Skip to main content

Advertisement

Log in

Fungal richness in the extreme environments of the Libiola mine (eastern Liguria, Italy): correlations among microfungi, lithology, mineralogy, and contaminants

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A small sulphide-rich waste-rock dump from the derelict Libiola mine (eastern Liguria, Italy) was studied for evaluating the fungal richness as well as the correlation among microfungi and lithology, mineralogy, and contaminants. The waste-rock dump is characterized by severe environmental conditions in particular for the (1) high metal and sulphur contents, (2) presence of reactive sulphides (mainly pyrite) triggering acid mine drainage processes, (3) acid-to-strong acid pH values, and (4) high cementation grade of the sediments evolving up to hardpans. Despite these critical and dangerous environmental conditions, a total of 603 CFUs belonging to 30 filamentous fungal species were isolated. Correlations analyses underlined that serpentinite-rich samples resulted particularly poor of fungal richness, with respect to sulphide-mineralized basalts. Only some Penicillium species, in fact, resulted adapted to survive in serpentinitic samples. Finally, among the isolated species, Cladosporium cladosporioides, C. iridis, C. tenuissimum, Metarhizium anisopliae, Penicillium brevicompactum, P. expansum, and Phanerochaete sordida appeared particularly well adapted to the extreme edaphic conditions of the Libiola mine. These results allowed the selection of particularly adapted and tolerant fungal strains usable in biotechnological processes for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Source: 44°18′00.78′′N and 9°26′42.48′′E, Google Earth, March 30, 2017; image accessed on October 09, 2017; DigitalGlobe©

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbate E, Bortolotti V, Principi G (1980) Apennine ophiolites: a peculiar oceanic crust. Ofioliti 1:59–96

    Google Scholar 

  • Accornero M, Marini L, Ottonello G, Zuccolini MV (2005) The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Appl Geochem 20(7):1368–1390

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  • Azarbad H, van Straalen NM, Laskowski R, Nikiel K, Röling WF, Niklińska M (2016) Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients. Appl Soil Ecol 98:233–242

    Article  Google Scholar 

  • Cánovas D, Cases I, De Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5(12):1242–1256

    Article  Google Scholar 

  • Cecchi G, Marescotti P, Di Piazza S, Zotti M (2017a) Native fungi as metal remediators: silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy). J Environ Sci Health Part B 52(3):191–195

    Article  Google Scholar 

  • Cecchi G, Roccotiello E, Di Piazza S, Riggi A, Mariotti MG, Zotti M (2017b) Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters. J Environ Sci Health Part B 52(3):1–5

    Google Scholar 

  • Cecchi G, Ceci A, Marescotti P, Persiani AM, Di Piazza S, Ballirano P, Mariotti MG, Zotti M (2018a) The geological roles played by microfungi in interaction with sulphide minerals from Libiola Mine, Liguria, Italy. Geomic J 35(7):564–569

    Article  Google Scholar 

  • Cecchi G, Marescotti P, Di Piazza S, Lucchetti G, Mariotti MG, Zotti M (2018b) Gypsum biomineralization in sulphide-rich hardpans by a native trichoderma harzianum Rifai strain. Geomic J 35(3):209–214

    Article  Google Scholar 

  • Cecchi G, Ceci A, Marescotti P, Persiani AM, Di Piazza S, Zotti M (2019) Interactions among microfungi and pyrite-chalcopyrite mineralizations: tolerance, mineral bioleaching, and metal bioaccumulation. Mycol Prog 18(3):415–423

    Article  Google Scholar 

  • Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:883–894

    Article  Google Scholar 

  • Di Piazza S, Cecchi G, Cardinale AM, Carbone C, Mariotti MG, Giovine M, Zotti M (2017) Penicillium expansum link strain for a biometallurgical method to recover REEs from WEEE. Waste Manag 60:596–600

    Article  Google Scholar 

  • Dinelli E, Tateo F (2002) Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe–Cu mine area (Ligurian Apennines, Italy). Appl Geochem 17(8):1081–1092

    Article  Google Scholar 

  • Dinelli E, Lucchini F, Mordenti A, Paganelli L (1999) Geochemistry of Oligocene-Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes. Sed Geol 127(3):193–207

    Article  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd taxonomically revised edition by W. Gams. IHW, Eching

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Fernández-Remolar DC, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker CR (2008) Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars. Astrobiology 8(5):1023–1047

    Article  Google Scholar 

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62:344–359

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing Co., Austin, p 182

    Google Scholar 

  • Gadanho M, Sampaio JP (2006) Microeukaryotic diversity in the extreme environments of the Iberian Pyrite Belt: a comparison between universal and fungi-specific primer sets, temperature gradient gel electrophoresis and cloning. FEMS Microbiol Ecol 57(1):139–148

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    Article  Google Scholar 

  • Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28(5–6):471–482

    Article  Google Scholar 

  • Gams W, VAn der Aa HA, Plaats-Niterink AJ, Samson RA, Stalpers JA (1987) CBS course of mycology, vol 3. Centraalbureau voorschimmel cultures, Utrecht

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118

    Article  Google Scholar 

  • Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F et al (2005) Sulphates in Martian layered terrains: the OMEGA/mars express view. Science 307(5715):1587–1591

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for used with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330

    Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433(1–3):91–109

    Article  Google Scholar 

  • Harazono K, Kondo R, Sakai K (1996) Bleaching of Hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO (inf4). Appl Environ Microbiol 62(3):913–917

