Skip to main content
Log in

Local Symmetry Reduction in Lanthanum Substituted Barium Stannate Ceramics Densified Using Bi2O3 Sintering Aids

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Densified Ba1−xLaxSnO3 (BLSO) ceramics were synthesized at relatively lower sintering temperature by a conventional solid state reaction route. X-ray diffraction (XRD) analysis using the Reitveld refinement technique inferred cubic (space group Pm–3m) average crystalline structure. The effect of La-substitution on variations of lattice parameters could be attributed to two competing factors, viz. ionic radii of the dopant and partial reduction of Sn4+ into Sn2+. XRD data indicate local symmetry reduction from cubic to orthorhombic (Pbnm), evident from the observed splitting in {211}p and {310}p peaks of pseudo cubic structure, as well as corresponding super reflections. The synthesized ceramics were highly porous with percentage densification in the range (60–70)% due to the relatively low sintering temperature used. Densification was improved using 2 wt.% Bi2O3 as a sintering aid, which resulted in highly dense ceramics with relative density ≈ 95%. Sintering temperature reduction of ≈ 300°C was also achieved relative to that required in normal solid state synthesis. This is very important to reduce defects and inhibit uneven grain growth. Microstructure and elemental analysis probed through scanning electron microscopy and energy-dispersive x-ray spectroscopy revealed that Bi replaces lanthanum and that liquid phase sintering is mainly responsible for the high densification using the sintering aid. The structural indicators of symmetry reduction were corroborated by experimentally observed Raman modes in an otherwise symmetry-forbidden cubic phase. The local symmetry reduction is attributed mainly to octahedral tilts corresponding to orthorhombic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Moseley, D.E. Williams, J.O.W. Norris, and B.C. Tofield, Sens. Actuators 14, 79 (1988).

    Article  Google Scholar 

  2. Y. Shimizu, M. Shimabukaro, H. Arai, and T. Seiyama, J. Electrochem. Soc. 136, 1206 (1989).

    Article  Google Scholar 

  3. U. Lumpe, J. Gerblinger, and H. Meixner, Sens. Actuators, B 24–25, 657 (1995).

    Article  Google Scholar 

  4. U. Lumpe, J. Gerblinger, and H. Meixner, Sens. Actuators, B 26–27, 97 (1995).

    Article  Google Scholar 

  5. I. Kocemba, M.W. Jedrzejewska, A. Szychowska, J. Rynkowski, and M. Gowka, Sens. Actuators, B 121, 401 (2007).

    Article  Google Scholar 

  6. P.K. Bajpai, K. Ratre, M. Pastor, and T.P. Sinha, Bull. Mater. Sci. 26, 461 (2003).

    Article  Google Scholar 

  7. M. Licheron, G. Jouan, and E. Husson, J. Eur. Ceram. Soc. 17, 1453 (1995).

    Article  Google Scholar 

  8. T.R.N. Kutty and R. Vivekanandan, Mater. Res. Bull. 22, 1457 (1987).

    Article  Google Scholar 

  9. C.P. Udawatte, M. Kakihana, and M. Yoshimura, Solid State Ion. 108, 23 (1998).

    Article  Google Scholar 

  10. Y.J. Song and S. Kim, J. Ind. Eng. Chem. 7, 183 (2001).

    Google Scholar 

  11. A.J. Smith and A.J.E. Welch, Struct. Acta Crystallogr. 13, 653 (1960).

    Google Scholar 

  12. E.H. Mountstevens, J.P. Attfeld, and S.A.T. Redfern, J. Phys. Condens. Matter 15, 8315 (2003).

    Article  Google Scholar 

  13. G. Larramona, C. Gutierrez, I. Pereira, M.R. Nunes, and F.M.A. Da Costa, J. Chem. Soc., Faraday Trans. 85, 907 (1989).

    Article  Google Scholar 

  14. H. Mizoguchi, P.M. Woodward, C.H. Park, and H. Keszler, J. Am. Chem. Soc. 126, 9796 (2004).

    Article  Google Scholar 

  15. M. Enhessari and A. Salehabadi, Progresses in Chemical Sensors, ed. W. Wang (London: Intech Open Pub, 2016), pp. 59–92.

    Google Scholar 

  16. R.A. Bucur, A.I. Bucura, S. Novaconi, and I. Nicoara, J. Alloys Compd. 542, 142 (2012).

    Article  Google Scholar 

  17. A. Roy, P. Selvaraj, P.S. Devi, and S. Sundaram, ACS Sustain. Chem. Eng. 6, 3299 (2018).

    Article  Google Scholar 

  18. D.O. Scanlon, Phys. Rev. B 87, 161201 (2013).

    Article  Google Scholar 

  19. S.M. Xing, C. Shan, K. Jiang, J.J. Zhu, Y.W. Li, Z.G. Hu, and J.H. Chu, J. Appl. Phys. 117, 103107 (2015).

    Article  Google Scholar 

  20. F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, and Y.B. Cheng, Adv. Funct. Mater. 20, 1301 (2010).

    Article  Google Scholar 

  21. H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.G. Jeon, W.J. Lee, H.S. Mun, K.T. Hong, J. Yu, K. Char, and K.H. Kim, Phys. Rev. B 86, 165205 (2012).

