Skip to main content
Log in

Conceptual hydrological approach to a geologically complex basin with scarce data: the Hula Valley, Middle East

Approche hydrologique conceptuelle d’un bassin géologiquement complexe aux données peu abondantes: Vallée de Hula, Middle East

Enfoque hidrológico conceptual de una cuenca geológicamente compleja con escasos datos: el Valle del Hula, Oriente Medio

稀缺数据的复杂地质盆地的概念性水文方法:以中东胡拉谷为例

Abordagem hidrológica conceitual de uma bacia geologicamente complexa com dados escassos: o Vale do Hula, no Oriente Médio

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Hula Valley in the Middle East is a cross-border hydrogeological system. A highly complex hydrogeological framework and the absence of production or even observation wells poses difficulties in modeling this hydrogeological basin. Various tools were used to overcome the scarcity of data and the hydrogeological complexity to create a reliable conceptual hydrological model. The isotopic δ18O ratio was used to distinguish between two hydrogeological units in the alluvium fill of the valley, which are recharged from the different regional and local aquifers surrounding it. Abundant gas boreholes that discharge a mixture of natural gas and groundwater were equipped, measured and sampled to obtain valuable hydrological data such as hydraulic head and transmissivity of the hydrogeological units in the valley. These findings were integrated with geological analyses of the subsurface flow domain to construct the first conceptual hydrological model of the unclear Hula Valley groundwater flow system. The described methodology to overcome lack of hydrogeological data might be relevant to complex hydrogeological basins worldwide with scarce hydrological information.

Résumé

La Vallée de Hula dans le Middle East est un système hydrogéologique transfrontalier. Une structure hydrogéologique extrêmement complexe et l’absence de puits de production ou même d’observation posent des difficultés pour la modélisation de ce bassin hydrogéologique. Différents outil ont été mis en oeuvre pour pallier la rareté des données et la complexité hydrogéologique afin de créer un modèle hydrologique conceptuel fiable. Le rapport isotopique δ18O a été utilisé pour distinguer entre deux unités hydrogéologiques du remplissage alluvial de la vallée qui sont alimentés par les différents aquifères régionaux et locaux qui l’entourent. Des forages de gaz abondants, qui débitent un mélange de gaz naturel et d’eau souterraine ont été équipés, mesurés et échantillonnés pour acquérir des données hydrologiques précieuses, telles la charge hydraulique et la transmissivité des unités hydrogéologiques de la vallée. Ces résultats ont été intégrés aux analyses géologiques du domaine de l’écoulement de sub-surface pour construire le premier modèle hydrologique conceptuel du système d’écoulement souterrain mal défini de la Vallée de Hula. La méthodologie décrite pour surmonter le manque de données hydrogéologiques pourrait être pertinente pour les bassins hydrogéologiques complexes du monde où l’information hydrologique est peu abondante.

Resumen

El Valle del Hula en el Oriente Medio es un sistema hidrogeológico transfronterizo. Un marco hidrogeológico muy complejo y la ausencia de pozos de producción o incluso de observación plantean dificultades para el modelado de esta cuenca hidrogeológica. Se utilizaron diversas herramientas para superar la escasez de datos y la complejidad hidrogeológica a fin de crear un modelo hidrológico conceptual confiable. La relación isotópica de δ18O se utilizó para distinguir entre dos unidades hidrogeológicas en el relleno aluvial del valle, que se recargan de los diferentes acuíferos regionales y locales que lo rodean. Abundantes pozos de gas que descargan una mezcla de gas natural y agua subterránea fueron equipados, medidos y muestreados para obtener datos hidrológicos valiosos, tales como la carga hidráulica y la transmisividad de las unidades hidrogeológicas en el valle. Estos hallazgos se integraron con análisis geológicos del dominio de los flujos subsuperficiales para construir el primer modelo hidrológico conceptual del poco claro sistema de flujo de agua subterránea del Valle de Hula. La metodología descripta para superar la falta de datos hidrogeológicos podría ser pertinente para cuencas hidrogeológicas complejas en todo el mundo con escasa información hidrológica.

