Skip to main content
Log in

Fin Shape Dependence of Electrostatics and Variability in FinFETs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The performance of advanced nanoscale devices is limited by different process variability issues, including patterning proximity effects. Most manufactured fin-shaped field-effect transistors (FinFETs) have some imperfections in the fin shape due to imperfections in lithography and deformation due to other high-temperature process steps. In this work, full three-dimensional (3D) device simulations are performed to study the effects of such variability in the fin shape on the electrostatics of trigate FinFETs. Variability due to random discrete dopants (RDDs) and metal grain granularity (MGG) is considered separately and in combination. The device threshold voltage variation due to RDDs and MGG is critically examined. Finally, we calculate the mean and standard deviation of these parameters (QQ plots) to quantify the variability. It is shown that there is a strong correlation between the drain-induced barrier lowering (DIBL) and random discrete dopant position in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Collinge, FinFET and Other Multi-Gate Transistors (Berlin: Springer, 2008).

    Book  Google Scholar 

  2. D. James, Intel announces tweaks to 22FFL process for RF, MRAM at IEDM18 (Semiconductor Manufacturing and Design Community, Chipworks, 2019) https://semimd.com/chipworks/. Accessed 30 May 2019.

  3. B.D. Gaynor and S. Hassoun, IEEE Trans. Electron Devices 61, 2738 (2014).

    Article  Google Scholar 

  4. H.M. Fahad, C. Hu, and M.M. Hussain, IEEE Trans. Electron Devices 62, 83 (2015).

    Article  Google Scholar 

  5. J. Lee, Y. Kim, and S. Cho, IEEE Trans. Electron Devices 63, 4610 (2016).

    Article  Google Scholar 

  6. C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck and C. Parker, in 2012 Symposium on VLSI Technology (2012), pp. 131--132.

  7. S. Dubey and P.N. Kondekar, Microelectron. Eng. 162, 63 (2016).

    Article  Google Scholar 

  8. E.D. Kurniawan, H. Yang, C.-C. Lin, and Y.-C. Wua, Microelectron. Reliab. 83, 254 (2018).

    Article  Google Scholar 

  9. D. Nagy, G. Indalecio, A.J. García-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, IEEE J. Electron Devices Soc. 6, 332 (2018).

    Article  Google Scholar 

  10. VSP User’s manual (2018).

  11. C.K. Maiti, Introducing Technology Computer-Aided Design (TCAD): Fundamentals, Simulations, and Applications (Taylor & Francis, 2017).

  12. O. Baumgartner, Z. Stanojevic, K. Schnass, M. Karner, and H. Kosina, J. Comput. Electron. 12, 701 (2013).

    Article  Google Scholar 

  13. A. Wettstein, Quantum Effects in MOS Devices (Konstanz: Hartung-Gorre Verlag, 2000).

    Google Scholar 

  14. MINIMOS-NT, User’s manual (2018).

  15. Z. Stanojevic, M. Karner, and H. Kosina, IEEE Intl. Electron Device Meeting (2013), pp. 12.6.1–12.6.4.

  16. T. Mizuno, J. Okumtura, and A. Toriumi, IEEE Trans. Electron Devices 41, 2216 (1994).

    Article  Google Scholar 

  17. P.H. Vardhan, S. Mittal, S. Ganguly, and U. Ganguly, IEEE Trans. Electron Devices 64, 3071 (2017).

    Article  Google Scholar 

  18. T.P. Dash, J. Jena, E. Mohapatra, S. Dey, S. Das, and C.K. Maiti, J. Electron Mater. (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, J., Dash, T.P., Mohapatra, E. et al. Fin Shape Dependence of Electrostatics and Variability in FinFETs. J. Electron. Mater. 48, 6742–6752 (2019). https://doi.org/10.1007/s11664-019-07480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07480-4

Keywords

Navigation