    Article  Google Scholar 

  22. D.T. Anh and N.T. Thanh, Univ. J. Phys. Appl. 11, 235 (2017).

    Google Scholar 

  23. S. Moshtaghi, S. Ajabshir, and M.S. Niasari, J. Mater. Sci. Mater. Electron. 27, 834 (2016).

    Article  Google Scholar 

  24. S. Tao, F. Gao, X. Liu, and O.T. Sùrensen, Sens. Actuators, B 71, 223 (2000).

    Article  Google Scholar 

  25. J. John,V.P.M. Pillai, A.R. Thomas, R. Philip, J. Joseph, S. Muthunatesan,V. Ragavendran, and R. Prabhu, in IOP Conference Proceedings (2017), p. 012007

  26. S. Upadhyay, Bull. Mater. Sci. 36, 1019 (2013).

    Article  Google Scholar 

  27. U. Kumar, M.J. Ansaree, and S. Upadhyay, Process. Appl. Ceram. 1, 177 (2017).

    Article  Google Scholar 

  28. A.M. Azad and N.C. Hon, J Alloys Compd. 270, 95 (1998).

    Article  Google Scholar 

  29. M.G. Smith, J.B. Goodenough, A. Manthiram, R.D. Taylor, W. Peng, and C.W. Kimball, J. Solid State Chem. 98, 181 (1992).

    Article  Google Scholar 

  30. M. Bao, W.D. Lee, and P. Zhu, J. Mater. Sci. 28, 6617 (1993).

    Article  Google Scholar 

  31. S. Upadhayay, O. Prakash, and D. Kumar, J. Mater. Sci. 16, 1330 (1997).

    Google Scholar 

  32. J.C. Farfan, J.A. Rodriguez, F. Fajardo, E. Vera Lopez, D.A.L. Tellez, and J.R. Rojas, Phys. B 404, 2720 (2009).

    Article  Google Scholar 

  33. C. Huang, X. Wang, Q. Shi, X. Liu, Y. Zhang, F. Huang, and T. Zhang, Inorg. Chem. 54, 4002 (2015).

    Article  Google Scholar 

  34. D.W. Kim, S.S. Shin, S. Lee, I.S. Cho, D.H. Kim, C.W. Lee, H.S. Jung, and K.S. Hong, Chemsuschem 6, 449 (2013).

    Article  Google Scholar 

  35. C. Doroftei, P.D. Popa, and F. Iacomi, Sens. Actuators, A 173, 24 (2012).

    Article  Google Scholar 

  36. J. Creda, J. Arbil, R. Diaz, G. Dezannweau, and J.R. Morante, Mater. Lett. 56, 131 (2002).

    Article  Google Scholar 

  37. R. Nakagauchi and H. Kozuka, J. Sol-Gel. Sci. Technol. 42, 221 (2007).

    Article  Google Scholar 

  38. A.M. Azad, M. Hashim, and S. Baptist, J. Mater. Sci. 35, 5475 (2000).

    Article  Google Scholar 

  39. S. Song, J. Zhai, L. Gao, X. Yao, and J. Phys, Chem. Solids 70, 1213 (2009).

    Article  Google Scholar 

  40. W. Lu and H. Schmidt, J. Sol-Gel. Sci. Technol. 42, 55 (2007).

    Article  Google Scholar 

  41. Y. Wang, A. Chesnaud, E. Bevillon, J. Yang, and G. Dezanneau, Int. J. Hydrog. Energy 36, 7688 (2011).

    Article  Google Scholar 

  42. W. Lu and H. Schmidt, J. Eur. Ceram. Soc. 25, 919 (2005).

    Article  Google Scholar 

  43. W. Lu and H. Schmidt, Ceram. Int. 34, 645 (2008).

    Article  Google Scholar 

  44. N.U. Patil and G.H. Jain, in Proceedings of 6th International Conference on Sensing Technology (2013), pp. 433–447

  45. M. Yasukawa, T. Kono, K. Ueda, H. Yanagi, and H. Hosono, Mater. Sci. Eng., B 173, 29 (2009).

    Article  Google Scholar 

  46. B. Ramdas and R. Vijayaraghavan, Bull. Mater. Sci. 33, 75 (2010).

    Article  Google Scholar 

  47. E. Bevillon, A. Chesnaud, Y. Wang, G. Dezanneau, and G. Geneste, J. Phys. Condens. Matter 20, 145217 (2008).

    Article  Google Scholar 

  48. R. Koferstein, L. Jager, M. Zenkner, and S.G. Ebbinghaus, J. Eur. Ceram. Soc. 29, 2317 (2009).

    Article  Google Scholar 

  49. M.C.F. Alves, S.C. Souza, H.H.S. Lima, and M.R. Nascimento, J. Alloys Compd. 476, 507 (2009).

    Article  Google Scholar 

  50. S. Sallis, D.O. Scanlon, S.C. Chae, N.F. Quackenbush, D.A. Fischer, J.C. Woicik, J.H. Guo, S.W. Cheog, and L.F.J. Piper, Appl. Phys. Lett. 103, 042105 (2013).

