Skip to main content
Log in

Usefulness and clinical relevance of left ventricular global longitudinal systolic strain in patients with heart failure with preserved ejection fraction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In recent years, several studies have shown the usefulness and clinical relevance of left ventricular global longitudinal systolic strain (GLS) in different cardiovascular diseases. In line with this, the role of GLS in patients with heart failure with preserved ejection fraction (HFpEF) has achieved great importance in this predominant form of heart failure in the last years. In this regard, GLS has shown to be not only a sensitive parameter to detect subtle myocardial abnormalities but also a parameter of clinical and prognostic relevance in patients with HFpEF. In this review, we analyze the current evidence concerning the clinical relevance of GLS in patients with HFpEF and we discuss the potential usefulness of GLS in this complex and heterogeneous condition for which so far no effective therapy exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102:1388–1393

    PubMed  CAS  Google Scholar 

  2. Horwich TB, Fonarow GC (2010) Glucose, obesity, metabolic syndrome, and diabetes relevance to incidence of heart failure. J Am Coll Cardiol. 55:283–293

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Hittinger L, Patrick T, Ihara T, Hasebe N, Shen YT, Kalthof B, Shannon RP, Vatner SF (1994) Exercise induces cardiac dysfunction in both moderate, compensated and severe hypertrophy. Circulation. 89:2219–2231

    PubMed  CAS  Google Scholar 

  4. Marcos-Alberca P, García-Fernández MA, Ledesma MJ, Malpica N, Santos A, Moreno M, Bermejo J, Antoranz JC, Desco M (2002) Intramyocardial analysis of regional systolic and diastolic function in ischemic heart disease with Doppler tissue imaging: role of the different myocardial layers. J Am Soc Echocardiogr. 15:99–108

    PubMed  Google Scholar 

  5. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH (2006) Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol. 48:2026–2033

    PubMed  Google Scholar 

  6. Kang SJ, Lim HS, Choi BJ, Choi SY, Hwang GS, Yoon MH, Tahk SJ, Shin JH (2008) Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J Am Soc Echocardiogr. 21:907–911

    PubMed  Google Scholar 

  7. González A, López B, Querejeta R, Zubillaga E, Echeverría T, Díez J (2010) Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension. 55:1418–1424

    PubMed  Google Scholar 

  8. Martinez DA, Guhl DJ, Stanley WC, Vailas AC (2003) Extracellular matrix maturation in the left ventricle of normal and diabetic swine. Diabetes Res Clin Pract. 59:1–9

    PubMed  CAS  Google Scholar 

  9. Carlsson M, Ugander M, Mosén H, Buhre T, Arheden H (2007) Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 292:H1452–H1459

    PubMed  CAS  Google Scholar 

  10. Cameli M, Lisi M, Mondillo S, Padeletti M, Ballo P, Bigio E, Marchetti L, Biagioli B (2011) Prediction of stroke volume by global left ventricular longitudinal strain in patients undergoing assessment for cardiac transplantation. J Crit Care 26(4):433.e13–433.e20

    Google Scholar 

  11. Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF (2007) Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 115:1376–1383

    PubMed  Google Scholar 

  12. Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol. 295:H1243–H1252

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Lumens J, Delhaas T, Arts T, Cowan BR, Young AA (2006) Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am J Physiol Heart Circ Physiol. 291:H1573–H1579

    PubMed  CAS  Google Scholar 

  14. Fang ZY, Leano R, Marwick TH (2004) Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci (Lond). 106:53–60

    PubMed  Google Scholar 

  15. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 110:3081–3087

    PubMed  Google Scholar 

  16. Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Shanks M, Nucifora G, Smit JW, Diamant M, Romijn JA, de Roos A, Leung DY, Lamb HJ, Bax JJ (2009) Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 104:1398–1401

    PubMed  Google Scholar 

  17. Shivu GN, Abozguia K, Phan TT, Ahmed I, Weaver R, Narendran P, Stevens M, Frenneaux M (2009) Increased left ventricular torsion in uncomplicated type 1 diabetic patients: the role of coronary microvascular function. Diabetes Care. 32:1710–1712

    PubMed  PubMed Central  Google Scholar 

  18. Kouzu H, Yuda S, Muranaka A, Doi T, Yamamoto H, Shimoshige S, Hase M, Hashimoto A, Saitoh S, Tsuchihashi K, Miura T, Watanabe N, Shimamoto K (2011) Left ventricular hypertrophy causes different changes in longitudinal, radial, and circumferential mechanics in patients with hypertension: a two-dimensional speckle tracking study. J Am Soc Echocardiogr. 24:192–199

