Skip to main content
Log in

Effect of Lateral Electric Field on the Transition Energies of Heavy Hole State and Light Hole State in a Semiconductor Quantum Dot

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using effective mass approximation, this study theoretically investigated how the ground state of the valence band in an inverse parabolic quantum dot (IPQD) reaches the light hole state by strengthening the confinement in the QD plane through the application of a lateral electric field on IPQDs. We calculated the exact analytical solution in the form of the Heun function associated with a complex eigenvalue for the degenerate and excited energy states of the electron, light hole (LH), and heavy hole (HH), in the IPQD context. Our results showed that, for a large QD size, the inverse parabolic quantum confinement (IPQC) potential removed the electron and hole degeneracy, while in the strong confinement region (small QD size), crossing occurred. In addition, the results offered another way of switching the ground state energy of the valence band inside QDs from the HH to LH state when applying a lateral electric field on a QD with an IPQC potential. Consequently, different optical transitions were established, and from the lateral electric field, we obtained a larger quantum Stark shift in IPQD compared with the parabolic QD (PQD), and the excited state energies showed a linear Stark shift in both the QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Montes, C.A. Duque, and N. Porras-Montenegro, Phys. Stat. Sol. (b) 220, 181 (2000).

    Article  Google Scholar 

  2. H. Akbas, C. Dane, K. Kasapoglu, and N. Talip, Physica E 40, 627 (2008).

    Article  Google Scholar 

  3. A. Hofmann, V.F. Maisi, C. Gold, T. Krähenmann, C. Rössler, J. Basset, P. Märki, C. Reichl, W. Wegscheider, K. Ensslin, and T. Ihn, Phys. Rev. Lett. 117, 206803 (2016).

    Article  Google Scholar 

  4. C. Tablero, J. Chem. Phys. 122, 064701 (2005).

    Article  Google Scholar 

  5. A. John-Peter, Phys. Lett. A 355, 59 (2006).

    Article  Google Scholar 

  6. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).

    Article  Google Scholar 

  7. A.J. Shields, Nat. Photon 1, 215 (2007).

    Article  Google Scholar 

  8. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, and M. Petroff, Phys. Rev. Lett. 96, 130501 (2006).

    Article  Google Scholar 

  9. C.L. Salter, R.M. Stevenson, I. Farrer, C.A. Nicoll, D.A. Ritchie, and A.J. Shields, Nature 465, 594 (2010).

    Article  Google Scholar 

  10. E.A. Chekhovich, M.N. Makhonin, A.I. Tartakovskii, H. Bluhm, K.C. Nowack, and L.M.K. Vandersypen, Nat. Mat. 12, 494 (2013).

    Article  Google Scholar 

  11. H. Xu and Y.-C. Lai, Phys. Rev. B 92, 195120 (2015).

    Article  Google Scholar 

  12. V. Holovatsky, M. Yakhnevych, and O. Voitsekhivska, Condes. Matter Phys. 21, 13703 (2018).

    Article  Google Scholar 

  13. O. Makhanets, V. Gutsul, and A. Kuchak, Condes. Matter Phys. 21, 43704 (2018).

    Article  Google Scholar 

  14. S.M. Ulrich, R. Hafenbrak, M.M. Vogel, L. Wang, A. Rastelli, O.G. Schmidt, and P. Michler, Phys. Stat. Sol. B 246, 302 (2009).

    Article  Google Scholar 

  15. J.M. Llorens, C. Trallero-Giner, A. Garcıa-Cristobal, and A. Cantarero, Phys. Rev. B 64, 035309 (2001).

    Article  Google Scholar 

  16. M. Usman, Nanoscale 7, 1615 (2015).

    Article  Google Scholar 

  17. S.D. Wu and L. Wan, Eur. Phys. J. B 85, 12 (2012).

    Article  Google Scholar 

  18. X. Ma, G.W. Bryant, and M.F. Doty, Phys. Rev. B 93, 245402 (2016).

    Article  Google Scholar 

  19. Y.H. Huo, B.J. Witek, S. Kumar, J.R. Cardenas, J.X. Zhang, N. Akopian, R. Singh, E. Zallo, R. Grifone, D. Kriegner, R. Trotta, F. Ding, J. Stangl, V. Zwiller, G. Bester, A. Rastelli, and O.G. Schmidt, Nat. Phys. 10, 46 (2014).

    Article  Google Scholar 

  20. Y.-M. Niquet and D.C. Mojica, Phys. Rev. B 77, 115316 (2008).

    Article  Google Scholar 

  21. M. Jeannin, A. Artioli, P. Rueda-Fonseca, E. Bellet-Amalric, K. Kheng, R. André, S. Tatarenko, J. Cibert, D. Ferrand, and G. Nogues, Phys. Rev. B 95, 035305 (2017).

    Article  Google Scholar 

  22. S.A. Safwan, A. Saleh, H.M. Hassanein, and N. El Meshed, Curr. Appl. Phys. 18, 34 (2018).

    Article  Google Scholar 

  23. T. Shimbori, T. Kobayashi, Nuovo Cim. B 115, 325 (2000), arXiv:math-ph/9910009v1 [math-ph].

  24. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press, 2011).

    Book  Google Scholar 

  25. H. Hassanabadi and A.A. Rajabi, Phys. Lett. A 373, 679 (2009).

    Article  Google Scholar 

  26. A. Gharaati and R. Khordad, Superlattices Microstruct. 48, 276 (2010).

    Article  Google Scholar 

  27. J. Karwowski and H.A. Witek, Theor Chem Acc 133, 1494 (2014).

    Article  Google Scholar 

  28. V.P. Legostayev, A.V. Subbotin, S.N. Timakov, Ye.A. Cheremnykh, J. Appl. Math. Mech. 75, 154 (2011).

  29. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST, Handbook of Mathematical Functions (Cambridge: Cambridge University Press, 2010).

    Google Scholar 

  30. T.A. Ishkhanyan and A.M. Ishkhanyan, Ann. Phys. 383, 79 (2017).

    Article  Google Scholar 

  31. L.J. El-Jaick and B.D.B. Figueiredo, J. Math. Phys. 50, 123511 (2009).

    Article  Google Scholar 

  32. S.A. Safwan and N. El Meshed, Superlattices Microstruct. 96, 282 (2016).

    Article  Google Scholar 

  33. Wu Shudong and Stanko Tomic, J. Appl. Phys. 112, 033715 (2012).

    Article  Google Scholar 

  34. H. Mnussenzveig, Nuclear Phys. 11, 499 (1959).

    Article  Google Scholar 

  35. R. Zavin and N. Moiseyev, J. Phys. A: Math. Gen. 37, 4619 (2004).

    Article  Google Scholar 

  36. M. Zielinski, Phys. Rev. B 88, 115424 (2013).

    Article  Google Scholar 

  37. A. Hernandz-Cabrera, P. Aceituno, and H. Cruz, J. Appl. Phys. 76, 4983 (1994).

    Article  Google Scholar 

  38. S. Zielińska-Raczyńska, G. Czajkowski, and D. Ziemkiewicz, Eur. Phys. J. B 88, 338 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Safwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safwan, S.A., El Meshad, N. Effect of Lateral Electric Field on the Transition Energies of Heavy Hole State and Light Hole State in a Semiconductor Quantum Dot. J. Electron. Mater. 48, 6716–6723 (2019). https://doi.org/10.1007/s11664-019-07477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07477-z

Keywords

Navigation