Skip to main content
Log in

Ideal Hyperbolic Polyhedra and Discrete Uniformization

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We provide a constructive, variational proof of Rivin’s realization theorem for ideal hyperbolic polyhedra with prescribed intrinsic metric, which is equivalent to a discrete uniformization theorem for spheres. The same variational method is also used to prove a discrete uniformization theorem of Gu et al. and a corresponding polyhedral realization result of Fillastre. The variational principles involve twice continuously differentiable functions on the decorated Teichmüller spaces \(\widetilde{\mathscr {T}}_{g,n}\) of punctured surfaces, which are analytic in each Penner cell, convex on each fiber over \(\mathscr {T}_{g,n}\), and invariant under the action of the mapping class group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akiyoshi, H.: Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein–Penner’s method. Proc. Am. Math. Soc. 129(8), 2431–2439 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, A.D.: Convex Polyhedra. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  3. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Hackensack (2013)

    Book  MATH  Google Scholar 

  4. Bao, X., Bonahon, F.: Hyperideal polyhedra in hyperbolic 3-space. Bull. Soc. Math. France 130(3), 457–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobenko, A.I., Izmestiev, I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier (Grenoble) 58(2), 447–505 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko, A.I., Dimitrov, N., Sechelmann, S.: Discrete uniformization of polyhedral surfaces with non-positive curvature and branched covers over the sphere via hyper-ideal circle patterns. Discrete Comput. Geom. 57(2), 431–469 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobenko, A.I., Pinkall, U., Springborn, B.A.: Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19(4), 2155–2215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobenko, A.I., Sechelmann, S., Springborn, B.: Discrete conformal maps: boundary value problems, circle domains, Fuchsian and Schottky uniformization. In: Bobenko, A.I. (ed.) Advances in Discrete Differential Geometry, pp. 1–56. Springer, Berlin (2016)

    Chapter  MATH  Google Scholar 

  9. Bobenko, A.I., Springborn, B.A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38(4), 740–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bowers, J.C., Bowers, P.L., Pratt, K.: Rigidity of circle polyhedra in the 2-sphere and of hyperideal polyhedra in hyperbolic 3-space. Trans. Am. Math. Soc. 371(6), 4215–4249 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duffin, R.J.: Distributed and lumped networks. J. Math. Mech. 8, 793–826 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Monographs on Applied and Computational Mathematics, vol. 7. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  13. Epstein, D.B.A., Penner, R.C.: Euclidean decompositions of noncompact hyperbolic manifolds. J. Differ. Geom. 27(1), 67–80 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fillastre, F.: Polyhedral hyperbolic metrics on surfaces. Geom. Dedicata 134, 177–196 (2008). Erratum 138, 193–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fillastre, F., Izmestiev, I.: Hyperbolic cusps with convex polyhedral boundary. Geom. Topol. 13(1), 457–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fortune, S.: Numerical stability of algorithms for 2D Delaunay triangulations. Int. J. Comput. Geom. Appl. 5(1–2), 193–213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, X., Guo, R., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces II. J. Differ. Geom. 109(3), 431–466 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, X.D., Luo, F., Sun, J., Wu, T.: A discrete uniformization theorem for polyhedral surfaces. J. Differ. Geom. 109(2), 223–256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Indermitte, C., Liebling, T.M., Troyanov, M., Clémençon, H.: Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theoret. Comput. Sci. 263(1–2), 263–274 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Izmestiev, I.: A variational proof of Alexandrov’s convex cap theorem. Discrete Comput. Geom. 40(4), 561–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joswig, M., Löwe, R., Springborn, B.: Secondary fans and secondary polyhedra of punctured Riemann surfaces. Exp. Math. (2019). https://doi.org/10.1080/10586458.2018.1477078

  22. Luo, F.: Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Masur, H., Smillie, J.: Hausdorff dimension of sets of nonergodic measured foliations. Ann. Math. 134(3), 455–543 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milnor, J.: Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. (N.S.) 6(1), 9–24 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moroianu, S., Schlenker, J.-M.: Quasi-Fuchsian manifolds with particles. J. Differ. Geom. 83(1), 75–129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113(2), 299–339 (1987)

    Article  MATH  Google Scholar 

  27. Penner, R.C.: Decorated Teichmüller Theory. QGM Master Class Series. European Mathematical Society (EMS), Zürich (2012)

    Book  Google Scholar 

  28. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prosanov, R.: Ideal polyhedral surfaces in Fuchsian manifolds. arXiv:1804.05893 (2018)

  30. Rippa, S.: Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom. Des. 7(6), 489–497 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rivin, I.: Intrinsic geometry of convex ideal polyhedra in hyperbolic \(3\)-space. In: Gyllenberg, M., Persson, L.-E. (eds.) Analysis, Algebra, and Computers in Mathematical Research. Lecture Notes in Pure and Appl. Math., vol. 156, pp. 275–291. Dekker, New York (1994)

    Google Scholar 

  32. Sakuma, M., Weeks, J.R.: The generalized tilt formula. Geom. Dedicata 55(2), 115–123 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schlenker, J.-M.: Hyperbolic manifolds with polyhedral boundary. arXiv:math/0111136 (2001)

  34. Schlenker, J.-M.: A rigidity criterion for non-convex polyhedra. Discrete Comput. Geom. 33(2), 207–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Springborn, B.A.: A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differ. Geom. 78(2), 333–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In: Rivin, I., Rourke, C., Series, C. (eds.) The Epstein Birthday Schrift. Geometry & Topology Monographs, vol. 1, pp. 511–549. Geometry & Topology Publications, Coventry (1998)

    Chapter  Google Scholar 

  37. Tillmann, S., Wong, S.: An algorithm for the Euclidean cell decomposition of a cusped strictly convex projective surface. J. Comput. Geom. 7(1), 237–255 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Weeks, J.R.: Convex hulls and isometries of cusped hyperbolic \(3\)-manifolds. Topology Appl. 52(2), 127–149 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by DFG SFB/Transregio 109 “Discretization in Geometry and Dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Springborn.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Springborn, B. Ideal Hyperbolic Polyhedra and Discrete Uniformization. Discrete Comput Geom 64, 63–108 (2020). https://doi.org/10.1007/s00454-019-00132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00132-8

Keywords

Mathematics Subject Classification

Navigation