Skip to main content
Log in

Improvement of Wide-Angle Response for Terahertz Carpet Cloaking by Using a Metasurface with Multilayer Microstructure

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A metasurface provides a completely new path to realize a cloaking effect by using phase compensation. However, the traditional invisible cloaks by using metasurfaces are limited at the narrow bandwidth and angle response. Here, we propose a multilayer metasurface to construct a cloak device, and more geometric freedom ensures the broadband and wide-angle response of our designed cloak. The invisible effect is revealed by near-field and far-field distribution for the ground plane, bare bump, and cloak, respectively. Our designed cloaking with the metasurface composed of five-layer unit cell structure has a good invisible effect at the broadband range from 0.7 to 0.8 THz and has a wide-angle response from 35 to 50°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4.
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S.Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000,84,4184–4187.

    Article  Google Scholar 

  2. D. Vojna, R Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).

  3. O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, "Femtosecond laser-induced damage threshold in snow micro-structured targets," High Power Laser Sci. Eng. 6(1), e7 (2018).

  4. Alavirad, Mohammad; Olivieri, Anthony; Roy, Langis; Berini, Pierre, “Fabrication of electrically contacted plasmonic Schottky nanoantennas on silicon,” Chinese Optics Letters 16(5), 050007 (2018).

    Article  Google Scholar 

  5. K. Falk, "Experimental methods for warm dense matter research," High Power Laser Sci. Eng. 6(4), e59 (2018).

  6. Wang, Mian; Yin, Cheng; Ma, Youqiao; Zhou, Jun; Zhong, Hanhua; Chen, Xianfeng, “Polarization and structure dependent optical characteristics of the three-arm nanoantenna with C3v symmetry and broken symmetry,” Chinese Optics Letters 16(5), 052501 (2018).

  7. S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, "Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers," High Power Laser Sci. Eng. 6(4), e62 (2018).

    Article  Google Scholar 

  8. W. Chen, B. Liu, Y. Song, L. Chai, Q. Cui, Q. Liu, C. Wang and M. Hu, “High pulse energy fiber/solid-slab hybrid picosecond pulse system for material processing on polycrystalline diamonds,” High Power Laser Sci. Eng. 6(2), e18 (2018).

    Article  Google Scholar 

  9. S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljacic, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak” Proc. Natl. Acad. Sci. U. S. A. 112(25),7635–7638(2015).

    Article  Google Scholar 

  10. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901(2011).

    Article  Google Scholar 

  11. T. Ergin, N.Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339(2010).

    Article  Google Scholar 

  12. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28(2013).

    Article  Google Scholar 

  13. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D.R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213(2012).

    Article  Google Scholar 

  14. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Common. 2, 176(2011).

    Article  Google Scholar 

  15. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463(2009).

    Article  Google Scholar 

  16. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571(2009).

    Article  Google Scholar 

  17. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227(2007).

    Article  Google Scholar 

  18. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Common. 1(3), 21(2010).

    Article  MathSciNet  Google Scholar 

  19. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980(2006).

    Article  Google Scholar 

  20. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light, ” Nat. Commun. 4, 2652(2013).

    Google Scholar 

  21. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7),916–921(2012).

    Article  Google Scholar 

  22. B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen. “Concealing arbitrary objects remotely with muli-folded transformation optics,” Light Sci. Appl. 5(12), e16177(2016);

    Article  Google Scholar 

  23. R.Liu, C.Ji, J.J.Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912),366–369(2009).

    Article  Google Scholar 

  24. U. Leonhardt, Science 312, 1777(2006).

    Article  MathSciNet  Google Scholar 

  25. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,1780(2006).

    Article  MathSciNet  Google Scholar 

  26. A. Alù and N. Engheta, Phys. Rev. E 72, 016623(2005).

    Article  Google Scholar 

  27. A. Alù, M. G. Silveirinha, and N. Engheta, Phys. Rev. E 78, 016604(2008).

    Article  Google Scholar 

  28. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Alù, New J. Phys. 14, 013054(2012).

    Article  Google Scholar 

  29. Sikder Sunbeam Islam, Mohammad Rashed Iqbal Faruque and Mohammad Tariqul Islam. A Near Zero Refractive Index Metamaterial for Electromagnetic Invisibility Cloaking Operation [J]. Materials 2015,8,4790–4804.

    Article  Google Scholar 

  30. Kante, B.; Germain, D.: Lustrac, A.D. Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies. Phy. Rev. B2009, 80, 2011.

    Google Scholar 

  31. Minggui Wei,Quanlong Yang, Xueqian Zhang, Yanfeng Li, Jianqiang Gu, Jiaguang Han,and Weili Zhang. Ultrathin metasurface-based carpet cloak for terahertz wave [J]. Opt. Express, Vol. 25, No. 14, 2017.

  32. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337(2011).

    Article  Google Scholar 

  33. X. Zhang, Y. Xu, W. Yue, Z. Tian, J. Gu, Y. Li, R. Singh, S.Zhang, J. Han, and W. Zhang, “Anomalous surface wave launching by handedness phase control,” Adv. Master. 27(44), 7123–7129(2015).

    Article  Google Scholar 

  34. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572(2013).

    Article  Google Scholar 

  35. J. Zhang, Z. L. Mei, W. R. Zhang, F. Yang, T. J. Cui, Appl. Phys. Lett. 2013, 103, 151115.

    Article  Google Scholar 

  36. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang, Science 2015, 349, 1310.

