Skip to main content
Log in

Development and Optical Properties of ZnO Nanoflowers on Porous Silicon for Photovoltaic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, a comparison between zinc oxide (ZnO) nanoflowers and nanorods for photovoltaic applications is presented. Using chemical bath deposition technique, ZnO nanoflowers were grown on porous silicon (PS) while ZnO nanorods were deposited on flat Si substrate. The morphology of ZnO/PS sample indicated the formation of nanoflowers by accumulation of ZnO nanorods on PS walls. The structural studies indicated that ZnO nanoflowers experienced a stress relief compared to ZnO nanorods which was due to the role of porous substrate for accommodating the lattice strain in order to obtain the subsequent ZnO nanoflowers with reduced strain. The optical results obtained from ZnO nanoflowers showed more intense photoluminescence and Raman peaks compared with nanorods. It was due to the higher specific surface area of nanoflowers which led to a higher absorption coefficient and increased the generation of electron–hole pairs in this sample. Due to their elevated specific surface area, ZnO nanoflowers can capture the incident light and reduce the reflection coefficient of silicon substrates. Thus, they can be considered as an effective antireflective layer to improve the efficiency of solar cells. The optoelectrical results showed an improvement in the efficiency of fabricated solar cells by use of ZnO nanoflowers on PS structures when compared to the conventional ones possessing ZnO nanorods on flat silicon substrates. Development of ZnO nanoflowers on PS substrates can further extend the applications of ZnO nanostructures in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Saron, M. Hashim, N. Naderi, and N.K. Allam, Sol. Energy 98, 485 (2013).

    Article  Google Scholar 

  2. P.F. Azad, N. Naderi, M.J. Eshraghi, and A. Massoudi, J. Mater. Sci. Mater. El. 28, 15495 (2017).

    Article  Google Scholar 

  3. V. Ursaki, O. Lupan, I. Tiginyanu, G. Chai, and L. Chow, J. Nanoelectron. Optoelectron. 6, 473 (2011).

    Article  Google Scholar 

  4. Q. Zhao, M. Willander, R. Morjan, Q. Hu, and E. Campbell, Appl. Phys. Lett. 83, 165 (2003).

    Article  Google Scholar 

  5. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).

    Article  Google Scholar 

  6. J. Chu, S. Huang, D. Zhang, Z. Bian, X. Li, Z. Sun, and X. Yin, Appl. Phys. A 95, 849 (2009).

    Article  Google Scholar 

  7. T. Gao and T. Wang, Appl. Phys. A 80, 1451 (2005).

    Article  Google Scholar 

  8. Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. Norton, F. Ren, and P. Fleming, Appl. Phys. Lett. 81, 3046 (2002).

    Article  Google Scholar 

  9. J.-I. Hong, J. Bae, Z.L. Wang, and R.L. Snyder, J. Nanotechnol. 20, 085609 (2009).

    Article  Google Scholar 

  10. W.-T. Chiou, W.-Y. Wu, and J.-M. Ting, Diam. Relat. Mater. 12, 1841 (2003).

    Article  Google Scholar 

  11. C. Xu, X.W. Sun, Z.L. Dong, and M. Yu, Appl. Phys. Lett. 85, 3878 (2004).

    Article  Google Scholar 

  12. T. Hirate, S. Sasaki, W. Li, H. Miyashita, T. Kimpara, and T. Satoh, Thin Solid Films 487, 35 (2005).

    Article  Google Scholar 

  13. Z. Yang, Y.-Y. Shi, X.-L. Sun, H.-T. Cao, H.-M. Lu, and X.-D. Liu, Mater. Res. Bull. 45, 474 (2010).

    Article  Google Scholar 

  14. S.-H. Yi, S.-K. Choi, J.-M. Jang, J.-A. Kim, and W.-G. Jung, J. Colloid Interface Sci. 313, 705 (2007).

    Article  Google Scholar 

  15. N. Naderi and M.R. Hashim, Mater. Lett. 97, 90 (2013).

    Article  Google Scholar 

  16. J. Fan, T. Li, and H. Heng, Bull. Mater. Sci. 39, 19 (2016).

    Article  Google Scholar 

  17. Y. Zhang, M.K. Ram, E.K. Stefanakos, and D.Y. Goswami, J. Nanomater. 2012, 624520 (2012).

    Google Scholar 

  18. C.-Y. Tsay, K.-S. Fan, S.-H. Chen, and C.-H. Tsai, J. Alloys. Compd. 495, 126 (2010).

    Article  Google Scholar 

  19. N. Naderi and M.R. Hashim, Appl. Surf. Sci. 258, 6436 (2012).

    Article  Google Scholar 

  20. A. Khan, J. Pak. Mater. Soc. 4, 5 (2010).

    Google Scholar 

  21. R. Shabannia, H.A. Hassan, H. Mahmodi, N. Naderi, and H. Abd, Semicond. Sci. Technol. 28, 115007 (2013).

    Article  Google Scholar 

  22. P. Fallahazad, N. Naderi, M.J. Eshraghi, and A. Massoudi, J. Mater. Sci. Mater. Electron. 29, 6289 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Materials and Energy Research Center, Karaj, Iran (Grant No. 99392008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Naderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherkhani, M., Naderi, N., Fallahazad, P. et al. Development and Optical Properties of ZnO Nanoflowers on Porous Silicon for Photovoltaic Applications. J. Electron. Mater. 48, 6647–6653 (2019). https://doi.org/10.1007/s11664-019-07484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07484-0

Keywords

Navigation