Skip to main content

Advertisement

Log in

In vitro survival of follicles in prepubertal ewe ovarian cortex cryopreserved by slow freezing or non-equilibrium vitrification

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Vitrification is a well-accepted fertility preservation procedure for cryopreservation of oocytes and embryos but little is known regarding ovarian tissue, for which slow freezing is the current convention. The aim of the present study was to assess the efficiency of non-equilibrium vitrification compared to conventional slow freezing for ovarian cortex cryopreservation.

Methods

Using prepubertal sheep ovaries, the capacity of the tissue to sustain folliculogenesis following cryopreservation and in vitro culture was evaluated. Ovarian cortex fragments were cultured in wells for 9 days, immediately or after cryopreservation by conventional slow freezing or non-equilibrium vitrification in straws. During culture, follicular populations within cortex were evaluated by histology and immunohistochemistry for PCNA and TUNEL. Steroidogenic activity of the tissue was monitored by assay for progesterone and estradiol in spent media.

Results

No significant differences in follicle morphology, PCNA, or TUNEL labeling were observed between cryopreservation methods at the initiation of culture. Similar decreases in the proportion of primordial follicle population, and increases in the proportion of growing follicles, were observed following culture of fresh or cryopreserved ovarian tissue regardless of cryopreservation method. At the end of culture, PCNA and TUNEL-positive follicles were not statistically altered by slow freezing or vitrification in comparison to fresh cultured fragments.

Conclusions

Overall, for both cryopreservation methods, the cryopreserved tissue showed equal capacity to fresh tissue for supporting basal folliculogenesis in vitro. Taken together, these data confirm that both non-equilibrium vitrification and slow-freezing methods are both efficient for the cryopreservation of sheep ovarian cortex fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360:902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallace WHB, Kelsey TW. Human ovarian reserve from conception to the menopause. PLoS ONE [Internet]. 2010 [cited 2017 Apr 22];5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811725/

  3. Donnez J, Dolmans M-M. Fertility preservation in women. Nat Rev Endocrinol. 2013;9:735–49.

    Article  CAS  PubMed  Google Scholar 

  4. De Vos M, Smitz J, Woodruff TK. Fertility preservation in women with cancer. Lancet. 2014;384:1302–10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at-196°C. Hum Reprod. 1994;9:597–603.

    Article  CAS  PubMed  Google Scholar 

  6. Donnez J, Dolmans M, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  CAS  Google Scholar 

  7. Donnez J, Dolmans M-M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet. 2015;32:1167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jensen AK, Macklon KT, Fedder J, Ernst E, Humaidan P, Andersen CY. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet. 2017;34:325–36.

    Article  PubMed  Google Scholar 

  9. Anderson RA, Wallace WHB. Fertility preservation in girls and young women. Clin Endocrinol. 2011;75:409–19.

    Article  Google Scholar 

  10. Gavish Z, Spector I, Peer G, Schlatt S, Wistuba J, Roness H, et al. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. J Assist Reprod Genet. 2018;35:61–9.

    Article  PubMed  Google Scholar 

  11. Gavish Z, Peer G, Hadassa R, Yoram C, Meirow D. Follicle activation and “burn-out” contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod. 2014;29:989–96.

    Article  PubMed  Google Scholar 

  12. Schmidt KT, Rosendahl M, Ernst E, Loft A, Andersen AN, Dueholm M, et al. Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil Steril. 2011;95:695–701.

    Article  PubMed  Google Scholar 

  13. Kagawa N, Silber S, Kuwayama M. Successful vitrification of bovine and human ovarian tissue. Reprod BioMed Online. 2009;18:568–77.

    Article  PubMed  Google Scholar 

  14. Migishima F, Suzukimigishima R, Quintero R, Yokoyama M, Behr B. Successful pregnancies after transplantation of frozen–thawed mouse ovaries into chimeric mice that received lethal-dose radiation. Fertil Steril. 2006;86:1080–7.

    Article  PubMed  Google Scholar 

  15. Bordes A, Lornage J, Demirci B, Franck M, Courbiere B, Guerin JF, et al. Normal gestations and live births after orthotopic autograft of vitrified–warmed hemi-ovaries into ewes. Hum Reprod. 2005;20:2745–8.

    Article  PubMed  Google Scholar 

  16. Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30:608–15.

    Article  PubMed  Google Scholar 

  17. Chang HJ, Moon JH, Lee JR, Jee BC, Suh CS, Kim SH. Optimal condition of vitrification method for cryopreservation of human ovarian cortical tissues. J Obstet Gynaecol Res. 37:1092–101.

  18. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod. 2009;24:1670–83.

