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Abstract

In this study a new flow visualization method the 3D Multi-View Particle Tracking

Velocimetry has been developed. This multi-view vision based measurement system

can capture large-scale flow structures with optical obstacles. In order to increase the

tracking performance of this method, it is enhanced with a novel tracking algorithm,

the multi-pass tracking algorithm with robust initialization.

The use of multiple webcams in this fluid visualization method reduces the hard-

ware costs significantly and makes it feasible to capture flow structures for various

types of flow. The workflow developed for this measurement system enables a syste-

matic execution of the measurements. The conventional multi-view camera calibration

process with bundle adjustment algorithm is improved with an image filtering step,

which reduces the resulting mean reprojection error by 90%. In order to find the ca-

mera set with the lowest triangulation error, two multi-view triangulation approaches

are developed and compared. In this context, the results of the multi-view triangulati-

on with precalculation were closer to the lowest possible triangulation error than the

multi-view triangulation with elimination.

In order to increase the capabilities of the development process, a software-in-the-

loop environment has been developed as well. Using this software-in-the-loop envi-

ronment, the multi-pass tracking algorithm with robust initialization is compared with

a conventional tracking algorithm. The results show that this tracking algorithm deli-

vers significantly higher tracking efficiencies which do not decrease dramatically with

ascending seeding rates. Finally, experiments for an indoor flow case were carried out

using this new measurement system. The comparison of the experimental results with a

comparison measurement using hot-sphere probes showed that this measurement sys-

tem delivers plausible results.
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Kurzfassung

In dieser Studie wurde eine neue Strömungsvisualisierungsmethode, 3D Multi-View

Particle Tracking Velocimetry, entwickelt. Dieses Multi-View Vision basierte Mess-

system kann großräumige Strömungsstrukturen mit optischen Hindernissen erfassen.

Um die Trackingfähigkeit dieser Messmethode zu erhöhen, setzt es einen neuartigen

Tracking-Algorithmus ein, den Multi-Pass Tracking-Algorithmus mit robuster Initiali-

sierung.

Die Verwendung mehrerer Webcams in dieser Strömungsvisualisierungsmethode re-

duziert die Hardwarekosten erheblich und ermöglicht es, Strömungsstrukturen für ver-

schiedene Strömungsfälle zu erfassen. Der für dieses Messsystem entwickelte Work-

flow erlaubt eine systematische Durchführung der Messungen. Die herkömmliche Me-

thode der Multi-View Kamerakalibrierung mit Bündelblockausgleichungsalgorithmus

wird durch eine Bildfilterung verbessert, die den resultierenden mittleren Reprojek-

tionsfehler um 90% reduziert. Um das Kameraset mit dem geringsten Triangulations-

fehler zu finden, werden zwei Multi-View Triangulationsansätze entwickelt und vergli-

chen. In diesem Zusammenhang waren die Ergebnisse der Multi-View Triangulation

mit Vorberechnung näher am kleinstmöglichen Triangulationsfehler als die Multi-View

Triangulation mit Elimination.

Um die Fähigkeiten des Entwicklungsprozesses zu erhöhen, wurde auch eine Software-

in-the-Loop Umgebung entwickelt. In dieser Software-in-the-Loop-Umgebung wurde

der Multi-Pass Tracking-Algorithmus mit robuster Initialisierung mit einem herkömmlichen

Tracking-Algorithmus verglichen. Die Ergebnisse zeigen, dass dieser Tracking-Algorithmus

eine signifikant höhere Trackingseffizienz liefert, welche mit steigender Seedingmenge

nicht dramatisch abnimmt. Schließlich wurden mit diesem neuen Messsystem Experi-

mente für einen Innenraumströmungsfall durchgeführt. Der Vergleich der experimen-

tellen Ergebnisse mit einer Vergleichsmessung mit Hitzdrahtanemometern zeigt, dass

dieses Messsystem plausible Ergebnisse liefert.
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1 Introduction

Research studies on the numerical modeling of fluid flows have been continuously

increasing in the last few decades. One of the important factors supporting this devel-

opment is the significant improvements in computation capacities. The fluid visualiza-

tion is another crucial method utilized to understand various flow phenomena. These

fields are strongly linked with each other and advanced fluid visualization methods are

especially vital for the validation of the numerical models. Another technology field

improved rapidly in the last few decades is imaging technologies, which increases inte-

gration of computer vision based applications in our daily lives. The fluid visualization

profits from the imaging and computer vision technologies however its improvement

is slower compared to numerical modeling of the fluid flows.

Nowadays the conventional fluid visualization applications are restricted to small

observation volumes. This is due to the use of two to four costly scientific cameras

in volumes without optical obstacles. However, the latest improvements in the imag-

ing, computer vision and computational technologies can overcome such a restriction

and spread the usage of flow visualization. This study represents the development of a

new flow visualization method based on multi-view vision, the 3D Multi-View Parti-

cle Tracking Velocimetry (3D-MVPTV). Its first scope of application was large-scale

indoor air flows however it can also be utilized for other flow structures. During the

development of this measurement system several properties such as accuracy, applica-

bility, ease of use, flexibility, and affordability were focused on. This study has two

main focus points. The first focus point, which is crucial for the implementation of

multi-view vision in flow visualization is the calibration of multiple cameras. The sec-

ond focus point is object tracking. To increase the tracking efficiencies compared to

the conventional tracking methods, a new tracking algorithm, the multi-pass tracking

algorithm with robust initialization, is developed.

This study consists of eight chapters. Initially there is an Introduction and then

chapter two Fundamentals looks at the fundamentals of flow visualization. Here, the

brief historical background of the flow visualization is described and then is followed

1



1 Introduction

by the common flow visualization techniques. Following this the main components

of a flow visualization system are represented in detail. This chapter also describes

the fundamentals of computer vision. At this point, the mathematical description of

a computer vision system is shown through its analogy to the human visual system.

That is followed by the representation of the two-view vision, namely the stereoscopy.

Finally, in this chapter multi-vision is described and the bundle adjustment algorithm

which is used to define a multi-view vision setup is shown.

The third chapter 3D Multi-View Particle Tracking Velocimetry exhibits the 3D-

MVPTV, which is the flow visualization technique developed in this study. Here, first

the concept of the 3D-MVPTV and its background are represented. That is followed by

the definition of the 3D-MVPTV workflow, which includes the main steps of this flow

visualization method. Before the definition of this workflow, the software environment

used for the development is represented. In this workflow, the steps camera distribu-

tion, frame synchronized video capture, object recognition, track matching, multi-view

triangulation, and post-processing are described in detail. As the main focus of this

work are the steps camera calibration and object tracking, they are represented later in

separate chapters.

In the fourth chapter, Real and Virtual Development Environments for 3D-MVPTV,

the two development environments used in this work are described. Here the 3D-

MVPTV test stand represents the experimental facility in the Hermann-Rietschel-Institut.

This test stand was utilized for the first tests, camera calibrations, and 3D-MVPTV

measurements. However, the use of a real experimental environment during the 3D-

MVPTV development was impractical and limited, a software-in-the-loop environ-

ment (SIL) has been developed. The details of the main steps of this SIL environment

are also described in this chapter.

Chapter five Calibration of Multiple Cameras first exhibits the stereo camera cali-

bration process. Following that there is a description of the multiple camera calibra-

tion. To increase the accuracy of the calibration process, the existing bundle adjustment

algorithm is extended with an image filtering step. At the end of this chapter, the com-

mon factors to consider by choosing the camera set for multi-view triangulation are

represented. This part is one of the most important parts in this work since it exhibits

the essential information regarding the practical implementation of the multi-view vi-

sion in the developed measurement system.

The sixth chapter Multi-Pass Tracking Algorithm with Robust Initialization repre-

sents the object tracking algorithm developed for the 3D-MVPTV. Before that, it de-

2



scribes the existing tracking algorithms and the details of the conventional tracking

algorithm which is utilized during the first tests with the 3D-MVPTV. After the de-

tailed definition of the multi-pass tracking algorithm with robust initialization, the SIL

simulations and their results are exhibited in which the performance of this tracking

algorithm is tested. In this context, two different types of SIL simulations were carried

out with mathematically defined tracks and with tracks generated by computational

fluid dynamics (CFD) simulations.

In the seventh chapter 3D-MVPTV Measurements first, the experiments with this

recently developed flow visualization method are represented. Following that the com-

parison measurement performed with hot-sphere probes are described. These com-

parison measurements have the aim to check the plausibility of the 3D-MVPTV re-

sults compared with conventional measurement equipment. At the end of this chapter,

the possible error sources for the 3D-MVPTV and comparison measurements are dis-

cussed.

In the last chapter Conclusion and Outlook, the results of this study regarding cam-

era calibration, object tracking algorithms, and 3D-MVPTV measurements are sum-

marized and discussed. This chapter also represents the possible improvements can be

carried out in the 3D-MVPTV workflow and for the 3D-MVPTV itself. Finally, the

essential points for the further development of this measurement system are presented.
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2 Fundamentals

This chapter describes the theoretical background of two important disciplines. The

first is flow visualization and the second is computer vision, on which the 3D-MVPTV

bases. Following this, the chapters then refer to these theories and represents the ap-

plication developed in detail. Hence, the circumference of these both fields are quite

comprehensive and the main focus stays on the subjects which are crucial for the ap-

plication in this work which are the three-dimensional spatial and temporal velocity

measurement of indoor air flows.

2.1 Fundamentals of Flow Visualization

Flow visualization is the field of science which deals with capturing flow phenomena

on a medium and processing it to gain qualitative and often quantitative information

about the desired physical variable or variables. The history of flow visualization goes

back to prehistoric ages, where our ancestors used basic fluid mechanics knowledge for

designing things such as boats and water supply systems. The first flow visualization

studies, were done 500 years ago at the time of Leonardo da Vinci. With his artistic

and scientific skills, he put various flow phenomena on paper like water flow over

obstacles, the motion of clouds, and pouring water into a pool as shown in figure 2.1.

This kind of visual documentation, which we today call scientific imaging, opened up

new possibilities for developing theories on various physical phenomena.

After the invention of photography at the beginning of the 19th century and the in-

troduction of the first commercial camera at the end of the same century, the image

capture process of flow visualization gained new dimensions. Complex unsteady flow

structures, which were not possible to capture before, now could be saved even on a

video film. Theories describing such flow structures could then be developed using

these visual data. Scientists like Osborne Reynolds, Ludwig Prandtl, and Ernst Mach

utilized flow visualization while developing the fundamental theories of fluid dynam-
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ics. However, it was found that usage of photography and video was not the only

improvement in flow visualization and scientists also developed different methods ac-

cording to the needs of their applications. For example, Osborne Reynolds used dyed

water for his well-known research on pipe flow. As we can see through the historical

development of fluid visualization, these historical advances in imaging technologies

made it possible for scientists to profit more from flow visualization, as well as those

who had no artistic skills like Leonardo da Vinci. That helped them to invent further

theories for fluid flow.

Figure 2.1: Drawings of Leonardo da Vinci for different flow structures [12]

In the last decades beside the advances in imaging technologies, improvements in

computer technologies allowed scientists to go even further with flow visualization.

With continuously increasing computational power, they started to use flow visualiza-

tion not only to generate qualitative flow images but also to extract more quantitative

data from these images. On the other hand, the advances in computer technologies did

not just allow flow visualization techniques to go further but also other fields in fluid

mechanics like numerical simulations. Using more computational resources, we be-

came able to solve complex flow problems using computational fluid dynamics, which

yielded to develop more detailed physical models like numerous turbulence models.
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This increasing utilization of numerical methods in fluid mechanics made flow visu-

alization a standard validation tool for the numerical simulations and a standard ver-

ification tool for the developed physical models. Today, modern flow visualization

techniques can capture time-resolved two and three-dimensional flow field data with

high spatial resolution. However, it is still not possible or computational too expensive

to solve numerous flow problems numerically. Peter Freymuth explains this aspect in

his article on flow visualization in fluid mechanics as follows:
”
First, one can solve

only a few fluid mechanics problems purely by mathematics. Second, a renewed need

for flow visualization arises directly as a result of computational fluid dynamics.“ [19]

2.1.1 Flow Visualization Techniques

Figure 2.2: Analogy between the human visual pathway

and flow visualization

[46]

Figure 2.2 shows the func-

tion principle of flow visu-

alization based on its anal-

ogy to the human visual

pathway. The fluid flows

either with or without ad-

ditives are captured under

specific light circumstances

using a camera. In this pro-

cess chain, a camera works

like a human eye, where

light signals are converted

to electrical signals. These

electrical signals are then

sent to the microprocessor

in which useful information

is extracted from them sim-

ilarly in the human brain.

This information then can

be displayed and stored depending on the objective of the flow visualization carried

out.

Depending on the needs of scientists there are various flow visualization techniques

and they are commonly based on the function principle described above. Researchers

classify these techniques through various perspectives in different ways to achieve an

6
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overview in this broad scientific field. For example Merzkirch groups the flow visual-

ization methods into three groups [34]. In the first group, a foreign material (so-called

tracer particle) is brought into the flow which is visible and behaves similarly to the

investigated fluid. The flow visualization is done indirectly through this material. In

the second group, the refractive index of the fluid is used. Through the change in ma-

terial properties (e.g., change of density by compressible flows) optical phases in the

fluid are formed which can be directly visualized using the refractive index. The third

group is similar to the second group; however, the optical phases are formed through

external sources (e.g., an external energy supply).

Wen-Jei Yang groups flow visualization methods mainly in two groups: first and

second generation [46]. He also uses the terms classical and modern flow visualiza-

tion to distinguish these two groups. The main difference between these two groups is

that in modern/second generation methods, quantitative information is extracted using

computational post-processing. In the same way, a similar category
”
quantitative flow

visualization“ is used by M. Gharib and D. Dabiri [1]. Since the term
”
flow visualiza-

tion“ emphasizes a qualitative character, it is better and less confusing to use the type

of information produced by flow visualization techniques for general classification,

namely: qualitative and quantitative methods.

Figure 2.3: Classification of Quantitative the Flow Visualization Methods based on

Wen-Jei Yang’s Classification [46]

As shown in figure 2.3 quantitative flow visualization methods1 can be classified pri-

marily into two groups according to the participation scale of tracers. In this context,

tracers can contribute to the measurement in particulate scale or molecular scale; in

molecular scale their molecular properties also play a role in flow visualization. Two

1Since the qualitative flow visualization methods are not in scope for this work, they are not included

in this classification.
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well-known molecular scale methods are flash photolysis and Laser Induced Fluores-

cence (LIF). In the flash photolysis, the flow field is first exposed to a strong light

source which initiates the chemical reaction to be visualized. This method belongs to

the third group in Merzkirch’s classification mentioned above, in which change in opti-

cal phases is induced through an external source. In contrast to that, the Laser Induced

Fluorescence does not need an external source to visualize the molecular scale. Here

the utilized fluorescent tracer particles emit illumination with a longer wavelength than

the underlying flow medium, which can be captured using, e.g., a narrow-band filter.

The particulate scale methods can differ from each other using source density NS as

shown in equation 2.1 according to Adrian [2]. In this equation, C refers to the mean

number of particles per unit volume, ∆z0 the light sheet thickness, de the diameter of

the so-called resolution cell, and M the image magnification. NS ≫ 1 yields more than

one particle in a resolution cell, which results in overlapping particles on the image

plane. In this case, it is not possible to work with individual particles any more so

speckle patterns must be analyzed to achieve flow information. If, on the other hand,

NS ≪ 1 it is possible to work with particles instead of speckle patterns.

NS =C∆z0
πde

2

4M2
(2.1)

Similarly, Adrian [2] defines the image density NI as shown in equation 2.2 to dis-

tinguish between particle image-based flow visualization methods. He defines inter-

rogation cell with a diameter dI in which the image density is calculated. If NI ≪ 1

the probability for finding more than one particle in the interrogation cell is small, and

such a system can be classified as low image density. If, on the other hand, NI ≫ 1

the probability to find more than one particle in an interrogation cell is high, which is

defined as high image density.

NI =C∆z0
πdI

2

4M2
(2.2)

In the following sections, three particle image-based flow visualization methods are

described. Particle Image Velocimetry (PIV), Particle Streak Tracking (PST), and Par-

ticle Tracking Velocimetry (PTV) are the most frequently used flow visualization meth-

ods for indoor air flows. These methods use different approaches to capture the flow

field, which yields results with different temporal and spatial resolutions.
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2.1.1.1 Particle Image Velocimetry (PIV)

Figure 2.4: Functional Schema of Particle Imaging Ve-

locimetry [7]

Figure 2.4 represents the

functional principle of PIV.

In this flow visualization

method, tracer particles are

exposed to a pulsed laser

light sheet while they move

through the observation vol-

ume. The motion of these

tracer particles is then cap-

tured using video cameras

2. The captured images are

then processed using a com-

puter. The primary objec-

tive of this computational

process is to recognize the

captured tracer particles and

finding the same objects in

two subsequent frames so that velocity vectors can be calculated using this informa-

tion. This object matching step is generally based on a cross-correlation algorithm.

2.1.1.2 Particle Tracking Velocimetry (PTV)

Regarding its experimental setup, the PTV method is quite similar to PIV. The main

difference with this method is that every tracer particle entering the observation volume

is tracked separately, namely instead of a Eulerian approach a Lagrangian approach is

used. In order to track every tracer particle, the flow field is seeded with lower image

densities. Adrian emphasizes this point as follows:
”
Hence, the low-image-density

mode of PIV is often referred to as particle tracking velocimetry or PTV.“ [2]. Beyond

the image density Malik, Dracos, and Papantoniou define a so-called particle spacing

displacement ratio for PTV as shown in equation 2.3 [38] [7]. In this equation, Λ0

defines the average displacement between objects and Λt is the average displacement of

the objects between two consecutive frames. For rp ≫ 1 particle tracking is simple, and

its difficulty increases around rp ≈ 1. If rp ≪ 1 particle tracking becomes impossible.

