Skip to main content
Log in

Gauss–Bonnet holographic superconductors in exponential nonlinear electrodynamics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The low-energy limits of the string theory lead to the higher-order curvature corrections for Einstein gravity. Also, they give the higher-order derivative corrections for the Maxwell or linear electrodynamics, which suggests the nonlinear electrodynamics. Inspired by this, in this paper we investigate d-dimensional holographic superconductors in the probe limit in the framework of Einstein–Gauss–Bonnet gravity and exponential nonlinear electrodynamics. Based on the Sturm–Liouville eigenvalue method, we compute the critical temperature, the condensation value, and the critical exponent. It is observed that the critical temperature decreases when the Gauss–Bonnet (GB) parameter or the nonlinear parameter increases, but it increases with the higher dimension of the spacetime at the efficiently low charge density. In addition, we found that the condensation value becomes larger as increasing the GB parameter, the nonlinear parameter as well as the spacetime dimension. Finally, we calculate the optical conductivity and study the effects of the GB term and exponential nonlinear electrodynamics on superconducting energy gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The GB term appears in the heterotic string theory at which \(\alpha \) is regarded as the inverse string tension [55, 59]. Thus, in this paper only the case \(\alpha \ge 0\) is considered.

References

  1. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    ADS  MathSciNet  Google Scholar 

  2. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998)

    ADS  MathSciNet  Google Scholar 

  3. Witten, E.: Adv. Theor. Math. Phys. 2, 253 (1998)

    ADS  MathSciNet  Google Scholar 

  4. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Phys. Lett. B 428, 105 (1998)

    ADS  MathSciNet  Google Scholar 

  5. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Phys. Rep. 323, 183 (2000)

    ADS  MathSciNet  Google Scholar 

  6. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Phys. Rev. Lett. 101, 031601 (2008)

    ADS  Google Scholar 

  7. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: J. High Energy Phys. 0812, 015 (2008)

