018, 1–13 (2018). https://doi.org/10.1155/2018/1697639

    Article  Google Scholar 

  25. Abbasi, A., Khadem, S.E., Bab, S., Friswell, M.I.: Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension. Nonlinear Dyn. 85(1), 525–545 (2016). https://doi.org/10.1007/s11071-016-2704-6

    Article  Google Scholar 

  26. Araki, Y., Asai, T., Kimura, K., Maezawa, K., Masui, T.: Nonlinear vibration isolator with adjustable restoring force. J. Sound Vib. 332(23), 6063–6077 (2013). https://doi.org/10.1016/j.jsv.2013.06.030

    Article  Google Scholar 

  27. Mofidian, S.M.M., Bardaweel, H.: Displacement transmissibility evaluation of vibration isolation system employing nonlinear-damping and nonlinear-stiffness elements. J. Vib. Control 24(18), 4247–4259 (2018). https://doi.org/10.1177/1077546317722702

    Article  MathSciNet  Google Scholar 

  28. Zhou, J.X., Wang, X.L., Xu, D.L., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015). https://doi.org/10.1016/j.jsv.2015.02.005

    Article  Google Scholar 

  29. Zhou, J.X., Xu, D.L., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015). https://doi.org/10.1016/j.jsv.2014.10.027

    Article  Google Scholar 

  30. Zhou, J.X., Xiao, Q.Y., Xu, D.L., Ouyang, H.J., Li, Y.L.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017). https://doi.org/10.1016/j.jsv.2017.01.021

    Article  Google Scholar 

  31. Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014). https://doi.org/10.1016/j.jsv.2013.12.025

    Article  Google Scholar 

  32. Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  33. Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008). https://doi.org/10.1016/j.jsv.2008.01.046

    Article  Google Scholar 

  34. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1), 88–103 (2009). https://doi.org/10.1016/j.jsv.2009.04.015

    Article  Google Scholar 

  35. Zheng, Y.S., Zhang, X.N., Luo, Y.J., Yan, B., Ma, C.C.: Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016). https://doi.org/10.1016/j.jsv.2015.09.019

    Article  Google Scholar 

  36. Zhou, N.B., Liu, K.F.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010). https://doi.org/10.1016/j.jsv.2009.11.001

    Article  Google Scholar 

  37. Wu, W.J., Chen, X.D., Shan, Y.H.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333(13), 2958–2970 (2014). https://doi.org/10.1016/j.jsv.2014.02.009

    Article  Google Scholar 

  38. Zhou, J.X., Dou, L.L., Wang, K., Xu, D.L., Ouyang, H.J.: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dyn. 96(1), 647–665 (2019). https://doi.org/10.1007/s11071-019-04812-1

    Article  Google Scholar 

  39. Yan, B., Ma, H.Y., Zhao, C.X., Wu, C.Y., Wang, K., Wang, P.F.: A vari-stiffness nonlinear isolator with magnetic effects: theoretical modeling and experimental verification. Int. J. Mech. Sci. 148, 745–755 (2018). https://doi.org/10.1016/j.ijmecsci.2018.09.031

    Article  Google Scholar 

  40. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013). https://doi.org/10.1088/0964-1726/22/2/023001

    Article  Google Scholar 

  41. Johnson, D.R., Thota, M., Semperlotti, F., Wang, K.W.: On achieving high and adaptable damping via a bistable oscillator. Smart Mater. Struct. 22(11), 115027 (2013). https://doi.org/10.1088/0964-1726/22/11/115027

    Article  Google Scholar 

  42. Shaw, A.D., Neild, S.A., Wagg, D.J., Weaver, P.M., Carrella, A.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332(24), 6265–6275 (2013). https://doi.org/10.1016/j.jsv.2013.07.016

    Article  Google Scholar 

  43. Johnson, D.R., Harne, R.L., Wang, K.W.: A disturbance cancellation perspective on vibration control using a bistable snap-through attachment. AMSE J. Vib. Acoust. 136(3), 031006 (2014). https://doi.org/10.1115/1.4026673

    Article  Google Scholar 

  44. Yang, K., Harne, R.L., Wang, K.W., Huang, H.: Investigation of a bistable dual-stage vibration isolator under harmonic excitation. Smart Mater. Struct. 23(4), 045033 (2014). https://doi.org/10.1088/0964-1726/23/4/045033

    Article  Google Scholar 

  45. Yang, K., Harne, R.L., Wang, K.W., Huang, H.: Dynamic stabilization of a bistable suspension system attached to a flexible host structure for operational safety enhancement. J. Sound Vib. 333(24), 6651–6661 (2014). https://doi.org/10.1016/j.jsv.2014.07.033

    Article  Google Scholar 

  46. Wu, Z., Harne, R.L., Wang, K.W.: Excitation-induced stability in a bistable duffing oscillator: analysis and experiments. J. Comput. Nonlinear Dyn. 10(1), 011016 (2014). https://doi.org/10.1115/1.4026974

    Article  Google Scholar 

  47. Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. ASME J. Appl. Mech. 82(3), 031004 (2015). https://doi.org/10.1115/1.4029606

    Article  Google Scholar 

  48. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016). https://doi.org/10.1007/s11071-016-2731-3

    Article  MathSciNet  Google Scholar 

  49. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011). https://doi.org/10.1016/j.jsv.2011.07.039

    Article  Google Scholar 

  50. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  51. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4), 1250–1261 (2008). https://doi.org/10.1016/j.jsv.2008.04.032

    Article  Google Scholar 

  52. Yan, B., Zhou, S.X., Litak, G.: Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. Int. J. Bifurc. Chaos 28(07), 1850092 (2018). https://doi.org/10.1142/s021812741850092x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11602223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Effect of higher-order terms of nonlinear restoring force on the response of the isolator

Appendix A: Effect of higher-order terms of nonlinear restoring force on the response of the isolator

Figure 28a shows the comparison of the nonlinear restoring force between the ninth-order and cubic polynomial fits, where \(D=28.6\,\hbox {mm}\), \(H=13\,\hbox {mm}\). The corresponding nonlinear stiffness coefficients are listed in Table 4. It demonstrates that the accuracy of the ninth-order polynomial is better than that of the cubic polynomial fit. Based on these two kinds of polynomial fit shown in Fig. 28a and Table 4, the displacement bifurcation diagram is plotted when the excitation frequency is 5Hz and the result is presented in Fig. 28b. One can clearly see that these two nonlinear dynamic responses are totally different with each other. The results imply that the ninth-order polynomial fit could more exactly describe the nonlinear restoring force and nonlinear dynamic responses.

Table 4 Nonlinear stiffness coefficients of the ninth-order and cubic polynomial fits

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Ma, H., Jian, B. et al. Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets. Nonlinear Dyn 97, 2499–2519 (2019). https://doi.org/10.1007/s11071-019-05144-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05144-w

Keywords

Navigation