Skip to main content
Log in

Further Results on the Structure of (Co)Ends in Finite Tensor Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Let \({\mathcal {C}}\) be a finite tensor category, and let \({\mathcal {M}}\) be an exact left \({\mathcal {C}}\)-module category. The action of \({\mathcal {C}}\) on \({\mathcal {M}}\) induces a functor \(\rho : {\mathcal {C}} \rightarrow \mathrm {Rex}({\mathcal {M}})\), where \(\mathrm {Rex}({\mathcal {M}})\) is the category of k-linear right exact endofunctors on \({\mathcal {M}}\). Our key observation is that \(\rho \) has a right adjoint \(\rho ^{\mathrm {ra}}\) given by the end

$$\begin{aligned} \rho ^{\mathrm {ra}}(F) = \int _{M \in {\mathcal {M}}} \underline{\mathrm {Hom}}(M, F(M)) \quad (F \in \mathrm {Rex}({\mathcal {M}})). \end{aligned}$$

As an application, we establish the following results: (1) We give a description of the composition of the induction functor \({\mathcal {C}}_{{\mathcal {M}}}^* \rightarrow {\mathcal {Z}}({\mathcal {C}}_{{\mathcal {M}}}^*)\) and Schauenburg’s equivalence \({\mathcal {Z}}({\mathcal {C}}_{{\mathcal {M}}}^*) \approx {\mathcal {Z}}({\mathcal {C}})\). (2) We introduce the space \(\mathrm {CF}({\mathcal {M}})\) of ‘class functions’ of \({\mathcal {M}}\) and initiate the character theory for pivotal module categories. (3) We introduce a filtration for \(\mathrm {CF}({\mathcal {M}})\) and discuss its relation with some ring-theoretic notions, such as the Reynolds ideal and its generalizations. (4) We show that \(\mathrm {Ext}_{{\mathcal {C}}}^{\bullet }(1, \rho ^{\mathrm {ra}}(\mathrm {id}_{{\mathcal {M}}}))\) is isomorphic to the Hochschild cohomology of \({\mathcal {M}}\). As an application, we show that the modular group acts projectively on the Hochschild cohomology of a modular tensor category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruskiewitsch, N., Mombelli, J.M.: On module categories over finite-dimensional Hopf algebras. J. Algebra 314(1), 383–418 (2007)

    Article  MathSciNet  Google Scholar 

  2. Arike, Y., Nagatomo, K.: Some remarks on pseudo-trace functions for orbifold models associated with symplectic fermions. Int. J. Math. 24(2), 1350008 (2013)

    Article  MathSciNet  Google Scholar 

  3. Arike, Y.: A construction of symmetric linear functions on the restricted quantum group \({{\overline{U}}}_q({{\rm s}l}_2)\). Osaka J. Math. 47(2), 535–557 (2010a)

    MathSciNet  MATH  Google Scholar 

  4. Arike, Y.: Some remarks on symmetric linear functions and pseudotrace maps. Proc. Jpn. Acad. Ser. A Math. Sci. 86(7), 119–124 (2010b)

    Article  MathSciNet  Google Scholar 

  5. Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors, Volume 21 of University Lecture Series. American Mathematical Society, Providence, RI (2001)

  6. Bespalov, Y., Kerler, T., Lyubashenko, V., Turaev, V.: Integrals for braided Hopf algebras. J. Pure Appl. Algebra 148(2), 113–164 (2000)

    Article  MathSciNet  Google Scholar 

  7. Bruguières, A., Lack, S., Virelizier, A.: Hopf monads on monoidal categories. Adv. Math. 227(2), 745–800 (2011)

    Article  MathSciNet  Google Scholar 

  8. Bruguières, A., Virelizier, A.: Hopf monads. Adv. Math. 215(2), 679–733 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bruguières, A., Virelizier, A.: Quantum double of Hopf monads and categorical centers. Trans. Am. Math. Soc. 364(3), 1225–1279 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cohen, M., Westreich, S.: Characters and a Verlinde-type formula for symmetric Hopf algebras. J. Algebra 320(12), 4300–4316 (2008)

    Article  MathSciNet  Google Scholar 

  11. Douglas, C.L., Schommer-Pries, C., Snyder, N.: Dualizable tensor categories. arXiv:1312.7188 (2013)

  12. Douglas, C.L., Schommer-Pries, C., Snyder, N.: The balanced tensor product of module categories. Kyoto J. Math. 59(1), 167–179 (2014)

    Article  MathSciNet  Google Scholar 

  13. Etingof, P., Gelaki, S.: Exact sequences of tensor categories with respect to a module category. Adv. Math. 308, 1187–1208 (2017)

    Article  MathSciNet  Google Scholar 

  14. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2015)

  15. Etingof, P., Nikshych, D., Ostrik, V.: An analogue of Radford’s \(S^4\) formula for finite tensor categories. Int. Math. Res. Not. 54, 2915–2933 (2004)

    Article  Google Scholar 

  16. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. (2) 162(2), 581–642 (2005)

    Article  MathSciNet  Google Scholar 

  17. Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654, 782–783 (2004)

    Article  MathSciNet  Google Scholar 

  18. Farsad, V., Gainutdinov, A.M., Runkel, I.: SL(2, Z)-action for ribbon quasi-Hopf algebras. J. Algebra 522, 243–308 (2019)

    Article  MathSciNet  Google Scholar 

  19. Fuchs, J., Schaumann, G., Schweigert, C.: Eilenberg–Watts calculus for finite categories and a bimodule Radford \(S^4\) theorem. arXiv:1612.04561 (2016)

  20. Geer, N., Kujawa, J., Patureau-Mirand, B.: Generalized trace and modified dimension functions on ribbon categories. Selecta Math. (N.S.) 17(2), 453–504 (2011)