    PubMed  Google Scholar 

  19. Hittinger L, Shannon RP, Kohin S, Manders WT, Kelly P, Vatner SF (1990) Exercise-induced subendocardial dysfunction in dogs with left ventricular hypertrophy. Circ Res. 66:329–343

    PubMed  CAS  Google Scholar 

  20. Saito M, Khan F, Stoklosa T, Iannaccone A, Negishi K, Marwick TH (2016) Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC Cardiovasc Imaging. 9:911–921

    PubMed  Google Scholar 

  21. Kosmala W, Sanders P, Marwick TH (2017) Subclinical myocardial impairment in metabolic diseases. JACC Cardiovasc Imaging. 10:692–703

    PubMed  Google Scholar 

  22. Morris DA, Boldt LH, Eichstadt H, Ozcelik C, Haverkamp W (2012) Myocardial systolic and diastolic performance derived by 2-dimensional speckle tracking echocardiography in heart failure with normal left ventricular ejection fraction. Circ Heart Fail. 5:610–620

    PubMed  Google Scholar 

  23. Liu YW, Tsai WC, Su CT, Lin CC, Chen JH (2009) Evidence of left ventricular systolic dysfunction detected by automated function imaging in patients with heart failure and preserved left ventricular ejection fraction. J Card Fail. 15:782–789

    PubMed  Google Scholar 

  24. Morris DA, Gailani M, Vaz Pérez A, Blaschke F, Dietz R, Haverkamp W, Ozcelik C (2011) Left atrial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr. 24:651–662

    PubMed  Google Scholar 

  25. Morris DA, Gailani M, Vaz Pérez A, Blaschke F, Dietz R, Haverkamp W, Özcelik C (2011) Right ventricular myocardial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr. 24:886–897

    PubMed  Google Scholar 

  26. Brucks S, Little WC, Chao T, Kitzman DW, Wesley-Farrington D, Gandhi S, Shihabi ZK (2005) Contribution of left ventricular diastolic dysfunction to heart failure regardless of ejection fraction. Am J Cardiol. 95:603–606

    PubMed  Google Scholar 

  27. Pavlopoulos H, Nihoyannopoulos P (2008) Abnormal segmental relaxation patterns in hypertensive disease and symptomatic diastolic dysfunction detected by strain echocardiography. J Am Soc Echocardiogr. 21:899–906

    PubMed  Google Scholar 

  28. Morris DA, Ma XX, Belyavskiy E, Radhakrishnan AK, Kropf M, Kraft R, Frydas A, Osmanoglou E, Marquez E, Donal E, Edelmann E, Tschöpe C, Pieske B, Pieske-Kraigher E (2017) Left ventricular longitudinal systolic function analysed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: a meta-analysis. Open Heart. 4(2):e000630

    PubMed  PubMed Central  Google Scholar 

  29. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, Zile MR, Voors AA, Lefkowitz MP, Packer M, McMurray JJ, Solomon SD, PARAMOUNT Investigators (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63:447–456

    PubMed  Google Scholar 

  30. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, Frenneaux M, Sanderson JE (2009) The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist and longitudinal motion. J Am Coll Cardiol. 54:36–46

    PubMed  Google Scholar 

  31. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J. 29:1283–1289

    PubMed  CAS  Google Scholar 

  32. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, Kass DA (2006) Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 114:2138–2147

    PubMed  Google Scholar 

  33. Ennezat PV, Lefetz Y, Maréchaux S, Six-Carpentier M, Deklunder G, Montaigne D, Bauchart JJ, Mounier-Véhier C, Jude B, Nevière R, Bauters C, Asseman P, de Groote P, Lejemtel TH (2008) Left ventricular abnormal response during dynamic exercise in patients with heart failure and preserved left ventricular ejection fraction at rest. J Card Fail. 14:475–480

    PubMed  Google Scholar 

  34. Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L, Dwivedi G, Patel K, Steendijk P, Ashrafian H, Henning A, Frenneaux M (2009) Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 54:402–409

    PubMed  Google Scholar 

  35. Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, Redfield MM (2010) Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 56:845–854

    PubMed  PubMed Central  Google Scholar 

  36. Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM (2010) Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 56:855–863