    ADS  Google Scholar 

  8. Gubser, S.S.: Class. Quantum Gravity 22, 5121 (2005)

    ADS  Google Scholar 

  9. Gubser, S.S.: Phys. Rev. D 78, 065034 (2008)

    ADS  Google Scholar 

  10. Horowitz, G.T., Roberts, M.M.: Phys. Rev. D 78, 126008 (2008)

    ADS  Google Scholar 

  11. Franco, S., Garcia-Garcia, A., Rodriguez-Gomez, D.: J. High Energy Phys. 04, 092 (2010)

    ADS  Google Scholar 

  12. Siopsis, G., Therrien, J.: J. High Energy Phys. 05, 013 (2010)

    ADS  Google Scholar 

  13. Ge, X.-H., Wang, B., Wu, S.-F., Yang, G.-H.: J. High Energy Phys. 08, 108 (2010)

    ADS  Google Scholar 

  14. Chen, C.-M., Wu, M.-F.: Prog. Theor. Phys. 126, 387 (2011)

    ADS  Google Scholar 

  15. Zeng, H.-B., Gao, X., Jiang, Y., Zong, H.-S.: J. High Energy Phys. 1105, 002 (2011)

    ADS  Google Scholar 

  16. Cai, R.-G., Li, H.-F., Zhang, H.-Q.: Phys. Rev. D 83, 126007 (2011)

    ADS  Google Scholar 

  17. Cai, R.-G., Li, L., Li, L.-F., Yang, R.-Q.: Sci. China Phys. Mech. Astron. 58, 060401 (2015)

    Google Scholar 

  18. Amoretti, A., Braggio, A., Maggiore, N., Magnoli, N., Musso, D.: J. High Energy Phys. 1401, 054 (2014)

    ADS  Google Scholar 

  19. Nakonieczny, Ł., Rogatko, M.: Phys. Rev. D 90, 106004 (2014)

    ADS  Google Scholar 

  20. Nakonieczny, Ł., Rogatko, M., Wysokinski, K.I.: Phys. Rev. D 91, 046007 (2015)

    ADS  Google Scholar 

  21. Nakonieczny, Ł., Rogatko, M., Wysokinski, K.I.: Phys. Rev. D 92, 066008 (2015)

    ADS  Google Scholar 

  22. Peng, Y., Pan, Q., Liu, Y.: Nucl. Phys. B 915, 69 (2017)

    ADS  Google Scholar 

  23. Natsuume, M.: Phys. Rev. D 50, 3949 (1994)

    ADS  MathSciNet  Google Scholar 

  24. Kats, Y., Motl, L., Padi, M.: J. High Energy Phys. 0712, 068 (2007)

    ADS  Google Scholar 

  25. Cai, R.-G., Nie, Z.-Y., Sun, Y.-W.: Phys. Rev. D 78, 126007 (2008)

    ADS  Google Scholar 

  26. Liu, J.T., Szepietowski, P.: Phys. Rev. D 79, 084042 (2009)

    ADS  MathSciNet  Google Scholar 

  27. Anninos, D., Pastras, G.: J. High Energy Phys. 0907, 030 (2009)

    ADS  Google Scholar 

  28. Ritz, A., Delbourgo, R.: Int. J. Mod. Phys. A 11, 253 (1996)

    ADS  Google Scholar 

  29. Jing, J., Pan, Q., Chen, S.: J. High Energy Phys. 11, 045 (2011)

    ADS  Google Scholar 

  30. Gangopadhyay, S., Roychowdhury, D.: J. High Energy Phys. 05, 156 (2012)

    ADS  Google Scholar 

  31. Roychowdhury, D.: Phys. Rev. D 86, 106009 (2012)

    ADS  Google Scholar 

  32. Zhao, Z., Pan, Q., Chen, S., Jing, J.: Nucl. Phys. B 871, 98 (2013)

    ADS  Google Scholar 

  33. Banerjee, R., Gangopadhyay, S., Roychowdhury, D., Lala, A.: Phys. Rev. D 87, 104001 (2013)

    ADS  Google Scholar 

  34. Lai, C., Pan, Q., Jing, J., Wang, Y.: Phys. Lett. B 749, 437 (2015)

    ADS  Google Scholar 

  35. Sheykhi, A., Shaker, F.: Phys. Lett. B 754, 281 (2016)

    ADS  Google Scholar 

  36. Ghorai, D., Gangopadhyay, S.: Eur. Phys. J. C 76, 146 (2016)

    ADS  Google Scholar 

  37. Jing, J., Jiang, L., Pan, Q.: Class. Quant. Grav. 33, 025001 (2016)

    ADS  Google Scholar 

  38. Sheykhi, A., Salahi, H.R., Montakhab, A.: J. High Energy Phys. 04, 058 (2016)

    ADS  Google Scholar 

  39. Liu, Y., Gong, Y., Wang, B.: J. High Energy Phys. 02, 116 (2016)

    ADS  Google Scholar 

  40. Sheykhi, A., Ghazanfari, A., Dehyadegari, A.: Eur. Phys. J. C 78, 159 (2018)

    ADS  Google Scholar 

  41. Sheykhi, A., Asl, D.H., Dehyadegari, A.: Phys. Lett. B 781, 139 (2018)

    ADS  MathSciNet  Google Scholar 

  42. Boillat, G.: J. Math. Phys. 11, 941 (1970)

    ADS  Google Scholar 

  43. Boillat, G.: J. Math. Phys. 11, 1482 (1970)

    ADS  Google Scholar 

  44. Gibbons, G.W., Rasheed, D.A.: Nucl. Phys. B 454, 185 (1995)

    ADS  Google Scholar 

  45. Hendi, S.H.: J. High Energy Phys. 03, 065 (2012)

    ADS  Google Scholar 

  46. Hendi, S.H.: Ann. Phys. 333, 282 (2013)

    ADS  Google Scholar 

  47. Hendi, S.H.: Ann. Phys. 346, 42 (2014)

    ADS  Google Scholar 

  48. Sheykhi, A., Kazemi, A.: Phys. Rev. D 90, 044028 (2014)

    ADS  Google Scholar 

  49. Hendi, S.H., Sheykhi, A., Rad, M.S., Matsuno, K.: Gen. Relativ. Gravit. 47, 117 (2015)

    ADS  Google Scholar 

