Skip to main content

Advertisement

Log in

Electronic and Optical Response of Chalcopyrites Cu2InMSe4 (M = Al, Ga): First Principles Investigation for Use in Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report systematic investigations of opto-electronic behavior of promising semiconducting chalcopyrite compounds Cu2In(Al,Ga)Se4 within the framework of density functional theory. In view to explore their possible utilization in opto-electronic devices, we have firstly performed calculations using one of the most accurate prescriptions, namely full-potential linearized augmented plane wave method. For a better accuracy, computations have been carried out using different exchange–correlation potentials including the most accurate modified Becke–Johnson potential with hybrid functional features. Computations have been performed for various electronic and optical properties such as energy bands, total and partial density of states, real and imaginary parts of dielectric tensors, absorption spectra, reflection, refraction and energy loss spectra for both chalcopyrite compounds. We have compared our data with the existing experimental and theoretical calculations for both compounds, which validates the accuracy of present computations. Both chalcopyrites are observed to have a direct band gap nature (Cu2InAlSe4: 1.14 eV and Cu2InGaSe4: 0.96 eV). Energy peaks recorded in the imaginary part of dielectric tensors are well interpreted by means of inter-band transitions. Significant intensities observed in absorption spectra within the energy range of solar spectra unambiguously depict feasibility of these compounds in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Manju and N. Sagar, Renew. Sustain. Energy Rev. 73, 594 (2017).

    Article  Google Scholar 

  2. A. Shahsavari and M. Akbari, Renew. Sustain. Energy Rev. 90, 275 (2018).

    Article  Google Scholar 

  3. A. Belghachi and N. Limam, Chin. J. Phys. 55, 1127 (2017).

    Article  Google Scholar 

  4. L. Manfredy, O.P. Marquez, S.A. Lopez-Rivera, J. Marquez, Y. Martínez, and D.A. Miranda, J. Phys. Conf. Ser. 687, 012038 (2016).

    Article  Google Scholar 

  5. K. Shen, H. Lu, X. Zhang, and Z. Jiao, Results Phys. 9, 49 (2018).

    Article  Google Scholar 

  6. H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, J. Cryst. Growth 208, 416 (2000).

    Article  Google Scholar 

  7. H. Katagiri, Thin Solid Films 480, 426 (2005).

    Article  Google Scholar 

  8. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, and H. Katagiri, Thin Solid Films 515, 5997 (2007).

    Article  Google Scholar 

  9. R.A. Wibowo, E. Soo-Lee, B. Munir, and K. Ho-Kim, Phys. Stat. Sol. A 204, 3373 (2007).

    Article  Google Scholar 

  10. J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, and I. Forbes, Phys. Stat. Sol. B 245, 1772 (2008).

    Article  Google Scholar 

  11. D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S. Jay-Chey, V. Deline, and A.G. Schrott, Adv. Mater. 20, 3657 (2008).

    Article  Google Scholar 

  12. Y.K. Kumar, G.S. Babu, P.U. Bhaskar, and V.S. Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009).

    Article  Google Scholar 

  13. L. Wahab, M. El-Den, A. Farrag, S. Fayek, and K. Marzouk, J. Phys. Chem. Solids 70, 604 (2009).

    Article  Google Scholar 

  14. M. Yuan, D.B. Mitzi, W. Liu, A.J. Kellock, S. Jay-Chey, and V. Deline, Chem. Mater. 22, 285 (2010).

    Article  Google Scholar 

  15. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  16. J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, and S.M. Huang, Prog. Photovolt. Res. Appl. 19, 160 (2011).

    Article  Google Scholar 

  17. S. Mishra, Ph.D. Thesis, Department of Physics, NIT Rourkela, 2012, (unpublished).

  18. S. Mohammad-Nejad and A.B. Parashkouh, Appl. Phys. A 123, 758 (2017).

    Article  Google Scholar 

  19. Y.C. Lin, J.T. Huang, L.C. Wang, and H.R. Hsu, J. Alloys Compd. 690, 152 (2017).

    Article  Google Scholar 

  20. G.K.H. Madsen, P. Blaha, K. Schwarz, E.S. Stedt, and L. Nordstrom, Phys. Rev. B 64, 195134 (2001).

    Article  Google Scholar 

  21. K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  22. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, Wien2K Code, An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, Austria (2016).

  23. Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  24. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  25. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  26. A. Yakoubi, O. Baraka, and B. Bouhaf, Results Phys. 2, 58–65 (2012).

    Article  Google Scholar 

  27. T. Maeda, S. Nakamura, and T. Wada, Jpn. J. Appl. Phys. 50, 04DP071-6 (2011).

    Article  Google Scholar 

  28. J.S. Jang, P.H. Borse, J.S. Lee, S.H. Choi, and H.G. Kim, J. Chem. Phys. 128, 154717 (2008).

    Article  Google Scholar 

  29. K. Tang, S. Gu, J. Liu, J. Ye, S. Zhu, and Y. Zheng, J. Alloys Compd. 653, 643 (2015).

    Article  Google Scholar 

  30. Z. Xiao, H. Luan, R. Liu, B. Yao, Y. Li, Z. Ding, G. Yang, R. Deng, G. Wang, Z. Zhang, L. Zhang, and H. Zhao, J. Alloys Compd. 767, 439 (2018).

    Article  Google Scholar 

  31. M.W. Haimbodi, E. Gourmelon, P.D. Paulson, R.W. Birkmire and W.N. Shafarman, Proceedings of the 28th IEEE Photovoltaic Specialists Conference 454 (2000).

  32. M. Gloeckler and J.R. Sites, J. Phys. Chem. Solids 66, 1891 (2005).

    Article  Google Scholar 

  33. D.R. Penn, Phys. Rev. 128, 2093 (1962).

    Article  Google Scholar 

  34. U. Ahuja, A. Dashora, H. Tiwari, D.C. Kothari, and K. Venugopalan, Comput. Mater. Sci. 92, 451 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. P. Blaha of the Vienna University group for providing the Wien2k code. Present work is financially supported by DSTSERB, New Delhi (India), vide core research Grant Number EMR/2017/005534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Soni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahariya, J., Ahuja, U. & Soni, A. Electronic and Optical Response of Chalcopyrites Cu2InMSe4 (M = Al, Ga): First Principles Investigation for Use in Solar Cells. J. Electron. Mater. 48, 6521–6528 (2019). https://doi.org/10.1007/s11664-019-07429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07429-7

Keywords

Navigation