摘要

中东的胡拉谷是一个跨境水文地质系统。高度复杂的水文地质框架和缺乏开采量甚至观测井信息为水文地质盆地建模带来了困难。使用各种工具来克服数据稀缺和水文地质的复杂性,以建立可靠的概念水文模型。同位素δ18O的比率用于区分山谷冲积层中两个水文地质单元的来源,这些单元从不同区域和周围局部含水层获得补给。排出天然气和地下水混合物的大量瓦斯钻孔被钻探,测试和取样,以期获得有价值的水文数据,例如山谷中水文地质单元的水头和导水系数。这些发现与地下流域的地质分析相结合起来,构建了不清楚的胡拉谷地下水流系统的第一个概念水文模型。阐述的克服缺乏水文地质数据的方法可用于世界范围内水文地质资料稀缺的复杂水文地质盆地。

Resumo

O Vale do Hula, no Oriente Médio, é um sistema hidrogeológico internacional. Um arcabouço hidrogeológico altamente complexo e a ausência de poços de produção ou mesmo de observação apresentam dificuldades na modelagem dessa bacia hidrogeológica. Várias ferramentas foram usadas para superar a escassez de dados e a complexidade hidrogeológica para criar um modelo hidrológico conceitual confiável. A relação isotópica de δ18O foi utilizada para distinguir duas unidades hidrogeológicas no enchimento de aluvião do vale, que são recarregadas a partir dos diferentes aquíferos regionais e locais que a circundam. Poços de gás abundantes que descarregam uma mistura de gás natural e água subterrânea foram equipados, medidos e amostrados para obter dados hidrológicos valiosos, como carga hidráulica e transmissividade das unidades hidrogeológicas no vale. Estas descobertas foram integradas com análises geológicas do domínio de fluxo subsuperficial para construir o primeiro modelo hidrológico conceitual do sistema de fluxo de águas subterrâneas do Vale de Hula. A metodologia descrita para superar a falta de dados hidrogeológicos pode ser relevante para bacias hidrogeológicas complexas em todo o mundo com escassa informação hidrológica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aggarwal PK, Araguas-Araguas L, Choudhry M, van Duren M, Froehlich K (2014) Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis. Groundwater 52:20–24. https://doi.org/10.1111/gwat.12110

    Article  Google Scholar 

  • Alfaro P, Liesch T, Goldscheider N (2017) Modelling groundwater over-extraction in the southern Jordan Valley with scarce data. Hydrogeol J 25(5):1319–1340. https://doi.org/10.1007/s10040-017-1535-y

    Article  Google Scholar 

  • Ankory E (2014) Estimation and characterization of amounts, sources and properties of drift from the Jordan River to the Sea of Galilee (in Hebrew). MSc Thesis, University of Haifa, Israel

  • Avrahamov N, Gelman F, Yechieli Y, Aizenshtat Z, Nissenbaum A, Sivan O (2015) Proposed sources of methane along the Dead Sea transform. Chem Geol 395:165–175

    Article  Google Scholar 

  • Bein A (1986) Early evolution and transformation of organic matter in the active continental Jordan Rift Valley. Adv Org Geochem 10(4–6):751–757. https://doi.org/10.1016/s0146-6380(86)80012-2

    Article  Google Scholar 

  • Bein A, Nielsen H (1988) Sulphur diagenesis in freshwater lignites (Hula Basin, Israel): implication for SC relationships in organic sediments. J Geol Soc 145(1):133–136. https://doi.org/10.1144/gsjgs.145.1.0133

    Article  Google Scholar 

  • Bein A, Sneh A, Weinberger R (2003) Hydrogeology of the northern western margin of the Hula valley (in Hebrew). Rep. GSI/20/03, Geological Survey of Israel, Jerusalem

  • Bergelson G, Nativ R, Bein A (1999) Salinization and dilution history of ground water discharging into the sea of Galilee, the Dead Sea transform, Israel. Appl Geochem 14(1):91–118. https://doi.org/10.1016/S0883-2927(98)00039-0

    Article  Google Scholar 

  • Brielmann H (2008) Recharge and discharge mechanism and dynamics in the mountainous northern Upper Jordan River. PhD Thesis, LMU, Munich, Germany

  • Burg A (2008) Sensitivity examination of Ein-Zaav for industrial urban development in Kiryat Shmona City area (in Hebrew). Rep. GSI/22/08, Geological Survey of Israel, Jerusalem

  • Burg A (2011) Preliminary geochemical survey of water sources in the northeastern Hula valley (in Hebrew). Rep. GSI/04/11, Geological Survey of Israel, Jerusalem

  • Burg A, Gev I (2019) Discharge from an elevated ridge to a deep regional aquifer: a case study from Mt. Hermon, Middle East. Hydrogeol J. https://doi.org/10.1007/s10040-019-02020-0

