Skip to main content
Log in

Vector visibility graph from multivariate time series: a new method for characterizing nonlinear dynamic behavior in two-phase flow

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Visibility graph provides a well-tried and tested framework for graph-theoretical time series analysis. However, further research still needs to be conducted to extend visibility graph from univariate time series to multivariate time series. In this paper, we propose an algorithm to convert multivariate time series into a directed complex network termed vector visibility graph (VVG). The algorithm maps the multivariate time series to vector space and defines the visibility criteria between vectors. The constructed graphs inherit major property of the series in their topology demonstrated by the fact that random graphs are derived from multivariate random series, and scale-free networks are derived from multivariate fractal series. Finally, the VVG is employed to analyze the conductance sensor signals of typical flow patterns (bubble flow, slug flow, and churn flow) of gas–liquid two-phase flow. The average degree of vector visibility graphs can be utilized for flow pattern recognition. Moreover, the migration of the peak position of the degree distribution can effectively characterize the changes in fluid structure. The result indicates that VVG can effectively characterize nonlinear dynamic behavior in gas–liquid flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)

    Article  Google Scholar 

  2. Yang, Y., Yang, H.: Complex network-based time series analysis. Phys. A 387, 1381–1386 (2008)

    Article  Google Scholar 

  3. Xu, X., Zhang, J., Small, M.: Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. U.S.A. 105, 19601–19605 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., Kurths, J.: Complex network approach for recurrence analysis of time series. Phys. Lett. A 373, 4246–4254 (2009)

    Article  MATH  Google Scholar 

  5. Gao, Z., Jin, N.: Flow-pattern identification and nonlinear dynamics of gas–liquid two-phase flow in complex networks. Phys. Rev. E 79, 066303 (2009)

    Article  Google Scholar 

  6. Gao, Z., Jin, N.: Complex network from time series based on phase space reconstruction. Chaos 19, 033137 (2009)

    Article  Google Scholar 

  7. Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks—a novel paradigm for nonlinear time series analysis. New J. Phys. 12, 033025 (2010)

    Article  MATH  Google Scholar 

  8. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. U.S.A. 105, 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80, 046103 (2009)

    Article  Google Scholar 

  10. McCullough, M., Small, M., Iu, H.H.C., Stemler, T.: Multiscale ordinal network analysis of human cardiac dynamics. Philos. Trans. R. Soc. A 375, 20160292 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, X., Small, M., Zhao, Y., Xue, X.: Characterizing system dynamics with a weighted and directed network constructed from time series data. Chaos 24, 024402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donges, J.F., Donner, R.V., Trauth, M.H., Marwan, N., Schellnhuber, H.J., Kurths, J.: Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl. Acad. Sci. U.S.A. 108, 20422–20427 (2011)

    Article  Google Scholar 

  13. Zhou, T., Jin, N., Gao, Z., Luo, Y.: Limited penetrable visibility graph for establishing complex network from time series. Acta Phys. Sin. 61, 355–367 (2012)

    Google Scholar 

  14. Bezsudnov, I.V., Snarskii, A.A.: From the time series to the complex networks: the parametric natural visibility graph. Phys. A 414, 53–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gotoda, H., Kinugawa, H., Tsujimoto, R., Domen, S., Okuno, Y.: Characterization of combustion dynamics, detection, and prevention of an unstable combustion state based on a complex-network theory. Phys. Rev. Appl. 7, 044027 (2017)

    Article  Google Scholar 

  16. Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys. Rev. E 84, 061918 (2011)

    Article  Google Scholar 

  17. Zhao, X., Shang, P., Huang, J.: Mutual-information matrix analysis for nonlinear interactions of multivariate time series. Nonlinear Dyn. 88, 477–487 (2017)

    Article  MathSciNet  Google Scholar 

  18. Han, Y.F., Jin, N.D., Zhai, L.S., Ren, Y.Y., He, Y.S.: An investigation of oil–water two-phase flow instability using multivariate multi-scale weighted permutation entropy. Phys. A 518, 131–144 (2018)

    Article  MathSciNet  Google Scholar 

  19. Farkas, I., Jeong, H., Vicsek, T., Barabási, A.L., Oltvai, Z.N.: The topology of the transcription regulatory network in the yeast Saccharomyces cerevisiae. Phys. A 318, 601–612 (2003)

    Article  Google Scholar 

  20. Yamasaki, K., Gozolchiani, A., Havlin, S.: Climate networks around the globe are significantly affected by El Nino. Phys. Rev. Lett. 100, 228501 (2008)

    Article  Google Scholar 

  21. Tsonis, A.A., Swanson, K.L.: Topology and predictability of El Nino and La Nina networks. Phys. Rev. Lett. 100, 228502 (2008)

    Article  Google Scholar 

  22. Nagy, M., Akos, Z., Biro, D., Vicsek, T.: Hierarchical group dynamics in pigeon flocks. Nature 464, 890 (2010)

    Article  Google Scholar 

  23. Walker, D.M., Carmeli, C., Pérez-Barbería, F.J., Small, M., Pérez-Fernández, E.: Inferring networks from multivariate symbolic time series to unravel behavioural interactions among animals. Anim. Behav. 79, 351–359 (2010)

