Skip to main content
Log in

Subthreshold Performance Analysis of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel Field Effect Transistor for Ultra Low Power Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An improved subthreshold analytical model of Germanium source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel FET Ge(SRC)-DH-DD-TM-SG-TFET is proposed. The dielectric gate oxide structure is comprised of Silicon-dioxide and Hafnium oxide. The high-K dielectric materials overcomes the Short Channel Effects caused by ultrathin silicon devices. The subthreshold analysis is carried out by solving a 2-D Poisson’s equation using the parabolic approximation method. The electrical characteristics of Ge(SRC)-DH-DD-TM-SG-Tunnel FET are analyzed using a 3-D Sentaurus TCAD device simulator and compared with the silicon based single halo and triple material surrounding gate TFET structures. The proposed model shows a lower ambipolar current and a better ION/IOFF ratio of 106. Moreover, the influence of germanium/silicon in dual dielectric materials has reduced the tunneling barrier width and the ON current (10−4 A/μm) of the proposed device and improved at the level of CMOS transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Mallik, A. Chattopadhyay, and I.E.E.E. Trans, Electron Devices 59, 2 (2012).

    Article  Google Scholar 

  2. R.S. Muller, T.I. Kamins, and M. Chan, Device Electronics for Integrated Circuits, 1st ed. (New York: Wiley, 2003), p. 443.

    Google Scholar 

  3. J. Appenzeller, Y.M. Lin, J. Knoch, and P. Avouris, Phys. Rev. Lett. 93, 19 (2004).

    Article  Google Scholar 

  4. Q. Zhang, W. Zhao, A. Seabaugh, and I.E.E.E. Trans, Electron Devices 27, 4 (2006).

    Article  Google Scholar 

  5. W.Y. Choi, B.G. Park, J.D. Lee, and T.J.K. Liu, IEEE Electron Device Lett. 28, 8 (2007).

    Article  Google Scholar 

  6. R.M. Imenabad and M. Saremi, J. Electron. Mater. (2017). https://doi.org/10.1007/s11664-017-5823-z.

    Google Scholar 

  7. W.Y. Choi, W. Lee, and I.E.E.E. Trans, Electron Devices 57, 9 (2010).

    Google Scholar 

  8. K.-H. Kao, A.S. Verhulst, W.G. Vandenberghe, B. Sorée, G. Groeseneken, K. De Meyer, and I.E.E.E. Trans, Electron Device 59, 2 (2012).

    Article  Google Scholar 

  9. S. Anand and R.K. Sarin, Superlattices Microstruct. 97, 60 (2016).

    Article  Google Scholar 

  10. P. Vanitha, T.S.A. Samuel, and D. Nirmal, AEU-Int. J. Electron. Commun. 99, 34–39 (2019).

    Google Scholar 

  11. M. Luisier and G. Klimeck, J. Appl. Phys. 107, 8 (2010).

    Article  Google Scholar 

  12. Navajeet Bagga and Sudeb Dasgupta, IEEE Trans. Electron Device 64, 2 (2017).

    Article  Google Scholar 

  13. S. Anand and R.K. Sarin, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6174-0.

    Google Scholar 

  14. A. Andrew Roobert, D. Gracia Nirmala Rani, S. Rajaram, IET Circ. Device Syst. (2019).https://digital-library.theiet.org/content/journals/10.1049/iet-cds.2018.5291;jsessionid=4nvar65uadqhn.x-iet-live-01

  15. A.M. Ionescu and H. Riel, Nature 479, 7373 (2011).

    Article  Google Scholar 

  16. M.J. Kumar, S. Janardhanan, and I.E.E.E. Trans, Electron Devices 60, 10 (2013).

    Article  Google Scholar 

  17. G. Singh, S.I. Amin, S. Anand, and R.K. Sarin, Superlattices Microstruct. 92, 60 (2016).

    Article  Google Scholar 

  18. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, IEEE Electron Device Lett. 30, 10 (2009).

    Article  Google Scholar 

  19. G.E. Moore, IEEE Solid-State Circuits Soc. Newsl. 38, 33 (2006).

    Article  Google Scholar 

  20. J.G. Koomey, S. Berard, M. Sanchez, H. Wong, and I.E.E.E. Ann, Hist. Comput. 33, 46 (2010).

    Article  Google Scholar 

  21. D. Kahng and I.E.E.E. Trans, Electron Devices 23, 655 (1976).

    Article  Google Scholar 

  22. E.O. Kane, J. Appl. Phys. 2, 1 (1961).

    Google Scholar 

  23. Sentaurus TCAD device user guide[online].Available:http://www.synopsys.com.

  24. C. Sandow, J. Knoch, C. Urban, Q.T. Zhao, and S. Mantl, Solid State Electron. 53, 1126 (2009).

    Article  Google Scholar 

  25. A. Shaker, M. El Sabbagh, M.M. El-Banna, and I.E.E.E. Trans, Electron Devices 64, 3541 (2017).

    Article  Google Scholar 

  26. S. Chander and S. Baishya, IEEE Electron Device Lett. 36, 714 (2015).

    Article  Google Scholar 

  27. H. Lu and A. Seabaugh, IEEE J. Electron Devices Soc. 2, 44 (2014).

    Article  Google Scholar 

  28. C. Lombardi, S. Manzini, A. Saporito, M. Vanzi, and I.E.E.E. Trans, Comput. Des. Integr. Circ. Syst. 7, 1164 (1988).

    Google Scholar 

  29. D.M. Caughey and R.E. Thomas, Proc. IEEE 55, 2192 (1967).

    Article  Google Scholar 

  30. J. Kretz, L. Dreeskornfeld, R. Schro¨ter, E. Landgraf, F. Hofmann, and W. Ro¨sner, Microelectron. Eng. 73–74, 803 (2004).

    Article  Google Scholar 

  31. L.-Y. Ma, A.N. Nordin, and N. Soin, Microsyst. Technol. 22, 537 (2016).

    Article  Google Scholar 

  32. B. Awadhiya, S. Pandey, K. Nigam, and P.N. Kondekar, Superlatt. Microstruct. 111, 293 (2017).

    Article  Google Scholar 

  33. S. Gupta, K. Nigam, S. Pandey, D. Sharma, P.N. Kondekar, and I.E.E.E. Trans, Electron Devices 64, 4731 (2017).

    Article  Google Scholar 

  34. A. Pal, A.K. Dutta, and I.E.E.E. Trans, Electron Devices 63, 3213 (2016).

    Article  Google Scholar 

  35. Y.C. Yeo, T.J. King, and C. Hu, J. Appl. Phys. 92, 7266 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkatesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, M., Suguna, M. & Balamurugan, N.B. Subthreshold Performance Analysis of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel Field Effect Transistor for Ultra Low Power Applications. J. Electron. Mater. 48, 6724–6734 (2019). https://doi.org/10.1007/s11664-019-07492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07492-0

Keywords

Navigation