    Article  Google Scholar 

  • Butscher C, Huggenberger P (2007) Implications for karst hydrology from 3D geological modeling using the aquifer base gradient approach. J Hydrol 342(1–2):184–198. https://doi.org/10.1016/j.jhydrol.2007.05.025

    Article  Google Scholar 

  • Chaimov TA, Barazangi M, Al-Saad D, Sawaf T, Gebran A (1990) Crustal shortening in the Palmyride Fold Belt, Syria, and implications for movement along the Dead Sea fault system. Tectonics 9(6):1369–1386. https://doi.org/10.1029/TC009i006p01369

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am Geophys Union Trans 27(4):526–534. https://doi.org/10.1029/TR027i004p00526

    Article  Google Scholar 

  • Dafny E, Gvirtzman H, Burg A (2003) The hydrogeology of the Golan basalt aquifer, Israel. Isr J Earth Sci 52(3):139–153. https://doi.org/10.1560/MA-CPJB-8LJ9-R7FM

    Article  Google Scholar 

  • Dafny E, Burg A, Gvirtzman H (2006) Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: the Golan Heights, Israel case study. J Hydrol 330(3–4):506–524. https://doi.org/10.1016/j.jhydrol.2006.04.002

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Wisotzky F, Gizaw B (2007) Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia. Hydrogeol J 15(6):1169–1181. https://doi.org/10.1007/s10040-007-0163-3

    Article  Google Scholar 

  • Dubertret L (1951) Carte géologique au 1:50,000 feuille Marjayoun, Notice explicative [Geological map at 1: 50,000 sheet Marjayoun, Explanatory note]. Ministry of Public Works, Beirut

  • Earlougher RC Jr (1977) Advances in well test analysis. Monograph vol 5, Society of Petroleum Engineers of AIME, Millet the Printer, Dallas, TX

  • Edgell HS (1997) Karst and hydrogeology of Lebanon. Carbonates Evaporites 12(2):220–235. https://doi.org/10.1007/BF03175419

    Article  Google Scholar 

  • Enbar M (1977) Sediment movement and morphology of a braided channel in the upper Jordan River (in Hebrew). PhD Thesis, The Hebrew University of Jerusalem, Israel

  • Freund R (1965) A model of the structural development of Israel and adjacent areas since the Upper Cretaceous times. Geol Mag 102(03):189–205. https://doi.org/10.1017/S0016756800053218

    Article  Google Scholar 

  • Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80(1–4):81–108. https://doi.org/10.1016/0040-1951(81)90143-8

    Article  Google Scholar 

  • Gat JR (1971) Comments on the stable isotope method in regional groundwater investigations. Water Resour Res 7(4):980–993. https://doi.org/10.1029/WR007i004p00980

    Article  Google Scholar 

  • Gaus I, Dochartaigh BÉÓ (2000) Conceptual modelling of data-scarce aquifers in Scotland: the sandstone aquifers of Fife and Dumfries. Geol Soc Lond Spec Publ 182(1):219–237. https://doi.org/10.1144/GSL.SP.2000.182.01.15

    Article  Google Scholar 

  • Gerson R (1974) Karst processes of the eastern upper Galilee, northern Israel. J Hydrol 21(2):131–152. https://doi.org/10.1016/0022-1694(74)90033-X

    Article  Google Scholar 

  • Gur D, Bar-Matthews M, Sass E (2003) Hydrochemistry of the main Jordan River sources: Dan, Banias, and Kezinim springs, north Hula Valley, Israel. Isr J Earth Sci 52(3):155–178. https://doi.org/10.1560/RRMW-9WXD-31VU-MWHN

    Article  Google Scholar 

  • Guttman Y, Berger D, Burg A, Gev I (2012) Aquifers and flow system of groundwater in the north-eastern Galilee: conceptual and cells models (in Hebrew). Mekorot, Rep. 1582, Geol. Surv. Israel, Jerusalem, 61 pp

  • Hartmann A, Wagener T, Rimmer A, Lange J, Brielmann H, Weiler M (2013) Testing the realism of model structures to identify karst system processes using water quality and quantity signatures. Water Resour Res 49(6):3345–3358. https://doi.org/10.1002/wrcr.20229

    Article  Google Scholar 

  • Hassan SMT, Lubczynski MW, Niswonger RG, Su Z (2014) Surface-groundwater interactions in hard rocks in Sardon catchment of western Spain: an integrated modeling approach. J Hydrol 517:390–410. https://doi.org/10.1016/j.jhydrol.2014.05.026