  50. Kruglov, S.I.: Europhys. Lett. 115, 60006 (2016)

    ADS  Google Scholar 

  51. Kruglov, S.I.: Ann. Phys. 378, 59 (2017)

    ADS  Google Scholar 

  52. Hajkhalili, S., Sheykhi, A.: Int. J. Mod. Phys. D 27, 1850075 (2018)

    ADS  Google Scholar 

  53. Zwiebach, B.: Phys. Lett. B 156, 315 (1985)

    ADS  Google Scholar 

  54. Gross, D.J., Witten, E.: Nucl. Phys. B 277, 1 (1986)

    ADS  Google Scholar 

  55. Gross, D.J., Sloan, J.H.: Nucl. Phys. B 291, 41 (1987)

    ADS  Google Scholar 

  56. Metsaev, R.R., Tseytlin, A.A.: Phys. Lett. B 185, 52 (1987)

    ADS  MathSciNet  Google Scholar 

  57. Metsaev, R.R., Tseytlin, A.A.: Phys. Lett. B 191, 354 (1987)

    ADS  Google Scholar 

  58. Metsaev, R.R., Tseytlin, A.A.: Nucl. Phys. B 293, 385 (1987)

    ADS  Google Scholar 

  59. Bento, M.C., Bertolami, O.: Phys. Lett. B 368, 198 (1996)

    ADS  MathSciNet  Google Scholar 

  60. Gregory, R., Kanno, S., Soda, J.: J. High Energy Phys. 0910, 010 (2009)

    ADS  Google Scholar 

  61. Pan, Q., Wang, B., Papantonopoulos, E., Oliveira, J., Pavan, A.B.: Phys. Rev. D 81, 106007 (2010)

    ADS  Google Scholar 

  62. Pan, Q., Wang, B.: Phys. Lett. B 693, 159 (2010)

    ADS  Google Scholar 

  63. Barclay, L., Gregory, R., Kanno, S., Sutcliffe, P.: J. High Energy Phys. 1012, 029 (2010)

    ADS  Google Scholar 

  64. Cai, R.-G., Nie, Z.-Y., Zhang, H.-Q.: Phys. Rev. D 82, 066007 (2010)

    ADS  Google Scholar 

  65. Li, H.-F., Cai, R.-G., Zhang, H.-Q.: J. High Energy Phys. 04, 028 (2011)

    ADS  Google Scholar 

  66. Barclay, L., Gregory, R., Kanno, S., Sutcliffe, P.: J. High Energy Phys. 1012, 029 (2010)

    ADS  Google Scholar 

  67. Kanno, S.: Class. Quant. Grav. 28, 127001 (2011)

    ADS  Google Scholar 

  68. Jing, J., Wang, L., Pan, Q., Chen, S.: Phys. Rev. D 83, 066010 (2011)

    ADS  Google Scholar 

  69. Cai, R.-G., Nie, Z.-Y., Zhang, H.-Q.: Phys. Rev. D 83, 066013 (2011)

    ADS  Google Scholar 

  70. Barclay, L.: J. High Energy Phys. 10, 044 (2011)

    ADS  Google Scholar 

  71. Pan, Q., Jing, J., Wang, B.: J. High Energy Phys. 11, 088 (2011)

    ADS  Google Scholar 

  72. Jing, J., Pan, Q., Chen, S.: Phys. Lett. B 716, 385 (2012)

    ADS  Google Scholar 

  73. Cai, R.-G., Li, L., Li, L.-F., Zhang, H.-Q., Zhang, Y.-L.: Phys. Rev. D 87, 026002 (2013)

    ADS  Google Scholar 

  74. Cui, S.-L., Xue, Z.: Phys. Rev. D 88, 107501 (2013)

    ADS  Google Scholar 

  75. Yao, W., Jing, J.: J. High Energy Phys. 05, 101 (2013)

    ADS  Google Scholar 

  76. Cai, R.-G., Li, L., Li, L.-F.: J. High Energy Phys. 1401, 032 (2014)

    ADS  Google Scholar 

  77. Dey, S., Lala, A.: Ann. Phys. 354, 165 (2014)

    ADS  Google Scholar 

  78. Parai, D., Gangopadhyay, S., Ghorai, D.: Ann. Phys. 403, 59 (2019)

    ADS  Google Scholar 

  79. Nam, C., H.: High Ener. Phys. Theor. arXiv:1908.05031

  80. Cai, R.-G.: Phys. Rev. D 65, 084014 (2002)

    ADS  MathSciNet  Google Scholar 

  81. Breitenlohner, P., Freedman, D.Z.: Ann. Phys. 144, 249 (1982)

    ADS  Google Scholar 

  82. Breitenlohner, P., Freedman, D.Z.: Phys. Lett. B 115, 197 (1982)

    ADS  MathSciNet  Google Scholar 

  83. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  84. Skenderis, K.: Class. Quantum Gravity 19, 5849 (2002)

    Google Scholar 

  85. Barclay, L., Gregory, R., Kanno, S., Sutcliffe, P.: J. High Energy Phys. 12, 29 (2010)

    ADS  Google Scholar 

  86. Sun, J.R., Wu, S.Y., Zhang, H.Q.: Phys. Rev. D 87, 086005 (2013)

    ADS  Google Scholar 

  87. Tong, D.: Lectures on holographic conductivity. Presented at Cracow School of Theoretical Physics (2013)

Download references

Acknowledgements

We would like to express sincere gratitude to the referees for their constructive comments and suggestions which have helped us to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao H. Nam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, C.H. Gauss–Bonnet holographic superconductors in exponential nonlinear electrodynamics. Gen Relativ Gravit 51, 104 (2019). https://doi.org/10.1007/s10714-019-2589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2589-z

Keywords

Navigation