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Abstract. A major bottleneck regarding the efforts to better quantify greenhouse gas fluxes, map sources and sinks, and 

understand flux regulation, is the shortage of low-cost and accurate-enough measurement methods. The studies of methane 10 

(CH4) – a long-lived greenhouse gas increasing rapidly but irregularly in the atmosphere for unclear reasons, and with poorly 

understood source-sink attribution – suffer from such method limitations. This study present new calibration and data 

processing approaches for use of a low-cost CH4 sensor in flux chambers. Results show that the change in relative CH4 levels 

can be determined at rather high accuracy in the 2 – 700 ppm range, with modest efforts of collecting reference samples in 

situ, and without continuous access to expensive reference instruments. These results open for more affordable and time-15 

effective measurements of CH4 in flux chambers. To facilitate such measurements, we also provide a description for building 

and using an Arduino logger for CH4, carbon dioxide (CO2), humidity, and temperature.    

1 Introduction 

Methane (CH4) is the second most important of the long-lived greenhouse gases (GHGs). Its global 100-year warming 

potential per mass (GWP100) is 28-34 times greater than the GWP100 for carbon dioxide (CO2), and its relative increase in the 20 

atmosphere since 1750 have been much greater than for other GHGs (e.g. Myhre et al., 2013). The atmospheric CH4 

originate from multiple sources including incomplete combustion, natural or biogas gas handling, or microbial CH4 

production in agriculture, ruminant digestive tracts, and other anaerobic environments such as wetlands and lakes – the 

microbial CH4 accounting for approximately two thirds of the total emissions (e.g. Saunois et al., 2016). The high diversity 

of sources, many yielding fluxes that have high spatio-temporal variability, makes it difficult to quantify fluxes and 25 

understand flux regulation without a large number of local measurements. At the same time, common methods to measure 

fluxes rely on expensive equipment or labour-demanding procedures. Consequently, the CH4 flux from various sources are 

poorly constrained. This is exemplified by the discovery of inland waters and flooded forests as two large global CH4 

sources during the last decade (Bastviken et al., 2011;Pangala et al., 2017).  Greater availability of measurement approaches 

that are inexpensive enough to allow many measurements and assessment of both spatial and temporal variability 30 

simultaneously, would greatly improve our ability to assess landscape CH4 fluxes and flux regulation.  
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There is extensive work to develop sensitive, small, and affordable CH4 sensors, but so far the commercially available low-

cost CH4 sensors were typically developed for explosion warning systems and thereby for high concentrations (percent 

levels). CH4 detection at such levels is of high interest for environmental research, including the measurements of CH4 35 

ebullition, and for such applications cost-efficient sensor applications have been presented (e.g. Maher et al., 2019). For 

measurements of other types of CH4 fluxes, sensors with robust and reliable detection at lower levels (ppm) are needed. 

Previous attempts to use and calibrate such sensors at low levels have been promising (e.g. Eugster and Kling, 2012; see 

Table S2), but also reported remaining challenges, and the use of these sensors in environmental research or monitoring has 

not yet become widespread. The direct monitoring of atmospheric CH4 levels to resolve fluxes, demanding fast and accurate 40 

detection of changes in the order of 10ppb, still represents a challenge for low-cost sensors. However, relevant level ranges 

for flux chamber studies (2 – 1000 ppm depending on environment, chamber type, and deployment times) appear within 

reach. 

 

One  commercially available low-cost sensor type, showing promising performance in previous studies, are represented by 45 

the TGS 2600 tin dioxide (SnO2) semiconductor sensor family made by Figaro. This type of sensors has been evaluated 

multiple times at CH4 levels near ambient background air (from 1.8 to 9 ppm; different ranges in different studies; Eugster 

and Kling, 2012; Casey et al., 2019; Collier-Oxandale et al., 2018; van den Bossche et al., 2017). Given their low cost, they 

performed surprisingly well under non-sulphidic conditions (H2S may interfere with the sensors), although it was 

challenging to generate calibration models with R2 > 0.8, and the reported interferences from e.g. relative humidity (RH) and 50 

temperature (T) were large (van den Bossche et al., 2017; Table S2). We here evaluate one member of this sensor family for 

a larger CH4 range (2-719 ppm), selected to be appropriate for use in automated and manual flux chambers. We propose 

further development of the equations suggested by the manufacturer for data processing, and provide guidance on how to 

address the sensor response to humidity (H), RH and T in flux chamber applications. We also describe a simple 