2Since nowadays primarily digital cameras are used for fluid visualization, the adjective
”
digital“ is

renounced for cameras in this work.
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rp =
Λ0

Λt
(2.3)

Besides its low resolution due to seeding with lower image densities, PTV results

include, contrary to other methods, spatial and temporal information of each tracer

particle. Using this information content, in addition to the velocity vectors further

scalars like residence time can be calculated. Ventilation effectiveness, which is an

important parameter for indoor air environments, can be extracted in such a way.

2.1.1.3 Particle Streak Tracking (PST)

The PST method focuses on capturing streaks of the tracer particles and extracting

velocity vectors through these streaks. In order to generate particle streaks, long expo-

sure times with a photo camera and a pulsing light sheet are utilized. The light sheet

pulse durations are varied, which results in different stroke lengths between two sub-

sequent images to determine the flow direction as shown in figure 2.5. The magnitude

of the velocity vector is then calculated using the distance between two consecutive

strokes. Using this method flow visualization can be carried out either in 2D or 3D: A

3D measurement runs with two cameras and multiple light sheets [37].

Figure 2.5: An image from a 2D-PST measurement in an aircraft cabin [23]

2.1.2 Main Components of a Flow Visualization System

The previous section described the main function principle of flow visualization and

represented a general classification of quantitative flow visualization methods. This
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was then followed by the theoretical background of three common particle-based flow

visualization methods. This section describes the main components of these methods

in detail. Based on an analogy with the human visual pathway, as shown in figure 2.2,

the components of a flow visualization system can be categorized into four groups:

tracer particles, illumination, image acquisition system, and data processing unit.

2.1.2.1 Tracer Particles

Tracer particles are the interfaces in flow visualization between the image acquisition

system and the investigated flow structure. They make an invisible fluid motion visible

so that an optical device can capture it. There are various tracer particles available

for different flow visualization methods in different fields of application. However,

there are some common properties which they must satisfy. Since flow visualization

is a non-intrusive measurement method, tracer particles must not influence the flow

phenomenon investigated and must behave as close to the fluid in motion as possi-

ble. An important condition for this is neutral buoyancy, which becomes more impor-

tant with decreasing velocities in the flow, e.g., natural convective flow. Polyethylene

(ρ = 0.920g/cm3) and polyamide (ρ = 1.15g/cm3) microspheres are the most com-

mon materials used for visualizing water (ρ = 1g/cm3) flows. The number of possible

neutrally-buoyant tracer particles decreases when the investigated fluid is a gas like air.

There are few materials in nature with a density equal or less than air. Furthermore,

most of these materials are either explosive (like methane, hydrogen, and nitrogen) or

rare and expensive (like neon). Under these circumstances, helium is the most used

gas as a tracer particle for air flows, in the form of encapsulated in soap bubbles. Foss,

Tropea, and Yarin emphasize another important property of the material used as tracer

particle, its chemical character:
”
The material should not be hazardous or toxic if in-

haled, it should not be corrosive or reactive when in contact with parts of the flow

facility or other instrumentation.“ [7].

Besides its physical properties, optical properties of the tracer particle in combina-

tion with the illumination source and the optical capture device also play an important

role. Scattering properties of the tracer particles are most important in this context:

The tracer particle should scatter the light exposed to it homogeneously on its surface.

For solid opaque tracer particles, this requirement is not as challenging as for trans-

parent helium-filled soap bubbles which are used for air flows. As shown in figure 2.6

right, helium-filled soap bubbles do not scatter the exposed light homogeneously but

locally as spots. This phenomenon is measured for a water droplet in the air as shown
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Figure 2.6: Mie scattering diagram of a water droplet in the air [7], soap bubbles scat-

tering in different directions [43]

in figure 2.6 left. As can be seen from this scattering diagram, scattering on a water

droplet in the air has four peaks in the direction of observation. This inhomogeneous

scattering leads to an error during the determination of tracer particles’ centers, which

propagates to an error in velocity calculated and therefore must be considered during

error estimation.

In combination with the used illumination sources, tracer particles should also de-

ploy a high contrast to the background in order to make it possible to recognize them

in the next step. In this context, Foss, Tropea, and Yarin mention the big advantage

of fluorescent tracer particles as follows:
”
This makes it possible to separate the tracer

particles from other scattering objects, such as walls, bubbles, droplets, and other parti-

cles, by means of an appropriate optical filter that blocks the light with the wavelength

of the incident light (viz. light sheet) and passes the fluorescent light.“ [7] Other essen-

tial requirements for the tracer particles are their stability with varying flow conditions

(e.g., temperature), their low-cost, and—preferably—biodegradability.

2.1.2.2 Illumination

The task for the illumination source in flow visualization is to expose the observed

domain with light so that the image acquisition system can capture the tracer particles.

The light produced by the illumination source must exhibit a specific intensity and a ho-

mogeneous distribution. Illumination in flow visualization systems can be categorized

according to their implementation in two groups as planar and volumetric. Methods

like PIV (2D & 3D), PST (2D & 3D), and 2D-PTV measure velocity components on

planar light sheets, however, 3D-PTV tracks volumetric illuminated tracer particles.

12
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PIV uses laser light sheets, mostly Nd:YAG lasers. The advantages of the laser are

mentioned by Foss, Tropea, and Yarin as:
”
Lasers are used as illumination sources

since they can produce a pulsed, collimated and monochromatic light beam that can

be easily shaped into a thin light sheet.“ [7] A disadvantage of laser illumination is the

lacking laser safety: It is not possible to use such a system in every environment (e.g.,

field measurements). Müller utilized a gas-discharge lamp for 2D and an argon-ion

laser for 3D PST applications [37]. Biwole used halogen lamps for volumetric illumi-

nation in his study on a large scale PTV [6]. He emphasizes in this work the low heat

generation rate of these illumination sources, which is an essential factor to consider,

especially for low-velocity measurements where convective effects have a significant

influence on the flow field. Groß, Brevis, and Jirka used LED (light-emitting diodes)

illumination sources for PTV and PIV measurements in their research [11]. According

to this study LED lamps have numerous advantages like safety, flexibility, and being

economical compared to laser illumination systems.

2.1.2.3 Image Acquisition System

The image acquisition system has the task to capture images of the illuminated tracer

particles in the observed flow field using one or more cameras and store them so that

further data processing can be carried out in the next steps. Such a system should de-

liver images with high quality, resolution, and color depth. At the same time, the cam-

era speed should be preferably controllable and accurate, especially for multi-camera

systems. The image sensor, which converts optical into electrical signals, defines the

resolution and color depth of a camera. The total number of pixels on it defines the

resolution of the image sensor in megapixels (MP). The color depth stands for the reso-

lution of color in bits, e.g., 8−bit has 28 = 256 tones to represent a color. Both the lens

and the image sensors have an impact on the quality of the captured images. It should

have a wide and controllable aperture so that as much as possible scattered light can

be projected on the image sensor and the depth of focus can be controlled depending

on the investigated flow field.

The camera speed, images captured per second (frames per second, fps), should be

chosen according to the observed flow speed so that the tracer particles are captured

without any blur. Shutter speed accuracy should also be high so that the time devia-

tion between successive frames stays low. This is especially important when multiple

cameras are used. In that case, all cameras must capture all frames at the same time; a

time shift between the dataset from different cameras could lead to erroneous results.
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Figure 2.7 shows a high-speed scientific camera which is used for PIV measurements.

It can capture images with a resolution of four megapixels and up to 400 frames per

second.

Figure 2.7: A high-speed scientific camera [4]

An image acquisition system con-

sists not just of cameras, but it also

contains usually a workstation which

controls these cameras and stores the

acquired data from them for further

data processing. There are various

interface standards between work-

station and cameras. The most used

interface standard for the high-speed

scientific cameras nowadays is Cam-

era Link (CL), which can run at a

bandwidth of up to 850MBs [45].

For the flow visualization methods where the synchronization between illumination

source and cameras is crucial (e.g., PST), the image acquisition system also has the

task to control the illumination system.

2.1.2.4 Data Processing Unit

The components of a flow visualization system described up to this point are respon-

sible for the image acquisition, namely transferring a flow phenomenon to a storage

medium as Leonardo da Vinci made 500 years ago as shown in figure 2.1. At the time

he was not capable extracting quantitative information from his images, whereas now

with increasing computational resources we can gain more quantitative information

from these images. However, as described by Adrian, this step is the most challeng-

ing part of the whole workflow:
”
The analysis of the recorded image field is one of

the most important steps in the entire process, as it couples with the image-acquisition

process to determine the accuracy, reliability, and spatial resolution of the measure-

ments; it is also the most time-consuming part of the process.“ [2] The data processing

unit is generally a computer (e. g., workstation, cluster) on which captured images are

processed using software to gain quantitative flow information. Section 3.2 describes

the details of this data processing step. The requirements of the data processing unit

depend on the observed system, but generally, it should satisfy enough computational

power, storage, and memory for the concerning task.

14



2.2 Fundamentals of Computer Vision

2.2 Fundamentals of Computer Vision

Computer vision is the scientific field which deals not only with the visual capture of

the real world but also the analysis and interpretation of these images. In other words,

computer vision generates—using the infinitive visual data from the real world—, nu-

merical results regarding a specific aim. The first computer vision applications were

already developed in the 1960s and the first international conference on computer vi-

sion took place in London in 1987. The rapid development of information technolo-

gies3 has also influenced computer vision technologies in the last decades. Nowadays

it is possible to see computer vision applications in diverse fields of daily life like:

• Automatic plate number recognition (APNR) uses computer vision to save vehi-

cle plate numbers in flowing traffic. With this system, it is possible to charge toll

fees without interrupting flow traffic, reducing fuel consumption and emissions.

• Mobile 3D scanners make it possible to quickly generate high-resolution 3D

geometry data of objects in the real world. This computer vision application

brings new possibilities to workflows in which primarily 3D geometry data are

processed.

• Adaptive cruise control systems help to retain a security distance to the vehicle

in the front, keeping vehicle velocity, and change the lane automatically using

in-vehicle installed cameras, which increases the security in traffic.

Beside these application examples, computer vision is used in various industries

like aerospace, medical services, and robotics. In this study, computer vision is used

to capture 3D flow velocity. Section 3.2 defines the practical implementation of this

application in detail. In the following, the computer vision theory, which is essential

for this application, will be described briefly.

2.2.1 The Human Visual System

The eye is the organ responsible for visually capturing the environment. It has the

function of converting the 3D world to nerve signals—just like as a camera. This

process takes place through three components in the eye: the lens, the pupil, and the

retina. The pupil adjusts—like the diaphragm in a camera—the amount of the light

entering the eye. This light is projected onto the retina by the lens. The retina with its

3The employment growth in information technologies between 1990 and 2011 is circa 300% according

to the U.S. Bureau of Labor Statistics.
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125 million photoreceptors [21]—like a sensor in a digital camera—converts the light

signals to electrical nerve signals.

Figure 2.8: Human visual pathway [14]

These nerve signals then

are processed in different

parts of the brain where

the visual perception takes

place, as shown in figure

2.8. The depth dimension,

which is lost during the pro-

jection of the 3D world onto

the 2D retina surface, must

also be calculated in this

step. The monocular vision

and the binocular vision are

two main processes during

this depth estimation. In

monocular vision, the sig-

nals of just one eye is used,

supported by various crite-

ria. One of the most impor-

tant of these criteria is the

motion parallax. When an

observer moves (e.g. in a

train journey), the closer objects are perceived with a higher relative velocity than the

objects further away. Furthermore, learning through experiences is an essential part of

the monocular vision. When the absolute size of an object is known (namely learned)

the distance to this object can be estimated.

Other than the monocular vision there is the binocular vision where two eyes are

used. The depth can be estimated using information from two different perspectives,

so-called binocular disparity. Compared to the monocular vision the binocular vision

is more precise, which can also be observed in the evolution. The eyes of most of

predators are located in the front of the head so that more binocular vision is possible.

That is essential because the precise calculation of the distance to the prey is necessary.

On the other side for the prey the size of the field of view is more important than the

precision of depth estimation to the predator so that they can recognize the dangers ear-

lier. Therefore, preys utilize more monocular vision compared to predators as shown
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in figure 2.9.

Figure 2.9: Prey vs. predator and their monocular and binocular field of views

2.2.2 The Pinhole Camera Model and Single Camera

Calibration

The pinhole camera is the simplest camera that can be used to capture 3D objects of

the real world on a 2D plane. Using this camera, 3D objects are projected on a 2D

plane with the light passing through a tiny hole. Because no lens is used in this cam-

era, no image distortion occurs. These optical phenomena were already observed 2500

ago years in China. However, the humankind had to wait 2300 more years till French

Nicéphore Niépce made the first photograph of the world on a chemically coated sur-

face in 1826-1827. Nearly 150 years after the first photograph of the world American

Steve Sasson developed in 1975 the first digital camera. In a digital camera, light

signals are converted to electrical signals using an image sensor. Nowadays this tech-

nology is widely used for image and video capture.

Independently of the capture method (photo film, video film or image sensor) the

pinhole camera model mathematically defines the projection of 3D objects of the

real world on a 2D plane. As shown in figure 2.10, using this model a world point
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Figure 2.10: The pinhole camera model

P(X ,Y,Z), which is defined according to the world coordinate system4 with its origin

in the camera center, is projected onto a 2D plane (e.g., image plane). The result is

the image point p(x,y), which is defined according to the camera coordinate system.

The image coordinate system is used to define the positions of the objects on the im-

age plane by the capture device. The following equation describes the pinhole camera

model:
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(2.4)

In equation 2.4, fL defines the focal length; cx and cy the origin coordinates of the

camera coordinate system according to the image coordinate system. The 4×3 matrix

in this equation with the camera parameters is called the camera matrix. Using this

equation and a given camera matrix, it is possible to carry out the coordinate trans-

formation from the world coordinate system to the image coordinate system. In other

words, given a camera matrix and world coordinates it is possible to calculate the po-

4In this study, the coordinate systems are oriented as in MATLAB R© [31]
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sition of an object on the image sensor. The general form of the camera matrix can be

decomposed into two matrices: the intrinsic and the extrinsic matrix.






x

y

1




=






Rxx Rxy Rxz Tx

Ryx Ryy Ryz Ty

Rzx Rzy Rzz Tz






︸ ︷︷ ︸

Extrinsic matrix






fL 0 cx

0 fL cy

0 0 1






︸ ︷︷ ︸

Intrinsic matrix









X

Y

Z

1









(2.5)

The intrinsic matrix contains parameters which characterize the camera itself as

shown in equation 2.5. The extrinsic matrix, on the other hand, is similar to the trans-

formation matrix and defines the orientation of the camera. The first three columns of

the extrinsic matrix build the rotation matrix and last column the translation vector.

To use the pinhole camera model the camera matrix must be known. This can be

achieved through camera calibration. During this process, a pattern including objects

with known world coordinates, usually a checkerboard, is captured by the camera. The

resulting image points are then recognized and matched with known world points, so

that the camera matrix can be calculated. However, the exact solution of this prob-

lem would only be possible if the image points could be determined exactly, which

is impossible due to the finite sensor resolution. In order to solve the equation sys-

tem 2.5, which has three equations and 15 unknowns, at least six points are needed,

which results in 18 equations and 15 unknowns. This resulting over-determined equa-

tion system is solved by minimizing a cost function. This cost function is generally

the mean reprojection error, which defines the average distance between captured and

reprojected image points (captured image points and calculated image points using es-

timated camera matrix). That means the final mean reprojection error also defines the

accuracy of the camera calibration.

2.2.3 Stereoscopy and Stereo Camera Calibration

The pinhole camera model defined above is a mathematical model for one camera.

Extending this model to two cameras (this method being known as stereoscopy), it is

possible to calculate the 3D world coordinates of an object from its image coordinates

on each camera sensor. The graphical representation of this problem is simplified to

the calculation of a 2D world point using two 1D image points in figure 2.11. This

calculation is usually carried out on calibrated cameras whose camera matrices are
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known.

Figure 2.11: Triangulation of a 2D point

x1 − cx,1

fL,1 ∗ s1
=

X

Z

x2 − cx,2

fL,2 ∗ s2
=

X ∗ cos(α)+Tx

Z ∗ sin(α)+Tz
(2.6)

In order to find the coordinates of the point P, the pinhole camera model must be

applied to both cameras and a coordinate transformation must be carried out according

to the camera coordinate system, in which the result is desired (it is often the first

camera). The mathematical formulation of this operation is shown in the equation

system 2.6. s1 and s2 are the pixel densities of the cameras and are used for dimension

conversion of the focal length to the image coordinate system, namely to pixels. With

its two equations and two unknowns, this linear equation system can be solved directly5

which is also called triangulation. Similarly, one more dimension can be added to this

equation system, which results in a triangulation of a 3D point using two 2D image

points.

For the triangulation to a 3D world point using two cameras, first its 2D projections

on every camera must be known. In other words, two matched 2D image points are

5e.g., using singular value decomposition which is also used by MATLAB R©.
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necessary to calculate the 3D point they are representing. In this context, the epipolar

constraint defines whether two 2D image points on different cameras can represent a

3D world point. Hartley and Zisserman [41] describe the epipolar constraint shown

in figure 2.12 as follows:
”
If the epipolar constraint is satisfied, then these two rays

lie in a plane, and so intersect in a point X in 3D-space.“. Equation 2.7 shows the

mathematical formulation of this description, whereby x and x′ are two corresponding

image points and F is the fundamental matrix. The fundamental matrix is defined in

[17] as:
”
Fundamental matrix contains the same information as essential matrix6 in

addition to the information about the intrinsics of both cameras so that we can relate

the two cameras in pixel coordinates.“ The fundamental matrix is calculated during

stereo camera calibration (see section 5.1), in which predefined matched image points

from a calibration pattern are used.

