Skip to main content
Log in

Scheduling hybrid flow shops with time windows

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Hybrid flow shops can be encountered in various industrial settings. In this paper we develop methods for scheduling hybrid flow shops with hard time windows. Specifically, we study a two-stage hybrid flow shop scheduling problem with time windows to minimize the total weighted completion times. Each stage consists of one or more identical parallel machines, and each job visits two processing stages in series. Finding a feasible schedule with hard time windows is a challenging task in this setting, because it is NP-complete in the strong sense even for a single machine in a single stage. We propose two matheuristics to find an initial feasible solution by local branching. We also develop two schedule improvement procedures, one based on stage-by-stage decomposition, and one using adapted local branching. The performance of our methods is validated via extensive computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AL:

Adapted local branching

ALP:

Job ordering in average starting time of the linear relaxation

ED:

Earliest-deadline-first rule

FSSA:

Feasible schedule search by artificial variables

ISR:

Infeasible schedule repair

JFA:

Job window heuristic and adapted local branching

JFS:

Job window heuristic and stage-by-stage decomposition

JWH:

Job window heuristic

RP:

Random priority rule

SD:

Stage-by-stage decomposition

\(\triangle _r^{AL}\) :

Radius decrement in AL

\(\triangle _r^{ISR}\) :

Radius increment in ISR

\(\triangle _t\) :

Time increment in AL

\(G_{node}\) :

threshold on the gap in a node in AL

\(K^{AL}\) :

Predetermined number of rounds for AL

\(T_{ini}\) :

Initialization time

\(T_{B}\) :

Time limit for bottleneck stage in SD

\(T_{N}\) :

Time limit for non-bottleneck stage in SD

\(T^{AL}\) :

Time limit for AL

\(T_{node}\) :

Time limit for each node in AL

References

  • Allaoui, H., Artiba, A.: Scheduling two-stage hybrid flow shop with availability constraints. Comput. Oper. Res. 33(5), 1399–1419 (2006)

    MathSciNet  MATH  Google Scholar 

  • Azizoglu, M., Cakmak, E., Kondakci, S.: A flexible flowshop problem with total flow time minimization. Eur. J. Oper. Res. 132(3), 528–538 (2001)

    MathSciNet  MATH  Google Scholar 

  • Balas, E., Lancia, G., Serafini, P., Vazacopoulos, A.: Job shop scheduling with deadlines. J. Comb. Optim. 1(4), 329–353 (1998)

    MathSciNet  MATH  Google Scholar 

  • Balas, E., Simonetti, N., Vazacopoulos, A.: Job shop scheduling with setup times, deadlines and precedence constraints. J. Sched. 11(4), 253–262 (2008)

    MathSciNet  MATH  Google Scholar 

  • Bang, J.Y., Kim, Y.D.: Scheduling algorithms for a semiconductor probing facility. Comput. Oper. Res. 38(3), 666–673 (2011)

    MathSciNet  MATH  Google Scholar 

  • Baumann, P., Trautmann, N.: A continuous-time MILP model for short-term scheduling of make-and-pack production processes. Int. J. Prod. Res. 51(6), 1707–1727 (2013)

    Google Scholar 

  • Belaid, R., T’kindt, V., Esswein, C.: Scheduling batches in flowshop with limited buffers in the shampoo industry. Eur. J. Oper. Res. 223(2), 560–572 (2012)

    MathSciNet  MATH  Google Scholar 

  • Berghman, L., Leus, R.: Practical solutions for a dock assignment problem with trailer transportation. Eur. J. Oper. Res. 246(3), 787–799 (2015)

    MathSciNet  MATH  Google Scholar 

  • Berghman, L., Leus, R., Spieksma, F.C.R.: Optimal solutions for a dock assignment problem with trailer transportation. Ann. Oper. Res. 213(1), 1–23 (2014)

    MathSciNet  MATH  Google Scholar 

  • Brah, S.A., Hunsucker, J.L.: Branch and bound algorithm for the flow shop with multiple processors. Eur. J. Oper. Res. 51(1), 88–99 (1991)

    MATH  Google Scholar 

  • Chamnanlor, C., Sethanan, K., Chien, C.F., Gen, M.: Re-entrant flow shop scheduling problem with time windows using hybrid genetic algorithm based on auto-tuning strategy. Int. J. Prod. Res. 52(9), 2612–2629 (2014)

    Google Scholar 

  • Chamnanlor, C., Sethanan, K., Gen, M., Chien, C.-F.: Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. J. Intell. Manuf. 28(8), 1915–1931 (2017)