CH4/CO2/RH/T logger based on the evaluated sensors, an Arduino microcontroller, and a corresponding logger shield. 55 

2 Methods 

2.1 The CH4 sensor 

The sensor used in this study is the Figaro NGM 2611-E13, which is a factory pre-calibrated module based on the Figaro 

TGS 2611-E00. The factory calibration is made at 5000 ppm, 20 C and 65% RH. These levels are is not relevant for 

applications near atmospheric concentration or variable T and RH, but the NGM 2611-E13 is compact and ready-to-use, 60 

facilitating its integration with data loggers and equipment for flux measurements (eg. automated flux chambers; Duc et al., 

2013; Thanh Duc et al., 2019). The detection range given by the manufacturer is 500-10000 ppm, but the sensor has been 

used successfully for measuring indoor ambient concentrations of methane (van den Bossche et al., 2017). The potential of 
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another similar sensor, the Figaro TGS 2600, for atmospheric concentration monitoring have been investigated (Eugster and 

Kling, 2012; Collier-Oxandale et al., 2018). The main difference of the TGS 2611-E00, compared to the TGS 2600, is the 65 

presence of a filter that reduce the interference of other combustible gases with the sensor, making it more selective towards 

CH4 (Figaro_TGS_2611-E00, REV: 10/13). The TGS 2611-E00 is also more than 10 times cheaper than the sensor used in 

Duc et al. (2013) and its detection range is wider, allowing for reliable measurements of concentration above 1000 ppm, 

which makes the sensor potentially useful in both low- and high-emitting environments. 

2.2 Calibration setup 70 

The sensor evaluation set-up was designed to resemble real measurement conditions in floating flux chambers in aquatic 

environments. The sensors were placed in the headspace of a plastic bucket positioned upside down on a water surface in a 

tank. We used a 7L plastic bucket in which we located 20 TGS 2611-E13 sensors connected to electronic circuitry and 

sensor signal logging system described in detail separately (Thanh Duc et al., 2019). The chamber headspace was 

continuously pumped from the chamber, through the measurement cell of an Ultraportable Greenhouse Gas Analyzer 75 

(UGGA; Los Gatos Research), and then back to the chamber. The UGGA served as a reference instrument for CH4. The air 

T and RH inside the chamber were measured with ten K33-ELG sensors which have an accuracy of ± 0.4C and ± 3% RH 

(Senseair; also used for CO2-measurements and therefore suitable for simultaneous use in flux chamber measurements; 

Bastviken et al., 2015; data from two K33-ELG sensors and four CH4 sensors were logged together). The entire installation 

was placed in a climate room to allow for varying T, and thereby also absolute humidity (H) in the chamber headspace. T and 80 

H co-vary under field conditions in measurements near moist surfaces, so although T and H were not controlled 

independently, their variability under this calibration setup was reflecting flux chamber headspace conditions under in situ 

field conditions. 

 

The CH4 concentration in the chamber was changed by direct injections of methane into the chamber by syringe via a tube. 85 

The CH4 concentrations during the calibration experiments ranged from 2 ppm to 719 ppm. We performed multiple separate 

calibration experiments at different T and RH levels ranging from 10 to 42 C and 18 – 70 %. Values were recorded once per 

minute. T and RH values form the CO2 sensors were averaged among all sensors before used in the evaluation. 

 

The response time to changing chamber headspace CH4 levels differed between the sensors situated in the chamber 90 

(responding rapidly), and the UGGA (delayed response time due to the residence time of the measurement cell and tubing). 

Therefor data were filtered to remove periods of rapid changes when the different response times caused data offsets. Some 

sensor data were lost during parts of the experiments due to power, connection failure, or data communication issues. 