    Article  Google Scholar 

  • Heimann A (1990) The development of the Dead Sea Rift and its margins in northern Israel during the Pliocene and the Pleistocene (in Hebrew with Engl. Abstract). Rep. GSI/28/90, Geological Survey of Israel, Jerusalem, 83 pp

  • Heimann A, Ron H (1987) Young faults in the hula pull-apart basin, Central Dead Sea transform. Tectonophysics 141(1–3):117–124. https://doi.org/10.1016/0040-1951(87)90179-X

    Article  Google Scholar 

  • Heimann A, Zilberman E, Amit R, Frieslander U (2009) Northward migration of the southern diagonal fault of the hula pull-apart basin, Dead Sea transform, northern Israel. Tectonophysics 476(3):496–511. https://doi.org/10.1016/j.tecto.2009.07.024

    Article  Google Scholar 

  • Hillel D (1980) Fundamentals of soil physics. Academic, New York

    Google Scholar 

  • Horowitz A (1973) Development of the Hula Basin, Israel. Isr J Earth Sci 22:103–139

    Google Scholar 

  • Huneau F, Dakoure D, Celle-Jeanton H, Vitvar T, Ito M, Traore S, Compaore NF, Jirakova H, Le Coustumer P (2011) Flow pattern and residence time of groundwater within the south-eastern Taoudeni sedimentary basin (Burkina Faso, Mali). J Hydrol 409(1–2):423–439. https://doi.org/10.1016/j.jhydrol.2011.08.043

    Article  Google Scholar 

  • Kafri U, Lang B (1979) Hula Lignite Project. Rep. Hydro/3/79, Hydrogeology Division, Geological Survey of Israel, Jerusalem

  • Kashai E, Shulman H (1991) Hula Valley gas prospects. Abjac Mazal, Ramat-Gan, Israel

    Google Scholar 

  • Kleinstreuer C (2003) Two-phase flow: theory and applications. Taylor and Francis, London

  • Levy E (2016) Temporal and spatial analysis of shallow groundwater levels and water application in Israel’s Hula Valley. MSc Thesis, Ben-Gurion University, Israel

  • Lu A-T, Schlosser P, Smethie WM Jr, Sturchio NC, Fisher TP, Kennedy BM, Prutschert R, Severinghaus JP, Solomon DK, Tanhua T, Yokochi R (2014) Tracer applications of noble gas radionuclides in the geosciences. Earth-Sci Rev 138:196–214

    Article  Google Scholar 

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in Sa˜˜õ Paulo state, Brazil. J Hydrol 250:78–97

    Article  Google Scholar 

  • Michalson H (1979) The geology and palegeography of the Golan Heights (in Hebrew with Engl. abstract). PhD Thesis, Tel-Aviv University, Israel

  • Mor D (1986) The volcanism of the Golan heights. Rep. GSI/5/86, Geological Survey of Israel, Jerusalem

  • Mor D (1987a) Geological map of Israel, sheet 2-II Merom Golan, scale 1:50000. Geological Survey of Israel, Jerusalem

  • Mor D (1987b) Geological map of Israel, sheet 2-IV En Zivan, scale 1:50000. Geological Survey of Israel, Jerusalem

  • Netherland, Sewell and Associates Inc. (NSAI) (2000) A screening study of Mazal 6/l lease located in the Hula Valley, northern Israel. Abjac Mazal, Ramat-Gan, Israel, 15 pp

  • Neuman SP, Dasberg S (1977) Peat hydrology in the Hula Basin, Israel: II. subsurface flow regime. J Hydrol 32(3–4):241–256. https://doi.org/10.1016/0022-1694(77)90019-1

    Article  Google Scholar 

  • Nissenbaum A, Magaritz M (1991) Bromine-rich groundwater in the Hula Valley, Israel. Naturwissenschaften 78(5):217–218

    Article  Google Scholar 

  • Nissenbaum A, Magaritz M, Goldberg M (1988) 13C enrichment in recent freshwater carbonate. Naturwissenschaften 75(5):252–253

    Article  Google Scholar 

  • Nutting PG (1930) Physical analysis of oil sands. Am Assoc Pet Geol Bull 14:1337–1349

    Google Scholar 

  • Pilli A, Sapigni M, Zuppi GM (2012) Karstic and alluvial aquifers: a conceptual model for the plain – Prealps system (northeastern Italy). J Hydrol 464–465:94–106. https://doi.org/10.1016/j.jhydrol.2012.06.049

