Skip to main content
Log in

Behavior of Electrical Conductivity and Dielectric Study of Chalcogenide Ag0.5(As40S30Se30)99.5 Glass

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrical properties of amorphous Ag0.5(As40S30Se30)99.5 alloy have been investigated using complex impedance spectroscopy at different temperatures in the frequency range from 100 Hz to 1 MHz. Direct current (DC) conductivity data follows Arrhenius behavior, while the nature of frequency dependence of alternating current (AC) conductivity follows Jonscher’s power law. Impedance spectra were analyzed by means of an equivalent-circuit model that revealed the presence of a temperature-dependent electrical relaxation phenomenon of the non-Debye type. Different activation energy values of conduction and of the relaxation process were obtained, suggesting different mechanisms of conduction and relaxation. Dielectric properties were analyzed where the real part (ε′) and imaginary part (ε″) of the dielectric constant were found to decrease with frequency and increase with temperature. The temperature coefficient of dielectric constant (TCP) is evaluated. The analysis of dielectric loss leads to determination of the barrier height Wm which is found to be 0.086 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.H. Khan, S.A. Khan, F.A. Agel, N.A. Salah, and M. Husain, Chalcogenides to nanochalcogenides; exploring possibilities for future R&D, in Advances in Nanomaterials, Volume 79 of the Series Advanced Structured Materials, ed. M. Husain and Z.H. Khan (New Delhi: Springer, 2016), pp. 135–202.

    Google Scholar 

  2. N.A. Hegab, M. Fadel, I.S. Yahia, A.M. Salem, and A.S. Farid, J. Electron. Mater. 42, 3397 (2013).

    Article  Google Scholar 

  3. A. Srivastava and N. Mehta, J. Alloys Compd. 658, 533 (2016).

    Article  Google Scholar 

  4. M. Frumar and T. Wagner, Curr. Opin. Solid State Mater. Sci. 7, 117 (2003).

    Article  Google Scholar 

  5. S.R. Lukić-Petrović, F. Skuban, D.M. Petrović, and M. Slankamenac, J. Non-Cryst. Solids 356, 2409 (2010).

    Article  Google Scholar 

  6. M. Krbal, S. Stehlik, T. Wagner, V. Zima, L. Benes, and M. Frumar, J. Phys. Chem. Solids 68, 958 (2007).

    Article  Google Scholar 

  7. V. Ilcheva, P. Petkov, T. Petkova, V. Boev, and B. Monchev, J. Phys. Conf. Ser. 356, 012028 (2012).

    Article  Google Scholar 

  8. V. Ilcheva, D. Roussev, and C. Petkov, Adv. Nat. Sci. Theory Appl. 1, 175 (2012).

    Google Scholar 

  9. K.O. Čajko, S.R. Lukić-Petrović, and D.D. Štrbac, Acta Phys. Pol. A 127, 1286 (2015).

    Article  Google Scholar 

  10. K.O. Čajko, D.L. Sekulić, S. Lukić-Petrović, M.V. Šiljegović, and D.M. Petrović, J. Mater. Sci. Mater. Electron. 28, 120 (2017).

    Google Scholar 

  11. S. Cui, D. Le Coq, C. Boussard-Pledel, and B. Bureau, J. Alloys Compd. 639, 173 (2015).

    Article  Google Scholar 

  12. S.R. Lukić-Petrović, K. Čajko, D.L. Sekulić, P. Kostka, and D.M. Petrović, in 23rd International Conference on Advanced Materials, (2018), p. 25.

  13. K.O. Čajko, S.R. Lukić-Petrović, G.R. Štrbac, and T.B. Ivetić, Acta Phys. Pol. A 129, 509 (2016).

    Article  Google Scholar 

  14. N.A. Hegab, M.A. Afifi, H.E. Atyia, and A.S. Farid, J. Alloys Compd. 477, 925 (2009).

    Article  Google Scholar 

  15. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford: Clarendon, 1979).

    Google Scholar 

  16. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  17. S.R. Elliot, Philos. Mag. B 36, 1291 (1977).