Altogether on an average, after data filtration, 619 – 930 data points from each sensor and the UGGA, respectively, were 

used for the evaluation (in total 20 CH4 sensors evaluated).  95 

https://doi.org/10.5194/bg-2019-499
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



4 

 

2.2 Data processing and interpretation 

The TGS 2611 SnO2 sensing area exhibit decreasing resistance with increasing methane concentration 

(Figaro_Tech_Info_TGS2611, 2012). The sensing area is connected in series with a reference resistor (resistance referred to 

as RL). The total circuit voltage (VC) is 5V across both the sensing area and the reference resistor. The voltage across the 

reference resistor (VL) therefore varies in response to how the sensing area resistance (RS) varies. VL is measured and 100 

reported as output voltage. The sensor response RS is calculated from the following equation (Figaro_Tech_Info_TGS2611, 

2012; Figaro_TGS_2611-E00, REV: 10/13): 

 

𝑅𝑠 = (
𝑉𝐶

𝑉𝐿
− 1) × 𝑅𝐿           (1) 

 105 

The active sensor surface characteristics and RL can differ among individual sensors, which makes individual sensor 

calibration necessary. Interference by water vapour and T has been previously shown (Pavelko, 2012; van den Bossche et al., 

2017). RL is therefore ideally determined in dry air containing no volatile organic compounds or other reduced gases at a 

standard T. However, it can be challenging to determine RL, and Eugster and Kling (2012) proposed to use the lowest 

measured sensor output voltage (V0), representing minimum background atmospheric levels, to determine an empirical 110 

reference resistance R0, and to calculate the ratio of RS/R0, reflecting the relative sensor response as follows: 

 

𝑅𝑆

𝑅0
=  

(
𝑉𝐶
𝑉𝐿

−1)

(
𝑉𝐶
𝑉0

−1)
             (2) 

 

This approach allows sensor use without accurate specific determination of RL. Previous attempts to calibrate these type of 115 

sensors for environmentally relevant applications have focused on CH4 levels of 2-9 ppm, and typically considered the 

influence of T and RH or H (Casey et al., 2019; van den Bossche et al., 2017; Collier-Oxandale et al., 2018; Eugster and 

Kling, 2012). In these cases, an approximately linear response of the relative sensor response could be assumed due to the 

narrow CH4 range. However, the sensor response is non-linear in the range relevant for flux chamber measurements and in 

this wider range, other approaches are needed. We here present a two-step sensor calibration based on the complete 120 

calibration experiment data. In addition, we tried simplified calibration approaches for situations when full calibration 

experiments are not feasible and when access to reference instruments is limited. These approaches are described below. 

2.2.1 Two-step calibration from complete experimental data (Approach I) 

The first step (Step1) regards determination of the reference sensor resistance, R0.  We assumed that R0 represented RL + 

RSbkg, where RSbkg is RS at the background atmospheric CH4 level. We first tried the previously suggested approach to 125 

determine R0 from the minimum VL, i.e. setting V0 to VL at the lowest humidity and CH4 concentrations during all 
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measurements, thereby assuming that R0 could be seen as constant. However, RSbkg may be influenced by H and T and could 

vary even if the CH4 levels at background atmospheric conditions are constant. Thus, we also tested ways to correct R0 to RH 

or H and T. Therefore, after selecting the experiment data at background CH4 levels but variable humidity and temperature, 

we tested linear, power, or Michaelis-Menten models, to generate V0 values valid for different humidity and temperatures. 130 

This allowed estimation of R0 values at the humidity and temperature associated with each RS value, making the RS/R0 ratio 

less biased. The background level CH4 data was selected in two different ways – either as all known CH4 values below 2.5 

ppm (n = 38-72), or as the minimum VL value for each experiment and sensor (n = 6-7). 