Figure 2.12: Graphical representation of epipolar constraint [41]

x′T Fx = 0 (2.7)

Like in single camera calibration described in section 2.2.2, during the stereo camera

calibration the aim is the estimation of camera matrices. This time as a first step the

calibration pattern is captured simultaneously by both cameras, which results in one set

of world points and two sets of image points (one set for each camera). The resulting

6The same source defines the essential matrix as:
”
Essential Matrix contains the information about

translation and rotation, which describe the location of the second camera relative to the first in

global coordinates.“
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over-determined linear equation system is then solved again for minimizing the mean

reprojection error. Since the camera matrices can just be calculated up to a certain

scale, the mean reprojection error of the stereo camera calibration defines not only the

accuracy of the camera calibration, but this time also the accuracy of the triangulation.

Figure 2.13: Stereo vision configuration types

Unlike in single camera calibration which estimates the intrinsic matrix of the cam-

era, with two cameras the user can influence the accuracy of the calibration while

positioning the cameras, namely preconditioning the extrinsic matrix of the second

camera. The positioning of the cameras in a camera set depends on various factors

like camera specifications, application of interest, light and environment conditions.

Generally, an ideal stereo configuration should have the largest field of view with the

smallest calibration error. Before discussing the factors which are essential for this

ideal configuration, figure 2.13 shows the common stereo configuration types. If the

axes of both cameras are parallel to each other, this configuration is called a parallel

configuration. For the other cases where the optical axes are not parallel to each other,

convergent and divergent configurations are defined. In a convergent configuration,

the optical axes meet at a point in the field of view, which is not the case for divergent

configurations. The angle between the optical axes is called the angle of separation,

and the distance between camera centers is called the baseline length.

Kap Luk Chan and Andrew K. Forrest found out in their study [8] that the triangu-

lation error due to calibration decreases approximately logarithmically with increasing

angle of separation. They suggest an optimum angle of separation between 35◦ and

45◦. In the same study, they express the relationship between baseline length and

triangulation error as follows:
”
At a given focal length, a wider baseline reduces tri-
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Figure 2.14: Field of view of horizontal two view setup

angulation error but increases both geometric and photometric distortions in images

which in turn makes matching of these images more difficult.“ This results can also

be seen in the experimental studies of Kytö, Nuutinen, and Oittinen [35]. On the other

hand with decreasing baseline length the stereo field of view increases and reaches its

maximum when both cameras converge on each other. The field of view for a stereo

configuration depends on the baseline length, separation angle, and optical specifica-

tions of cameras. Figure 2.14 represents an example of the change in the field of view

for two Logitech HD Pro C920 Webcams with the baseline length and separation an-

gle. As expected the highest field of view occurs when both cameras are lying on the

same place, which is practically not possible.

2.2.4 Multiple View Geometry and Bundle Adjustment

Like the inspiration from the birds while developing aircraft, humans were inspired by

their own vision system for the computer vision development. However, after stere-

oscopy multiple view systems have extended its borders beyond the human visual sys-

tem. A multiple view system is defined as a system in which more than two cameras

are used. The triangulation process for multiple view systems is similar to stereo view,

with known camera parameters and matched image points. However, the calibration

process with more than two cameras is more complex and needs further steps.

One big difference while calibrating multiple cameras is that often it is not possible
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Figure 2.15: Schematic representation of bundle adjustment

to capture the calibration pattern simultaneously with the all cameras in the camera

set. Practically it is possible to cover a maximum 180◦ with a 2D calibration pattern.

Even if it is possible to capture that angle, working with large angles of separation

increases the calibration error as defined in section 2.2.3. One approach to overcome

these problems is decomposing a multiple camera calibration into several stereo cam-

era calibration processes between subsequent camera tuples as shown in figure 2.15

for n calibration points and m views. After estimating intrinsic and extrinsic camera

parameters, the extrinsic camera parameters (rotation matrices and translation vectors)

can be recalculated regarding the first camera as shown in equation 2.8:

R1,m = Rm−1,mR1,m−1

T1,m = T1,m−1 +Tm−1,nR1,m−1 (2.8)
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In this equation, R1,m stands for the rotation matrix and T1,m stands for the transla-

tion vector from first to mth camera. However, with the increasing number of cameras,

the extrinsic calibration error of each camera leads to error propagation. In order to

optimize the camera parameters in the multiple view setup, the bundle adjustment al-

gorithm is used. This algorithm minimizes, as in the camera calibration process, the

reprojection error for the given initial camera matrices. Its name bundle adjustment

is related to the bundles between camera centers and world points as shown in figure

2.15. After the bundle adjustment calculation, these bundles should converge on each

other, namely adjusted.

min
a j,bi

n

∑
i=1

m

∑
j=1

d(Q(a j,bi),xi j)
2 (2.9)

Equation 2.9 shows the mathematical formulation of bundle adjustment defined by

Lourakis and Argyros [29]. In this equation, a represents camera matrices and b world

points. Q is the reprojected image points and d stand for the distance between this

point and the captured image point x. This problem is solved by the Levenberg-

Marquardt Algorithm (LM) in a bundle adjustment. Lourakis and Argyros describe

the Levenberg-Marquardt Algorithm as follows [29]:

”
It has become a standard technique for nonlinear least-squares problems,

widely adopted in various disciplines for dealing with data-fitting appli-

cations. LM can be thought of as a combination of steepest descent and

the Gauss-Newton method. When the current solution is far from a local

minimum, the algorithm behaves like a steepest descent method slow but

guaranteed to converge. When the current solution is close to a local mini-

mum, it becomes a Gauss-Newton method and exhibits fast convergence.“
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Velocimetry

Most of the modern flow visualization techniques are based on the optical capture of

the observed environment as described in the chapter 2.1. That means in order to carry

out measurements using these techniques no disturbance between the investigated do-

main and the optical device is allowed. On the other hand, use of scientific cameras

greatly elevates the hardware costs in these measurement systems. In a study from

2009 [6] 27% of all hardware costs (48849,73 e) is invested in the three cameras

which are used in the measurement system. These two drawbacks restrict the usage of

flow visualization techniques to small-scale problems, not only in field measurements

but also in laboratory experiments. Measurements using these techniques in large vol-

umes, which are very common in indoor air applications, therefore are nowadays not

possible. The 3D-MVPTV, which will be described in this chapter, was developed to

overcome these restrictions.

3.1 What is the 3D-MVPTV?

The concept of the 3D-MVPTV is inspired by the CFD. To accelerate the calculation,

in CFD parallel processing is used, in which several computational cores are involved

in the calculation. During parallel processing, a computational domain is decomposed

and sent to several computational cores in which the calculations take place indepen-

dently from each other. The final result is then obtained by recomposing the results

from all computational cores. Using parallel processing it is possible to reduce the

calculation time linearly proportional to the number of computational cores available.

Similarly, it is possible to apply the decomposition and recomposition processes of

CFD to the flow visualization among others to the PTV. In this case, the measurement

domain will be decomposed into several volumes, in which PTV measurements take
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place independently from each other. Finally, the PTV results from each volume are

recomposed to receive the final result. These decomposition and recomposition pro-

cesses take place through the distribution of multiple cameras in the domain. Utilizing

multiple cameras eliminates problems due to optical obstacles and enables to conduct

measurements in larger domains. However, using more cameras increases the com-

plexity of the measurement system. This is not a fundamental problem and can be

indeed overcome through a systematic approach. The major problem though is the

rapid increase in hardware costs due to the number of cameras.

Figure 3.1: The development of the webcam market in the last two decades.

This problem can be solved using webcams instead of scientific cameras. If the de-

velopment of the webcam market in the last two decades is considered (figure 3.17), it

can be seen that even with permanently increasing resolution the price of the webcams

falls continuously. Today, most of the webcams have at least full high definition (FHD)

resolution and cost less than 100 e. The sensors and optics in these webcams make

them suitable for use in scientific studies. Another advantage of working with webcams

is their conventional data transfer interfaces. Such conventional interfaces prevent the

need for specific data acquisition equipment and make it possible to work with nor-

mal COTS (commercial off-the-shelf) workstations. 3D-MVPTV is a future-oriented

concept: Extrapolating the past webcam market development mentioned above, in the

future it will be possible to work either with higher resolution or for the same resolution

with lower hardware costs and a less complicated system.

7Action cams, which also became dominant in the same resolution and price segment in the last years,

are also included in this diagram.
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3.2 The 3D-MVPTV Workflow

A 3D-MVPTV measurement consists of several sequential steps, starting with camera

distribution and ending with post-processing of the results. All these steps are catego-

rized and assembled in the 3D-MVPTV workflow to ensure the systematic execution

of measurements. The following sections describe every step of this workflow. How-

ever, before detailing these steps, in section 3.2.1 the software environment which is

used for realizing the 3D-MVPTV is introduced.

The 3D-MVPTV workflow starts with camera distribution in which cameras are po-

sitioned in experimental space. After this step, cameras should be calibrated, resulting

in the mathematical description of the measurement system. Following camera cal-

ibration, frame synchronized video capture takes place in which tracer particles are

captured in video files. When this step has succeeded, the object recognition step ex-

tracts these tracer particles from video files with their various properties. In the next

step these recognized objects must be tracked, which happens in the object tracking

step. In order to calculate 3D world points of the tracks, first image points of each

track that are captured by several cameras must be matched in the track matching step.

Following this step triangulation can be carried out, resulting in the 3D world points.

Finally, these results can be post-processed according to user demands.

In this study besides the development of a 3D-MVPTV system and the 3D-MVPTV

measurements, it is focused on two crucial steps of the 3D-MVPTV workflow: camera

calibration and object tracking. The camera calibration step differs from other re-

viewed fluid visualization systems through the utilization of multiple cameras. There-

fore, a specific calibration approach is developed. On the data processing side during

the realization of object tracking, several improvement potentials compared to conven-

tional tracking methods have been seen, which succeed in developing a new object

tracking method.

3.2.1 Software Environment for the 3D-MVPTV Development

In order to develop such an application as 3D-MVPTV and keep it updated with new

technologies, the software environment plays a crucial role. There are several aspects

which should be taken into account when deciding on an appropriate software environ-

ment. The most fundamental aspect is that the software must be capable of realizing

needed steps in practice. For 3D-MVPTV that is a comprehensive task since the idea
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includes such different steps such as image and video capture, camera calibration, im-

age processing, and various mathematical calculations. Other vital properties expected

from the software are service and support. The software should be developed contin-

uously following the new technologies and according to users’ demands. Also in case

of a problem, the software developer should be able to deliver professional and timely

support to overcome the users’ problems. Increasing the interdisciplinary character

of technical problems, the software should also have flexible hardware and software

interfaces which can communicate with diverse external sources if needed. Especially

for non-academic use, license costs also play a crucial role. Finally, users’ previous

experience with software and development exhibit a critical factor when choosing an

appropriate development software.

The first steps of the presented 3D-MVPTV were started using the software envi-

ronment OpenCV in 2010. The first task was a stereo camera calibration, which was

carried out successfully. However, due to the lacking service and support for this open-

source tool, all other tasks were processed with MATLAB R© and its toolboxes. With the

launch of the Computer Vision System ToolboxTM in 2014, the camera calibration step

was also moved to MATLAB R©, which combined all the steps of 3D-MVPTV in one

software environment. Today the 3D-MVPTV runs with MATLAB R© and its following

toolboxes:

•
”
Image Acquisition ToolboxTM provides functions and blocks that enable to con-

nect industrial and scientific cameras to MATLAB R© and Simulink R©.“ [31]

•
”
Image Processing ToolboxTM provides a comprehensive set of reference-standard

algorithms and workflow apps for image processing, analysis, visualization, and

algorithm development.“ [31]

•
”
Computer Vision System ToolboxTM provides algorithms, functions, and apps

for designing and simulating computer vision and video processing systems.“

[31]

•
”
Parallel Computing ToolboxTM lets to solve computationally and data-intensive

problems using multicore processors, GPUs and computer clusters.“ [31]

The 3D-MVPTV measurement system works with MATLAB R© and its toolboxes

without any problems. This software environment is developed continuously (two re-

leases per year nowadays) parallel to new technologies, which is proved, e.g., with

the launch of a bundle adjustment algorithm in 2016 that is already integrated into

the 3D-MVPTV workflow. Besides the possibility to contact the developer team, this

software environment made it possible to realize the 3D-MVPTV concept efficiently.
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On the other hand, it is also possible to integrate this workflow into OpenCV, useful

especially if a commercial application without license costs is desired. The MATLAB

CompilerTM is another possibility for commercial applications, in which developed

software can be utilized as a standalone application.

3.2.2 Camera Distribution

Figure 3.2: Modular camera networks

The 3D-MVPTV concept is based in principle on using multiple cameras. In this

context, unlike conventional methods, rather than camera pairs modular camera net-

works are at the point of interest. A modular camera network is a calibrated set of

cameras which are distributed in an experimental domain to capture the desired vol-

ume of interest. Its modular structure makes it possible to relocate the cameras in

the network, recalibrate them, and run new measurements on a different volume of

interests. Figure 3.2 shows two examples of such modular camera networks. The

master camera in these representations is the camera whose coordinate system is also

the global coordinate system for the measurements. That means the triangulated 3D

world point coordinates are oriented according to this global coordinate system, even

if the master camera is not participating in the triangulation process. Depending on the

geometrical restrictions of the experimental domain, a modular camera network can
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be defined with or without loop closure. In a modular camera network with loop clo-

sure, the last camera in the network is also associated with the master camera during

the camera calibration process, which theoretically delivers more robust results during

camera calibration.

On the one hand, the number of cameras used in such a modular camera network

depends on the size of the volume to be captured. Finding the optimum number and

distribution of cameras is a mathematical optimization problem, which is not covered

in this study. On the other hand, the number of cameras is responsible for the triangu-

lation accuracy, the complexity and the total cost of the system as well. This relation

between camera distribution and triangulation accuracy is going to be investigated in

chapter 5.3. Generally, the most important boundary conditions for an appropriate

choice of camera distribution can be listed as:

• Every point in the measurement domain must be captured at least with two cam-

eras to calculate 3D world points with triangulation.

• The tracer particles must be captured at least with one pixel on the camera sensor.

• Minimum possible triangulation error should be achieved.

• Minimum possible number of cameras should be used.

3.2.3 Camera Calibration

This step of the 3D-MVPTV workflow is described separately in chapter 5 since its

approach differs from conventional methods and—together with object tracking—it

represents one of the two main focus points of this study.

3.2.4 Frame Synchronized Video Capture

Table 3.1 shows the specifications of the webcam utilized in this study Logitech HD

Pro Webcam C9208. It can capture uncompressed 24 bits FHD-videos with a frame

rate of 5 fps. At the end of 2016, this webcam could be acquired for circa 65 e, which

makes it suitable to use within 3D-MVPTV.

In order to calculate the 3D world points of tracer particles, frame capture must be

carried out by each camera in the same instant of time. Otherwise different frame cap-

8Logitech support has delivered some of these technical specifications.
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Focal length 3.67 mm

Field of view 78◦

Horizontal x vertical resolution 1920 x 1080 pixels

Compressed frame rate at full resolution 30 fps

Uncompressed frame rate at full resolution 5 fps

Table 3.1: Logitech HD Pro Webcam C920 technical specifications [28]

ture times between cameras lead to different image point positions of a tracer particle

for every camera, which results in an erroneous calculation of the 3D world points.

One important factor to minimize the deviation between frame capture times is an

undisturbed operation of data flow in the image acquisition system from capture de-

vice to storage. That means bandwidths of the devices and interfaces through the image

acquisition system must be capable of processing the captured data flow.

(1080×1920)
pixel

f rame
×3×8

bit

pixel
× 1

8

byte

bit
× 1

220

MB

byte
×5

f rame

second
= 29,663MBps

(3.1)

The amount of data generated by one webcam per second can be calculated as shown

in equation 3.1. Each pixel in every layer of the RGB color space is defined using

8 bits. This yields a data generation rate of 29,663 MBps per camera and 474,608

MBps for the whole system with 16 webcams used in this study. Components of the

image acquisition system, which must be capable of processing this amount of data,

can be divided into two groups: the hardware and the software. Figure 3.3 shows the

four main components of a typical hardware setup for the image acquisition system

used in 3D-MVPTV: webcams, USB host controllers, a workstation, and a storage

device. Webcams, the first elements of the image acquisition chain, act as data source.

From webcams the captured data is transferred through USB host controller to the

workstation’s mainboard. A host controller can be used for one or more webcams

depending on the webcam generated data and the bandwidth of the host controller.

In this study, four cameras are directly connected to the two host controllers on the

mainboard. The other twelve webcams are connected through three PCI express cards

each with four separate USB host controller per lane. Every USB host controller has a

bandwidth of 5 GBps, which ensures a failure-free data transfer.

Captured data entered to the mainboard must be immediately stored to keep the data

flow undisturbed. At the time of developing the image acquisition system using an

existing workstation, it was not possible to store captured data directly to the storage
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Figure 3.3: Hardware components of the image acquisition system for four webcams

[15] [24] [28] [42]

device due to the limitations of the drive bandwidth, driver and software-based restric-

tions as well. Therefore, captured video data is temporarily stored in the memory to

avoid errors during video capture and moved to a storage device at the end of the video

capture process. This workaround limits the total video capture time depending on

the total memory size of the workstation, in this study 32 GB. Equation 3.2 shows the

theoretical maximum capture duration. Considering other running system services and

programs on the workstation, which also allocate memory, maximum video capture

time in this study is 60 s.