    Article  Google Scholar 

  18. S.R. Elliott, Philos. Mag. B 37, 553 (1978).

    Article  Google Scholar 

  19. M. Pollak and G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972).

    Article  Google Scholar 

  20. S.C. Agarwal, S. Guha, and L.L. Naraslmhan, J. Non-Cryst. Solids 18, 429 (1975).

    Article  Google Scholar 

  21. I. Trabelsi, A. Jebali, and M. Kanzari, J. Mater. Sci. Mater. Electron. 27, 4326 (2016).

    Article  Google Scholar 

  22. B. Pati, R.N.P. Choudhary, P.R. Das, B.N. Parida, and R. Padhee, J. Electron. Mater. 42, 1225 (2013).

    Article  Google Scholar 

  23. P. Gogoi, P. Srinivas, P. Sharma, and D. Pamu, J. Electron. Mater. 45, 899 (2016).

    Article  Google Scholar 

  24. P. Dhak, D. Dhak, M. Das, and P. Pramanik, J. Mater. Sci. Mater. Electron. 22, 1750 (2011).

    Article  Google Scholar 

  25. I. Jlassi, N. Sdiri, H. Elhouichet, and M. Ferid, J. Alloys Compd. 645, 125 (2015).

    Article  Google Scholar 

  26. R. Martinez, A. Kumar, R. Palai, J.F. Scott, and R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011).

    Article  Google Scholar 

  27. M. Nadeem and A. Mushtaq, J. Appl. Phys. 106, 073713 (2009).

    Article  Google Scholar 

  28. A.S. Bondarenko and G. Ragoisha, EIS Spectrum Analyser. http://www.abc.chemistry.bsu.by.

  29. M. Younas, M. Nadeem, M. Atif, and R. Grossinger, J. Appl. Phys. 109, 093704 (2011).

    Article  Google Scholar 

  30. M. Barsoum, Fundamentals of Ceramics (New York: McGraw-Hill, 1997).

    Google Scholar 

  31. V.Q. Nguyen, J.S. Sanghera, I.K. Lloyd, I.D. Aggrawal, and D. Gershon, J. Non-Cryst. Solids 276, 151 (2000).

    Article  Google Scholar 

  32. L. Pauling, The Nature of the Chemical Bond (New York: Cornell University Press, 1960).

    Google Scholar 

  33. N. Shukla and D.K. Dwivedi, J. Asian Ceram. Soc. 4, 178 (2016).

    Article  Google Scholar 

  34. K. Rajarajan, G. Mani, I. Vetha Potheher, J.G.M. Jesudurai, M. Vimalan, D. Christy, J. Madhavan, and P. Sagayaraj, J. Phys. Chem. Solids 68, 2370 (2007).

    Article  Google Scholar 

  35. A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593 (1963).

    Article  Google Scholar 

  36. Y.-C. Chen, H.-M. You, and K.-C. Chang, Ceram. Int. 41, 5257 (2015).

    Article  Google Scholar 

  37. K. Prabakar, S.K. Narayandass, and D. Mangalaraj, Mater. Chem. Phys. 78, 809 (2003).

    Article  Google Scholar 

  38. S.S.N. Bharadwaja and S.B. Krupanidhi, Mater. Sci. Eng. B 78, 75 (2000).

    Article  Google Scholar 

  39. P. Matheswaran, R. Sathyamoorthy, R. Saravanakumar, and S. Velumani, Mater. Sci. Eng. B 174, 269 (2010).

    Article  Google Scholar 

  40. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Ehollie, and P. Houenou, J. Non-Cryst. Solids 45, 57 (1981).

    Article  Google Scholar 

  41. V. Modgil and V.S. Rangra, Phys. B 445, 14 (2014).

    Article  Google Scholar 

  42. E. Abd El-Wahabb, M.M. Abd El-Aziz, E.R. Sharaf, and M.A. Afifi, J. Alloys Compd. 509, 8595 (2011).

    Article  Google Scholar 

  43. N.A. Hegab and H.M. El-Mallah, Acta Phys. Pol. A 116, 1048 (2009).

    Article  Google Scholar 

  44. K. Shimakawa, Philos. Mag. B 46, 123 (1982).

    Article  Google Scholar 

  45. M.A.L. Nobre and S. Lanfredi, Catal. Today 78, 529 (2003).

    Article  Google Scholar 

  46. N. Kanagathara, N.G. Renganathan, M.K. Marchewka, N. Sivakumar, K. Gayathri, P. Krishnan, S. Gunasekaran, and G. Anbalagan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 101, 112 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina through projects: ‘‘Optimization of metal content in chalcogenide matrix as a basis for application in electronic components (142-451-3441/2018-02) and ‘‘Properties and electrical characteristics of doped amorphous chalcogenide materials and nanostructured ceramics’’ (142-451-2080/2019-01), and by the Ministry of Education, Science and Technological Development of the Republic of Serbia through Projects No. ON171022 and DS-2016-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina O. Čajko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čajko, K.O., Sekulić, D.L., Petrović, D.M. et al. Behavior of Electrical Conductivity and Dielectric Study of Chalcogenide Ag0.5(As40S30Se30)99.5 Glass. J. Electron. Mater. 48, 6512–6520 (2019). https://doi.org/10.1007/s11664-019-07450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07450-w

Keywords

Navigation