 

The second step (Step 2) regards calculation of CH4 levels from RS/R0. Several models were tested, where the CH4 levels 135 

were estimated as a function of RS/R0, humidity, temperature, and a constant to consider offsets that may differ among 

sensors. We tried several linear and power functions. In line with viewing the sensor surface as an active site where CH4 and 

H2O compete for space, the humidity effect was in some models represented as an interaction with the sensor response. 

In all above cases, models were generated by curve-fitting in Python using the scipy.optimize curve_fit function. Predicted 

CH4 levels were evaluated by comparison with the observed levels (independently measured by the UGGA). The specific 140 

model equations are provided in Table 1 and 2. We tested models using RH or H (which was calculated from RH and T; 

(Vaisala_Technical_Report, 2013). Each evaluation included a combination of both steps above, and generated one set of 

fitted parameters per sensor used, including the parameters for Step 1 and 2. 

2.2.2 Simplified calibration approaches without dedicated calibration experiment data (Approach II and III) 

The model combinations from Step 1 and 2 above that generated the best fit with the minimum number of parameters was 145 

selected for tests of two simplified calibration approaches. In Approach II we tested if model parameters in Step 2 can be 

predicted from parameters derived in Step 1, hypothesising that the derived model parameters in both Step 1 and Step 2 

reflect the sensor capacity to respond to CH4 and humidity levels as well as the individual sensor offset. If correct, the 

parameters in Step 1 should be correlated with parameters in Step 2. If this correlation is strong enough, it may be possible to 

predict parameters in Step 2 from parameters in Step 1, which can be derived from measurements at background air 150 

concentrations under the natural variation in humidity (e.g. the diel variability), as a part of the regular measurements, 

preferentially using data when the atmospheric boundary layer is well mixed (e.g. windy conditions). Under such conditions 

atmospheric background CH4 concentrations can be relatively accurately assumed. Hence this Approach II would not require 

access to sensor calibration chambers nor expensive reference gas analysers, which in turn would make sensor measurements 

available much more broadly. To test this approach, we searched for the best possible regression equations to predict Step 2 155 

parameters from Step 1 parameters, then used these equations to estimate CH4 levels, and compared estimated levels versus 

observed. 

  

https://doi.org/10.5194/bg-2019-499
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

In Approach III we evaluated if reasonable accurate Step 1 and 2 equations can be derived from the combination of (i) 

minimum background atmospheric level VL at different humidity, and (ii) a limited number of randomly collected 160 

independent manual flux chamber samples. If so, a few manual samples during the regular measurements could replace 

tedious dedicated calibration experiments. To test this approach the calibration data for each sensor was subsampled 

randomly and this random subset data were combined with the minimum VL data to derive calibration parameters as done in 

Approach I. Using these parameters, the CH4 levels for the entire calibration data was estimated and compared with observed 

values. Monte Carlo simulations were run to test effects of the number of random reference samples (1 – 50) and the 165 

methane concentration ranges (3 – 500 ppm, or 3-50 ppm, respectively) in the subset data. 

2.2.3 A low-cost Arduino-based CH4/CO2/RH/T logger 

To facilitate use of the sensors and our results, we also gathered instructions for how to build a logger for CH4, CO2, RH and 

T measurements, using the CH4 sensor tested here, and the Senseair K33 ELG CO2/RH/T sensor described elsewhere 

(Bastviken et al., 2015), a supplementary DHT22 sensor for RH and T, an Arduino controller unit, and an Adafruit Arduino 170 

compatible logger shield with a real time clock (Figure 2). This development was based on sensor specifications and the 

open source knowledge generously shared on internet by the Arduino user community. The full description of this logger 

unit is found in the Supplement.    

3 Results and Discussion 

The results of different Step 1 and Step 2 calibration equations are shown in Tables 1 and 2. The models including H were 175 

equal or superior to models using RH. This is reasonable because it is the absolute water molecule abundance that influence 

the sensor response. Hence, models using H were prioritized. In Approach I, several Step 1 models, including a constant 

minimum VL, and power, linear and Michaelis-Menten-based equations gave similar R2 (0.85 to 0.9) and root mean square 

error (RMSE) when comparing predicted versus observed results (Table 1). The effect of T appeared negligible compared to 

H, which may be related to the built-in heating of the active sensor surface. It is possible that the Michaelis-Menten equation 180 

is superior over the full theoretically possible H range. However, under our experiment conditions, covering normal field H 

levels, the combination of best fit and minimum number of parameters in Step 1, was found for a simple linear equation with 

H (Model V4 in Table 1), which was used for later tests of Approach II and III. 