32GB× 1024
1

MB
GB

474,608MBps
= 69,042s (3.2)

Before the final data storage on a storage device, captured 24−bit RGB video data is

converted to 8−bit grayscale data and saved in a three-dimensional array with a size

of vertical resolution × horizontal resolution × number of frames. This conversion

reduces the data size to its one-third. Since color information of tracer particles is

not necessary for the following steps of the workflow, this step is vital to save disk

space. Direct video capture in 8 − bit grayscale color space is not possible, as no

grayscale driver for the Logitech HD Pro Webcam C920 webcam was available during

the development of this system.

On the software side running on this hardware setup, there are two essential com-
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ponents: webcam driver and image acquisition software. Webcam driver defines the

interface between webcam (hardware) and operating system (software). Two possible

drivers for the Logitech HD Pro Webcam C920 are available: a vendor driver and a

generic operating system driver. Since uncompressed video capture is only possible

using a generic operating system driver, this driver is used. Working with the vendor

driver could not ensure frame synchronized video capture because compression and

decompression steps are used, which also demand computational resources from the

workstation.

Figure 3.4: Frame synchronized video capture statistics with 16 webcams

Frame synchronized video capture is carried out using MATLAB R© and its Image

Acquisition ToolboxTM. The Image Acquisition ToolboxTM can communicate with

webcams using the webcam driver described above, control their parameters like frame

rate, exposure, and focus level; start and stop video capture, and store captured data.

Furthermore, it can store timestamps of the frames, which records the absolute system

time when the frame is captured. This analysis feature is very crucial and makes it

possible to determine if the video capture is carried out frame synchronized or not.

At the end of each video capture, timestamps from each webcam are analyzed and

plotted using a standardized layout as shown in figure 3.4. In order to interpret these

statistics independently of the frame rate, frame-based normalization is applied. In

these graphs, if every camera captures each frame at the same time (see graph top left),

it can be determined how big the normalized shutter deviation for each frame is (see

graph top right). These graphs also represent the average normalized shutter deviation

through the video capture period (see graph bottom left) and the normalized trigger
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delay for each camera (see graph bottom right).

For the image acquisition step, a function was programmed which can automate this

process with variable inputs. The input parameters for this function are the camera

IDs to be used, the frame rate, and the desired duration of the synchronized video

capture. This function first initializes all the cameras to be used and ensures that all

the camera parameters like zoom level, focus level, and frame rate are set to the same

value. After that, synchronized video capture takes place, and resulting video data

is stored in arrays. Finally, the standardized synchronized video capture statistics, as

shown in figure 3.4, are plotted and stored.

3.2.5 Object Recognition

Once video data is stored on a storage device, it can be processed to achieve 3D-

MVPTV results. Object recognition is the step, where pixel-based information of

tracer particles is converted to mathematical data. Concretely, tracer particles are de-

fined as pixels before the object recognition step, and their coordinates define them on

the image plane of the webcam with further geometrical information after this step. In

this step, MATLAB R© and its Image Processing ToolboxTM are used.

Before the object recognition step 8−bit grayscale image data, which is generated

in the previous step, must be converted to 1−bit monochrome image data. This con-

version is needed since the object recognition is carried out on 1− bit monochrome

image data. The difference between 8− bit grayscale and 1− bit monochrome color

depth is about how detailed every pixel can represent the real world. 8−bit grayscale

color depth uses for it 28 = 256 colors and 1−bit monochrome color depth uses 21 = 2

colors, namely black and white.

One critical question regarding this color depth conversion is: Which color inten-

sity for this conversion should be used? In other words, where is the border which

defines the separation point between black and white pixels in 1− bit monochrome

image data? In order to define this color intensity, global thresholding using Otsu’ s

method is implemented. Figure 3.5 shows the result of this conversion. An original

8−bit grayscale image with tracer particles is shown on the top left and the same im-

age converted to a 1− bit monochrome image with global thresholding using Otsu’ s

method is shown on the top right. In the images on the bottom, conversion results with

manual thresholding using extreme values are represented. As can be seen in these two
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Figure 3.5: 8−bit to 1−bit conversion with different threshold levels

images, using a small value (0,01) can yield extra noise and using a high value (0,15)

can result in loss of captured tracer particles.

After the image conversion into 1 − bit monochrome space, image segmentation

takes place.
”
Segmentation subdivides an image into its constituent regions or ob-

jects.“ [40]. As emphasized in this definition of Eddins, Gonzalez, and Woods, image

segmentation extracts tracer particles from 1− bit monochrome images. This extrac-

tion is based on the boundaries of the pixels, which define tracer particles. Here, an

8-connected neighborhood [31] is implemented, which does not just consider edges of

a pixel as in 4-connected neighborhood, but also its corners. Once the image segmen-

tation is carried out, and tracer particles in an image are defined, the next and last step

of image recognition is to collect some characteristic properties of these objects shown

in figure 3.6.

These object properties are required in the next step of the workflow, object tracking,

to associate the same tracer particles in the following frames. The question
”
Which

object properties should be stored for the segmented objects?“ is an application specific

question. Table 3.2 represents the answer to this question regarding tracer particles in

this 3D-MVPTV. These properties define the geometry of the tracer particles and their

position (centroid) on the image plane. In order to capture the deviation of tracer

particles from their sphere geometry due to illumination and motion blur, properties
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Figure 3.6: Tracer particles represented with pixels in 1−bit monochrome space

like eccentricity, major axis length, minor axis length, and orientation are stored. The

bounding box property is used in the post-processing, so that tracked particles can

be plotted later on. The object area is an important property which depends on the

distance of the tracer particle to the camera since the tracer particle size deviation is

relatively small (Christenfeldt [9]). Taking this property into account enables grouping

tracer particles during object tracking.

Property Name Description

Area A scalar that specifies the actual number of pixels in the region.

Bounding Box The smallest rectangle containing the region.

Centroid A 1-by-Q vector that specifies the center of mass of the region.

Eccentricity
A scalar that specifies the eccentricity of the ellipse that has

the same second-moments as the region.

Major Axis

Length

A scalar that specifies the length (in pixels) of the major axis

of the ellipse that has the same normalized second central mo-

ments as the region.

Minor Axis

Length

A scalar that specifies the length (in pixels) of the minor axis

of the ellipse that has the same normalized second central mo-

ments as the region.

Orientation

A scalar that specifies the angle between the x-axis and the

major axis of the ellipse that has the same second-moments as

the region.

Table 3.2: Object properties stored during image recognition [31]

For the presented 3D-MVPTV, a function is programmed, which can handle the ob-
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ject recognition process with variable inputs. This function reads 1−bit monochrome

frames, which are stored in an array and recognizes the object properties shown in ta-

ble 3.2. The recognized objects for each frame, are then stored in an array as shown

in table 3.39. The first column of this array consists the unique object IDs for each

recognized object in the corresponding frame. The third and fourth columns are the

image coordinates of the object centroids, which are defined according to the image

coordinate system (see figure 2.10).

Object

ID
Area

X-

Coor.

Y-

Coor.
Eccentricity

Major

Axis

Length

Minor

Axis

Length

Orientation

25 2 47 186.5 0.86603 2.3094 1.1547 90

75 1 136 848 0 1.1547 1.1547 0

125 5 319.6 893.8 0.76509 3.3066 2.1292 -71.565

175 23 517.17 110.65 0.96211 11.044 3.0111 -52.484

225 19 662 1039 0.90034 7.5807 3.2991 -83.736

275 12 819.83 206.92 0.93764 6.9482 2.4153 -47.93

325 9 978.56 790.22 0.90794 5.3992 2.2628 85.269

375 5 1139.2 745.4 0.76509 3.3066 2.1292 -18.435

425 8 1292.5 528.5 0.86603 4.6188 2.3094 90

475 32 1713.7 678.16 0.74473 8.4421 5.634 77.589

Table 3.3: Exemplary object properties for the plotted objects in figure 3.6

Since the object recognition step can be executed separately in each frame, with

other words the frame sequence does not play a role in object recognition, this step can

be run in parallel. Using the Parallel Computing ToolboxTM, frames are distributed

between computational cores10, on which parallel object recognition processes can

run independently of each other. The parallelization of the object recognition step

is linearly scalable, that means the computational time decreases with the increasing

number of computational cores available.

3.2.6 Object Tracking

This step of the 3D-MVPTV workflow is described in chapter 6 in detail since its ap-

proach differs from conventional methods and—together with the camera calibration—

it represents one of the two main focus points of this study.

9In this exemplary array, the bounding box object properties are not shown due to clarity.
10In this study, 16 cores in the computer cluster of the Hermann-Rietschel-Institute are used.
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3.2 The 3D-MVPTV Workflow

3.2.7 Track Matching

After object tracking is carried out successfully, the tracks captured by multiple cam-

eras must be associated with each other. That is crucial in order to calculate 3D co-

ordinates of the objects in each track using multi-view triangulation in the next step.

The track matching process requires two inputs: Stereo camera parameters including

the fundamental matrices which are gained in the camera calibration step and track-

ing matrices as results of the object tracking step. The outputs of track matching are

matched tracks matrices for every track in the world space. Each of these matched

tracks matrices consists of track IDs in image space and the corresponding camera IDs

they belong to. The size of such a matrix is NT,i ×NC, in which NT,i represents the

number of tracks in image space and NC is the number of cameras.

Figure 3.7: Matched tracks in image space of multiple cameras

The track matching process starts with undistorting image points in the tracks since

the matching calculation described below requires undistorted image points. The track

matching is carried out between two consecutive camera pairs, which means for NC

cameras NC steps for a setup with loop closure and NC − 1 steps for a setup without

loop closure must be run. Here, tracks captured by a camera are cross-correlated with

the tracks of the consecutive camera. The cost function for this cross-correlation is

the epipolar constraint, which defines if two 2D image points on two different cameras

can represent a 3D world point (see section 2.2.3). Since the camera calibration and

object recognition steps have their precision errors, the right-hand side of the equation
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3 3D Multi-View Particle Tracking Velocimetry

2.7 approaches 0. In this context, the track matching algorithm uses the mean value of

the right-hand side calculated using the image points in the tracks. This value is then

normalized before the cross-correlation is carried out. For enhancing cross-correlation,

a filter is implemented, which uses the track pairs with at least two common frames.

That is necessary since after the triangulation step at least two frames are required to

calculate the velocity components. Figure 3.7 shows the results of such a track match-

ing, in which tracks with the same colors represent matched tracks between subsequent

cameras.

3.2.8 Multi-View Triangulation

The track matching in image space delivers the information which tracks appear on

which cameras. The next step is the multi-view triangulation of image points in these

tracks in order to calculate their world points. For the multi-view triangulation, three

inputs are necessary: The image points of the objects in the tracks, the matrix with

matched tracks calculated in the previous step and the camera matrices which includes

intrinsic and extrinsic camera parameters. The critical question for multi-view trian-

gulation is: Which cameras must participate in the triangulation process? To answer

this question, as a first step the total number of all possible camera set combinations

can be calculated using equation 3.3, whereby NC stands for the number of cameras.

NC

∑
i=2

(
NC

i

)

= 2NC −
(

NC

1

)

−
(

NC

0

)

= 2NC −NC −1 (3.3)

Since in this work a maximum of 16 cameras is used, 65619 different camera set

combinations for triangulation are possible. While choosing the most suitable camera

set between these combinations, the most appropriate cost function would be the trian-

gulation error. In other words, the camera set combination must be chosen which de-

livers the minimum deviation between real world points and triangulated world points.

In the early phases of the 3D-MVPTV development, before the development of the

3D-MVPTV-SIL-Environment described in section 4.2, an experiment was carried out

to figure out the relationship between the camera sets used for triangulation and the

resulting triangulation errors.

This experiment was carried out with a single object, a table tennis ball with a diam-

eter of 40mm. It was positioned in an orbit with a radius of circa 100mm. The motion
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3.2 The 3D-MVPTV Workflow

of the table tennis ball in this orbit is ensured using an electric motor, on which the ball

is installed using a metal rod. This construction enables to control the angular velocity

of the ball by controlling the motor speed using a dimmer unit. This experiment’s aim

is to compare the known orbit radius of the ball with the triangulated results using the

different camera sets. In order to achieve this aim, the ball is moved in the orbit with

a constant angular velocity for 30s so it can have a couple of orbits. This motion is

captured by all 16 webcams simultaneously so that the 3D world points of the orbit

can be calculated by recognizing the midpoint of the ball as shown in figure 3.8.

Figure 3.8: Triangulated world points of the table tennis balls orbit

Figure 3.9 represents the results of this experiment. In this graph, the bars show the

number of combinations for the camera sets with a different number of cameras. For

the triangulation with the same number of cameras, the minimum, maximum, mean

and standard deviation values for the difference between the maximum and minimum

orbit radii are plotted using the horizontal axis on the left. The maximum, mean and

standard deviation values decrease with ascending number of cameras. When all 16

cameras are used for the triangulation, the difference between the maximum and mini-

mum orbit radius is 5mm. However, if we consider the minimum values of the combi-

nations, a camera set with nine cameras delivers less than 1mm, which is much closer

to the ideal value of the difference between the maximum and minimum orbit radii,

0mm.

Through this experiment with the table tennis ball, a general rule to find the camera

set resulting in minimum triangulation error could not be found. Therefore, during the
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3 3D Multi-View Particle Tracking Velocimetry

Figure 3.9: Triangulation results of the experiment with a table tennis ball

development of the 3D-MVPTV two triangulation methods were developed which try

to find and use the camera set delivering the minimum triangulation error possible. The

algorithm of the first method can decide the camera set to use automatically by con-

sidering the mean reprojection error of the cameras. Figure 3.10 shows the flowchart

of this algorithm. This algorithm first triangulates a track using all available cameras

and calculates the mean reprojection error for every camera. If the number of cameras

participated in the multi-view triangulation are more than two, the camera with the

highest mean reprojection error is eliminated, and the triangulation is carried out with

Figure 3.10: Flowchart of the multi-view triangulation algorithm with the elimination
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3.2 The 3D-MVPTV Workflow

the new camera set. If the resulting overall mean reprojection error11 is smaller than

the overall mean reprojection error without camera elimination, further camera elim-

ination steps are carried out. If the overall mean reprojection error does not decrease

after the camera elimination, the triangulation results before the camera elimination

are used.

Figure 3.11: World points of tracked tracer particles

after multi-view triangulation

The second method for the

multi-view triangulation uti-

lizes a so-called triangulation

map, which is precalculated

under the 3D-MVPTV-SIL-

Environment. Therefore, the

triangulation algorithm with

precalculation needs an extra

step compared to the trian-

gulation algorithm with elim-

ination. For the calculation

of the triangulation map, nu-

merous virtual world points

are first distributed in the

measurement domain. These

world points are then pro-

jected on the image sensors.

Finally, triangulations for all

camera set possibilities are

carried out with these image

points, and resulting triangu-

lation errors for every world

point are calculated. The triangulation map includes the mean triangulation for every

camera set combination grouped according to the number of cameras in the camera

set and sorted with ascending mean triangulation error. During the triangulation with

precalculation, the camera set delivering the lowest mean triangulation error is chosen

from the triangulation map, and multi-view triangulation is carried out using this cam-

era set. A detailed comparison of these two triangulation methods and the choice of

camera set for multi-view triangulation is presented in section 5.3.

The multi-view triangulation is carried out using data in which at least two cameras

11Here overall is used to represent the mean reprojection error of all cameras.
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are employed. The resulting world points are defined according to the coordinate sys-

tem of the first camera as shown in figure 3.11, which is also the global coordinate

system of the 3D-MVPTV system. The results are exported in the track world points

cell array [31] with a dimension NT,w ×1. Each element of this cell array is an NF ×4

matrix, whereby NF represents the number of frames for the measurement. The first

three columns of this matrix have the world coordinates of the tracked, and the fourth

column includes the mean reprojection error for each point for further error analysis.

3.2.9 Post-processing

Equation 3.4 calculates the three-dimensional velocity components using calculated

world points of objects in tracks. In this equation, ~v stands for the velocity vector, X ,

Y , and Z for the world point coordinates. ∆t is the time between frames, which can be

calculated using frame rate, e.g., for 5 f ps, ∆t = 1/5 = 0.2s. The index f represents

the actual frame and f +1 the following frame.

~v f =
[

X f+1−X f

∆t

Y f+1−Y f

∆t

Z f+1−Z f

∆t

]T

(3.4)

Figure 3.12: Spatially interpolated results on a sec-

tion plane

These calculated variables are

in the next step written into

a generic CSV (Comma Sep-

arated Values) file, so that it

can be processed with vari-

ous post-processing tools. This

CSV file contains the follow-

ing columns: X-Coordinate [m],

Y-Coordinate [m], Z-Coordinate

[m], X-Velocity [m/s], Y-Velocity

[m/s], Z-Velocity [m/s], Veloc-

ity Magnitude [m/s], Time [s],

Track ID [-]. The column Time

[s] makes it possible to visualize

time-dependent flow field, and

Track ID [-] can be used for ex-

tracting tracks for plotting the path lines. The values in this result file can also be
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3.2 The 3D-MVPTV Workflow

interpolated spatially and temporally as well using a post-processor if required. Figure

3.12 shows the spatial interpolation of the 3D-MVPTV results on a section plane.
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4 Real and Virtual Development

Environments for 3D-MVPTV

This chapter describes the environments utilized during the 3D-MVPTV development.

These environments can be categorized into two groups: real and virtual development

environments. The real development environment is an experimental test stand, in

which the hardware is installed, and 3D-MVPTV measurements can be carried out. On

the other hand, the virtual development environment is a software-in-the-loop environ-

ment (SIL) whereby the development takes place in a software environment without

using hardware.

