Skip to main content
Log in

Merged Volume Rendered Flat-panel Computed Tomography for Postoperative Cochlear Implant Assessment

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of a new postprocessing method for postoperative control of cochlear implants (CI) based on a single flat detector computed tomography (FD-CT) run and volume rendering of 3D models of the inner ear.

Methods

The FD-CT datasets of CIs were selected and postprocessed to generate both standard multiplanar reconstructions (MPR) and merged volume-rendered 3D datasets (MRD) of the CIs. The MRDs consisted of two different reconstructions (bone/implant) that are automatically layered to avoid manual coregistration inaccuracy. Corresponding datasets were evaluated in consensus reading in terms of qualitative (integrity, position, configuration) and quantitative (insertion depth angle) CI parameters.

Results

In total 20 FD-CTs with 20 CIs were successfully postprocessed. Qualitative evaluation of MPR and MRD demonstrated complete congruency (integrity: narray integrity = 20; position: nscala tympani = 13, nscalar translocation = 7; configuration: nharmonic spiralization = 16, ntip fold over = 3, nlooped implant = 1). Adverse intracochlear implant spiralization was identified in all 10 cases with MRD and MPR. Measurement of the insertion depth angle in MRD was equivalent to that in MPR (r = 0.99; P = <0.0001).

Conclusion

The use of MRD is a helpful method for precise postoperative CI assessment and provides easy detection of incorrect intracochlear spiralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. NIDCD. Cochlear Implants. 2016. https://www.nidcd.nih.gov/health/cochlear-implants. Accessed 17 Feb 2019.

    Google Scholar 

  2. Lin K, Marrinan MS, Waltzman SB, Roland JT Jr. Multichannel cochlear implantation in the scala vestibuli. Otol Neurotol. 2006;27:634–8.

    Article  PubMed  Google Scholar 

  3. Kiefer J, Weber A, Pfennigdorff T, von Ilberg C. Scala vestibuli insertion in cochlear implantation: a valuable alternative for cases with obstructed scala tympani. ORL J Otorhinolaryngol Relat Spec. 2000;62:251–6.

    Article  CAS  PubMed  Google Scholar 

  4. O’Connell BP, Hunter JB, Wanna GB. The importance of electrode location in cochlear implantation. Laryngoscope Investig Otolaryngol. 2016;1:169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee J, Nadol JB Jr, Eddington DK. Depth of electrode insertion and postoperative performance in humans with cochlear implants: a histopathologic study. Audiol Neurootol. 2010;15:323–31.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aschendorff A. Imaging in cochlear implant patients. GMS current topics in otorhinolaryngology Head Neck Surg. 2012;10:Doc7.

    Google Scholar 

  7. Dörfler A, Struffert T, Engelhorn T, Richter G. Rotational flat-panel computed tomography in diagnostic and interventional neuroradiology. Rofo. 2008;180:891–8.

    Article  PubMed  Google Scholar 

  8. Struffert T, Hertel V, Kyriakou Y, Krause J, Engelhorn T, Schick B, Iro H, Hornung J, Doerfler A. Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol. 2010;130:443–52.

    Article  PubMed  Google Scholar 

  9. Arweiler-Harbeck D, Mönninghoff C, Greve J, Hoffmann T, Göricke S, Arnolds J, Theysohn N, Gollner U, Lang S, Forsting M, Schlamann M. Imaging of electrode position after cochlear implantation with flat panel CT. ISRN Otolaryngol. 2012;2012:728205.

    PubMed  PubMed Central  Google Scholar 

  10. Struffert T, Hauer M, Banckwitz R, Köhler C, Royalty K, Doerfler A. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology. Eur Radiol. 2014;24:1257–65.

    Article  PubMed  Google Scholar 

  11. Teymouri J, Hullar TE, Holden TA, Chole RA. Verification of computed tomographic estimates of cochlear implant array position. Otol Neurotol. 2011;32:980–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Postnov A, Zarowski A, De Clerck N, Vanpoucke F, Offeciers FE, Van Dyck D, Peeters S. High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes. Acta Otolaryngol. 2006;126:467–74.

    Article  CAS  PubMed  Google Scholar 

  13. Verbist BM, Frijns JH, Geleijns J, van Buchem MA. Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. AJNR Am J Neuroradiol. 2005;26:424–9.

    PubMed  PubMed Central  Google Scholar 

  14. Kong WJ, Cheng HM, Ma H, Wang YJ, Han P. Evaluation of the implanted cochlear implant electrode by CT scanning with three-dimensional reconstruction. Acta Otolaryngol. 2012;132:116–22.

    Article  PubMed  Google Scholar 

  15. Dees G, van Hoof M, Stokroos R. A proposed method for accurate 3D analysis of cochlear implant migration using fusion of cone beam CT. Front Surg. 2016;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dietz A, Gazibegovic D, Tervaniemi J, Vartiainen VM, Löppönen H. Insertion characteristics and placement of the Mid-Scala electrode array in human temporal bones using detailed cone beam computed tomography. Eur Arch Otorhinolaryngol. 2016;273:4135–43.

    Article  PubMed  Google Scholar 

  17. Dietz A, Iso-Mustajärvi M, Sipari S, Tervaniemi J, Gazibegovic D. Evaluation of a new slim lateral wall electrode for cochlear implantation: an imaging study in human temporal bones. Eur Arch Otorhinolaryngol. 2018;275:1723–9.

    Article  PubMed  Google Scholar 

  18. Hinkmann FM, Voit HL, Anders K, Baum U, Seidensticker P, Bautz WA, Lell MM. Ultra-fast carotid CT-angiography: low versus standard volume contrast material protocol for a 128-slice CT-system. Investigative Radiology. 2009;44:257–64.

    Article  PubMed  Google Scholar 

  19. Zeitler DM, Wang KH, Prasad RS, Wang EY, Roland JT. Flat-panel computed tomography versus multislice computed tomography to evaluate cochlear implant positioning. Cochlear Implants International. 2011;12:216–22.

    Article  PubMed  Google Scholar 

  20. Kennedy TA, Connell N, Szczykutowicz T, Schafer S, Royalty K, Nace S, Gartrell B, Gubbels S. Flat-panel CT for cochlear implant electrode imaging: comparison to multi-detector CT. Otol Neurotol. 2016;37:1646–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Eisenhut.

Ethics declarations

Conflict of interest

F. Eisenhut, S. Lang, L. Taha, A. Doerfler, H. Iro and J. Hornung declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisenhut, F., Lang, S., Taha, L. et al. Merged Volume Rendered Flat-panel Computed Tomography for Postoperative Cochlear Implant Assessment. Clin Neuroradiol 30, 721–728 (2020). https://doi.org/10.1007/s00062-019-00832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00832-x

Keywords

Navigation