    Google Scholar 

  • Chen, Z.L., Vairaktarakis, G.L.: Integrated scheduling of production and distribution operations. Manage. Sci. 51(4), 614–628 (2005)

    MATH  Google Scholar 

  • Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29(3), 262–273 (1987)

    MathSciNet  MATH  Google Scholar 

  • Davari, M., Demeulemeester, E., Leus, R., Talla Nobibon, F.: Exact algorithms for single-machine scheduling with time windows and precedence constraints. J. Sched. 19(3), 309–334 (2016)

    MathSciNet  MATH  Google Scholar 

  • Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Oper. Res. 55(3), 457–469 (2007)

    MATH  Google Scholar 

  • Della Croce, F., Grosso, A., Salassa, F.: A matheuristic approach for the two-machine total completion time flow shop problem. Ann. Oper. Res. 213(1), 67–78 (2014)

    MathSciNet  MATH  Google Scholar 

  • Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)

    MathSciNet  MATH  Google Scholar 

  • Fischetti, M., Lodi, A.: Repairing MIP infeasibility through local branching. Comput. Oper. Res. 35(5), 1436–1445 (2008)

    MathSciNet  MATH  Google Scholar 

  • Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)

    MathSciNet  MATH  Google Scholar 

  • Garcia, J.M., Lozano, S.: Production and delivery scheduling problem with time windows. Comput. Indu. Eng. 48(4), 733–742 (2005)

    Google Scholar 

  • Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    MathSciNet  MATH  Google Scholar 

  • Gicquel, C., Hege, L., Minoux, M., Van Canneyt, W.: A discrete time exact solution approach for a complex hybrid flow-shop scheduling problem with limited-wait constraints. Comput. Oper. Res. 39(3), 629–636 (2012)

    MathSciNet  MATH  Google Scholar 

  • Grabowski, J., Pempera, J.: Sequencing of jobs in some production system. Eur. J. Oper. Res. 125(3), 535–550 (2000)

    MathSciNet  MATH  Google Scholar 

  • Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    MathSciNet  MATH  Google Scholar 

  • Guirchoun, S., Martineau, P., Billaut, J.C.: Total completion time minimization in a computer system with a server and two parallel processors. Comput. Oper. Res. 32(3), 599–611 (2005)

    MATH  Google Scholar 

  • Hadda, H., Dridi, N., Hajri-Gabouj, S.: Exact resolution of the two-stage hybrid flow shop with dedicated machines. Optim. Lett. 8(8), 2329–2339 (2014)

    MathSciNet  MATH  Google Scholar 

  • Hall, N.G., Potts, C.N., Sriskandarajah, C.: Parallel machine scheduling with a common server. Discrete Appl. Math. 102(3), 223–243 (2000)

    MathSciNet  MATH  Google Scholar 

  • Ham, A., Fowler, J.W., Cakici, E.: Constraint programming approach for scheduling jobs with release times, non-identical sizes, and incompatible families on parallel batching machines. IEEE Trans. Semicond. Manuf. 30(4), 500–507 (2017)

    Google Scholar 

  • Haouari, M., Hidri, L., Gharbi, A.: Optimal scheduling of a two-stage hybrid flow shop. Math. Methods Oper. Res. 64(1), 107–124 (2006)

    MathSciNet  MATH  Google Scholar 

  • Huang, R.-H., Yang, C.-L.: Ant colony system for job shop scheduling with time windows. Int. J. Adv. Manuf. Technol. 39(1–2), 151–157 (2008)

    Google Scholar 

  • Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS J. Comput. 13(4), 258–276 (2001)

    MathSciNet  MATH  Google Scholar 

  • Jula, P., Kones, I.: Continuous-time algorithms for scheduling a single machine with sequence-dependent setup times and time window constraints in coordinated chains. Int. J. Prod. Res. 51(12), 3654–3670 (2013)

    Google Scholar 

  • Kaveshgar, N., Huynh, N.: Integrated quay crane and yard truck scheduling for unloading inbound containers. Int. J. Prod. Econ. 159, 168–177 (2015)

    Google Scholar 

  • Klemmt A, Mönch L (2012) Scheduling jobs with time constraints between consecutive process steps in semiconductor manufacturing. In: Simulation conference (WSC), proceedings of the 2012 Winter, pp 1–10. IEEE

  • Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90(2), 320–333 (1996)