 

The tests of different equations in Approach I, Step 2, showed that power relationships with H and T represented as 185 

interactions with the sensor response, performed best (Table 2 Model ≥4). With the exception of Models 10a-c, all these 

models had in the regression of observed versus predicted, a slope and intercept that was statistically indistinguishable from 

1 and 0, respectively (p < 0.05) and an R2 of 0.98 – 1.00 (Table 2, Figure S1). Again, T had a marginal effect and H was 

clearly most important. Hence, while Model 7 including T in Table 2 had the lowest RMSE (9.8), Model 8 represented a 
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good compromise between minimum number of parameters and low RMSE (10.4) and was used in Approach II and III. The 190 

non-linear response of the sensor yielded a stronger and more coherent response at low CH4 levels, and a large part of the 

uncertainty were generated at the higher CH4 levels in the studied range (Figure S1). Near the atmospheric background at 2 

ppm, the confidence interval for individual sensor response was in the order of ± 1.1 ppm (Model 7 having lowes RMSE). 

Hence, the presented calibration equations have a limited accuracy in terms of absolute CH4 levels, and is not optimized for 

high-precision measurements at atmospheric background levels. However, results indicate that the relative change of CH4 195 

levels over time, which is the core of flux chamber measurements, can be assessed efficiently with the sensors if calibrated 

properly.   

 

Approach II, deriving all calibration equations from a small set of minimum VL values using Models V4 or V5 (Table 1) and 

10a-c (Table 2), generated substantially greater RMSE. Most of this RMSE change was due to less accurate prediction of the 200 

intercept. The R2 and slope standard error range remained similar to the other models (Table 2), but the actual slope values 

could deviate substantially from 1 and varied considerably among sensors (in contrast to the models for all other approaches 

always having slopes close to 1 and similar among sensors; Figure S1). Thereby, Approach II could lead to a large bias in 

absolute levels, and this crude generation of calibration equations may be adequate primarily for assessing relative change 

over time measured by the same sensor, and cross comparisons among sensors should be avoided when using this approach. 205 

Examples of equations for the parameter estimation in Approach II is provided in Table S1. Applying Approach II on a 

smaller concentration range yielded a considerably lower RMSE (Table 2, Model 10c). 

 

Approach III (Model 11a and 11b in Table 2) showed that as few as 20 reference samples, collected at random occasions 

during actual measurements, could substantially reduce the RMSE of the calibration models, reaching close to the lowest 210 

levels based on the 619 – 930 measurements and the full range up to 719 ppm in Approach I (Table 2 Model 11a; Figure S2). 

The concentrations of the reference samples did not appear important for the RMSE within a given specific data range. 

However, simulations using data for CH4 levels below 50 ppm only, generated much lower RMSE than using all data (Table 

2, Model 11b). This support the conclusion that the sensors are more sensitive and give a stronger relative response in the 

low part of the studied concentration range. 215 

 

An overview of approaches to derive calibration models for this type is shown in Table S2. The challenges found regarding 

monitoring of background atmospheric levels was confirmed by our study, while use for relative changes of greater 

magnitudes in flux chambers appear promising based on this study, also with a simplified calibration (Approach III). 

4 Conclusions 220 

The main conclusions can be summarized by the following: 
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 The tested CH4 sensors are suitable for use in flux chamber applications if there are simultaneous measurements of 

relative humidity and temperature (or humidity). 

 Sensor-specific calibration is required. 

 Occasional independent reference samples during regular measurements, is an alternative to designated calibration 225 

experiments. Background atmospheric levels in combination in the order of 20 in situ reference samples at other CH4 

levels, can yield rather accurate calibration models. 