4.1 3D-MVPTV Test Stand

In order to carry out the experiments during the 3D-MVPTV development, a former

test stand at the Hermann-Rietschel-Institut was modified to become the 3D-MVPTV

test stand. As shown in figure 4.1, this test stand has dimensions of 2.5m× 2.5m×
1.5m. The inlet near to the floor is equipped with three axial fans (Sharkoon System

Fan P 120× 120× 25mm) in horizontal order, which can supply air for the test stand

with a velocity up to circa 0.5m/s. These fans are connected to the power supply

through a dimmer unit so that the air velocity flowing into the test stand can be adjusted.

The turbulent vortex structures generated by the axial fans are reduced using a flow

laminator with honeycomb structures. The outlet opening is placed near the ceiling.

In the middle of the room, there is a cylinder with a diameter of 27cm and a height

of 56cm. It serves as an optical obstacle which is mainly used to demonstrate the

multi-view strength of the 3D-MVPTV. This cylinder can be used at the same time as

a heat source, which makes it possible to run experiments with buoyancy-driven flow

structures.

The existing body construction of the webcam can rotate around the X-axis. This
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4.1 3D-MVPTV Test Stand

body construction is installed on a horizontal mount plate, which is then attached to a

clamp mount with a free rotation around the Y and Z axes. Finally, the clamp mount

including mount plate with the webcam on it is installed on a vertical bar which is

stretched between floor and ceiling. The sliding clamp mount on this bar makes it

possible to quickly adjust the height of the camera from the floor (circa 65cm). The

webcams can easily be distributed in the test stand as desired using this construction. A

mini bubble level is used to ensure the vertical orientation of the bar and the horizontal

orientation of the webcam. All 16 Logitech C920 webcams are then positioned on a

circular ring with a diameter of circa 2.47m.

Figure 4.1: 3D-MVPTV Test Stand

For indoor air applications the 3D-MVPTV system uses helium-filled soap bub-

bles as tracer particles. These bubbles are generated using a so-called bubble genera-

tor shown in figure 4.2, which is developed and produced at the Hermann-Rietschel-

Institut. The bubble generator mixes the appropriate amount of compressed helium and

air and packs this mixture in a tenside based soap bubble using a coaxial micro pipe

system. The proper amount and mixture of the gases in the bubble and the thickness

of the bubble shell are adjusted manually based on previous experiences to generate

density neutral tracer particles which also move with the smallest impulses in the air.
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Christenfeldt measured an average diameter of 2mm for the helium-filled soap bubbles

[9]. With its four cyclones the bubble generator can produce circa 2000 tracer particles

per minute, which can live for circa 5 minutes [23]. Tracer particles are transported

into the test stand with separate pipes connected to each of the four cyclones. Four

diffusers are connected to the end of these pipes to reduce the impulses on tracers par-

ticles due to transport. These diffusers are positioned on the floor of the test stand as

shown in figure 4.1.

Figure 4.2: Front and back view of the bubble generator [23]

Illumination of the tracer particles is carried out using LED strip lights mounted

centered on the ceiling in four directions (see figure 4.1). Each LED strip light has a

length of 50cm with a luminous flux of 375lm and a power of 4.8W . These LED strip

lights produce warm white light with a color temperature between 3500K and 4000K.

Their beam angle is 120◦, which provides enough illumination for the measurement

volume. Similar to the axial fans, the LED light strips are also controlled using a

dimmer unit to adjust the desired illumination flux. In order to sustain high contrast

between the tracer particles and the surfaces at the background, all surfaces of the test

stand except the ceiling are covered with black stage molton with a fabric weight of

300g/m2.
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4.2 Development of the

3D-MVPTV-SIL-Environment

”
In software-in-the-loop phase, the actual production software code is incorporated

into the mathematical simulation that contains the models of the physical system [36].“

Today SIL is frequently used in product development workflows of various industries.

On the one hand, with this method, it is possible to accelerate the development phase

and on the other hand costs due to experimental studies with hardware can be reduced.

Because of various aspects a SIL approach is crucial for the 3D-MVPTV develop-

ment. However, in this study, a SIL-Environment for the 3D-MVPTV is developed

mainly for focusing two main aspects: tracking efficiency and triangulation accuracy.

The tracking efficiency can be defined as the percentage of the successfully recognized

tracks of the total tracks. It characterizes the quality of the tracking algorithm. With

real tracer particles, it is nearly impossible to gain information like the absolute co-

ordinates of the tracer particles and the tracks they belong to. This drawback of the

real tracer particles prevents calculating tracking efficiency using an experimental test

stand. However, in SIL simulations virtual tracks can be defined with their assigned

objects and the absolute coordinates of these objects. Using these tracks in a SIL 3D-

MVPTV workflow enables not only the calculation of the tracking efficiency but also

the 3D-MVPTV triangulation error.

Figure 4.3: 3D-MVPTV Software-in-the-Loop Work Flow

Figure 4.3 shows the SIL workflow for the 3D-MVPTV. In the first step virtual

tracks are generated. Section 4.2.1 describes the methods used to define these tracks12

with different properties. In the following step, the objects in the virtual tracks with

their world coordinates are projected onto the image sensors of the cameras. Section

12In the SIL environment,
”
tracks“ refer to virtual tracks and

”
particles“ refer to virtual particles.
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4.2.2 describes this step in detail. After the projection, the 3D-MVPTV workflow

steps from object recognition to multi-view triangulation (see section 3.2) are applied.

Finally, tracking efficiency and triangulation error can be calculated by comparing the

results to the generated data which was used in the first place.

4.2.1 Generation of Virtual Tracks

In this study, two approaches to define the virtual tracks are implemented in the SIL

environment: mathematically defined tracks and tracks generated by CFD simulations.

If the investigated flow structure can be described mathematically (i.e., potential flow),

the first method is used. For the complex flow structures which can not be easily

defined mathematically, CFD simulations with Lagrangian particles are utilized. Mod-

eling tracer particles as Lagrangian particles is a realistic approach in which interaction

between tracer particles, surfaces, and Eulerian flow field are taken into account. Due

to the different level of details of these two approaches, mathematically defined tracks

are used in the early development steps whereby the functionality of the algorithms

can be tested with simple track definitions. In the later development steps, tracks gen-

erated by CFD simulations are used to test the algorithms in complex geometries with

realistic flow structures.

Figure 4.4: World points used to define a virtual

tracer particle

The two main variables needed to

define a virtual tracer particle are its

diameter and the world coordinates

of its center (P1). Figure 4.4 repre-

sents such a virtual tracer particle.

As shown in this figure, six more

points (P2 to P7) are used to define

the minimum and maximum coordi-

nates of this spherical tracer particles

boundaries. These points can be cal-

culated easily using particles’ center

coordinates and diameter. Through

these points, spherical virtual tracer

particles are mathematically defined as regular octahedrons. Section 4.2.2 describes

the necessity for the further six boundary points used for each virtual tracer particle.

Whether mathematically or by CFD generated, a bunch of variables is necessary to
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Variable Name Definition Unit

Frame Rate The frame rate of the cameras used. fps

Maximum

Physical Time
The time window in which the tracks are defined. s

Track Type

Desired track type to generate. Five different track

types are predefined: horizontal, vertical, sloped, he-

licoidal, and CFD generated.

n.A.

Velocity
The velocity of the tracer particles. It can be defined

as constant or variable.
mm/s

Min. and Max.

Particle

Diameters

Minimum and maximum particle diameters of the

tracer particles.
mm

Number of

Starting Tracks

per Second

The number of tracks starting each second. s−1

Virtual

Measurement

Volume

Boundaries

Minimum and maximum coordinates of the virtual

measurement volume, in which all particles are cap-

tured at least with two cameras for multi-view trian-

gulation.

mm

Table 4.1: Variables for Virtual Track Definition

describe tracks. Table 4.1 shows an overview of these variables. The orientations of the

tracks in this table are defined according to the camera coordinate system; for example

vertical tracks are parallel to the y-axis. Similarly, the slope of the tracks is described

through the angle between the track and the positive y-axis. Their radii and pitches

describe helicoidal tracks. The variable velocity is defined as shown in equation 4.1.

This equation is the mathematical formulation of a fully developed laminar pipe flow

profile, whereby v is the flow velocity, and r is the pipe radius. The size of the par-

ticles is distributed randomly between minimum and maximum particle diameters for

mathematically defined tracks. For the tracks generated by CFD, a log-normal distri-

bution function is used as shown in equation 4.2 [44]. In this equation, D stands for the

particle diameter, D for the mean particle diameter and σ for the standard deviation.

In order to extract the boundaries of the virtual measurement volume, a function is

developed. This function can distribute world points equidistant in every direction of

the desired coordinate system (Cartesian, cylindrical or spherical). These world points

are then projected on the sensor of each camera. The world points which are captured

with less than two cameras are then excluded. This function is then extended for the

calculation of triangulation error distribution in the virtual measurement volume (see

section 4.2.4).
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v(r) = vmax

(

1− r2

rmax
2

)

(4.1)

F(D) =
1

2

[

1+ er f

(
lnD− lnD

σ
√

2

)]

(4.2)

Once the virtual tracks are defined, and those outside the virtual measurement vol-

ume are excluded, each track is stored in a matrix. The size of these matrices is

NF × 21, where NF stands for the number of frames and 21 for the coordinates of

the seven world points which define a tracer particle (see figure 4.4). Finally, these

matrices are stored in an NV T,w×1 cell array, where NV T,w is the number of the virtual

tracks in world space.

4.2.2 Projection of Virtual World Points to Image Space

Figure 4.5: Projection of virtual tracer particles on a camera sensor

The projection step is similar to the image capture step, in which coordinate trans-

formation from world coordinate system to image coordinate takes place. The inputs

of this steps are the virtual tracks, intrinsic and extrinsic camera parameters. Either

the camera parameters can be delivered in a generic definition, or as defined in chapter

3.2.3 they can be achieved by camera calibration. During the projection, the world
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points (P1, P2) in each frame are first projected on the image sensor of each camera as

shown in figure 4.5. If one of these projected image points for a particle is outside the

image sensor, this particle is then excluded so that just whole particles on the image

sensor are considered. In case of one or more interruptions in the track due to this

exclusion, the track is then split retrospectively into multiple tracks. Following that,

the pixels inside the projected boundaries of each particle are set to 1 (white) for each

frame. This step delivers image frames with tracer particles in 1− bit monochrome

color space, which can be used in the object recognition step (see figure 4.3).

4.2.3 Tracking Efficiency Calculation

A significant advantage of the SIL-Environment is that using the information from the

virtual tracks it is able to evaluate the algorithm’s efficiency. After the virtual track

generation and projection of the virtual tracks onto camera sensors, virtual tracking

matrices can be generated. A virtual track matrix is an NV T,i ×NF matrix, whereby

NV T,i
13 stands for the number of virtual tracks in image space and NF for the number

of frames. In a virtual tracking matrix, each row represents a virtual track filled with

object IDs for each frame. Frames in a track without an object are filled with zeros.

Similarly to virtual tracking matrices, tracking matrices are generated for each camera

during object tracking step of the 3D-MVPTV workflow as described in chapter 6.

ηT =

NV T,i

∑
i=1

NT,i

∑
j=1

dim
(
(SV i=S j)|SV i 6=0∧S j 6=0

)

dim
(

SV i|6=0

)

NV T,i
(4.3)

The tracking efficiency ηT evaluates the tracking algorithm utilized. Equation 4.3

shows the mathematical definition of tracking efficiency. In this calculation, every

track in tracking matrices, which are tracking vectors S and virtual tracking vectors

SV , is compared with each other. The size of the vector including identical nonzero

elements of these vectors delivers the number of successfully tracked objects, as de-

scribed in the numerator of this formulation. The division of this value by the number

of tracked objects in the virtual tracking vector results in the tracking efficiency for

each track. The summation of this value over all comparison possibilities between

13The number of the virtual tracks in image space can be higher than in world space if a track enters the

image space more than once (i.e., helicoidal tracks) in which these tracks are then split.
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tracking matrix and virtual tracking matrix, followed by averaging over the number of

virtual tracks finally defines an average tracking efficiency. If a tracking algorithm can

regenerate the virtual tracking matrix completely; it delivers a tracking efficiency of

100%.

4.2.4 Triangulation Error Calculation

Figure 4.6: Triangulation error calculation

Another advantage of the 3D-MVPTV-SIL-Environment is its capability to deter-

mine the triangulation error. Unlike the reprojection error, the triangulation error can-

not be calculated during real 3D-MVPTV measurements. However, compared to the

reprojection error it is more relevant in practice since its results are represented in the

world space, not in the image space. The 3D-MVPTV-SIL-Environment is extended

with a function to calculate the triangulation error. In the first step of this function,

world points are defined in the measurement volume. The number and the distribution

of these world points can be controlled anisotropically in three different coordinate
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systems: cartesian, cylindrical, and spherical. Using one of these three coordinate

systems makes it possible to achieve the desired point distribution for different modu-

lar camera networks. Once the world points are defined, in the next step these world

points are projected onto the camera sensors. After this step, the world points and their

corresponding image points on each camera are known. With this data, the multi-view

triangulation is carried out which delivers the calculated positions of the world points.

Figure 4.6 shows the defined and the triangulated world points. The triangulation error

for each point is then the distance between their defined and calculated positions. This

implemented function represents the results in minimum, mean and maximum values

for the defined points.

This triangulation error calculation function can be utilized mainly for two purposes.

First, it can be used after the camera calibration to estimate the accuracy of the cali-

brated camera set, thereby the accuracy of the 3D-MVPTV measurement. According

to the results, the calibration can be enhanced either using further calibration images

or repositioning the cameras in the set and repeating the calibration process. Similarly,

this function can also be used to figure out how the choice of cameras used for the

multi-view triangulation affects the triangulation accuracy, namely the triangulation

error. Section 5.3 exhibits an experimental investigation of these two points.
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In order to calculate the 3D world points using 3D-MVPTV, the modular camera net-

work must be mathematically defined which happens in the camera calibration step of

the 3D-MVPTV workflow. As described in section 2.2.4 the calibration of multiple

cameras succeeds with several stereo camera calibrations followed by an optimization

process using the bundle adjustment algorithm. This chapter describes these opera-

tions in the 3D-MVPTV workflow in detail. At the end of this chapter, several factors

affecting the triangulation error are represented with experimental results. These ex-

periments were carried out using the 3D-MVPTV-SIL-Environment described in the

previous chapter.

5.1 Stereo Camera Calibration

Stereo camera calibration has two goals: Determination of intrinsic and extrinsic cam-

era parameters. This is carried out in three main steps:

1. Several images of a calibration pattern are captured in different positions and

orientations.

2. Image points of the calibration patterns’ known features in the captured images

are detected and associated with their world points.

3. Camera parameters are calculated utilizing numerical methods using these two

point sets (image and world points).

Figure 5.1 shows the calibration board which was used in the first step of stereo

camera calibration in this study. This calibration board has 558 internal corners to

be detected, and the edge length of its squares is 18mm. It is digitally printed on an

aluminum dibond plate so that its planarity and precision are guaranteed. The aspect

ratio of this board is 16 : 9, which provides a similar resolution in both directions as
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the camera sensor used in this work. Furthermore, the calibration board ends with

differently colored squares to distinguish the directions in case a square calibration

board is used. These two properties of the calibration board define a sequence in

which inner corners can be sorted so that calibration board rotation would not disturb

this sequence.

Figure 5.1: Calibration board with its detected 558 inner corners

In order to achieve acceptable calibration results, it is recommended to use 10 to 20

images per camera, in which the calibration pattern is positioned in the image plane

with an angle of less than 45◦ in different orientations [31]. Image capture for cam-

era calibration is carried out with MATLAB R© and its Image Acquisition ToolboxTM.

After the images are successfully captured, using a function in Computer Vision Sys-

tem Toolbox the internal corners of the calibration pattern are detected as shown in

figure 5.1. In this figure, the sequence of the inner corners is highlighted with a color

legend from blue to red, in which dark blue represents the first and dark red the last

image point. As mentioned above, in addition to the detection the sequencing of these

detected points is crucial in order to capture different pattern orientations.

The Computer Vision System Toolbox uses singular value decomposition to estimate

the camera properties from detected image calibration points and their associated world

points. With this toolbox three further parameter sets are additionally to the practical

implementation of the pinhole camera model on real cameras. The radial distortion

coefficients define the image distortion due to the lens construction. In this study,

three coefficients are used to describe the radial distortion. The tangential distortion
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5 Calibration of Multiple Cameras

defines the nonparallelism between lens and image planes. Finally, the last parameters

estimate the skew between the image axes.

Figure 5.2: Graphical Representation of Repro-

jection Error [31]

The accuracy of camera calibra-

tion is evaluated using the repro-

jection error. In order to calcu-

late the reprojection error, every de-

tected point is reprojected back onto

the image sensor using the estimated

camera parameters. The reprojection

error is the distance between the de-

tected point and its reprojection in pixels as shown in figure 5.2. Then the mean

value of the reprojection error for each calibration image is calculated. According

to MATLAB R© online documentation [31],
”
mean reprojection errors of less than one

pixel are acceptable.“ In order to achieve calibration results with acceptable reprojec-

tion errors, a multi-pass filter algorithm is implemented. This algorithm checks mean

reprojection errors for each calibration image. Following that, it excludes images with

a reprojection error higher than one pixel from the calibration set and reruns the cal-

ibration till maximum reprojection error for each calibration image stays below one

pixel.

