Skip to main content
Log in

Naturally occurring asbestos in an alpine ophiolitic complex (northern Corsica, France)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper provides a field description and an analytical characterization of the fibrous minerals associated with ultrabasic and basic rocks from the Corsican Ophiolitic Complex, on the island of Corsica, in order to examine their asbestos potential. Thirty-five fibrous samples taken from serpentinites, magnesium-rich meta-gabbros and meta-basalts were studied, using combined EPMA, Ramanand FESEM methods. The results highlight that naturally occurring asbestos (NOA) are abundant in serpentinites and regularly occur in magnesium-rich meta-gabbros and meta-basalts in northern Corsica. The spatial distribution, abundance and mineralogical types of these NOA strongly depend on the petrographic nature of the hosting rocks and their structural pattern. NOA in serpentinites correspond to chrysotile vein networks in the internal parts of the thickest rocky masses and to tremolite veins and shear planes carrying tremolite fibers, both in the external parts of these masses and in highly sheared serpentinites within or close to tectonic contacts. NOA in highly deformed magnesium-rich meta-gabbros are associated with the opening and filling of albite–tremolite veins, associated with the syntectonic boudinage of the most competent meta-gabbros. In the meta-basalts, NOA are associated with late metamorphic, actinolite-bearing polymineralic veins cross-cutting the foliation planes. Fragments and pebbles of serpentinites, meta-gabbros and meta-basalts containing NOA are also present in colluvium, scree and alluvium resulting from erosion processes. Special attention should be paid to serpentinites and/or magnesium-rich meta-gabbros-bearing colluvium in which fibrous occurrences of tremolite regularly evolved into whitish clusters consisting of very long, easily separable, flexible and entangled fibers with a higher asbestos potential. The characterization of NOA in the COC serpentinites, meta-gabbros and meta-basalts leads us to consider them as hazardous materials. As these lithologies are very abundant within the whole structural edifice, they may be regularly impacted by development or construction work and thus require suitable monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ANSES (2015) Effets sanitaires et identification des fragments de clivage d’amphiboles issus des matériaux de carrière. Rapport d’expertise collective, France, p 197

  • AS (Australian Standard) (2004) AS 4964-2004. Method for the qualitative identification of asbestos in bulk samples. p 28

  • Auzende A (2003) Évolution des microstructures des serpentinites en contexte convergent: effet du degré de métamorphisme et de la déformation. PhD thesis, Université Joseph Fourier, Grenoble, 264 p

  • Auzende A, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31(5):269–277

    Article  Google Scholar 

  • Boutin G, Viallat JR, Steinbauer J, Dufour G, Gaudichet A (1989) Bilateral pleural plaques in Corsica: a marker of non-occupational asbestos exposure. In: Bignon J, Peto J, Saracci R (eds) Non occupational exposure to mineral fibers. IARC, Lyon, pp 406–410

    Google Scholar 

  • Campopiano A, Olori A, Spadafora A, Bruno MR, Angelosanto F, Ianno A, Casciardi S, Giardino R, Conte M, Oranges T, Iavicoli S (2018) Asbestiform minerals in ophiolitic rocks of Calabria (southern Italy). Int J Environ Health Res 28:134–146

    Article  Google Scholar 

  • Cogulu E, Laurent R (1984) Mineralogical and chemical variations in chrysotile veins and peridotite host-rocks from the asbestos belt of southern Quebec. Can Miner 22:173–183

    Google Scholar 

  • EPA (Environmental Protection Agency) (1993). Test method: method for determination of asbestos in bulk building materials. EPA/600/R-93/116, p 61

  • EPC (European Parliament and Council) (2009) Directive 2009/148/CE du Parlement européen et du Conseil concernant la protection des travailleurs contre les risques liés à une exposition à l’amiante pendant le travail. Journal officiel de l’Union européenne 330:28–36

    Google Scholar 

  • Erskine BG, Bailey M (2018) Characterization of asbestiform glaucophane-winchite in the Franciscan complex blueschist, northern Diablo Range, California. Toxicol Appl Pharmacol 361:3–13

    Article  Google Scholar 

  • Fitzgerald JD, Eggleton RA, Keeling JL (2010) Antigorite from Rowland Flat, south Australia: asbestiform character. Eur J Miner 22:525–533

    Article  Google Scholar 

  • Gaggero L, Crispini L, Isola E, Marescotti P (2013) Asbestos in natural and anthropic ophiolitic environments: a case study of geohazards related to the northern Apennine ophiolites (eastern Liguria, Italy). Ofioliti 38(1):29–40