 For highest accuracy regarding absolute CH4 concentrations, careful designated calibration experiments covering relevant 

environmental conditions are needed. 

 These results, together with the increased accessibility of low-cost sensors and data logger systems (one example 230 

described in the Supplement), open supplementary paths toward improved capacity for greenhouse gas measurements in 

both nature and society. 

5 Code and data availability 

Python code for data evaluation and the calibration experiment data is available from the main author upon request. Please 

note that both the code and the data are specific for the experimental setup. The Python code needs modifications for use 235 

with other data, and the CH4 sensor data cannot represent results from other sensors as sensor specific calibration is needed.  

The Arduino code for the CH4/CO2/RH/T logger described in the supplement is available at 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162780. 
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Table 1: Model results for Step 1 of sensor calibration - i.e. the correction of reference output voltage (V0 in the unit mV) in background 

air to humidity and temperature. V0min, H, and T, represent the minimum V0 for each sensor (mV), absolute humidity (ppm), and 325 

temperature (C) during measurements in open air. The model parameters g, h, S, m and n are constants for each sensor derived by curve 

fitting. The model R2 is the adjusted coefficient of determination (mean, minimum and maximum for the 20 sensors tested), and RMSE is 

then root mean square error. Equivalent models using relative humidity (RH; %) instead of H, returned lower R2 and higher RMSE and are 

not shown. These Step 1 models were combined with the Step 2 models as noted in Table 2. See text for details. 

Model for V0 Data n Observed vs. Predicted 

No. Equation   R2 RMSE 

    mean min max mean 

V1 V0min (constant) Minimum V0 1 - - - - 

V2 V0 = gHh + mTn + S All < 2.5 ppm 

CH4 

38 - 72 0.85 0.66 0.94 8.9 

V3 V0 = gH + mT + S All < 2.5 ppm 

CH4 

38 - 72 0.88 0.68 0.95 8.2 

V4a V0 = gH + S All < 2.5 ppm 

CH4 

38 - 72 0.88 0.68 0.95 8.2 

V4b V0 = gH + S Min V0 for 

each exp. 

6 - 7 0.90 0.72 0.96 8.3 

V5a V0 = gH / (S + H) All < 2.5 ppm 

CH4 

38 - 72 0.88 0.70 0.96 8.0 

V5b V0 = gH / (S + H) Min V0 for 

each exp. 

6 - 7 0.89 0.71 0.96 8.3 

 330 
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Table 2: Model results for Step 2 of the data evaluation, i.e. the determination of methane (CH4) levels (ppm) from the sensor response 335 

expressed as R (corresponding to RS/R0) using different calibration models. (RH), H, and T as defined in Table 1. The model parameters a, 

b, c, d, e, f and K are constants for each sensor derived by curve fitting. The models were evaluated via a linear regression of Observed 

versus Predicted CH4 levels, where k and M are the slope and the intercept, respectively. SE denote standard error, R2 the adjusted 

coefficient of determination (mean and minimum to maximum for the 20 sensors tested), and RMSE is the root mean square error. The 

table show the most successful subset of all models tested. N = 619 – 930 per sensor in total and 203-313 for the data subset with CH4 340 

levels < 50 ppm. See text for details. 

Model V0 CH4 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 =  𝒌 ∗ 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 + 𝑴 

No. Equation mod max 𝒌 𝑴 R2 RMSE 

   ppm SE 

(min-

max) 

min to 

max* 

SE 

(min-

max) 

mean 

(min-max) 

mean 

(min-max) 

1 CH4 = aR + b(RH) + cT + K V1 719 0.024-

0.036 

-3.2∙10-7 to 

3.5∙10-7 

5.8-

8.2 

0.58 

(0.54-0.68) 

117 

(104-127) 

2 CH4 = aRb + c(RH)d + eTf + K V1 719 0.006-

0.010 

-8.8∙10-7 to 

4.2∙10-7 

1.6-

2.6 

0.96 

(0.94-0.97) 

35.9 

(32-45) 