    Article  MathSciNet  Google Scholar 

  21. Gainutdinov, A.M., Runkel, I.: The non-semisimple Verlinde formula and pseudo-trace functions. J. Pure Appl Algebra 223(2), 660–690 (2019)

    Article  MathSciNet  Google Scholar 

  22. Gainutdinov, A.M., Runkel, I.: Projective objects and the modified trace in factorisable finite tensor categories. arXiv:1703.00150 (2017)

  23. Kerler, T., Lyubashenko, V.V.: Non-semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, Volume 1765 of Lecture Notes in Mathematics. Springer, Berlin (2001)

  24. Koshitani, S.: Endo-trivial modules for finite groups with dihedral Sylow \(2\)-groups. RIMS Kôkyûroku 2003, 128–132 (2016)

    MATH  Google Scholar 

  25. Lyubashenko, V., Majid, S.: Braided groups and quantum Fourier transform. J. Algebra 166(3), 506–528 (1994)

    Article  MathSciNet  Google Scholar 

  26. Lentner, S., Mierach, S.N., Schweigert, C., Sommerhaeuser, Y.: Hochschild cohomology and the modular group. J. Algebra 507, 400–420 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lyubashenko, V.: Modular transformations for tensor categories. J. Pure Appl. Algebra 98(3), 279–327 (1995a)

    Article  MathSciNet  Google Scholar 

  28. Lyubashenko, V.: Modular properties of ribbon abelian categories. In: Proceedings of the 2nd Gauss Symposium. Conference A: Mathematics and Theoretical Physics (Munich, 1993), Sympos. Gaussiana, pp. 529–579, Berlin. de Gruyter (1995b)

  29. Lyubashenko, V.V.: Invariants of \(3\)-manifolds and projective representations of mapping class groups via quantum groups at roots of unity. Commun. Math. Phys. 172(3), 467–516 (1995c)

    Article  MathSciNet  Google Scholar 

  30. Miyamoto, M.: Modular invariance of vertex operator algebras satisfying \(C_2\)-cofiniteness. Duke Math. J. 122(1), 51–91 (2004)

    Article  MathSciNet  Google Scholar 

  31. Mac Lane, S.: Categories for the Working Mathematician, Volume 5 of Graduate Texts in Mathematics, second edition. Springer, New York (1998)

  32. Montgomery, S.: Hopf Algebras and Their Actions on Rings, Volume 82 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1993)

  33. Nesbitt, C., Scott, W.M.: Some remarks on algebras over an algebraically closed field. Ann. Math. 2(44), 534–553 (1943)

    Article  MathSciNet  Google Scholar 

  34. Okuyama, T.: \({{\rm Ext}}^1(S, S)\) for a simple \(k G\)-module \(S\). In: Endo, S. (ed.) Proceedings of the Symposium “Representations of Groups and Rings and Its applications” (in Japanese), December 16–19 1981, pp. 238–249

  35. Ostrik, V.: Pivotal fusion categories of rank 3 (with an Appendix written jointly with Dmitri Nikshych). arXiv:1309.4822 (2013)

  36. Radford, D.E.: The trace function and Hopf algebras. J. Algebra 163(3), 583–622 (1994)

    Article  MathSciNet  Google Scholar 

  37. Rosenberg, A.L.: Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Volume 330 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1995)

    Book  Google Scholar 

  38. Sakurai, T.: Central elements of the Jennings basis and certain Morita invariants. J Algebra Appl. https://doi.org/10.1142/S0219498820501601 (2017a)

  39. Sakurai, T.: A generalization of dual symmetry and reciprocity for symmetric algebras. J. Algebra 484, 265–274 (2017b)

    Article  MathSciNet  Google Scholar 

  40. Schauenburg, P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158(2–3), 325–346 (2001)

    Article  MathSciNet  Google Scholar 

  41. Schauenburg, P.: Computing higher Frobenius–Schur indicators in fusion categories constructed from inclusions of finite groups. Pac. J. Math. 280(1), 177–201 (2016)

    Article  MathSciNet  Google Scholar 

  42. Shimizu, K.: Non-degeneracy conditions for braided finite tensor categories. arXiv:1602.06534 (2016)

  43. Shimizu, K.: Ribbon structures of the Drinfeld center. arXiv:1707.09691 (2017a)

  44. Shimizu, K.: The monoidal center and the character algebra. J. Pure Appl. Algebra 221(9), 2338–2371 (2017b)

    Article  MathSciNet  Google Scholar 

  45. Shimizu, K.: On unimodular finite tensor categories. Int. Math. Res. Not. IMRN 1, 277–322 (2017c)

    MathSciNet  MATH  Google Scholar 

  46. Shimizu, K.: The relative modular object and Frobenius extensions of finite Hopf algebras. J. Algebra 471, 75–112 (2017d)

    Article  MathSciNet  Google Scholar 

  47. Shimizu, K.: Integrals for finite tensor categories Algebras Represent Theory 22(2), 459–493 (2019)

    Article  Google Scholar 

  48. Suter, R.: Modules over \({\mathfrak{U}}_q({\mathfrak{sl}}_2)\). Commun. Math. Phys. 163(2), 359–393 (1994)

    Article  Google Scholar 

  49. Sommerhäuser, Y., Zhu, Y.: Hopf algebras and congruence subgroups. Mem. Am. Math. Soc. 219(1028), vi+134 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Taro Sakurai for discussion. The author is supported by JSPS KAKENHI Grant Number JP16K17568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Shimizu.

Additional information

Communicated by Ross Street.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, K. Further Results on the Structure of (Co)Ends in Finite Tensor Categories. Appl Categor Struct 28, 237–286 (2020). https://doi.org/10.1007/s10485-019-09577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-019-09577-7

Keywords

Navigation