    Google Scholar 

  • Gibbs GW, Hwang CY (1980) Dimensions of airborne asbestos fibers. In: Wagner JC (ed) Biological effects of mineral fibers. IARC Scientific Publication, Lyon, pp 69–78

    Google Scholar 

  • Glen RA, Butt BC (1981) Chrysotile asbestos at Woodsreef, New South Wales. Econ Geol 76:1153–1169

    Article  Google Scholar 

  • Groppo C, Compagnoni R (2007a) Metamorphic veins from serpentinites of the Piemonte Zone, western Alps, Italy: a review. Periodico di Mineralogia 76:127–153

    Google Scholar 

  • Groppo C, Compagnoni R (2007b) Ubiquitous fibrous antigorite veins from the Lanzo Ultramafic Massif, internal Western Alps (Italy): characterization and genetic conditions. Periodico di Mineralogia 76:169–181

    Google Scholar 

  • Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur J Miner 18:319–329

    Article  Google Scholar 

  • Gunter ME, Darby-Diar M, Lanzirotti A, Tucker JM, Speicher EA (2011) Differences in Fe-redox for asbestiform and nonasbestiform amphiboles from the former vermiculite mine, near Libby, Montana, USA (2011). Am Miner 96:1414–1417

    Article  Google Scholar 

  • Harper M, Gyung Lee E, Doorn SS, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770

    Article  Google Scholar 

  • Harris L (1985) Progressive and polyphase deformation of the Schistes Lustrés in Cap Corse, Alpine Corsica. J Struct Geol 7(6):637–650

    Article  Google Scholar 

  • Harris KE, Bunker KL, Strohmeier BR, Hoch R, Lee RJ (2007) Discovering the true morphology of amphibole minerals: complementary TEM and FESEM characterization of particles in mixes mineral dust. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy., pp 643–650

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 97:2031–2048

    Article  Google Scholar 

  • HSE (Health and Safety Executive) (2006) Asbestos: the analysts’ guide for sampling, analysis and clearance procedures, p 100

  • IARC (1987) Monographs on the evaluation of the carcinogenic risk to humans. Overall evaluations of carcinogenicity: an updating of IARC monographs, vol 1–42, suppl 7. WHO-IARC, France, pp 106–116

  • IARC (2012). Monographs on the evaluation of the carcinogenic risk to humans. Arsenic, metals, fibres, and dusts. IARC monographs, vol 100. World Health Organization, pp 11–465

  • INSERM (1999). Effets sur la santé des fibres de substitution à l’amiante’ (expertise collective). Rapport établi à la demande de la Direction Générale de la Santé et de la Direction des Relations du Travail (Ministère de l’Emploi et de la solidarité), p 429

  • Karkanas P (1995) The slip-fiber chrysotile asbestos deposit in the Zidani area, northern Greece. Ore Geol Rev 1:19–29

    Article  Google Scholar 

  • Kazan-Allen L (2005) Asbestos and mesothelioma: worldwide trends. Lung Cancer 49(S1):S3–S8

    Article  Google Scholar 

  • Lagabrielle Y, Vitale Brovarone A, Ildefonse B (2015) Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica. Earth Sci Rev 141:1–26

    Article  Google Scholar 

  • Lahondère D (1996) Les schistes bleus et les éclogites à lawsonite des unités continentales et océaniques de la Corse alpine. Nouvelles données pétrologiques et structurales, thèse, Doc. BRGM no 240, Université de Montpellier, p 285

  • Lahondère J-C, Lahondère D (1988) Organisation structurale des « schistes lustrés » du cap Corse (Haute-Corse). C R Acad Sci 307:1081–1086

    Google Scholar 

  • Lahondère D, Cagnard F, Wille G, Duron J, Misseri M (2018a) TEM and FESEM characterization of asbestiform and non-asbestiform actinolite fibers in hydrothermally altered dolerites (France). Environ Earth Sci 77:385

    Article  Google Scholar 

  • Lahondère et al (2018b) Naturally occurring asbestos in an alpine ophiolitic complex (N. Corsica, France). IAEG congress, San Francisco

    Google Scholar 

  • Langer AM (2008) Identification and enumeration of asbestos fibers in the mining environment: mission and modification to the Federal Asbestos Standard. Regul Toxicol Pharmacol 52:207–217

    Article  Google Scholar 

  • Langer AM, Nolan RP, Addison J (1991) Distinguishing between amphibole asbestos fibers and elongate cleavage fragments of their non-asbestos analogues. Mechanisms in fibre carcinogenesis. Plenum Press, New York, pp 253–267