Defining a modular camera network (see section 3.2.2) mathematically needs the es-

timation of relative transformation matrices, namely the extrinsic parameters between

subsequent cameras and their intrinsic parameters. That is achieved utilizing stereo

camera calibrations between subsequent stereo camera pairs. For NC cameras, in case

of a loop closure this results in NC stereo camera pairs, and for the case without a loop

closure, NC −1 stereo camera pairs can be defined. The stereo calibration environment

developed in this study captures calibration images, runs corner detections and stereo

calibrations for given stereo camera pairs automatically. The corner detection and the

stereo calibration steps are executed in parallel on the cluster so that the calculation

time does not increase dramatically with the increasing number of stereo camera pairs.

The results of the stereo camera calibration are stored in a cell array for use in the next

steps.
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5.2 Multiple Camera Calibration With Bundle Adjustment

5.2 Multiple Camera Calibration With Bundle

Adjustment

The absolute camera positions14 can theoretically be calculated using the relative cam-

era positions calculated in the previous step as shown in equation 5.1. However, with an

increasing number of cameras, the estimation errors propagate with the multiplication

of the transformation matrices B as described in section 2.2.4. The bundle adjustment

optimizes this calculation and reduces the error of the estimated camera positions.

Bi, j =
j−1

∏
n=i

Bn,n+1 (5.1)

A typical procedure for bundle adjustment is as follows:

1. Several calibration images are captured simultaneously by consecutive cameras.

In the existing circular camera setup, a minimum of four successive cameras

are distributed on circa 67.5◦. This setup guarantees that these four consecutive

cameras could recognize all the inner points in the calibration images. This

operation is carried out sequentially for all cameras with different orientations

of the calibration board.

2. With given relative camera positions15 and matched image pairs for two subse-

quent cameras, the bundle adjustment algorithm (see 2.2.4) is run to reduce the

mean squared reprojection error of the detected points of the image pairs. The

result of this step is optimized camera positions.

3. A further camera is added to the existing optimized camera set with its relative

camera position and matched images points. The absolute position of this new

camera is calculated using equation 5.1. The new matched images are added to

the set and this time the bundle adjustment is run for the new camera set with all

three cameras.

4. Matching images between non-subsequent cameras (i.e., between camera one

and three) are searched and added to the existing optimization set followed by a

14Coordinate system of the first camera represents the origin.
15Relative positions of the first two subsequent cameras are also their absolute positions since the cam-

era coordinate system of the first camera represents the origin.

59



5 Calibration of Multiple Cameras

further bundle adjustment run.

5. The second and third steps are continuously carried out till the last camera in the

set.

Figure 5.3: Resulting camera positions and world points used for bundle adjustment

Figure 5.3 shows the result of such a bundle adjustment calculation. In this figure,

the camera positions and the inner corners of the calibration patterns used for the bun-

dle adjustment are plotted. Similarly to the stereo camera calibration, the accuracy of

the bundle adjustment is also determined with a mean reprojection error. An accept-

able accuracy is achieved with the bundle adjustment if the mean reprojection error

is below 10px [32]. That was not the case during the first camera calibrations in this

study. The development of the mean reprojection error during the bundle adjustment

with an increasing number of cameras in one of these first camera calibrations is shown

figure 5.4 in red. This plot shows that the mean reprojection error stays around 30px.

In order to improve the accuracy of the bundle adjustment, the existing algorithm

was extended with a filtering option. To achieve this aim, after each bundle adjustment

run, reprojection errors of every calibration pattern on each camera are separately cal-

culated. These errors are then compared with the mean reprojection error of the bundle

adjustment. The calibration images on the cameras with reprojection errors higher than

the mean reprojection error of the bundle adjustment are excluded, and the bundle ad-

justment is rerun. This filtering cycle repeats until a considerable improvement is not
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5.3 Choice of the Camera Set for Multi-View Triangulation

possible anymore. Figure 5.4 also shows in blue the result of a bundle adjustment run

with filtering. Compared to the bundle adjustment run without filtering, this filtering

option reduces the mean reprojection error by 50% in the early steps and by 90% in

the final ones resulting in a mean reprojection error of circa 3px.

Figure 5.4: Mean reprojection error during bundle adjustment with and without image

filtering

The bundle adjustment algorithm in the Computer Vision System Toolbox has a

couple of restrictions. First, it is only capable of working with one sole intrinsic matrix

(in version R2017b), which means all the cameras for the bundle adjustment must be

identical. That can lead an error even for the identical cameras due to low precision

in the camera manufacturing process. The second restriction is the maximum angle

between subsequent cameras. This angle must not be too large (i.e., 90◦).

5.3 Choice of the Camera Set for Multi-View

Triangulation

The experiment with the table tennis ball described in section 3.2.8 gives a first idea

about the relationship between the camera set used and the triangulation error. How-

ever, it is questionable whether the results can be generally applied to the 3D-MVPTV.

The main reason for this is that the observed object regularly moves in a tiny constant
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part of the measurement volume. Also, the error during the detection of the table tennis

balls center is different when helium-filled bubbles with an average diameter of 2mm

are used. For these reasons the 3D-MVPTV-SIL-Environment, which is described in

section 4.2 was developed.

The 3D-MVPTV-SIL-Environment was utilized to find out the relationship between

the number of cameras used for the triangulation and the resulting triangulation er-

ror. 120 virtual world points were distributed in the observed volume under this SIL-

Environment as shown in figure 4.6 so that 16 cameras could capture all of these points.

Figure 5.5 below shows the mean values of the triangulation errors of the 120 points

for all camera set combinations. The camera sets with the same number of cameras are

grouped and annotated on the horizontal axis. In order to figure out the relationship

of the angle between cameras and the triangulation error, the mean angles between

cameras were calculated. The data points in this graph are colored according to these

values. It can be seen that the lowest mean triangulation errors of circa 4mm occur

for the camera sets with five and six cameras. On the other hand, the highest mean

triangulation error occurs with two cameras, whereby the angle between cameras is

circa 90◦. This graph also shows that the lowest mean triangulation errors are observed

when the mean angle between the cameras is less than 50◦.

Figure 5.5: Mean triangulation error and mean angle between cameras for all camera

set combinations

The two multi-view triangulation methods described in section 3.2.8 were also com-
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pared under the SIL-Environment. The aim of this comparison is the evaluation of

these triangulation methods regarding their ability to find the camera set with the min-

imum triangulation error. In order to achieve this, the same 120 virtual world points

were triangulated using these methods but with a restricted number of cameras so that

they can also be easily compared with the existing results. Figure 5.5 exhibits the re-

sults using multi-view triangulation with elimination in dark green. It can be seen that

the results with this algorithm are within the upper half of the existing mean triangula-

tion errors. On the other hand, the multi-view triangulation method with precalculation

finds the optimum camera set for all number of cameras. This result is not unexpected

since the cost function of this method is the mean triangulation error.

Figure 5.6: Minimum triangulation error and mean angle between cameras for all cam-

era set combinations

For a better representation of the triangulation error distribution in the observed

volume, figure 5.6 shows the minimum triangulation errors. Regarding the minimum

triangulation errors, triangulations with ten and eleven cameras deliver the best results

with around 0.1mm. The mean angle between cameras resulting in the best value

for the minimum triangulation error increases up to circa 90◦. A triangulation with

two cameras still delivers the highest value when the minimum triangulation error

in the observation volume is considered. In summary, a comparison of the multi-

view triangulation methods shows that the triangulation with precalculation delivers

considerably better results than the triangulation with elimination. However, due to its

underlying algorithm, it is far from finding the camera set that delivers the minimum
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triangulation error.

Figure 5.7 represents the maximum triangulation errors resulting from all camera set

possibilities. Similarly to the result of the minimum and mean values, the maximum

triangulation error occurs when a camera set with two cameras is used. Similarly to

the mean values plotted in figure 5.5, the lowest values for the maximum triangulation

errors result when the mean angle between cameras are around a bit less than 50◦.

The camera sets with five, six and seven cameras deliver these lowest values around

10px. The comparison between multi-view triangulation methods shows that the trian-

gulation with precalculation reaches the lowest and the triangulation with elimination

reaches the highest values of the maximum triangulation error.

Figure 5.7: Maximum triangulation error and mean angle between cameras for all cam-

era set combinations

The results in the last three figures above show the mean, minimum and maximum

values for the triangulation error in the observed domain. Additionally to these val-

ues the standard deviations of the triangulation errors help us to figure out the error

distribution in the volume. In this context, lower standard deviations of triangulation

errors exhibit a more homogenous error distribution. Figure 5.8 shows the standard

deviations of the triangulation errors. In this figure, the lowest values of the standard

deviation are observed for the triangulations with four, five and six cameras. As for the

mean, minimum and maximum values, the highest value for the standard deviation is

delivered when two cameras are used. An interesting result regarding the mean angle
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between cameras and the standard deviation of the triangulation errors is that the low-

est value for three cameras is achieved with an angle of 70◦, which is slightly higher

than the camera sets with other numbers of cameras.

Figure 5.8: Standard deviation of the triangulation error and mean angle between cam-

eras for all camera set combinations

The comparison of the multi-view triangulation methods regarding the standard de-

viations of the triangulation errors delivers similar results as for the minimum, mean

and maximum values. The triangulation with elimination results significantly higher

standard deviation values than the triangulation with precalculation, which are very

close to the highest values. On the other hand, even though the triangulation method

with precalculation cannot reach the lowest values of the standard deviation, it stays

below the lower half of the data points.

When all the data points represented in detail above are statistically processed, the

relationship between the number of cameras used, the triangulation error and the re-

projection error becomes more clear. In figure 5.9 top, the minimum and mean values

of these values are shown. With the ascending number of cameras, the minimum re-

projection error increases showing a linear character. Compared to this value the min-

imum triangulation error stays nearly constant till eleven cameras and then increases

also linearly. The trends for the mean values of the triangulation and reprojection error

grow in the opposite direction. While the mean triangulation error decreases with the

ascending number of cameras asymptotically, the mean reprojection error increases.

65



5 Calibration of Multiple Cameras

Figure 5.9: Minimum, mean, maximum and standard deviation values of triangulation

and reprojection errors depending on the number of cameras utilized

When we consider the maximal values of the triangulation and reprojection errors

as shown in figure 5.9 bottom left, these values decrease with the ascending number

of cameras. In the same figure on the bottom right side, the trends for the standard

deviations of the triangulation and reprojection errors are shown. These values behave

similar to the maximum values and decrease with the ascending number of cameras.

Considering these generalized data in figure 5.9, choosing a camera set with eleven
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cameras would be a good choice. This will lead to circa 0.1px, 23px, 50px of mini-

mum, mean and maximum triangulation errors with a standard deviation of circa 5px.

However, if we consider the individual data points in figures 5.5, 5.6, 5.7, and 5.8,

choosing a camera set with five cameras would be a better choice. Such a camera set

delivers 1.5px, 4.5px, 10px of minimum, mean and maximum triangulation errors with

a standard deviation of circa 2px. While the minimum triangulation error increases,

the mean and maximum values decrease by circa 80% and the standard deviation by

60%, which means a more homogeneous error distribution. This comparison shows

clearly how a significantly lower triangulation error can be achieved when instead of

generalized data individual data points are considered.
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6 Multi-Pass Tracking Algorithm

with Robust Initialization

During the development of the 3D-MVPTV concept, a conventional tracking algorithm

was already implemented. However, due to its decreasing tracking efficiency with in-

creasing number of tracer particles, the necessity for a more comprehensive tracking

algorithm became apparent. Dabiri and Gharib also mention this point:
”
However, be-

cause of the errors involved in identifying particle pairs in high particle density images,

the design of an automatic particle tracking method, especially for three-dimensional

flows has been extremely challenging.“ [1] This section presents the state of the art

tracking algorithms, followed by the conventional tracking algorithm which here was

implemented first. Following that, the newly developed multi-pass tracking algorithm

with robust initialization is presented. At the end of this section, the performance of

the conventional tracking algorithm and the new tracking algorithm is compared using

SIL simulations.

6.1 State of the Art Tracking Algorithms

The methods of tracking algorithms can be generally classified into two groups accord-

ing to Foss, Tropea, and Yarin: region-based and feature-based methods [7]. Region-

based methods work with image patterns in order to calculate the motion of the tracer

particles. Image patterns of subsequent frames are compared to carry out this calcu-

lation. One flow visualization technique in which region-based methods are utilized

is PIV. Feature-based methods on the other hand first extract the features of the tracer

particles which are tracked as described in section 3.2.5. After this step, the tracking

takes place using the properties of these extracted objects. PTV works with feature-

based methods to track every tracer particle separately. Since in this study a new PTV

method is developed, feature-based methods are primarily in focus.
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A comprehensive overview given by Foss, Tropea, and Yarin [7] categorizes the

feature-based tracking algorithms in five groups. Two-frame tracking uses a nearest

neighbor search, and is suitable for low particle densities. Multiframe tracking is simi-

lar to the two-frame tracking method. Unlike that, the possible position of the particle

in the next frame is calculated over multiple frames. Using this calculated position as

the center and a search radius, it restricts the search field for the new candidate par-

ticles. Combinatorial optimization uses a cost function to associate particles in two

successive frames. Statistical techniques calculate the possible positions of the objects

in the next frames using information from the previous frames and use this informa-

tion for associating particles. Hybrid methods using velocity estimation techniques use

a combination of region-based and feature-based methods. An example of the hybrid

methods is using PIV for the estimation of the velocity field to track with combinatorial

optimization.

Each of the feature-based tracking algorithms described above has their advantages

and disadvantages. Among these, using present velocity and, if available, the accelera-

tion information is a huge advantage. With this step, not only the object properties but

also the flow information is integrated into the tracking algorithms, which generalizes

their applicability. However, initial velocity information is needed, which increases

the importance of initialization for successful tracking. Hybrid methods are utilized to

overcome such difficulties.

6.2 Conventional Tracking

The conventional tracking algorithm was implemented in the early stages of the 3D-

MVPTV-Development. For the initialization of particles appearing first time on the

image plane, in this tracking algorithm a cross-correlation based method is used. This

cross-correlation is run on an No, f ×No, f−1 initialization decision matrix K, whereby

No, f stands for the number of objects in the f th frame. This initialization decision

matrix is calculated using a cost function shown in equation 6.1. This cost function

calculates the deviations of the ratios between areas and positions of the objects in two

successive frames. Hereafter, these deviations are summed using an under-relaxation

factor for the object area. Handily, a zero element of the initialization decision matrix

stands for an object which does not move between two successive frames.
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A filtering function using a search radius rs is implemented to increase the proba-

bility of a successful initialization. This filtering function eliminates the pairs in the

initialization decision matrix if the distance between them is less than this search ra-

dius. The maximum value of this search radius can be chosen as the half of the image

sensors hypotenuse, whereby image points of three successive frames are located on

the longest possible linear distance. The minimum search radius can be chosen de-

pending on the velocity of the tracer particles on the image sensor. This initialization

method used in the conventional tracking algorithm is represented graphically in fig-

ure 6.1. The figure shows three different tracks a, b, and c with their image points

p in the first frames. For this case, search radius filtering results in just one possible

successful match for the tracks a and b. However, for the track c two possible matches,

pc, f+1 and pa, f+1, are available which are associated using cross-correlation with the

initialization decision matrix.

After the initialization, the object tracking is carried out using a cross-correlation

based algorithm as well. In this case, similar to the initialization decision matrix, a

tracking decision matrix H is defined as shown in equation 6.2. In this equation, the

distance between the object positions in a frame p f and the estimated positions of the

objects in the previous frame for the same frame p′ f−1 is calculated. Equation 6.3

shows the calculation of the estimated positions for the actual frame of the objects

seen in the previous frame. In this equation, p f−1 stands for the object position in

the previous frame and p f−2 for the object position in the frame before this previous

frame. The estimated position of the object p′ f−1 is calculated under the assumption

that the object velocity stays constant over these three frames.

H f , f−1 =
√

(p f − p′ f−1)
2 (6.2)

p′f−1 = (p f−1 − p f−2)+ p f−1 (6.3)

All these initialization and tracking calculations are combined in the conventional

tracking algorithm, whose flowchart is shown in figure 6.2. This algorithm first checks

if there are any tracks with objects inside from the last two frames. If that is not the
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Figure 6.1: Initialization method utilized in the conventional tracking algorithm

case, it initializes the current frame and goes to the next frame. Otherwise, it runs

tracking in the current frame using the tracking decision matrix. After the tracking

completed for the current frame, untracked objects in the current and previous frames

are initialized. This calculation cycle is carried out from second to the last frame,

which means the algorithm runs one-directional and forwards.

During tracking it is possible that some tracks are split. One common reason for

this is that the search radius for the initialization is chosen not large enough to include

the right object. In this case, this track is reinitialized which results in two split tracks

instead of one track. In order to correct such errors an algorithm is developed which

combines these split tracks after tracking is finished. This algorithm first chooses pos-

sible split tracks, in which there are no frames between start or end frames of these

tracks. Following that, the objects’ positions in the previous and the next frames be-

fore and after the start frame p′b, f and the end frame p′a, f+1 are estimated as shown

in figure 6.3. This position estimation calculation is carried out under a constant ve-
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Figure 6.2: Flowchart of the conventional tracking algorithm

Figure 6.3: Graphical representation of the algorithm combining split tracks

locity assumption and calculated using the last two frames as in the tracking decision

matrix. In the next step, the deviation of the estimated positions from the candidate ob-

ject positions ∆p f
a,b, ∆p f+1

b,a is calculated. It is essential to carry out this deviation

calculation bi-directionally to reduce possible erroneous track combinations. Finally,

these two deviation values are first filtered using a maximum value and then their mean
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value is used in a cross-correlation based matching calculation. Since more than two

splits of a single track is possible, this operation is continued in multiple passes till no

tracks to combine are left.