    Article  Google Scholar 

  51. K.H. Joon, K.H. Min, K.T. Hoon, M.H. Sik, J. Byung-Gu, H.K. Teak, L. Woong-Jhae, J. Chanjong, K.K. Hoon, and C. Kookrin, Appl. Phys. Express 5, 061102 (2012).

    Article  Google Scholar 

  52. M. Viviani, M.T. Buscaglia, V. Buscaglia, M. Leoni, and P. Nanni, J. Eur. Ceram. Soc. 21, 1981 (2002).

    Article  Google Scholar 

  53. C. Huang, X. Wang, X. Wang, X. Liu, Q. Shi, X. Pan, and X. Li, RSC Adv. 6, 25379 (2016).

    Article  Google Scholar 

  54. K.N. Singh and P.K. Bajpai, Int. J. Phys. Sci. 16, 37111 (2017).

    Article  Google Scholar 

  55. R. Köferstein and F. Yakuphanoglu, J. Alloys Compd. 506, 678 (2010).

    Article  Google Scholar 

  56. R. Köferstein, L. Jäger, M. Zenkner, T. Müller, and S.G. Ebbinghaus, J. Eur. Ceram. Soc. 30, 1419 (2010).

    Article  Google Scholar 

  57. J. Cerda, J. Arbiol, G. Dezanneau, R. Dĺaz, and J.R. Morante, Sens. Actuators, B 84, 21 (2002).

    Article  Google Scholar 

  58. V.J. Angadi, S.P. Kubrin, D.A. Sarychev, S. Matteppanavar, B. Rudraswam, H.L. Liu, and K. Praveena, J. Magn. Magn. Mater. 441, 348 (2017).

    Article  Google Scholar 

  59. V.J. Angadi, B. Rudraswamy, K. Sadhana, and K. Praveena, J. Magn. Magn. Mater. 409, 111 (2016).

    Article  Google Scholar 

  60. V.J. Angadi, L. Choudhury, K. Sadhanac, H.L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, and K. Praveena, J. Magn. Magn. Mater. 424, 01 (2017).

    Article  Google Scholar 

  61. B. Hadjarab, A. Bouguelia, A. Benchettara, and M. Trari, J. Alloys Compd. 461, 360 (2008).

    Article  Google Scholar 

  62. A.S. Bhalla, R. Guo, and R. Roy, Mater. Res. Innov. 4, 3 (2000).

    Article  Google Scholar 

  63. S. Wang, H. He, and H. Su, J. Mater. Sci. Mater. Electron. 24, 2385 (2013).

    Article  Google Scholar 

  64. P.S. Dobal, A. Dixit, and R.S. Katiyar, J. Raman Spectrosc. 38, 42 (2007).

    Article  Google Scholar 

  65. M.A. Islam, J.M. Rondinelli, J.E. Spanier, and J. Physics, Condens. Matter 25, 175902 (2012).

    Article  Google Scholar 

  66. A. Slodcyzk, P. Colomban, and M.P. Thi, J. Phys. Chem. Solids 69, 2503 (2008).

    Article  Google Scholar 

  67. P.K. Bajpai, C.R.K. Mohan, R. Ganjir, R. Kumar, A. Kumar, and R.S. Katiyar, J. Raman Spectrosc. 49, 324 (2018).

    Article  Google Scholar 

  68. A. Slodcyzk and P. Colomban, Materials 3, 5007 (2010).

    Article  Google Scholar 

  69. M.T. Buscaglia, M. Leoni, M. Viviani, and V. Buscaglia, J. Mater. Res. 18, 560 (2002).

    Article  Google Scholar 

  70. K.K. James, P.S. Krishnaprasad, K. Hasna, and M.K. Jayaraj, J. Phys. Chem. Solids 76, 64 (2015).

    Article  Google Scholar 

  71. T.N. Stanislavchuk, A.A. Sirenko, A.P. Litvinchuk, X. Luo, and S.-W. Cheong, J. Appl. Phys. 112, 044108 (2012).

    Article  Google Scholar 

  72. L.F. Zhu, B.P. Zhang, L. Zhao, and J.F. Li, J. Mater. Chem. C 2, 4764 (2014).

    Article  Google Scholar 

  73. H.B. Sales, V. Bouquet, S. Députier, S. Ollivier, and F. Gouttefangeas, Solid State Sci. 28, 67 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

Facilities developed under Special assistance program of University Grants Commission, New Delhi and FIST program of Department of Science and Technology, Govt. of India in the Department of Pure and Applied Physics are gratefully acknowledged. Sharmila Bajpai is grateful to Guru Ghasidas Vishwavidyalaya, Bilaspur, India for providing Non-NET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Bajpai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S., Bajpai, P.K. Local Symmetry Reduction in Lanthanum Substituted Barium Stannate Ceramics Densified Using Bi2O3 Sintering Aids. J. Electron. Mater. 48, 6306–6318 (2019). https://doi.org/10.1007/s11664-019-07437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07437-7

Keywords

Navigation