    Article  CAS  PubMed  Google Scholar 

  19. Amorim CA, Curaba M, Van Langendonckt A, Dolmans M-M, Donnez J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod BioMed Online. 2011;23:160–86.

    Article  PubMed  Google Scholar 

  20. Amorim CA, Dolmans M-M, David A, Jaeger J, Vanacker J, Camboni A, et al. Vitrification and xenografting of human ovarian tissue. Fertil Steril. 2012;98:1291–1298.e2.

    Article  PubMed  Google Scholar 

  21. Zhou X-H, Wu Y-J, Shi J, Xia Y, Zheng S-S. Cryopreservation of human ovarian tissue: comparison of novel direct cover vitrification and conventional vitrification. Cryobiology. 2010;60:101–5.

    Article  CAS  PubMed  Google Scholar 

  22. Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep [Internet]. 2017 [cited 2018 Jul 7];7. Available from: http://www.nature.com/articles/s41598-017-09005-7

  23. Dalman A, Deheshkar Gooneh Farahani NS, Totonchi M, Pirjani R, Ebrahimi B, Rezazadeh Valojerdi M. Slow freezing versus vitrification technique for human ovarian tissue cryopreservation: an evaluation of histological changes, WNT signaling pathway and apoptotic genes expression. Cryobiology. 2017;79:29–36.

    Article  CAS  PubMed  Google Scholar 

  24. Fabbri R, Vicenti R, Macciocca M, Martino NA, Dell’Aquila ME, Pasquinelli G, et al. Morphological, ultrastructural and functional imaging of frozen/thawed and vitrified/warmed human ovarian tissue retrieved from oncological patients. Hum Reprod. 2016;31:1838–49.

    Article  CAS  PubMed  Google Scholar 

  25. Donfack NJ, Alves KA, Alves BG, Rocha RMP, Bruno JB, Lima LF, et al. In vivo and in vitro strategies to support caprine preantral follicle development after ovarian tissue vitrification. Reprod Fertil Dev. 2018;30:1055–65.

    Article  CAS  PubMed  Google Scholar 

  26. Nikiforov D, Russo V, Nardinocchi D, Bernabò N, Mattioli M, Barboni B. Innovative multi-protectoral approach increases survival rate after vitrification of ovarian tissue and isolated follicles with improved results in comparison with conventional method. J Ovarian Res. 2018;11:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Canépa S, Lainé A-L, Bluteau A, Fagu C, Flon C, Monniaux D. Validation d’une méthode immunoenzymatique pour le dosage de la progestérone dans le plasma des ovins et des bovins. Cah Techn Inra. 2008;64:19–30.

    Google Scholar 

  28. McDonald JH. Introduction - Handbook of Biological Statistics [Internet]. Handb Biol Stat. 3rd Ed. 2014. Available from: http://www.biostathandbook.com/

  29. Bertoldo MJ, Bernard J, Duffard N, Tsikis G, Alves S, Calais L, et al. Inhibitors of c-Jun phosphorylation impede ovine primordial follicle activation. Mol Hum Reprod. 2016;22:338–49.

    Article  CAS  PubMed  Google Scholar 

  30. Bertoldo MJ, Walters KA, Ledger WL, Gilchrist RB, Mermillod P, Locatelli Y. In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reprod BioMed Online. 2018;36:491–9.

    Article  CAS  PubMed  Google Scholar 

  31. Donfack NJ, Alves KA, Alves BG, Rocha RMP, Bruno JB, Lobo CH, et al. Xenotransplantation of goat ovary as an alternative to analyse follicles after vitrification. Reprod Domest Anim. 2019;54:216–24.

    Article  Google Scholar 

  32. Isachenko V, Isachenko E, Reinsberg J, Montag M, van der Ven K, Dorn C, et al. Cryopreservation of human ovarian tissue: comparison of rapid and conventional freezing. Cryobiology. 2007;55:261–8.

    Article  CAS  PubMed  Google Scholar 

  33. Isachenko V, Lapidus I, Isachenko E, Krivokharchenko A, Kreienberg R, Woriedh M, et al. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction. 2009;138:319–27.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JY. Control of ovarian primordial follicle activation. Clin Exp Reprod Med. 2012;39:10–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carvalho AA, Faustino LR, Silva CMG, Castro SV, Luz HKM, Rossetto R, et al. Influence of vitrification techniques and solutions on the morphology and survival of preantral follicles after in vitro culture of caprine ovarian tissue. Theriogenology. 2011;76:933–41.