6.3 Multi-Pass Tracking With Robust Initialization

The conventional tracking algorithm described above has some characteristics which

quite possibly reduce the tracking efficiency. The first significant problem is that the

initialization is not carried out with flow relevant variables like velocity, but with object

area and minimum distance. That can lead to erroneous initializations, on which a

successful tracking is not possible. Another problem is choosing a search radius for the

initialization. Different flow regimes can have different track velocities which can lead

to different velocities on image planes. Under these circumstances, using a constant

search radius size16 for all tracks through all frames can result in failed tracking results.

The conventional tracking algorithm processes image sequences from beginning to

end with ascending frame numbers one-dimensionally. This one-dimensional one-pass

methodology can fail especially for complex flow structures with high seeding rates.

The multi-view based 3D-MVPTV developed in this study needs a more stable

tracking algorithm to deliver better results especially under
”
extremely challenging“

conditions like high particle densities as mentioned by Dabiri and Gharib [1]. The

inspiration for developing a tracking algorithm with higher tracking efficiency comes

from a similar field to flow visualization, from CFD. In CFD the solvers work itera-

tively often on a uniformly initialized flow field. A new method for initialization of

flow fields is the Grid Sequencing Initialization. This method calculates the flow field

inviscidly for the initialization in a couple of seconds, which delivers a better flow

regime for the further iterations. The results are less computational time due to fewer

iterations for a converged solution and a more robust simulation [3].

This idea—using a better initialization resulting in a more robust calculation—was

the first step in developing a new tracking algorithm. During development of the so-

called
”
Robust Initialization“ two main objectives were followed: Using parameters

which are relevant for the investigated flow regime and finding the most suitable frame

for the initialization instead of initializing with the first frame. In order to achieve

the latter, first all combinations of the midpoints using the objects from the first and

16Section 6.5 and 6.4 represent the relation between search radius size and tracking efficiency in detail

with SIL simulations.
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the third frame in three consecutive frames are calculated. Thereafter, the average

deviation between these estimated midpoints and the objects in the second frame is

calculated. Equation 6.4 shows the mathematical formulation of this calculation. In

this equation, No, f stands for the number of objects in the f th frame and d′( f ) for the

average midpoint deviation as mentioned above.

d′( f ) =

No, f−1

∑
i=1

No, f

∑
j=1

No, f+1

∑
k=1

√
(

pi, f−1+pk, f+1

2

)2

+ p j, f
2

No, f−1No, f No, f+1
(6.4)

If three frames are used for the robust initialization, there is just one average mid-

point deviation for each frame to calculate. That is the case in figure 6.4 for the track

c, which is plotted in magenta. The most suitable frame to initialize, namely the frame

with minimum average midpoint deviation, is found out using equation 6.5. In this

equation average midpoint deviation is calculated for every possible frame, whereby

fmax stands for the maximum frame number, and the frame with the minimum average

midpoint deviation is chosen as the initialization frame.

argmin
f∈{2,..., fmax−1}

d′( f ) (6.5)

However, during the development the experience was made that using just three

frames for the initialization can lead to wrong results, especially with high particle

densities. In order to prevent this, one more frame can be included in the initialization

calculation, so that it is carried out using four frames. Figure 6.4 shows this scenario

for the track b, which is plotted in blue. If four consecutive frames are used for the

initialization, two average midpoint deviation calculations are possible. These two

values are then averaged as shown in equation 6.6.

argmin
f∈{2,..., fmax−2}

d′( f )+d′( f +1)

2
(6.6)

Alternatively, the initialization can be carried out with five consecutive frames. Us-

ing five frames for initialization delivers four possible average midpoints deviations as

shown in the track a in figure 6.4, which is plotted in red. Other than the initializations
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with three and four frames, using five frames makes it possible to run the average mid-

point deviation calculations not only through three consecutive frames but also through

the first, third and fifth frames of a sequence with five successive frames. In this case,

the average midpoint deviation d′′( f ) is calculated using equation 6.7. The initializa-

tion frame with minimum average midpoint deviation is decided using the equation

6.8.

d′′( f ) =

No, f−2

∑
i=1

No, f

∑
j=1

No, f+2

∑
k=1

√
(

pi, f−2+pk, f+2

2

)2

+ p j, f
2

No, f−2No, f No, f+2
(6.7)

argmin
f∈{3,..., fmax−2}

d′( f −1)+d′( f )+d′( f +1)+d′′( f )

4
(6.8)

The tracking algorithm used after the robust initialization differs from the conven-

tional tracking algorithm. Since the initialized tracks could have objects in the previous

and the following frames, tracking must be carried out bi-directionally, forwards and

backward. Therefore, the tracking decision matrix H is calculated for both directions

as shown in equation 6.9. Because the robust initialization delivers information from

more than two frames, not only velocity but also the acceleration is taken into account

during the calculation of the estimated object positions in the previous and following

frames (see equation 6.10).

H f , f±1 =
√

(p f − p′ f±1)
2 (6.9)

p′f±1 =







(p f±1−p f±2)
2

(p f±2−p f±3)
+ p f±1 if p f±3 6= 0

(p f±1 − p f±2)+ p f±1 if p f±3 = 0
(6.10)

The second important feature of this new tracking algorithm beside its robust ini-

tialization is the multiple pass character. The multi-pass tracking is not carried out

sequentially with one frame after the other as in the conventional tracking algorithm.

Instead, the tracks are initialized using robust initialization, and these tracks are then

tracked bi-directionally in all adjacent frames till no corresponding objects could be

found. Figure 6.5 represents this multi-pass workflow through a flowchart. The al-
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Figure 6.4: Successful robust initializations using five, four and three frames

gorithm starts with the calculation of the initialization decision matrices using five

consecutive frames and tries to initialize tracking using the most successful frame for

the initialization. If that is possible, as mentioned above, bi-directional tracking is car-

ried out, and the tracked objects are excluded from the initialization decision matrix

before continuing with the next tracking pass. If the initialization using five frames

is not possible, the number of frames used for the initialization is gradually decreased

down to three frames, and the same tracking algorithm is rerun in multi-passes until no

objects are left for tracking.

The multi-pass tracking algorithm with robust-initialization is computationally more

expensive than the conventional tracking algorithm. Especially for the robust initial-

ization using five consecutive frames, the number of combinations to consider can

increase drastically. For instance, for five consecutive frames with 102 objects to track
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6.3 Multi-Pass Tracking With Robust Initialization

Figure 6.5: Flowchart of the multi-pass tracking algorithm with robust initialization

in each frame, the number of total initialization combinations to consider would be

(102)5 = 1010. The robust initialization algorithm reduces this problem by using four

combinations with three frames in each to 4 · (102)3 = 4 ·106. However, the number of

combinations can be still reduced by filtering unnecessary combinations. This filtering

is implemented in the robust initialization algorithm using the following six filters:

• Maximum Area Change Ratio: Ratio between change in object area between two

frames.

• Maximum Distance: Maximum distance between calculated and actual mid-

points in pixels.

• Maximum Displacement Ratio: The maximum ratio between the average object

displacement and the object displacement in the last two frames.

• Maximum Direction Change: Maximum direction change of the objects in de-

grees in the first two and the last two frames of a sequence with three frames.

• Minimum Displacement: Minimum displacement of the objects in two consecu-

tive frames in pixels.

• Maximum Displacement: Maximum displacement of the objects in two consec-

utive frames in pixels.
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6 Multi-Pass Tracking Algorithm with Robust Initialization

All these filters are used gradually during the calculation of the initialization deci-

sion matrices so that the size of these matrices would not grow unnecessarily uncon-

trolled.

6.4 SIL Simulations with Mathematically Defined

Tracks

The newly developed multi-pass tracking algorithm with robust initialization was first

tested with 96 mathematically defined virtual tracks. For this purpose four different

track types were defined: vertical, 15◦ slope, horizontal, and helicoidal. The vertical

tracks have a bottom-up flow direction. The tracks with 15◦ slope deviate 15◦ to this

vertical flow axis and flow also in the bottom-up direction. The horizontal tracks flow

in the +Z direction according to the global coordinate system, namely the coordinate

system of the first camera. Finally, the helicoidal tracks flow bottom-up through a he-

lix structure. The maximum velocity of these four velocity variations is determined

according to the frame rate of the cameras (5 f ps) so that at least three frames of an

object are visible on image planes. Starting from this maximum velocity, three fur-

ther velocity variations defined by decreasing the velocity by 50% to test the tracking

algorithm with different velocity levels. For every track type four velocity variations

are considered: 0.05, 0.1, 0.2, and 0.4m/s. Each of these four velocity variations is

tested with a constant velocity profile and also with laminar flow profile as defined in

equation 6.11. This equation defines the fully developed laminar flow profile in cir-

cular pipes in cylindrical coordinates. Maximum velocity vmax occurs in the center of

the pipe where the radius r equals to zero. Similarly, the velocity magnitude v is zero

where the radius equals to the maximum radius rmax on the pipe walls.

v(r) = vmax

(

1− r2

rmax
2

)

(6.11)

Seed points are also defined using cylindrical coordinates. Here, after the camera

calibration, the volume boundaries are determined in which particles can be visualized

with at least two cameras. Thereafter the minimum axial coordinate and maximum

radial coordinate is used to define the randomly distributed seed points. In order not to

start the tracks always at the same axial coordinate, the axial coordinate is extended in
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6.4 SIL Simulations with Mathematically Defined Tracks

both directions with maximum 20mm in which the starting points are defined randomly.

Regarding seeding, three different seed rates are investigated: 5, 10, and 20pps.

These mathematically defined 96 tracks with four velocities, two velocity distribu-

tions, three seeding rates, and four track type variations are chosen in such a way so

that the tracking algorithm can be tested with different complexity levels. Table 6.1

shows an overview of the virtual tracks. The last 12 virtual tracks in this table are

generated through CFD simulations, which is described in detail in section 6.5.

No Velocity [m/s]
Velocity

Distribution

Seeding Rate

[pps]

Track

Type

1-12 0.05, 0.1, 0.2, 0.4 constant 5, 10, 20 vertical

13-24 0.05, 0.1, 0.2, 0.4
laminar flow

profile
5, 10, 20 vertical

25-36 0.05, 0.1, 0.2, 0.4 constant 5, 10, 20 15◦ slope

37-48 0.05, 0.1, 0.2, 0.4
laminar flow

profile
5, 10, 20 15◦ slope

49-60 0.05, 0.1, 0.2, 0.4 constant 5, 10, 20 horizontal

61-72 0.05, 0.1, 0.2, 0.4
laminar flow

profile
5, 10, 20 horizontal

73-84 0.05, 0.1, 0.2, 0.4 constant 5, 10, 20 helicoidal

85-96 0.05, 0.1, 0.2, 0.4
laminar flow

profile
5, 10, 20 helicoidal

97-108 0.05, 0.1, 0.2, 0.4 CFD generated 5, 10, 20
CFD

generated

Table 6.1: Virtual track variations used in the SIL simulations

Figure 6.6 shows the world points of two variations of the mathematically defined

virtual tracks, whereby individual cameras and tracks are colored with different colors.

The vertical tracks on the top with low flow velocity and seed rate exhibit a simple

case for object tracking. On the other hand, the helicoidal tracks on the bottom with

high flow velocity and seed rate show a very complicated case for object tracking.

Though such a flow structure is nearly impossible in practice, it is used during the

SIL simulations to figure out the tracking capabilities of both implemented tracking

algorithms.
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6 Multi-Pass Tracking Algorithm with Robust Initialization

Figure 6.6: World points of vertical virtual tracks with a constant flow profile, 0.05m/s

velocity and 5pps seeding (top) and helicoidal virtual tracks with a laminar

flow profile, 0.4m/s velocity, and 20pps seeding

As defined in section 6.2, in the conventional tracking algorithm a search radius rs

is utilized. Due to its definition, the multi-pass tracking algorithm with robust initial-

ization does not need such a variable though. This variable prevents the comparison

of these two tracking algorithms for the same virtual tracks since the optimum search

radius resulting in the highest tracking efficiency is unknown and changes for every
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camera with track type, flow velocity, and seed rate. In order to overcome this prob-

lem, the conventional tracking algorithm was utilized using ten different search radii

for every camera in every virtual track variation. These search radii start with 5px, and

are sequentially doubled up to 2560px, which is the first value after the biggest dis-

tance on the image sensor17. After the tracking with conventional tracking algorithm

for all cameras in all track variations with ten different search radii was carried out, the

results with the highest tracking efficiency was used.

Figure 6.7 shows the result of this study. In this graph, the mean search radii for

every track are plotted in relation to the flow velocity and the total number of objects

(in other words the seed rate). It can be easily seen that the mean search radii increase

with the ascending flow velocities. Another outcome which can be extracted from

this data set is that the higher seed rates need smaller search radii compared to the

lower seed rates. Beyond the averaged values in this graph, it is important to mention

that the search radii above 320px never delivered the highest tracking efficiency. In

other words, in this study, the search radii for the conventional tracking algorithm vary

between 5px and 320px.

Figure 6.7: Mean search radii utilized in the conventional tracking algorithm

Figure 6.8 shows the comparison of tracking algorithms for vertical tracks with

a constant flow profile. Here it can be observed that with ascending flow velocity

17The hypotenuse of the image sensor is 2202.9px
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the tracking efficiency increases when the multi-pass tracking algorithm with robust

initialization is used. On the other hand, the tracking efficiency of the conventional

tracking algorithm decreases with ascending flow velocity. Another outcome of this

comparison is that with ascending seed rate, the tracking efficiency decreases if the

conventional tracking algorithm is utilized. The multi-pass tracking algorithm with

robust initialization prevents this, as the tracking efficiency stays constant or increases

with the ascending seed rate. For the vertical tracks with constant velocity profile, the

multi-pass tracking algorithm with robust initialization delivers considerably higher

tracking efficiencies compared to the conventional tracking algorithm. The difference

between these two algorithms increases with the ascending seed rate and decreases

with the descending flow velocity. For the tracks with a velocity of 0.5m/s and seed

rate of 5pps, the conventional tracking algorithm delivers a slightly higher tracking

efficiency.

Figure 6.8: Comparison of the tracking algorithms for the vertical tracks with a con-

stant flow profile

Figure 6.9 shows that the tracking efficiencies have similar trends if instead of a con-

stant flow profile, a laminar flow profile is used for the vertical tracks. However, the

tracking efficiency of the multi-pass tracking algorithm with robust initialization de-

creases when the laminar flow profile is used. On the other hand, the tracking efficiency

of the conventional tracking algorithm increases with the laminar flow, especially for

the lower flow velocities. These characteristics decrease the differences between the
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tracking efficiencies of the tracking algorithms. In vertical tracks with a laminar veloc-

ity profile, in 3 of 12 variations, conventional tracking algorithm delivers better results,

especially with low velocities and low seed rates.

Figure 6.9: Comparison of the tracking algorithms for vertical flow with a laminar flow

profile

Figure 6.10 shows the comparison of the two tracking algorithms for the tracks with

15◦ slope and constant flow profile. The results delivered by the conventional track-

ing algorithm are quite similar to the results of the vertical flow with a constant flow

profile. However, for the multi-pass tracking algorithm with robust initialization, the

relationship between the flow velocity and the tracking efficiency changes. Here, the

tracking efficiency increases with the ascending flow velocity till 0.20m/s but then

drops suddenly for the tracks with a flow velocity of 0.40m/s. If the two tracking al-

gorithms are compared for 15◦ sloped flow with a constant flow profile, the multi-pass

tracking algorithm with robust initialization delivers for all variations better results

than the conventional tracking algorithm.

Figure 6.11 shows the resulting tracking efficiencies for 15◦ sloped tracks with a

laminar flow profile. The utilization of a laminar flow profile in 15◦ sloped flow deliv-

ered a similar change as in vertical flow, namely the tracking efficiency of the conven-

tional tracking algorithm increases and the efficiency of the multi-pass tracking algo-

rithm with robust initialization decreases. However, this change is not as high as with

the vertical flow, so that only in 1 of 12 variations the conventional tracking algorithm

83



6 Multi-Pass Tracking Algorithm with Robust Initialization

Figure 6.10: Comparison of the tracking algorithms for 15◦ sloped flow with a constant

flow profile

Figure 6.11: Comparison of the tracking algorithms for 15◦ sloped flow with a laminar

flow profile

delivers better results than the multi-pass tracking algorithm with robust initialization.
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Figure 6.12: Comparison of the tracking algorithms for horizontal flow with a constant

flow profile

In figure 6.12 the results for horizontal flow with a constant flow profile are repre-

sented. Compared to vertical and 15◦ sloped flows with a constant flow profile, the

conventional tracking algorithm delivers for horizontal flow with a constant flow pro-

file lower tracking efficiencies. However, their trends are mostly independent of flow

velocity and seed rate. The tracking efficiencies with the multi-pass tracking algo-

rithm with robust initialization also decreases for the horizontal flow with constant

flow profile. Here the tracking efficiencies stay nearly constant or increase slightly

with the ascending number of objects to track. However, the tracking efficiencies for

the two higher velocities (0.40m/s and 0.20m/s) decrease significantly. Overall, for

the horizontal flow with a constant flow profile, the multi-pass tracking algorithm with

robust initialization delivers higher tracking efficiencies than the conventional tracking

algorithm for the all variations.

As shown in figure 6.13 , other than the vertical and 15◦ sloped flows, for the hori-

zontal flow the tracking efficiency of the conventional tracking algorithm decreases if

a laminar flow profile is utilized instead of constant one. For a horizontal flow with

a laminar flow profile, the multi-pass tracking algorithm with robust initialization ex-

hibits a similar character as for the 15◦ sloped flows with laminar flow profile, whereby

the tracking efficiency is decreased especially for the variations with the highest flow

velocity of 0.40m/s. Generally, the multi-pass tracking algorithm with robust initial-
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Figure 6.13: Comparison of the tracking algorithms for horizontal flow with a laminar

flow profile

ization delivers for all variations of the horizontal flow with constant and laminar flow

profiles better results than the conventional tracking algorithm.