    MathSciNet  MATH  Google Scholar 

  • Komaki, G., Teymourian, E., Kayvanfar, V.: Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. Int. J. Prod. Res. 54(4), 963–983 (2016)

    Google Scholar 

  • Lee, G.C., Kim, Y.D.: A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness. Int. J. Prod. Res. 42(22), 4731–4743 (2004)

    MATH  Google Scholar 

  • Lei, D., Guo, X.: Hybrid flow shop scheduling with not-all-machines options via local search with controlled deterioration. Comput. Oper. Res. 65, 76–82 (2016)

    MathSciNet  MATH  Google Scholar 

  • Lenstra, J.K., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    MathSciNet  MATH  Google Scholar 

  • Liu, M., Yang, X., Zhang, J., Chu, C.: Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model. Int. J. Prod. Res. 55(20), 6084–6107 (2017)

    Google Scholar 

  • Néron, E., Baptiste, P., Gupta, J.N.: Solving hybrid flow shop problem using energetic reasoning and global operations. Omega 29(6), 501–511 (2001)

    Google Scholar 

  • Pan, Q.K.: An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. Eur. J. Oper. Res. 250(3), 702–714 (2016)

    MathSciNet  MATH  Google Scholar 

  • Pan, Q.K., Ruiz, R., Alfaro-Fernandez, P.: Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows. Comput. Oper. Res. 80, 50–60 (2017)

    MathSciNet  MATH  Google Scholar 

  • Pan, Y., Shi, L.: Dual constrained single machine sequencing to minimize total weighted completion time. IEEE Trans. Autom. Sci. Eng. 2(4), 344–357 (2005)

    Google Scholar 

  • Panwalkar, S., Dudek, R., Smith, M.: Sequencing research and the industrial scheduling problem. In: Symposium on the theory of scheduling and its applications, Vol 86, pp 29–38. Springer, Berlin (1973)

  • Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer, Berlin (2016)

    MATH  Google Scholar 

  • Quadt, D., Kuhn, H.: A taxonomy of flexible flow line scheduling procedures. Eur. J. Oper. Res. 178(3), 686–698 (2007)

    MathSciNet  MATH  Google Scholar 

  • Ribas, I., Leisten, R., Framinan, J.M.: Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439–1454 (2010)

    MathSciNet  MATH  Google Scholar 

  • Ruiz, R., Vazquez-Rodriguez, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1), 1–18 (2010)

    MathSciNet  MATH  Google Scholar 

  • Sawik, T.: Mixed integer programming for scheduling surface mount technology lines. Int. J. Prod. Res. 39(14), 3219–3235 (2001)

    MATH  Google Scholar 

  • Schulze, M., Rieck, J., Seifi, C., Zimmermann, J.: Machine scheduling in underground mining: an application in the potash industry. OR Spectr. 38(2), 365–403 (2016)

    MathSciNet  MATH  Google Scholar 

  • Shahvari, O., Logendran, R.: A comparison of two stage-based hybrid algorithms for a batch scheduling problem in hybrid flow shop with learning effect. Int. J. Prod. Econ. 195, 227–248 (2018)

    Google Scholar 

  • Tan, Y., Mönch, L., Fowler, J.W.: A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines. J. Sched. 21(2), 209–226 (2018)

    MathSciNet  MATH  Google Scholar 

  • Tang, L., Wang, X.: An improved particle swarm optimization algorithm for the hybrid flowshop scheduling to minimize total weighted completion time in process industry. IEEE Trans. Control Syst. Technol. 18(6), 1303–1314 (2010)

    Google Scholar 

  • Tang, L., Wang, G., Liu, J.: A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry. Comput. Oper. Res. 34(10), 3001–3015 (2007)

    MATH  Google Scholar 

  • T’kindt, V., Monmarché, N., Tercinet, F., Laügt, D.: An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. Eur. J. Oper. Res. 142(2), 250–257 (2002)

    MathSciNet  MATH  Google Scholar 

  • Wang, S., Liu, M., Chu, C.: A branch-and-bound algorithm for two-stage no-wait hybrid flow-shop scheduling. Int. J. Prod. Res. 53(4), 1143–1167 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel Leus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

A description in pseudo-code of the job window heuristic and the stage-by-stage decomposition are provided below as Algorithm 1 and Algorithm 2, respectively.

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Leus, R. Scheduling hybrid flow shops with time windows. J Heuristics 27, 133–158 (2021). https://doi.org/10.1007/s10732-019-09425-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-019-09425-w

Keywords

Navigation