Skip to main content
Log in

Realistic Creep Characterization for Sn3.0Ag0.5Cu Solder Joints in Flip Chip BGA Package

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Creep tests were performed using a fixture composed of a spring, a micrometer and a heating pad to apply both heat and constant compressive load and elevated temperature to the actual solder joint. A microscopic digital image correlation technique was used to measure creep strains. A full-field deformation map of the cross-sectioned solder joint was generated as different constant loads were applied under different isothermal conditions on Sn3.0Ag0.5Cu flip chip ball grid array solder joints. Nonlinear regression was used to generate constitutive properties using the Garofalo hyperbolic sine model. The obtained constitutive properties were used to perform a finite element analysis simulation to compare the model with experimental results, which showed good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Mukherjee, M. Nuhi, A. Dasgupta, and M. Modarres, ASME J. Electron. Packag. 138, 030801 (2016). 10.1115/1.4033375.

    Article  Google Scholar 

  2. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, and E.J. Cotts, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  Google Scholar 

  3. B. Guo, A. Kunwar, H. Ma, J. Liu, S. Li, J. Sun, N. Zhao, and H. Ma, in 16th International Conference on Electronic Packaging Technology (2015).

  4. J.H. Lau and S.H. Pan, Int. J. Microcirc. Electron. Packag 24, 1 (2001).

    Google Scholar 

  5. E.H. Amalu and N.N. Ekere, J. Manuf. Syst. 39, 9 (2016).

    Article  Google Scholar 

  6. A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel, and H. Reichl, in IEEE, 53rd Electronic Components and Technology Conference, New Orleans, LA, 27–30 May 2003, pp. 603–610 (2003).

  7. R. Darveaux and K. Banerji, IEEE Trans. Compon. Hybrids Manuf. Technol. 15, 1013 (1992).

    Article  Google Scholar 

  8. J.H. Lau, Ball Grid Array Technology (New York: McGraw-Hill Inc, 1994).

    Google Scholar 

  9. P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 33, 1389 (2004).

    Article  Google Scholar 

  10. Y. Sun and J.H.L. Pang, Microelectron. Reliab. 48, 310 (2008).

    Article  Google Scholar 

  11. D. Herkommer, M. Reid, and J. Punch, J. Electron. Mater. 38, 2085 (2009).

    Article  Google Scholar 

  12. D. Herkommer, J. Punch, and M. Reid, Microelectron. Reliab. 50, 116 (2010).

    Article  Google Scholar 

  13. D. Herkommer, J. Punch, and M. Reid, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 275 (2013).

    Article  Google Scholar 

  14. G. Cuddalorepatta and A. Dasgupta, Acta Materilia 58, 5989 (2010).

    Article  Google Scholar 

  15. S. Wiese, M. Roellig, M. Mueller, S. Rzepka, K. Nocke, C. Luhmann, F. Kraemer, K. Meier, and K.J. Wolter, in IEEE, 1st Electronics System integration Technology Conference, Dresden, Germany, 5–7 Sep 2006.

  16. Q. Xiao and W.D. Armstrong, J. Electron. Mater. 34, 196 (2005).

    Article  Google Scholar 

  17. J. Kwak, J. Mech. Sci. Technol. 28, 4899 (2014).

    Article  Google Scholar 

  18. P. Lall, K. Mirza, and J. Suhling, in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, pp. 519–529 (2016).

  19. P. Lall, D. Zhang, V. Yadav, and D. Locker, Microelectron. Reliab. 62, 4 (2016).

    Article  Google Scholar 

  20. S. Hamada, T. Fujisawa, M. Koyama, N. Koga, N. Nakada, T. Tsuchiyama, M. Ueda, and H. Noguchi, Mater. Charact. 98, 140 (2014).

    Article  Google Scholar 

  21. J. Sun, L. Jin, J. Dong, W. Ding, and A.A. Luo, Mater. Charact. 119, 195 (2016).

    Article  Google Scholar 

  22. D. Lunt, A. Orozco-Caballero, R. Thomas, P. Honniball, P. Frankel, M. Preuss, and J. Quinta da Fonseca, Mater. Charact. 139, 355 (2018).

    Article  Google Scholar 

  23. R.D. Pendse and P. Zhou, Microelectron. Reliab. 42, 301 (2002).

    Article  Google Scholar 

  24. S. Park, R. Dhakal, L. Lehman, and E.J. Cotts, Acta Mater. 55, 3253 (2007).

    Article  Google Scholar 

  25. K.A. Kasvayee, E. Ghassemali, K. Salomonsson, S. Sujakhu, S. Castagne, and A.E.W. Jarfors, Mater. Charact. 140, 333 (2018).

    Article  Google Scholar 

  26. Y. Yuan, J. Huang, X. Peng, C. Xiong, J. Fang, and F. Yuan, Opt. Lasers Eng. 52, 75 (2014).

    Article  Google Scholar 

  27. Y. Yuan, Q. Zhan, C. Xiong, and J. Huang, Opt. Lasers Eng. 97, 52 (2017).

    Article  Google Scholar 

  28. D. Lecompte, A.S. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. Van Hemelrijck, and A.M. Habraken, Opt. Lasers Eng. 44, 1132 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from Chosun University (Grant No. K207814001-1), 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae B. Kwak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.H., Kwak, J.B. Realistic Creep Characterization for Sn3.0Ag0.5Cu Solder Joints in Flip Chip BGA Package. J. Electron. Mater. 48, 6857–6865 (2019). https://doi.org/10.1007/s11664-019-07463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07463-5

Keywords

Navigation