    PubMed  Google Scholar 

  37. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 3:588–595

    PubMed  PubMed Central  Google Scholar 

  38. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW (2011) Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 58:265–274

    PubMed  PubMed Central  Google Scholar 

  39. Maciver DH, Townsend M (2008) A novel mechanism of heart failure with normal ejection fraction. Heart. 94:446–449

    PubMed  CAS  Google Scholar 

  40. Wang J, Fang F, Wai-Kwok Yip G, Sanderson JE, Feng W, Xie JM, Luo XX, Lee AP, Lam YY (2015) Left ventricular long-axis performance during exercise is an important prognosticator in patients with heart failure and preserved ejection fraction. Int J Cardiol. 178:131–135

    PubMed  Google Scholar 

  41. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 350:1953–1959

    PubMed  CAS  Google Scholar 

  42. Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, Tschöpe C (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation. 117:2051–2060

    PubMed  Google Scholar 

  43. Morris DA, Vaz Perez A, Blaschke F, Eichstädt H, Ozcelik C, Haverkamp W (2012) Myocardial systolic and diastolic consequences of left ventricular mechanical dyssynchrony in heart failure with normal left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging. 13:556–567

    PubMed  Google Scholar 

  44. Takamura T, Dohi K, Onishi K, Tanabe M, Sugiura E, Nakajima H, Ichikawa K, Nakamura M, Nobori T, Ito M (2010) Left ventricular contraction-relaxation coupling in normal, hypertrophic, and failing myocardium quantified by speckle-tracking global strain and strain rate imaging. J Am Soc Echocardiogr. 23:747–754

    PubMed  Google Scholar 

  45. Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N (2008) Assessment of left ventricular systolic function using echocardiography in patients with preserved ejection fraction and elevated diastolic pressures. Am J Cardiol. 101:1766–1771

    PubMed  Google Scholar 

  46. Nguyen JS, Lakkis NM, Bobek J, Goswami R, Dokainish H (2010) Systolic and diastolic myocardial mechanics in patients with cardiac disease and preserved ejection fraction: impact of left ventricular filling pressure. J Am Soc Echocardiogr. 23:1273–1280

    PubMed  Google Scholar 

  47. Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N (2008) Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol. 101:1504–1509

    PubMed  Google Scholar 

  48. Zile MR, Gaasch WH, Carroll JD, Feldman MD, Aurigemma GP, Schaer GL, Ghali JK, Liebson PR (2001) Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation. 104:779–782

    PubMed  CAS  Google Scholar 

  49. Zile MR, Bennett TD, St John Sutton M, Cho YK, Adamson PB, Aaron MF, Aranda JM Jr, Abraham WT, Smart FW, Stevenson LW, Kueffer FJ, Bourge RC (2008) Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 118:1433–1441

    PubMed  Google Scholar 

  50. Tumminello G, Guazzi M, Lancellotti P, Piérard LA (2007) Exercise ventilation inefficiency in heart failure: pathophysiological and clinical significance. Eur Heart J. 28:673–678

    PubMed  Google Scholar 

  51. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbély A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    PubMed  Google Scholar 

  52. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 62:e147–e239

    PubMed  Google Scholar 

  53. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 17:1321–1360

    PubMed  Google Scholar 

  54. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members; Document Reviewers (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18:891–975

    PubMed  Google Scholar 

  55. DeVore AD, McNulty S, Alenezi F, Ersboll M, Vader JM, Oh JK, Lin G, Redfield MM, Lewis G, Semigran MJ, Anstrom KJ, Hernandez AF, Velazquez EJ (2017) Impaired left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: insights from the RELAX trial. Eur J Heart Fail. 19:893–900

    PubMed  Google Scholar 

  56. Tops LF, Delgado V, Marsan NA, Bax JJ (2017) Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur J Heart Fail 19:307–313

    PubMed  Google Scholar 

  57. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, Tschöpe C (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 116:637–647

    PubMed  Google Scholar 

  58. Bruch C, Grude M, Müller J, Breithardt G, Wichter T (2005) Usefulness of tissue Doppler imaging for estimation of left ventricular filling pressures in patients with systolic and diastolic heart failure. Am J Cardiol. 95:892–895

    PubMed  Google Scholar 

  59. Yip GW, Zhang Q, Xie JM, Liang YJ, Liu YM, Yan B, Lam YY, Yu CM (2011) Resting global and regional left ventricular contractility in patients with heart failure and normal ejection fraction: insights from speckle-tracking echocardiography. Heart. 97:287–294

