Skip to main content
Log in

Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A formulation of the Taylor expansion with symmetric polynomial algebra allows to compute the coefficients of compact finite difference schemes, which solve the Poisson equation at an arbitrary order of accuracy on a uniform Cartesian grid in arbitrary dimensions. This construction produces original high order schemes which respect the Discrete Maximum Principle: a tenth order scheme in dimension three and several sixth order schemes in arbitrary dimension. Numerical experiments validate the accuracy of these schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albrecht, J.: Taylors-Entwicklungen und finite Ausdrücke für \(\varDelta \)u und \(\varDelta \varDelta \)u. Z. Angew. Math. Mech. 33, 48 (1953)

    Article  MathSciNet  Google Scholar 

  2. Bilbao, S., Hamilton, B.: Higher-order accurate two-step finite difference schemes for the many-dimensional wave equation. J. Comput. Phys. 367, 134–165 (2018)

    Article  MathSciNet  Google Scholar 

  3. Collatz, L.: The Numerical Treatment of Differential Equations, p. 584. Springer, Berlin (1966)

    Google Scholar 

  4. Del Sarto, D., Deriaz, E.: A multigrid AMR algorithm for the study of magnetic reconnection. J. Comput. Phys. 351, 511–533 (2017)

    Article  MathSciNet  Google Scholar 

  5. Genovese, L., Deutsch, T., Goedecker, S.: Efficient and accurate three-dimensional Poisson solver for surface problems. J. Chem. Phys. 127, 054704 (2007)

    Article  Google Scholar 

  6. Greengard, L., Lee, J.-Y.: A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy. J. Comput. Phys. 125(2), 415–424 (1996)

    Article  MathSciNet  Google Scholar 

  7. Hackbusch, W.: Multi-grid Methods and Applications, p. 378. Springer, Berlin (1985). book

    Book  Google Scholar 

  8. Hejlesen, M.M., Rasmussen, J.T., Chatelain, P., Walther, J.H.: A high order solver for the unbounded Poisson equation. J. Comput. Phys. 252, 458–467 (2013)

    Article  MathSciNet  Google Scholar 

  9. Heisig, M.: Efficient generation of Mehrstellenverfahren for elliptic PDEs. Lehrstuhl für Informatik 10 (Systemsimulation), Friedrich-Alexander-Universität Erlangen-Nürnberg Technische Fakultät (2013)

  10. Hosseinverdi, S., Fasel, H.F.: An efficient, high-order method for solving Poisson equation for immersed boundaries: combination of compact difference and multiscale multigrid methods. J. Comput. Phys. 374, 912–940 (2018)

    Article  MathSciNet  Google Scholar 

  11. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, p. 393. Cambridge University Press, Cambridge (1996). book

    Google Scholar 

  12. Lang, S.: Algebra, 3rd edn, p. 914. Springer, Berlin (2002). book

    Book  Google Scholar 

  13. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  14. Lui, S.H.: Numerical Analysis of Partial Differential Equations, p. 508. Wiley, Hoboken (2011). book

    Book  Google Scholar 

  15. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn, p. 488. Oxford University Press, Oxford (1995). book

    MATH  Google Scholar 

  16. McKenney, A., Greengard, L., Mayo, A.: A fast Poisson solver for complex geometries. J. Comput. Phys. 118(2), 348–355 (1995)

    Article  MathSciNet  Google Scholar 

  17. Samarskii, A.A.: The Theory of Difference Schemes, p. 761. CRC Press, Boca Raton (2001). book

    Book  Google Scholar 

  18. Schaffer, S.: Higher order multi-grid methods. Math. Comput. 43(167), 89–115 (1984)

    MATH  Google Scholar 

  19. Spotz, W.F., Carey, G.F.: High-order compact finite difference methods. In: book, Proceedings of ICOSAM’95, 397–408 (1995)

  20. Stanley, R.P.: Enumerative Combinatorics, vol. 2, p. 595. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  21. Sutmann, G.: Compact finite difference schemes of sixth order for the Helmholtz equation. J. Comput. Appl. Math. 203(1), 15–31 (2007)

    Article  MathSciNet  Google Scholar 

  22. Yserentant, H.: Die Mehrstellenformeln für den Laplaceoperator. Numer. Math. 34(2), 171–187 (1980)

    Article  MathSciNet  Google Scholar 

  23. Zhang, J.: Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization. J. Comput. Phys. 179, 170–179 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and referees for their valuable comments and suggestions which helped to improve the clarity of this manuscript and to enhance its results. He is also grateful to Jean-Pierre Croisille for informative discussions and for his help in provi ding a rich bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Deriaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deriaz, E. Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions. Bit Numer Math 60, 199–233 (2020). https://doi.org/10.1007/s10543-019-00772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00772-5

Keywords

Mathematics Subject Classification

Navigation