Skip to main content
Log in

Structure and Enhanced Dielectric Properties of B and Sr Modified CaCu3Ti4O12 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

B doped CaCu3Ti4O12 (CCTO), Sr doped CCTO and (B + Sr) co-doped CCTO ceramics were synthesized using the citrate precursor process and were sintered at 1080°C for 3 h. The effects of B and/or Sr doping on dielectric properties, Raman spectra and resistance were studied. Raman results corroborate with the results of x-ray diffraction, and Raman spectra show a multiphonon phenomenon. The pure CCTO phase can be obtained by citrate precursor processing and a short sintering time. The micrographs reveal that B and Sr additions can speed the grain growth, and a dense and homogenous microstructure was obtained for B and Sr co-doped ceramic. The addition of B and Sr can increase the grain boundary resistance and enhance dielectric properties with dielectric constant of 12108 and dielectric loss of 0.044 at 10 kHz. Moreover, B and Sr additions can enhance the frequency stability (between 100 Hz and 50 kHz) and temperature stability (between 20°C and 100°C) of dielectric loss. The present results show that the microstructure characteristics and grain boundary response are the primary factors in improving the dielectric properties of CCTO ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Im, O. Auciello, P.K. Baumann, and S.K. Striffer, Appl. Phys. Lett. 76, 625 (2000).

    Article  Google Scholar 

  2. H. Qiang and Z. Xu, J. Mater. Sci. Mater. Electron. 27, 9976 (2016).

    Article  Google Scholar 

  3. Z. Li, J. Wu, D. Xiao, J. Zhu, and W. Wu, Acta Mater. 103, 243 (2016).

    Article  Google Scholar 

  4. X. Cheng, Z. Li, and J. Wu, J. Mater. Chem. A 3, 5805 (2015).

    Article  Google Scholar 

  5. C. Zhao, Z. Li, and J. Wu, J. Mater. Chem. C 7, 4235 (2019).

    Article  Google Scholar 

  6. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).

    Article  Google Scholar 

  7. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez, Science 293, 673 (2001).

    Article  Google Scholar 

  8. R. Xue, D. Liu, Z. Chen, H. Dai, J. Chen, and G. Zhao, J. Electron. Mater. 44, 1088 (2015).

    Article  Google Scholar 

  9. P. Xu, M. Wang, S. Yang, Y. Wang, W. Hao, L. Sun, E. Cao, and Y. Zhang, J. Electron. Mater. 47, 5582 (2018).

    Article  Google Scholar 

  10. X. Ouyang, P. Cao, S. Huang, W. Zhang, Z. Huang, and W. Gao, J. Electron. Mater. 44, 2243 (2015).

    Article  Google Scholar 

  11. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Loidi, Phys. Rev. B 66, 52105 (2002).

    Article  Google Scholar 

  12. T.B. Adams, D.C. Sinclair, and A.R. West, Phys. Rev. B 73, 094124 (2006).

    Article  Google Scholar 

  13. D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).

    Article  Google Scholar 

  14. Y. Li, W. Li, G. Du, and N. Chen, Ceram. Int. 43, 9178 (2017).

    Article  Google Scholar 

  15. X. Huang, H. Zhang, M. Wei, Y. Lai, and J. Li, J. Alloys Compd. 708, 1026 (2017).

    Article  Google Scholar 

  16. S. Rhouma, S. Saîd, C. Autret, S.D. Almeida-Didry, M.E. Amrani, and A. Megriche, J. Alloys Compd. 71, 121 (2017).

    Article  Google Scholar 

  17. D.Y. Lu, X.Y. Yu, and J.W. Liu, Ceram. Int. 43, 8664 (2017).

    Article  Google Scholar 

  18. Z. Xu, H. Qiang, and J. Sol-Gel, Sci. Technol. 77, 650 (2016).

    Google Scholar 

  19. S.D. Almeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, and F. Gervais, J. Eur. Ceram. Soc. 34, 3649 (2014).

    Article  Google Scholar 

  20. Z. Xu, H. Qiang, Y. Chen, and Z. Chen, Mater. Chem. Phys. 191, 1 (2017).

    Article  Google Scholar 

  21. L. Sun, Z. Wang, W.T. Hao, E.S. Cao, Y.J. Zhang, and H. Peng, J. Alloys Compd. 651, 283 (2015).

    Article  Google Scholar 

  22. Z. Xu and H. Qiang, J. Mater. Sci. Mater. Electron. 28, 376 (2017).

    Article  Google Scholar 

  23. M.V. Klein and S.P.S. Porto, Phys. Rev. Lett. 22, 782 (1969).

    Article  Google Scholar 

  24. T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).

    Article  Google Scholar 

  25. Z. Xu, H. Qiang, Z. Chen, and Y. Chen, J. Mater. Sci. Mater. Electron. 26, 578 (2015).

    Article  Google Scholar 

  26. D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunping Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, H., Xu, Z. Structure and Enhanced Dielectric Properties of B and Sr Modified CaCu3Ti4O12 Ceramics. J. Electron. Mater. 48, 6354–6358 (2019). https://doi.org/10.1007/s11664-019-07430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07430-0

Keywords

Navigation