    PubMed  Google Scholar 

  60. Liao ZY, Peng MC, Yun CH, Lai YH, Po HL, Hou CJ, Kuo JY, Hung CL, Wu YJ, Bulwer BE, Yeh HI, Tsai CH (2012) Relation of carotid artery diameter with cardiac geometry and mechanics in heart failure with preserved ejection fraction. J Am Heart Assoc. 1:e003053

    PubMed  PubMed Central  Google Scholar 

  61. Abe H, Caracciolo G, Kheradvar A, Pedrizzetti G, Khandheria BK, Narula J, Sengupta PP (2013) Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur Heart J Cardiovasc Imaging. 14:1049–1060

    PubMed  Google Scholar 

  62. Obokata M, Negishi K, Kurosawa K, Arima H, Tateno R, Ui G, Tange S, Arai M, Kurabayashi M (2013) Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 6(7):749–758

    PubMed  Google Scholar 

  63. Menet A, Greffe L, Ennezat PV, Delelis F, Guyomar Y, Castel AL, Guiot A, Graux P, Tribouilloy C, Marechaux S (2014) Is mechanical dyssynchrony a therapeutic target in heart failure with preserved ejection fraction? Am Heart J. 168:909–916

    PubMed  Google Scholar 

  64. Luo XX, Fang F, Lee AP, Sun JP, Li S, Zhang ZH, Sanderson JE, Kwong JS, Zhang Q, Wang J, Yu CM (2014) What can three-dimensional speckle-tracking echocardiography contribute to evaluate global left ventricular systolic performance in patients with heart failure? Int J Cardiol. 172:132–137

    PubMed  Google Scholar 

  65. Stampehl MR, Mann DL, Nguyen JS, Cota F, Colmenares C, Dokainish H (2015) Speckle strain echocardiography predicts outcome in patients with heart failure with both depressed and preserved left ventricular ejection fraction. Echocardiography. 32:71–78

    PubMed  Google Scholar 

  66. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, Pitt B, Pfeffer MA, Solomon SD (2015) Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 132:402–414

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Kosmala W, Rojek A, Przewlocka-Kosmala M, Mysiak A, Karolko B, Marwick TH (2016) Contributions of nondiastolic factors to exercise intolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 67:659–670

    PubMed  Google Scholar 

  68. Morris DA, Krisper M, Nakatani S, Köhncke C, Otsuji Y, Belyavskiy E, Radha Krishnan AK, Kropf M, Osmanoglou E, Boldt LH, Blaschke F, Edelmann F, Haverkamp W, Tschöpe C, Pieske-Kraigher E, Pieske B, Takeuchi M (2017) Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J Cardiovasc Imaging. 18:212–223

    PubMed  Google Scholar 

  69. Toufan M, Mohammadzadeh Gharebaghi S, Pourafkari L, Delir Abdolahinia E (2015) Systolic longitudinal function of the left ventricle assessed by speckle tracking in heart failure patients with preserved ejection fraction. J Tehran Heart Cent. 10:194–200

    PubMed  PubMed Central  Google Scholar 

  70. Carluccio E, Biagioli P, Zuchi C, Bardelli G, Murrone A, Lauciello R, D’Addario S, Mengoni A, Alunni G, Ambrosio G (2016) Fibrosis assessment by integrated backscatter and its relationship with longitudinal deformation and diastolic function in heart failure with preserved ejection fraction. Int J Cardiovasc Imaging. 32:1071–1080

    PubMed  Google Scholar 

  71. Iwano H, Kamimura D, Fox ER, Hall ME, Vlachos P, Little WC (2016) Presence and implication of temporal nonuniformity of early diastolic left ventricular wall expansion in patients with heart failure. J Card Fail. 22:945–953

    PubMed  Google Scholar 

  72. Hung CL, Yun CH, Lai YH, Sung KT, Bezerra HG, Kuo JY, Hou CJ, Chao TF, Bulwer BE, Yeh HI, Shih SC, Lin SJ, Cury RC (2016) An observational study of the association among interatrial adiposity by computed tomography measure, insulin resistance, and left atrial electromechanical disturbances in heart failure. Medicine (Baltimore) 95:e3912