    Article  Google Scholar 

  • Radke J (2006) Development of compound-specific hydrogen isotope ratio analysis of biomarkers and their application as new proxy for reconstruction of palaeoenvironment and palaeoclimate. PhD Thesis, University of Jena, Switzerland

  • Raiber M, Webb JA, Cendón DI, White PA, Jacobsen GE (2015) Environmental isotopes meet 3D geological modelling: conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of South-Western Victoria, Australia. J Hydrol 527:262–280. https://doi.org/10.1016/j.jhydrol.2015.04.053

    Article  Google Scholar 

  • Rimmer A, Salingar Y (2006) Modelling precipitation-streamflow processes in karst basin: the case of the Jordan River sources, Israel. J Hydrol 331(3–4):524–542. https://doi.org/10.1016/j.jhydrol.2006.06.003

    Article  Google Scholar 

  • Roded R (2012) Basal heat flow and hydrothermal regime at the Golan-Ajloun hydrological Basins. Rep. GSI/22/2012, Geological Survey of Israel, Jerusalem

  • Rybakov M, Fleischer L, ten Brink U (2003) The Hula Valley subsurface structure inferred from gravity data. Isr J Earth Sci 52(3–4):113–122. https://doi.org/10.1560/WF6V-4BVG-GXQM-PKVR

    Article  Google Scholar 

  • Schattner U, Weinberger R (2008) A mid-Pleistocene deformation transition in the hula basin, northern Israel: implications for the tectonic evolution of the Dead Sea fault. Geochem Geophys Geosyst 9:1525–2027. https://doi.org/10.1029/2007GC001937

    Article  Google Scholar 

  • Shulman H, Reshef M, Ben-Avraham Z (2004) The structure of the Golan Heights and its tectonic linkage to the Dead Sea transform and the Palmyrides folding. Isr J Earth Sci 53(3–4):225–237. https://doi.org/10.1560/MWVC-CGPU-65KU-FFPY

    Article  Google Scholar 

  • Sneh A, Weinberger R (2003a) The geological mapping of the Metula quadrangle. Geological map of Israel, sheet 2-IV Rosh Pinna, scale 1:50000. Geological Survey of Israel, Jerusalem

  • Sneh A, Weinberger R (2003b) The geological mapping of the Metula quadrangle 1:50000: implications on the stratigraphic division and the faults pattern around the Hula Valley (in Hebrew). Rep. GSI/7/2003, Geological Survey of Israel, Jerusalem

  • Sneh A, Weinberger R (2006) Geological map of Israel, sheet 2-IV Rosh Pinna, scale 1:50000. Geological Survey of Israel, Jerusalem

  • Starinsky A (1974) Relationship between Ca±chloride brines and sedimentary rocks in Israel (in Hebrew with Engl. abstract). PhD Thesis, The Hebrew University of Jerusalem, Israel

  • TAHAL (1979) Almagor Hydroelectric Plant: general plans and environmental survey (in Hebrew). TAHAL, Amsterdam

  • Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Am Geophys Union Transact 16(2):519–524. https://doi.org/10.1029/TR016i002p00519

    Article  Google Scholar 

  • Van Camp M, Mjemah IC, Al Farah N, Walraevens K (2012) Modeling approaches and strategies for data-scarce aquifers: example of the Dar Es Salaam aquifer in Tanzania. Hydrogeol J. https://doi.org/10.1007/s10040-012-0908-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Israel Gev from the IWA for closely accompanying the research, Dr. Yossi Guttman from Mekorot (Israel National Water Co.) for sharing his vast knowledge and Dr. Doron Markel from the IWA for supporting the research. Special thanks to Eitan Israeli for his great effort in helping us with any task in the field and for inspiring us with his remarkable historical knowledge. The authors thank the GSI geochemical laboratory staff for efficient work and Haim Hemo whose blessed memory enabled the excellent field work.

Funding

This research was funded by the Israeli Water Authority (IWA) and the JNF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avshalom Babad.

Appendix

Appendix

Table 5 Geochemical and isotopic data of water in the Hula Valley and in aquifers around the valley

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babad, A., Burg, A. & Adar, E.M. Conceptual hydrological approach to a geologically complex basin with scarce data: the Hula Valley, Middle East. Hydrogeol J 28, 703–722 (2020). https://doi.org/10.1007/s10040-019-02031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02031-x

Keywords

Navigation