    Google Scholar 

  • Kang S, van Nostrand JD, Gough HL, He Z, Hazen TC, Stahl DA, Zhou J (2013) Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiol Ecol 86:200–214

    Article  Google Scholar 

  • Kubatova A, Prasil K, Vanova M (2002) Diversity of soil microscopic fungi on abandoned industrial deposits. Cryptogam Mycol 23(3):205–219

    Google Scholar 

  • Kumari D, Pan X, Achal V, Zhang D, Al-Misned FA, Mortuza MG (2015) Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci 74:3113–3121

    Article  Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2002) Ecological study of the fungal populations of the acidic Tinto river in south western Spain. Can J Microbiol 50(11):923–934

    Article  Google Scholar 

  • Marescotti P, Carbone C, De Capitani L, Grieco G, Lucchetti G, Servida D (2008) Mineralogical and geochemical characterization of open-air tailing and waste-rock dumps from the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environ Geol 53(8):1613–1626

    Article  Google Scholar 

  • Marescotti P, Azzali E, Servida D, Carbone C, Grieco G, De Capitani L, Lucchetti G (2010) Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environ Earth Sci 61:187–199

    Article  Google Scholar 

  • Marescotti P, Roccotiello E, Zotti M, De Capitani L, Carbone C, Azzali E et al (2013) Influence of soil mineralogy and chemistry on fungi and plants in a waste-rock dump from the Libiola mine (eastern Liguria, Italy). Period Miner 82:141–162

    Google Scholar 

  • Massaccesi G, Romero MC, CazauMC Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18(9):817–820

    Article  Google Scholar 

  • Mertens J, Wakelin SA, Broos K, McLaughlin MJ, Smolders E (2010) Extent of copper tolerance and consequences for functional stability of the ammonia oxidizing community in long-term copper-contaminated soils. Environ Toxicol Chem 29:27–37

    Article  Google Scholar 

  • Oggerin M, Rodríguez N, del Moral C, Amils R (2014) Fungal jarosite biomineralization in Rio Tinto. Res Microbiol 165(9):719–725

    Article  Google Scholar 

  • Olson BH, Thornton I (1982) The resistance patterns to metals of bacterial population in contaminated land. J Soil Sci 33:271–277

    Article  Google Scholar 

  • Postma F, Mesjasz-Przybyłowicz J, Przybyłowicz W, Stone W, Mouton M, Botha A (2012) Symbiotic interactions of culturable microbes with the nickel hyperaccumulator Berkheya coddii and the herbivorous insect Chrysolina clathrata. Symbiosis 58(1–3):209–220

    Article  Google Scholar 

  • Ramírez C, Martínez AT (1981) Seven new species of Penicillium and a new variety of Penicillium novae-caledoniae Smith. Mycopathologia 74(1):35–49

    Article  Google Scholar 

  • Roccotiello E, Zotti M, Mesiti S, Marescotti P, Carbone C, Cornara L, Mariotti MG (2010) Biodiversity in metal-polluted soils. Fresenius Environ Bull 19(10b):2420–2425

    Google Scholar 

  • Roccotiello E, Marescotti P, Di Piazza S, Cecchi G, Mariotti MG, Zotti M (2015) Biodiversity in metal-contaminated sites–problem and perspective–a case study. Biodiversity in ecosystems-linking structure and function. InTech, Germany

    Google Scholar 

  • Rosatto S, Roccotiello E, Di Piazza S, Cecchi G, Greco G, Zotti M, Vezzulli L, Mariotti M (2019) Rhizosphere response to nickel in a facultative hyperaccumulator. Chemosphere 232:243–253

    Article  Google Scholar 

  • Samson RA, Houbraken J, Rane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS laboratory manual series 2. CBS-KNAW Fungal Biodiversity Centre, Utrecht (ISBN: 978-90-70351-82-3)

    Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Removal of chromium (VI) ions from synthetic solutions by the fungus Penicillium canescens. Ejmp ep 3(1):36–41 (European Journal of Mineral Processing and Environmental Protection)

    Google Scholar 

  • Squyres SW, Knoll AH, Arvidson RE, Clark BC, Grotzinger JP, Jolliff BL et al (2006) Two years at Meridiani Planum: results from the opportunity rover. Science 313(5792):1403–1407

    Article  Google Scholar 

  • Sunani G, Panda SS, Pattanayak B, Dhal NK (2015) Isolation, characterization and heavy metal tolerance capacity of indigenous fungi: a case study of iron mine waste. J Int Environ Appl Sci 10(2):233–238

    Google Scholar 

  • Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179

    Article  Google Scholar 

  • Wang J, Majima N, Hirai H, Kawagishi H (2012) Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Curr Microbiol 64(3):300–303

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomial RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, vol 18. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zotti M, Di Piazza S, Roccotiello E, Lucchetti G, Mariotti MG, Marescotti P (2014) Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: growth responses, tolerance and bioaccumulation. Chemosphere 117:471–476

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to GeoSpectra s.r.l. for the FP-EDXRF analyses and data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Cecchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecchi, G., Marescotti, P., Di Piazza, S. et al. Fungal richness in the extreme environments of the Libiola mine (eastern Liguria, Italy): correlations among microfungi, lithology, mineralogy, and contaminants. Environ Earth Sci 78, 541 (2019). https://doi.org/10.1007/s12665-019-8553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8553-0

Keywords

Navigation