    Google Scholar 

  73. Donal E, Lund LH, Oger E, Bosseau C, Reynaud A, Hage C, Drouet E, Daubert JC, Linde C, on behalf of the KaRen Investigators (2017) Importance of combined left atrial size and estimated pulmonary pressure for clinical outcome in patients presenting with heart failure with preserved ejection fraction. Eur Heart J Cardiovasc Imaging 18:629–635

    PubMed  Google Scholar 

  74. Kosmala W, Przewlocka-Kosmala M, Sharman JE, Schultz MG, Marwick TH (2017) Stability of left ventricular longitudinal and circumferential deformation over time and standard loading conditions. Eur Heart J Cardiovasc Imaging. 18:1001–1007

    PubMed  Google Scholar 

  75. Pellicori P, Kallvikbacka-Bennett A, Khaleva O, Carubelli V, Costanzo P, Castiello T, Wong K, Zhang J, Cleland JG, Clark AL (2014) Global longitudinal strain in patients with suspected heart failure and a normal ejection fraction: does it improve diagnosis and risk stratification? Int J Cardiovasc Imaging. 30:69–79

    PubMed  Google Scholar 

  76. Freed BH, Daruwalla V, Cheng JY, Aguilar FG, Beussink L, Choi A, Klein DA, Dixon D, Baldridge A, Rasmussen-Torvik LJ, Maganti K, Shah SJ (2016) Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging 9(3):e003754

    PubMed  Google Scholar 

  77. Obokata M, Takeuchi M, Negishi K, Ohte N, Izumo M, Yamashita E, Ebato M, Yuda S, Kurabayashi M, Nakatani S (2016) Relation between echocardiogram-based cardiac parameters and outcome in heart failure with preserved and reduced ejection fraction. Am J Cardiol. 118:1356–1362

    PubMed  Google Scholar 

  78. Buggey J, Alenezi F, Yoon HJ, Phelan M, DeVore AD, Khouri MG, Schulte PJ, Velazquez EJ (2017) Left ventricular global longitudinal strain in patients with heart failure with preserved ejection fraction: outcomes following an acute heart failure hospitalization. ESC Heart Fail. 4:432–439

    PubMed  PubMed Central  Google Scholar 

  79. Donal E, Lund LH, Oger E, Hage C, Persson H, Reynaud A, Ennezat PV, Bauer F, Drouet E, Linde C, Daubert C, KaRen investigators (2015) New echocardiographic predictors of clinical outcome in patients presenting with heart failure and a preserved left ventricular ejection fraction: a subanalysis of the Ka (Karolinska) Ren (Rennes) Study. Eur J Heart Fail 17:680–688

    PubMed  CAS  Google Scholar 

  80. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A, I-PRESERVE Investigators (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359:2456–2467

    PubMed  CAS  Google Scholar 

  81. Oghlakian GO, Sipahi I, Fang JC (2011) Treatment of heart failure with preserved ejection fraction: have we been pursuing the wrong paradigm? Mayo Clin Proc. 86:531–539

    PubMed  PubMed Central  Google Scholar 

  82. Shah RV, Desai AS, Givertz MM (2010) The effect of renin-angiotensin system inhibitors on mortality and heart failure hospitalization in patients with heart failure and preserved ejection fraction: a systematic review and meta-analysis. J Card Fail. 16:260–267

    PubMed  CAS  Google Scholar 

  83. Kitzman DW, Hundley WG, Brubaker PH, Morgan TM, Moore JB, Stewart KP, Little WC (2010) A randomized double-blind trial of enalapril in older patients with heart failure and preserved ejection fraction: effects on exercise tolerance and arterial distensibility. Circ Heart Fail. 3:477–485

    PubMed  PubMed Central  Google Scholar 

  84. Tehrani F, Phan A, Chien CV, Morrissey RP, Rafique AM, Schwarz ER (2009) Value of medical therapy in patients >80 years of age with heart failure and preserved ejection fraction. Am J Cardiol. 103:829–833

    PubMed  Google Scholar 

  85. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J (2006) The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 27:2338–2345

    PubMed  CAS  Google Scholar 

  86. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, Olofsson B, Ostergren J, CHARM Investigators and Committees (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362:777–781

    PubMed  CAS  Google Scholar 

  87. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 62:263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Tschöpe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschöpe, C., Senni, M. Usefulness and clinical relevance of left ventricular global longitudinal systolic strain in patients with heart failure with preserved ejection fraction. Heart Fail Rev 25, 67–73 (2020). https://doi.org/10.1007/s10741-019-09853-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-019-09853-7

Keywords

Navigation