    Chapter  Google Scholar 

  • Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR (2008) Naturally occurring asbestos—a recurring public policy challenge. J Hazard Mater 153:1–21

    Article  Google Scholar 

  • Li XH, Faure M, Rossi P, Lin W, Lahondère D (2015) Age of alpine Corsica ophiolites revisited: insights from in situ zircon U–Pb age and O–Hf isotopes. Lithos 220–223:179–190

    Article  Google Scholar 

  • Locock AJ (2014) An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommandations. Comput Geosci 62:1–11

    Article  Google Scholar 

  • Malavieille J, Chemenda A, Larroque C (1998) Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks. Terra Nova 10:317–322

    Article  Google Scholar 

  • Mattauer M, Faure M, Malavieille J (1981) Transverse lineation and large-scale structures related to Alpine obduction in Corsica. J Struct Geol 3:401–409

    Article  Google Scholar 

  • Meresse F, Lagabrielle Y, Malavieille J, Ildefonse B (2012) A fossil ocean-continent transition of the Mesozoic Tethys preserved in the Schistes Lustrés nappe of northern Corsica. Tectonophysics 579:4–16. https://doi.org/10.1016/j.tecto.2012.06.013

    Article  Google Scholar 

  • Merlet C (1992) Quantitative electron probe microanalysis: a new accurate (φρz) description. Mikrochimica Acta 12:107–115

    Article  Google Scholar 

  • Metcalf RV, Buck BJ (2015) Genesis and health risk implications of an unusual occurrence of fibrous NaFe3 + − amphibole. Geology 43:63–66

    Article  Google Scholar 

  • Miller JA, Cartwright I (2006) Albite vein formation during exhumation of high-pressure terranes: a case study from alpine Corsica. J Metamorph Geol 24:409–428

    Article  Google Scholar 

  • Molli G, Tribuzio R, Marquer D (2006) Deformation and metamorphism at the eastern border of the Tenda Massif (NE Corsica): a record of subduction and exhumation of continental crust. J Struct Geol 28:1748–1766

    Article  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2011) Asbestos fibers and other elongate mineral particles: state of the science and roadmap for research. Current Intelligence Bulletin 62, pp 1–153

  • NIST (National Institute for Standards and Technology) (2006) Bulk asbestos analysis. NIST Handbook. NIST, Gaithersburg, pp 150–153

  • Norrell GT, Teixell AG, Harper D (1989) Microstructure of serpentinite mylonites from the josephine ophiolite and serpentinization in retrogressive shear zones, California. Geol Soc Am Bull 101:673–682

    Article  Google Scholar 

  • Ohnenstetter D, Ohnenstetter M (1975) Le puzzle ophiolitique corse, un bel exemple de paléodorsale océanique. Thèse 3ème cycle, Nancy

  • Page NJ (1968) Serpentinization in a sheared serpentine lens, Tiburon Peninsula, California. US Geol Surv Prof 600:B21–B28

    Google Scholar 

  • Petriglieri JR, Salvioli-Mariani E, Mantovani L, Tribaudino M, Lottici PP, Laporte-Magoni C, Bersani D (2015) Micro-Raman mapping of the polymorphs of serpentine. J Raman Spectrosc 46:953–958. https://doi.org/10.1002/jrs.4695

    Article  Google Scholar 

  • Pooley FD, Clark NJ (1980) A comparison of fibre dimensions in chrysotile, crocidolite and amosite particles from samples of airborne dust and from post-mortem lung tissue specimens. In: Wagner W, Davis JC (eds) Biologic effects of mineral fibers. IARC Sci Pub Number 30, France, pp 79–86

    Google Scholar 

  • Puffer JH, Germine M, Hurtubise DO, Mrotek KA, Bello DM (1980) Asbestos distribution in the central serpentine district of Maryland–Pennsylvania. Environ Res 23:233–246

    Article  Google Scholar 

  • Rampone E, Piccardo GB (2008) Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Miner Petrol 156:453–475

    Article  Google Scholar 

  • Ravna EJK, Andersen TB, Jolivet L, De Capitani C (2010) Cold subduction and the formation of lawsonite eclogite–constraints from prograde evolution of eclogitized pillow lava from Corsica. J Metamorph Geol 28:381–395

    Article  Google Scholar 

  • Rey F, Viallat JR, Boutin C, Farisse P, Billon-Galland MA, Hereng P, Dumortier P, De Vuysts P (1993) Les mésothéliomes environnementaux en Corse du Nord-Est. Rev Mal Resp 10:339–345