    Article  Google Scholar 

  24. Gao, Z.K., Zhang, X.W., Jin, N.D., Donner, R.V., Marwan, N., Kurths, J.: Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil–water stratified flows. EPL 103, 50004 (2013)

    Article  Google Scholar 

  25. Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Sci. Rep. 5, 15508 (2015)

    Article  Google Scholar 

  26. Nakamura, T., Tanizawa, T., Small, M.: Constructing networks from a dynamical system perspective for multivariate nonlinear time series. Phys. Rev. E 93, 032323 (2016)

    Article  MathSciNet  Google Scholar 

  27. Tanizawa, T., Nakamura, T., Taya, F., Small, M.: Constructing directed networks from multivariate time series using linear modelling technique. Phys. A 512, 437–455 (2018)

    Article  Google Scholar 

  28. Blinowska, K.J.: Review of the methods of determination of directed connectivity from multichannel data. Med. Boil. Eng. Comput. 49, 521–529 (2011)

    Article  Google Scholar 

  29. Kaminski, M.J., Blinowska, K.J.: A new method of the description of the information flow in the brain structures. Biol. Cybern. 65, 203–210 (1991)

    Article  MATH  Google Scholar 

  30. Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)

    Article  MATH  Google Scholar 

  31. Gao, Z.K., Fang, P.C., Ding, M.S., Jin, N.D.: Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two-phase flow. Exp. Therm. Fluid Sci. 60, 157–164 (2015)

    Article  Google Scholar 

  32. Hewitt, G.F.: Measurement of Two Phase Flow Parameters. Academic Press, London (1978)

    Google Scholar 

  33. Hewitt, G.F., Jayanti, S.: To churn or not to churn. Int. J. Multiph. Flow 19, 527–529 (1993)

    Article  MATH  Google Scholar 

  34. Zheng, D., Che, D.: Experimental study on hydrodynamic characteristics of upward gas–liquid slug flow. Int. J. Multiph. Flow 32, 1191–1218 (2006)

    Article  MATH  Google Scholar 

  35. Montoya, G., Lucas, D., Baglietto, E., Liao, Y.: A review on mechanisms and models for the churn-turbulent flow regime. Chem. Eng. Sci. 141, 86–103 (2016)

    Article  Google Scholar 

  36. Chesters, A.: The modelling of coalescence processes in fluid–liquid dispersions: a review of current understanding. Chem. Eng. Res. Des. 69, 259–270 (1991)

    Google Scholar 

  37. Chicharro, R., Vazquez, A., Manasseh, R.: Characterization of patterns in rimming flow. Exp. Therm. Fluid Sci. 35, 1184–1192 (2011)

    Article  Google Scholar 

  38. Das, A.K., Das, P.K.: Peak structure in downward gas–liquid bubbly flow and its transition to slug flow-a numerical investigation. Int. J. Multiph. Flow 40, 136–143 (2012)

    Article  Google Scholar 

  39. Górski, G., Litak, G., Mosdorf, R., Rysak, A.: Two phase flow bifurcation due to turbulence: transition from slugs to bubbles. Eur. Phys. J. B 88, 239 (2015)

    Article  Google Scholar 

  40. Mosdorf, R., Górski, G.: Detection of two-phase flow patterns using the recurrence network analysis of pressure drop fluctuations. Int. Commun. Heat Mass 64, 14–20 (2015)

    Article  Google Scholar 

  41. Strotos, G., Malgarinos, I., Nikolopoulos, N., Gavaises, M.: Predicting droplet deformation and breakup for moderate Weber numbers. Int. J. Multiph. Flow 85, 96–109 (2016)

    Article  Google Scholar 

  42. Tang, Y., Zhao, A., Ren, Y.Y., Dou, F.X., Jin, N.D.: Gas–liquid two-phase flow structure in the multi-scale weighted complexity entropy causality plane. Phys. A 449, 324–335 (2016)

    Article  Google Scholar 

  43. Lu, S., Molz, F.J., Liu, H.H.: An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Levy motion simulation algorithm based on successive random additions. Comput. Geosci. 29, 15–25 (2003)

    Article  Google Scholar 

  44. Zhuang, L.X., Jin, N.D., Zhao, A., Gao, Z.K., Zhai, L.S., Tang, Y.: Nonlinear multi-scale dynamic stability of oil–gas–water three-phase flow in vertical upward pipe. Chem. Eng. J. 302, 595–608 (2016)

    Article  Google Scholar 

  45. Wang, D.Y., Jin, N.D., Zhuang, L.X., Zhai, L.S., Ren, Y.Y.: Development of a rotating electric field conductance sensor for measurement of water holdup in vertical oil–gas–water flows. Meas. Sci. Technol. 29, 075301 (2018)

    Article  Google Scholar 

  46. Kozma, R., Kok, H., Sakuma, M., Djainal, D.D., Kitamura, M.: Characterization of two-phase flows using fractal analysis of local temperature fluctuations. Int. J. Multiph. Flow 22, 953–968 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Nos. 51527805, 11572220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningde Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Jin, N. Vector visibility graph from multivariate time series: a new method for characterizing nonlinear dynamic behavior in two-phase flow. Nonlinear Dyn 97, 2547–2556 (2019). https://doi.org/10.1007/s11071-019-05147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05147-7

Keywords

Navigation