    Article  Google Scholar 

  37. L. Y. Hsu, T. Lepetit, B. Kante, Prog. Electromagnetics Res. 2015, 152, 33.

    Article  Google Scholar 

  38. N. M. Estakhri, A. Alu, IEEE Microw. Wireless Compon. Lett. 2014, 13, 1775.

    Google Scholar 

  39. B. Orazbayev, N. Mohammadi Estakhri, M. Beruete, A. Alù, Phys. Rev. B 2015, 91, 195444.

    Article  Google Scholar 

  40. X. Gui, X. Jing, and Z. Hong, "Ultrabroadband Perfect Reflectors by All-Dielectric Single-layer Super Cell Metamaterial", IEEE Photonics Technology Letters, 30(10), 923–926 (2018).

    Article  Google Scholar 

  41. X. Jing, R. Xia, X. Gui, W. Wang, Y. Tian, D. Zhu, and G. Shi, "Design of ultrahigh refractive index metamaterials in the terahertz regime", Superlattices & Microstructures, 109,716–724 (2017).

    Article  Google Scholar 

  42. Wang C, Yang Y, Liu Q, Liang D, Zheng B, Chen H, Xu Z, Wang H, Multi-frequency metasurface carpet cloaks. Opt. Express 26(11), 14123 (2018).

    Article  Google Scholar 

  43. X. Jing, W. Wang, R. Xia, J. Zhao, Y. Tian, and Z. Hong, "Manipulation of dual band ultrahigh index metamaterials in the terahertz region", Applied Optics, 55(31),8743–8751 (2016).

    Article  Google Scholar 

  44. X. Bie, X. Jing, Z.Hong, and C. Li, "Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces", Applied Optics, 57(30), 9070–9077 (2018).

    Article  Google Scholar 

  45. D. Ruan, L. Zhu, X. Jing, Y. Tian, L. Wang, and S. Jin, "Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence", Applied Optics, 53(11),2357–2365 (2014).

    Article  Google Scholar 

  46. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and Guohua Shi, "Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region", Optics & Laser Technology, 95,56–62 (2017).

    Article  Google Scholar 

  47. X. Jing, S. Jin, J. Zhang, Y. Tian, P. Liang, H. Shu, L. Wang, and Q. Dong, "Enhancement of the accuracy of the simplified modal method for designing a subwavelength triangular grooves grating", Optics Letters, 38(1), 10–12 (2013).

    Article  Google Scholar 

  48. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials, Phys. Rev. Lett. 103(15), 153901 (2009).

    Article  Google Scholar 

  49. X. Jing, X. Gui, R. Xia, Z. Hong, "Ultrabroadband Unnaturally High Effective Refractive Index Metamaterials in the Terahertz Region", IEEE Photonics Journal, 9(1), 5900107 (2017).

    Article  Google Scholar 

  50. X. Jing, R. Xia, W. Wang, Y. Tian, and Z. Hong, "Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region", Journal of the Optical Society of America A, 33, 954–961 (2016).

    Article  Google Scholar 

  51. R. Xia, X. Jing, X. Gui, Y. Tian, "Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials", Optics Materials Express, 7(3), 977–988 (2017).

    Article  Google Scholar 

  52. J. Mian, H. Zhu, D. Zhu, W. Wang, G. Shi, and X. Jing, "Highly efficient anomalous reflection by ultrathin phase gradient planar meta-surface arrays in near infrared region", Optoelectronics and Advanced Materials, 11(3–4),148–152 (2017).

    Google Scholar 

  53. B. Fang, Y. Chen, C. Li, X. Jing, "Design of multiband isotropic ultrahigh refractive index metamaterials in the terahertz region", Journal of Optoelectronics and Advanced Materials, 20, 371–378 (2018).

    Google Scholar 

  54. W. Wang, X. Jing, J. Zhao,Y. Li, Y. Tian, "Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure" , Optica Applicata , 47(2),183–198 (2017).

    Google Scholar 

  55. R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, "Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region" , Optics Communications, 383,310–315 (2017).

    Article  Google Scholar 

  56. C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).

    Article  Google Scholar 

  57. C. Li, J. Dai, D. Deng, and S. Xu, “Synthesis, structure and optical properties of blue-emitting phosphor Sr4La(PO4)(3)O:Eu2+ for n-UV white-light-emitting diodes,” Optik 127(5), 2715–2719 (2016).

    Article  Google Scholar 

  58. C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4 :Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).

    Article  Google Scholar 

  59. C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Adv. 6(45), 38731–38740 (2016).

    Article  Google Scholar 

  60. Chan Wang, Yihao Yang, Qianghu Liu, Dachuan Liang, Bin Zheng, Hongsheng Chen, Zhiwei Xu and Huaping Wang. Multi-frequency metasurface carpet cloaks [J]. Opt. Express,Vol. 26, No. 11, 2018.

  61. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219(2016).

    Article  Google Scholar 

  62. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871(2016).

    Article  Google Scholar 

Download references

Funding

This study received financial support from the Natural Science Foundation of Zhejiang Province (LY17F050009) and National Natural Science Foundation of China (NSFC) (nos. 61875159, 61405182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Gan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Han, S., Gan, H. et al. Improvement of Wide-Angle Response for Terahertz Carpet Cloaking by Using a Metasurface with Multilayer Microstructure. J Infrared Milli Terahz Waves 40, 917–928 (2019). https://doi.org/10.1007/s10762-019-00617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00617-w

Keywords

Navigation