    Google Scholar 

  • Rey F, Boutin C, Viallat JR, Steinbauer J, Alessandroni P, Jutisz P, Di Giambattista D, Billon-Galland MA, Hereng P, Dumortier P, De Vuyst P (1994) Environmental asbestotic pleural plaques in Northeast Corsica: correlations with airborne and pleural mineralogic analysis. Environ Health Perspect 102:251–252

    Article  Google Scholar 

  • Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Miner 41:883–890

    Article  Google Scholar 

  • Riordon PH (1955) The genesis of asbestos in ultrabasic rocks. Econ Geol 50:67–83

    Article  Google Scholar 

  • Ross M, Langer AM, Nord GL, Nolan RP, Lee RJ, Van Orden D, Addison J (2008) The mineral nature of asbestos. Regul Toxicol Pharmacol 52:26–30

    Article  Google Scholar 

  • Rossi P, Lahondère JC, Lluch D, Loÿe-Pilot MD (1994) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Florent (1103). BRGM, Orléans, p 93

    Google Scholar 

  • Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP (2012) Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579:193–206

    Article  Google Scholar 

  • Van Gosen BS (2007) The geology of asbestos in the United States and its practical applications. Environ Eng Geosci 13:55–68

    Article  Google Scholar 

  • Van Gosen BS, Lowers HA, Sutley SJ, Gent CA (2004) Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ Geol 45:920–939

    Article  Google Scholar 

  • Van Orden DR, Allison KA, Lee RJ (2008) Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor Built Environ 17:58–68

    Article  Google Scholar 

  • Van Orden DR, Lee RJ, Allison KA, Addison J (2009) Width distributions of asbestos and non-asbestos amphibole minerals. Indoor Built Environ 18:531–540

    Article  Google Scholar 

  • Van Orden DR, Lee RJ, Hefferan CM, Schlaegle S, Sanchez M (2016) Determination of the size distribution of amphibole asbestos and amphibole non-asbestos mineral particles. Microscope 64(1):13–25

    Google Scholar 

  • Vignaroli G, Ballirano P, Belardi G, Rossetti F (2014) Asbestos fibre identification vs. evaluation of asbestos hazard in ophiolitic rocks melanges, a case study from the Ligurian Alps (Italy). Environ Earth Sci 72:3679–3698

    Article  Google Scholar 

  • Virta RL, Shedd K, Wylie AG, Snyder JG (1983) Size and shape characteristics of amphibole asbestos (amosite) and amphibole cleavage fragments (actinolite, cummingtonite) collected on occupational air monitoring filters. Aerosols Min Ind Work Environ 2:633–643

    Google Scholar 

  • Vitale-Brovarone A, Beyssac O, Malavieille J, Molli G, Beltrando M, Compagnoni R (2013) Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: the example of alpine Corsica. Earth Sci Rev 116:35–56

    Article  Google Scholar 

  • Viti C, Mellini M (1996) Vein antigorite from Elba Island, Italy. Eur J Miner 8:423–434

    Article  Google Scholar 

  • Vortisch W, Bauch X (2018) Asbestiform antigorite: a dangerous mineral in Serpentinites. A plea to treat asbestiform antigorite as an asbestos group mineral in terms of its occupational health safety effects. Neues Jahrbuch für Mineralogie–Abhandlungen. J Min Geochem 195(1):41–64. https://doi.org/10.1127/njma/2017/0070

    Article  Google Scholar 

  • World Health Organization (1986) Asbestos and other natural mineral fibres, environmental health criteria, no. 53, Geneva

  • World Health Organization (1998) Détermination de la concentration des fibres en suspension dans l’air. Méthode recommandée: la microscopie optique en contraste de phase (comptage sur membrane filtrante)

  • Wylie AG (1990) Discriminating amphibole cleavage fragments from asbestos: rationale and methodology. In: Proc VII, Pneumoconiosis Conf., Pittsburg, Pennsylvania, pp 1065–1069

  • Wylie AG, Huggins CW (1980) Characteristics of a potassian winchite-asbestos from the Allamoore talc district, Texas. Can Miner 18:101–107

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Directorate-General for Risk Prevention of the French Ministry of Ecological and Solidarity Transition, the BRGM and the Corsican Environmental Office for discussions and for their financial support. We thank Bradley Van Gosen for constructive comments that have been helpful to clarify and improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Lahondère.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahondère, D., Cagnard, F., Wille, G. et al. Naturally occurring asbestos in an alpine ophiolitic complex (northern Corsica, France). Environ Earth Sci 78, 540 (2019). https://doi.org/10.1007/s12665-019-8548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8548-x

Keywords

Navigation