    Article  CAS  PubMed  Google Scholar 

  36. Bandeira FT, Carvalho AA, Castro SV, Lima LF, Viana DA, Evangelista J, et al. Two methods of vitrification followed by in vitro culture of the ovine ovary: evaluation of the follicular development and ovarian extracellular matrix. Reprod Domest Anim. 2015;50:177–85.

    Article  CAS  PubMed  Google Scholar 

  37. Adib S, Valojerdi MR, Alikhani M. Evaluation of apoptotic markers and tissue histology indicate a slight advantage of slow freezing method over vitrification for sheep ovarian tissues. Cryo-Letters. 2018;39:313–21.

    PubMed  Google Scholar 

  38. Vatanparast M, Khalili MA, Yari N, Omidi M, Mohsenzadeh M. Evaluation of sheep ovarian tissue cryopreservation with slow freezing or vitrification after chick embryo chorioallantoic membrane transplantation. Cryobiology. 2018;81:178–84.

    Article  PubMed  Google Scholar 

  39. Bertoldo MJ, Duffard N, Bernard J, Frapsauce C, Calais L, Rico C, et al. Effects of bone morphogenetic protein 4 (BMP4) supplementation during culture of the sheep ovarian cortex. Anim Reprod Sci. 2014;149:124–34.

    Article  CAS  PubMed  Google Scholar 

  40. Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod Oxf Engl. 1997;12:1993–2001.

    Article  CAS  Google Scholar 

  41. Silva JRV, van den Hurk R, de Matos MHT, dos Santos RR, Pessoa C, de Moraes MO, et al. Influences of FSH and EGF on primordial follicles during in vitro culture of caprine ovarian cortical tissue. Theriogenology. 2004;61:1691–704.

    Article  CAS  PubMed  Google Scholar 

  42. Merdassi G, Mazoyer C, Guerin JF, Saad A, Salle B, Lornage J. Examination of viability and quality of ovarian tissue after cryopreservation using simple laboratory methods in ewe. Reprod Biol Endocrinol. 2011;9:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Faustino LR, Carvalho AA, Silva CMG, Rossetto R, Lopes CAP, van Tilburg MF, et al. Assessment of DNA damage in goat preantral follicles after vitrification of the ovarian cortex. Reprod Fertil Dev. 2015;27:440–8.

    Article  CAS  PubMed  Google Scholar 

  44. Tingen CM, Bristol-Gould SK, Kiesewetter SE, Wellington JT, Shea L, Woodruff TK. Prepubertal primordial follicle loss in mice is not due to classical apoptotic pathways1. Biol Reprod. 2009;81:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Isachenko E, Isachenko V, Rahimi G, Nawroth F. Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen. Eur J Obstet Gynecol Reprod Biol. 2003;108:186–93.

    Article  CAS  PubMed  Google Scholar 

  46. Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod. 1993;48:798–806.

    Article  CAS  PubMed  Google Scholar 

  47. Liebenthron J, Köster M, Drengner C, Reinsberg J, van der Ven H, Montag M. The impact of culture conditions on early follicle recruitment and growth from human ovarian cortex biopsies in vitro. Fertil Steril. 2013;100:483–491.e5.

    Article  CAS  PubMed  Google Scholar 

  48. Asadi E, Najafi A, Moeini A, Pirjani R, Hassanzadeh G, Mikaeili S, et al. Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. J Endocrinol. 2017;232:205–19.

    Article  CAS  PubMed  Google Scholar 

  49. Xu M, Banc A, Woodruff TK, Shea LD. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol Bioeng. 2009;103:378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24:2531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Thierry Delpuech for the collection of ovaries at slaughterhouse, Dr. Charlène Rico for the help with setup of culture conditions, and Corinne Laclie and Anne-Lyse Lainé from Laboratoire Phénotypage-Endocrinologie for the P4 assay.

Funding

Dr. Michael J. Bertoldo, Laure Calais, and the laboratories involved in the present study were supported by a grant from “Région Centre” (CRYOVAIRE, Grant number no. 320000268).

Author information

Authors and Affiliations

Authors

Contributions

YL designed and performed the experiments and analysis, wrote the manuscript, and secured the funding. LC performed the experiments and analysis and contributed to first draft of the manuscript. ND performed the experiments and LL performed the assay for estradiol. DM, PP, and PM contributed to experimental design and revised the manuscript. MJB performed the experiments and analysis, wrote, and revised the manuscript.

Corresponding author

Correspondence to Yann Locatelli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locatelli, Y., Calais, L., Duffard, N. et al. In vitro survival of follicles in prepubertal ewe ovarian cortex cryopreserved by slow freezing or non-equilibrium vitrification. J Assist Reprod Genet 36, 1823–1835 (2019). https://doi.org/10.1007/s10815-019-01532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01532-8

Keywords

Navigation