Skip to main content
Log in

The Large and Tunable Nonlinear Absorption Response of Graphene Oxide Liquid Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we report on the tuning of the optical transmission properties of the graphene oxide liquid crystal. The proposed tuning method is obtained by irradiating the liquid crystal samples with 532-nm laser irradiation. For this purpose, liquid crystallinity of the graphene oxide is proved by the birefringence measurement method. Large nonlinear absorption has been observed from graphene oxide liquid crystals. Open-aperture Z-scan experiments revealed that the laser irradiation enhanced the nonlinear absorption coefficient by approximately five times in comparison with non-irradiated sample. UV–visible, Raman and Fourier transform infrared spectroscopy clearly demonstrate that graphene oxide liquid crystal is not modified by laser irradiation. This work opened up the method to control and amplify the absorption properties of graphene oxide liquid crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.R. Shah and N.L. Abbott, Science 293, 1296 (2001).

    Article  Google Scholar 

  2. I.-H. Lin, D.S. Miller, P.J. Bertics, C.J. Murphy, J.J. de Pablo, and N.L. Abbott, Science 332, 1297 (2011).

    Article  Google Scholar 

  3. M. Humar and I. Musevic, Opt. Express 19, 19836 (2011).

    Article  Google Scholar 

  4. A. Sengupta, U. Tkalec, and C. Bahr, Soft Matter 7, 6542 (2011).

    Article  Google Scholar 

  5. D. Psaltis, S.R. Quake, and C. Yang, Nature 442, 381 (2006).

    Article  Google Scholar 

  6. J.G. Cuennet, A.E. Vasdekis, L. De Sio, and D. Psaltis, Nat. Photonics 5, 234 (2011).

    Article  Google Scholar 

  7. D.K. Yang and S.T. Wu, Fundamentals of Liquid Crystal Devices (New York: Wiley, 2006).

    Book  Google Scholar 

  8. I.C. Khoo, Phys. Rep. 471, 221 (2009).

    Article  Google Scholar 

  9. Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T.-H. Lin, and I.C. Khoo, Opt. Express 24, 10458 (2016).

    Article  Google Scholar 

  10. A. Gowda, L. Jacob, N. Joy, R. Philip, R. Pratibha, and S. Kumar, New J. Chem. 42, 2047 (2018).

    Article  Google Scholar 

  11. X. Wang, Y. Mi, D. Wang, W. He, H. Cao, and H. Yang, Mol. Cryst. Liq. Cryst. 630, 1 (2016).

    Article  Google Scholar 

  12. W. Zhang, L. Zhang, X. Liang, L. Zhou, J. Xiao, L. Yu, F. Li, H. Cao, K. Li, Z. Yang, and H. Yang, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  13. B.T. Hogan, E. Kovalska, M.F. Craciun, and A. Baldycheva, J. Mater. Chem. C 5, 11185 (2017).

    Article  Google Scholar 

  14. V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W. Adams, R.H. Hauge, J.E. Fischer, Y. Cohen, Y. Talmon, R.E. Smalley, and M. Pasquali, Nat. Nanotechnol. 4, 830 (2009).

    Article  Google Scholar 

  15. L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, and R.E. Smalley, Science 305, 1447 (2004).

    Article  Google Scholar 

  16. L.-S. Li, J. Walda, L. Manna, and A.P. Alivisatos, Nano Lett. 2, 557 (2002).

    Article  Google Scholar 

  17. S. Gupta, Q. Zhang, T. Emrick, and T.P. Russell, Nano Lett. 6, 2066 (2006).

    Article  Google Scholar 

  18. I. Dierking and S. Al-Zangana, Nanomaterials 7, 305 (2017).

    Article  Google Scholar 

  19. Q.B. Zheng, Z.G. Li, J.H. Yang, and J.K. Kim, Prog. Mater. Sci. 64, 200 (2014).

    Article  Google Scholar 

  20. F. Lin, X. Tong, Y. Wang, J. Bao, and Z.M. Wang, Nanoscale Res. Lett. 10, 435 (2015).

    Article  Google Scholar 

  21. N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J.M. Tour, and M. Pasquali, Nat. Nanotechnol. 5, 406 (2010).

    Article  Google Scholar 

  22. J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn, J.M. Yun, and S.O. Kim, Angew. Chem. Int. Ed. Engl. 50, 3043 (2011).

    Article  Google Scholar 

  23. Z. Xu and C. Gao, ACS Nano 5, 2908 (2011).

    Article  Google Scholar 

  24. L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, Nanoscale 7, 1616 (2015).

    Article  Google Scholar 

  25. R.T.M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, J. Nanosci. Nanotechnol. 16, 11364 (2016).

    Article  Google Scholar 

  26. J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, and W.J. Blau, Adv. Mater. 21, 2430 (2009).

    Article  Google Scholar 

  27. M.B.M. Krishna, N. Venkatramaiah, R. Venkatesan, and D.N. Rao, J. Mater. Chem. 22, 3059 (2012).

    Article  Google Scholar 

  28. X.F. Jiang, L. Polavarapu, S.T. Neo, T. Venkatesan, and Q.H. Xu, J. Phys. Chem. Lett. 3, 785 (2012).

    Article  Google Scholar 

  29. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, J. Phys. Chem. C 117, 6842 (2013).

    Article  Google Scholar 

  30. N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K.S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, Nanoscale 8, 2908 (2016).

    Article  Google Scholar 

  31. H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, and P. Kockaert, Opt. Lett. 37, 1856 (2012).

    Article  Google Scholar 

  32. A.B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zboril, Chem. Phys. Lett. 543, 101 (2012).

    Article  Google Scholar 

  33. X.L. Zhang, Z.B. Liu, X. Li, Q. Ma, X. Chen, J. Tian, Y. Xu, and Y. Chen, Opt. Express 21, 7511 (2013).

    Article  Google Scholar 

  34. J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Langmuir 24, 10560 (2008).

    Article  Google Scholar 

  35. R. Karimzadeh and A. Arandian, Laser Phys. Lett. 12, 025401 (2015).

    Article  Google Scholar 

  36. M. Jahanbakhshian, M. Yadi, S. Adami, and R. Karimzadeh, J. Mater. Sci. Mater. Electron. 28, 13888 (2017).

    Article  Google Scholar 

  37. M. Yadi, R. Karimzadeh, and A. Abbasi, J. Mater. Sci. 52, 4532 (2017).

    Article  Google Scholar 

  38. G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).

    Article  Google Scholar 

  39. S. Sahoo, G. Khurana, S.K. Barik, S. Dussan, D. Barrionuevo, and R.S. Katiyar, J. Phys. Chem. C 117, 5485 (2013).

    Article  Google Scholar 

  40. K. Krishnamoorthy, M. Veerapandian, R. Mohan, and S.-J. Kim, Appl. Phys. A 106, 501 (2012).

    Article  Google Scholar 

  41. L.M. Malarda, M.A. Pimentaa, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rep. 473, 51 (2009).

    Article  Google Scholar 

  42. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 1 (2009).

    Article  Google Scholar 

  43. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  Google Scholar 

  44. P.B. Capple, J. Staromlynska, J.A. Hermann, and T.J. Mckay, J. Nonlinear Opt. Phys. Mater. 6, 251 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Karimzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 24391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changaei, S., Zamir-Anvari, J., Heydari, NS. et al. The Large and Tunable Nonlinear Absorption Response of Graphene Oxide Liquid Crystals. J. Electron. Mater. 48, 6216–6221 (2019). https://doi.org/10.1007/s11664-019-07420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07420-2

Keywords

Navigation