3 CH4 = aRb + c(RH)(aRb) + dT(aRb) 

+ K 

V1 719 0.003-

0.006 

-6.8∙10-7 to 

9.3∙10-7 

0.72-

1.44 

0.99 

(0.98-0.99) 

18.5 

(15-25) 

4 CH4 = aRb + cH(aRb) + dT(aRb) + 

K 

V1 719 0.002-

0.003 

-4.3∙10-7 to 

3.2∙10-7 

0.43-

0.90 

1.00 

(0.99-1.00) 

11.4 

(9-16) 

5 As No. 4 V2 719 0.001-

0.003 

-3.3∙10-7 to 

4.1∙10-7 

0.38-

0.87 

1.00 

(0.99-1.00) 

10.6 

(8-16) 

6 As No. 4 V3 719 0.001-

0.003 

-4.1∙10-7 to 

3.6∙10-7 

0.37-

0.82 

1.00 

(0.99-1.00) 

9.8 

(8-15) 

7 As No. 4 V4a 719 0.001-

0.003 

-2.2∙10-7 

to 2.8∙10-7 

0.37-

0.82 

0.99 

(0.99-1.00) 

9.8 

(8-14) 

8 CH4 = aRb + cH(aRb) + K V4a 719 0.001-

0.003 

-5.6∙10-7 to 

1.3∙10-7 

0.37-

0.84 

1.00 

(0.99-1.00) 

10.4 

(8-15) 

9a As No. 8 with equation V4b to 

determine V0. 

V4b 719 0.001-

0.003 

-7.8∙10-7 to 

1.4∙10-6 

0.37-

0.84 

1.00 

(0.99-1.00) 

10.4 

(8-15) 

9b As No. 9a with lower max CH4 

level. 

V4b 50 0.007-

0.014 

-4.1∙10-8 to 

8.1∙10-8 

0.16-

0.33 

0.98 

(0.96-0.99) 

2.1 

(2-3) 
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*Minimum and maximum mean intercepts for the group of 20 sensors. The confidence interval around the mean intercept was ± 1.1 ppm 

in Model 7 (having lowest RMSE). ** Monte Carlo simulations with 1000 runs generating random data subsets used for deriving the 

model parameter ranges. 

  345 

10a As No 8. Parameters a, b, c and K 

estimated from relationships with 

parameters in V4b; see text. 

V4b 719 0.001-

0.012 

-108 to 1.1 0.39-

1.62 

1.00 

(0.99-1.00) 

74 

(18-150) 

10b As No 8. Parameters a, b, c and K 

estimated from relationships with 

parameters in V5b; see text. 

V5b 719 0.001-

0.024 

-122 to 1.9 0.43-

2.80 

0.99 

(0.96-1.00) 

88 

(20-154) 

10c As No. 10a with lower max CH4 

level. 

V4b 50 0.006-

0.021 

-51 to -14 0.30-

0.87 

0.98 

(0.96-0.98 

28 

(21-35) 

11a As No. 8. Parameters a, b, c, and K, 

derived from 6-7 minimum VL 

values at different H, and 20 

samples at random CH4 levels 

between 3 and 500 ppm.** 

V4b 719 0.002-

0.004 

-6.5 to 7.1 0.41-

0.96 

1.00 

(0.99-1.00) 

13 

(8.8-20) 

11b As No. 11a with the 20 random 

samples at CH4 levels between 3 

and 50 ppm.** 

V4b 50 0.008-

0.017 

-0.7 to 0.5 0.17-

0.41 

0.97 

(0.95-0.98) 

2.5 

(2-3) 
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Figure 1. Sensor output voltage (VL; mV), Rs/R0 ratio, and predicted CH4 mixing ratio (predCH4; ppm) using Model 9a, 10a and 11a in 

Table 2, respectively, versus observed CH4 mixing ratio (obsCH4; ppm), for one of the studied sensors. See text for details and Figure S1 

for similar graphs regarding all sensors.   350 
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 355 

Figure 2. Photo of the CH4/CO2/RH/T logger described in the supplementary information. 
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