Figure 6.14 shows the tracking efficiencies for the helicoidal flow with a constant

flow profile. This flow structure along with its laminar flow profile variation exhibits

the most complex virtual tracks observed in this study. Compared to the previously

presented tracks, the helicoidal tracks with constant flow profile show significantly

lower tracking efficiencies. Here, the tracking efficiencies stay below 50% which was

not observed in the previously presented tracks. It still can be seen that the tracking

efficiency decreases with the ascending seed rate and flow velocity for the conventional

tracking algorithm. For the multi-pass tracking algorithm with robust initialization,

such a relationship between these parameters cannot be observed. However, other than

the previously discussed tracks, here the lowest and highest velocities (0.05m/s and

0.4m/s) exhibit the highest tracking efficiencies. Among the 12 variations for only

one variation the conventional tracking algorithm has a higher tracking efficiency.

The results for the last tracks type along the mathematically defined tracks, heli-

coidal flow with a laminar flow profile, are shown in figure 6.15. Here, the results with

both tracking algorithms are slightly better than the results with a constant flow profile,

whereby the conventional tracking algorithm still delivers only for one of twelve vari-
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Figure 6.14: Comparison of the tracking algorithms for helicoidal flows with a constant

flow profile

Figure 6.15: Comparison of the tracking algorithms for helicoidal flows with a laminar

flow profile

ations better results than the multi-pass tracking algorithm with robust initialization.

One big difference compared to helicoidal flow with a constant flow profile, is that
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for the laminar profile the tracking efficiencies for the highest velocity 0.4m/s drop

significantly.

The comparison of the conventional tracking algorithm and multi-pass tracking al-

gorithm with the mathematically defined tracks shows that the multi-pass tracking de-

livers significantly better results in general. Only in 7 of 96 observed variations, the

tracking efficiency of the conventional tracking algorithm is higher. Another positive

aspect observed with the multi-pass tracking algorithm with robust initialization is that

the tracking efficiency stays mostly constant or increases slightly with ascending seed

rate. For the conventional tracking algorithm on the other hand, with increasing seed

rate the tracking efficiency drops up to 40%. Considering the flow velocity for the

conventional tracking algorithm the tracking efficiency reaches its highest values for

higher velocity, which is the opposite for the multi-pass tracking algorithm with robust

initialization.

6.5 SIL-Simulations with Tracks Generated by CFD

Simulations

CFD simulations for track generation were carried out with the CFD code STAR-

CCM+ v13.04.010. The geometry used for the CFD simulations is the geometry of

the 3D-MVPTV test stand described in section 4.1. An unstructured numerical mesh

for this geometry is generated using polyhedral cells with prism layers. The maximum

cell size of this mesh is 5cm, whereby the surface size varies between 1.25cm and 5cm.

Three prism layers with a total height of 1cm are used, in which the growth ratio be-

tween the layers is 20%. The resulting mesh with these parameters consists of 121993

cells, and is shown in figure 6.16.

The CFD simulations are carried out isothermally using constant density. The re-

alizable k-epsilon turbulence model is utilized for modeling the turbulence, whereas

the wall treatment is calculated using all y+ wall function. The Euler-Lagrangian ap-

proach is used to model the tracer particles in the air flow. This approach makes it

possible to define individual size distributions and seeding behaviors for the tracer par-

ticles. Both Lagrangian and Eulerian phases in CFD simulations are modeled as air.

In the later phases, different materials can also be used as Langragian particles (i.e.,

helium-filled soap bubbles), so that the influence of the tracer particles on the accuracy

of the measurement can be quantified. Another advantage of this approach is its abil-
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ity to model detailed particle behavior including particle-particle and particle-surface

interactions. On the other hand, the interaction between the two phases is one-way

coupled. That means the Eulerian phase influences the Lagrangian phase but not the

other way around. The particle size distribution if defined using a log-normal distribu-

tion as shown in section 4.2.1. The tracer particles in this distribution have a minimum

size of 1mm, a maximum size of 3mm and an average size of 2mm. A resulting size

distribution according to this definition is shown in figure 6.17.

Figure 6.16: Details of the numerical mesh used for the CFD simulations

The CFD simulations for track generation were carried out transiently. In order to

obtain an initial flow field before the seeding, the unsteady solver and the Lagrangian

multiphase solver were frozen at the beginning of the simulations. A maximum of 500

iterations were calculated under this setup so that the flow field reached a quasi-steady

state which is evaluated according to the fluctuations of the turbulent kinetic energy.

After a quasi-steady state is achieved, the transient CFD simulation with Lagrangian

particles is run for 30s. Lagrangian particles are seeded from a horizontal plane with a

diameter of circa 80cm, just below the top surface of the cylinder. Their initial velocity

is 0m/s so that they can quickly reach the flow velocity and represent the flow field.

Figure 6.18 shows the result of a CFD simulation after 30s with an inlet velocity

of 0.4m/s and seeding of 20pps. The horizontal section plane in this figure is located

at the half height of the inlet to show the flow entering into the domain. The vertical

section plane is located in the middle of the room to demonstrate the flow field around

the cylinder. It can be seen that the seeded particles follow the airflow above the
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Figure 6.17: Size distribution of the Lagrangian particles for seeding with 20pps and

an inlet velocity of 0.4m/s

cylinder, in which the impulse from the inlet leads them to the opposite wall. Once

Lagrangian tracks are simulated using CFD, they should be transferred to the 3D-

MVPTV-SIL-Environment for further steps. For this purpose, a MATLAB function is

developed, which converts the Lagrangian particle tracks to the virtual tracks.

Figure 6.19 shows the results of the object tracking for the tracks generated by CFD

simulations. Here, the tracking efficiency for the multi-pass tracking algorithm with

robust initialization mostly increases with the ascending flow velocity as for the tracks

with the vertical flow. However, it decreases with ascending seed rate. For the conven-

tional tracking algorithm, the tracking efficiency also mostly decreases with ascending

seed rate. There is not an exact dependency between the flow velocity and the tracking

efficiency for this case. The only significant outcome is that the conventional tracking

algorithm delivers very low tracking efficiencies for the highest velocity (0.40m/s).

Generally, the conventional tracking algorithm has lower tracking efficiencies in 11 of

12 track variations than the multi-pass tracking algorithm with robust initialization.
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Figure 6.18: Flow field and tracks of Lagrangian particles for seeding with 20pps and

an inlet velocity of 0.4m/s

Figure 6.19: Comparison of the tracking algorithms for the tracks generated by CFD
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7 3D-MVPTV Measurements

After the development of the 3D-MVPTV with focus on camera calibration and track-

ing algorithm, as a last step 3D-MVPTV measurements are compared with measure-

ments carried out using hot-sphere probes. Since the hot-sphere probes are just capable

of measuring the velocity magnitude, the aim of these measurements is to ensure that

the 3D-MVPTV delivers plausible velocity magnitudes compared to a conventional

measurement method. Both measurements are carried out in the 3D-MVPTV test stand

described in section 4.1. Following the comparison of both measurements, section 7.3

discusses the reasons for the deviations between these two measurement methods.

7.1 3D-MVPTV Measurements

The 3D-MVPTV measurements were undertaken for three different inlet velocities:

0.47m/s, 0.24m/s, and 0.14m/s. The first velocity represents the maximum veloc-

ity which can be achieved by the axial fans installed in the inlet duct. This velocity

was then reduced in two steps to test the developed flow measurement system with

lower velocities. The control of the inlet velocity occurs manually using a dimmer

unit and a hot-sphere probe which is positioned just after the inlet duct as shown in

figure 7.2 right. The tracer particles were seeded in the 3D-MVPTV test stand using

four diffusers as shown in figure 4.1. Before the webcams captured these particles, a

time interval of five minutes was let pass so that the flow regime could reach a quasi-

stationary state and tracer particles could fill the observed volume. Then, frame syn-

chronized video capture was carried out with 16 cameras for 30s, and further steps

in the 3D-MVPTV workflow like object recognition, object tracking, track matching,

and multi-view triangulation were carried out. Figure 7.1 shows the resulting tracks

after multi-view triangulation for the measurement with the velocity 0.14m/s. In this

figure, every individual track has a different color. Finally, in the post-processing step,

the three dimensional velocity components and the resulting velocity magnitudes were
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calculated using equations 3.4 and 7.1, which can then be compared with the measure-

ments carried out using a conventional method in the next step.

Figure 7.1: World points of the tracks for the measurement with the velocity 0.14m/s

v =
√

vx
2 + vy

2 + vz
2 (7.1)
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7.2 Comparison Measurements

The comparison measurements were carried out using four available Dantec Dynamics

54T33 hot-sphere probes in the HRI. These hot-sphere probes have an accuracy of

±2% of reading ±0.02m/s between 0−1m/s and ±5% of reading between 1−5m/s

[13]. Each probe has two quartz spheres with a diameter of 3mm. One of these spheres

is held at a constant over-temperature as shown in figure 7.2 on the left. The energy

consumed to keep the hot-sphere at a constant temperature is then correlated with the

air velocity magnitude. The acceptance angle of the hot-sphere relative to the probe

axis is ±160◦ between 0− 1m/s, and it varies from +50◦ to +130◦ for the velocity

range 1−5m/s [13].

The positions of the hot-sphere probes in the 3D-MVPTV test stand are needed in

order to compare their results with the 3D-MVPTV measurements. In order to get

the position of these probes using the same coordinate system as in the 3D-MVPTV

measurements and with similar accuracy, multi-view triangulation was utilized. Here,

images of the hot-sphere probes with webcams were captured during the comparison

measurements. Thereafter the positions of the hot spheres on the probes were marked

manually on these images as shown in figure 7.2 on the right. In this figure the hot

sphere on the bottom is marked with red, the one in the middle with green and the

one on the top with blue. Finally, multi-view triangulation was carried out with these

image points from all cameras to calculate the positions of the hot-sphere probes.

Figure 7.2: Thermography image of an hot-sphere probe [30], the positioning of the

hot-sphere probes

It was not possible to capture the flow field to be observed simultaneously using
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three hot-sphere probes18 and 3D-MVPTV. Therefore, eight positions in tangential

direction and two positions in radial directions were chosen resulting in a total of 16

positions (see figure 7.3 left). The probe stand with three hot-sphere probes positioned

in three different vertical positions (see figure 7.3 right) was moved consecutively on

these 16 positions resulting 48 probe points in total. The locations of these probe points

were chosen to achieve an equidistant distribution of the probes in the observed flow

field. During comparison measurements, after each time the probe stand carrying hot-

sphere probes moved to a new position, a 60s pause before the data acquisition was

utilized so that the disruption of the flow field could be minimized. Following this 60s

break, velocity magnitudes from all four hot-sphere probes are captured for 60s.

Figure 7.3: Positions of the hot-sphere probes in the 3D-MVPTV test stand

While during the comparison measurements the hot-sphere probes could be posi-

tioned at any desired position easily, capturing the whole flow field using these probes

is very expensive or time-consuming due to the number of probes or measuring steps

required. On the other hand, the 3D-MVPTV can measure the entire flow field simulta-

neously; it can deliver not just velocity magnitudes but also the velocity vectors. How-

ever, homogeneous distribution of the tracer particles under various flow conditions

can be quite challenging. That makes it nearly impossible to find a 3D-MVPTV data

point which has the same coordinate as one of the hot-sphere probes. In order to carry

out a plausible comparison between these measurement methods, the 3D-MVPTV data

points should be filtered according to their distance to the nearest hot-sphere probe. Af-

ter this filtering the 3D-MVPTV data points corresponding to a hot-sphere sensor were

averaged.

Figure 7.4 represents the results of such a comparison. In these graphs, the blue bars

represent the difference between the 3D-MVPTV and comparison measurements for

18One of the four hot-sphere probes was used to control the inlet velocity as described in section 7.1.
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the data points, which are annotated on vertical axes. The horizontal axes show the dis-

tance between data points of 3D-MVPTV and comparison measurements in ascending

order. These diagrams do not exhibit any dependency between these data point dis-

tances and the velocity difference between the two measurement methods. The data

limits plotted with orange represent the accuracy range of the hot-sphere probes used.

It can be easily seen that the deviations between the measurements increase and leave

this accuracy range with increasing flow velocity. This increase exists most probably

due to the decreasing accuracy of the hot-sphere probes with ascending flow velocity.

Figure 7.4: Velocity differences between MVPTV and hot-sphere probe measure-

ments, according to the distance between the data points

Figure 7.5 shows a further comparison of these two measurement methods. Here

the hot-sphere results in the same height were averaged as the bottom, middle and top.

Similarly, the 3D-MVPTV results at the same height as the hot-sphere probes are clus-

tered with tolerance and averaged. The comparison of all three velocity levels shows

that the differences of the averaged velocities between the two measurements for the

middle data points are the lowest. For the bottom data points, hot-sphere measurements

exhibit an increasing velocity trend parallel to the rising ventilation velocity. This re-

sult is expected since the bottom data points are the closest data points to the ventilation

duct. However, such a trend can not be observed with the 3D-MVPTV measurements.

That can be explained with the heterogeneous distribution of the data points (namely

the tracer particles) and the tolerance used during clustering of the results explained
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above. When the velocity trends of the three heights are considered for each measure-

ment, for the hot-probe measurement, the velocities first rise and then decrease. It is

not possible to obtain a similar relationship for the 3D-MVPTV measurements for the

same observation. However, for a better comparison, it would be easier to use the re-

sults of the CFD simulations for the SIL simulations with similar velocity levels. Their

results are plotted in figure 7.5 with red lines. They exhibit for all velocity levels a

descending trend, which is plausible due to the inlet duct position on the bottom. If

we compare the measurements with the CFD results, the only measurement with the

similar character is the highest velocity 0.47m/s.

Figure 7.5: Comparison of average velocities between hot-sphere probe and MVPTV

measurements

7.3 Analysis of Experimental Errors

The differences between the results of the two measurements methods represented

above result from systematic and random errors of each measurement method. Be-

low the common error sources of these differences for each measurement method are

presented and discussed.
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7.3.1 Common Sources of Errors in the Hot-Sphere

Anemometer Measurements

• The Accuracy of the Probes: The hot-sphere probes used in this study have an

accuracy of ±2% of reading ±0.02m/s and an acceptance angle relative to the

probe axis of ±160◦ for the observed velocity range 0−1m/s according to man-

ufacturer’s data sheet [13]. The probes accuracy is considered during the com-

parison of the two measurement methods, and the 3D-MVPTV measurements

stay mostly within this error range. The acceptance angle range of 320◦ covers

89% of the upstream flow zone relative to the probe axis. Since the observed

flow phenomena in this study exhibit a 3D structure which is not easy to pre-

estimate, positioning the hot-sphere probes within the ±160◦ acceptance angle

range relative to the probe axis is mostly not possible. That results in random

errors which becomes more dominant when the flow field is captured through

several discrete measurements as described in the next point.

• Discrete Acquisition of Velocity Magnitudes: As described in section 7.2, the

hot-sphere anemometer measurements were carried out with four probes. One

of these probes was reserved for the control of the axial fans in the inlet duct.

The remaining three probes were positioned vertically and using these probes

discrete acquisition of velocity magnitudes for 16 measurement locations were

undertaken. Even though the positions of probes were recalculated after every

repositioning and sufficient time after every repositioning was left to eliminate

the disturbances, the discrete acquisition of the velocity magnitudes leads to

random errors. It is possible to estimate these random errors, through the simul-

taneous acquisition of velocity magnitudes using more probes.

• Calculation of the Probe Positions: The positions of the probes were calcu-

lated using the following steps of the 3D-MVPTV as described in section 7.2:

camera calibration, frame synchronized video capture, object recognition, and

multi-view triangulation. The common error sources of these steps which are

represented in section 7.3.2 in detail are also responsible for the errors during

the calculation of the probe positions. However, two of these four steps differ

from their versions in the 3D-MVPTV workflow. Instead of frame synchronized

videos as for the tracer particles, it is sufficient to capture images to determine

the positions of the probes. Since the observed objects are not moving and just

their images are captured, the errors in the frame synchronized video capture are

not relevant in this context. The second difference occurs in the object recogni-
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tion step. Due to the contrast levels in the captured images as shown in figure

7.3, it is difficult to carry out an automatic recognition of the image points of

the hot-spheres. Therefore, this step was carried out manually, which represents

another source for random errors.

7.3.2 Common Sources of Errors in the 3D-MVPTV

Measurements

• Camera Calibration: The calibration of the 16 webcams utilized in this study,

were carried out iteratively using bundle adjustment as defined in section 3.2.3.

The mean reprojection error was reduced until circa 3px with image filtering.

However, this iterative calibration process with the mean projection error as a

cost function cannot deliver an exact mathematical definition of the camera sys-

tem used. Therefore, the further steps in which the calibration results are used

are affected by this finite mean projection error.

• Frame Synchronized Video Capture: To calculate the world points of a tracer

particle at a specific moment in time, first the image points of this tracer parti-

cle must be captured at the same moment in time by all participating cameras.

If a significant time delay between the cameras for capturing the same moment

occurs, this will lead to further errors in the next steps of the 3D-MVPTV work-

flow. The first step affected by this time delay is the object recognition. Since

the tracer particles are moving, a time delay would lead to a deviation by the

positions of the image points of the tracer particles. This deviation can result in

erroneous object tracking especially for the faster tracer particles which are also

closer to the cameras. Track matching which bases on object tracks with errors

would also lead to erroneous results. Finally, during multi-view triangulation,

not only the erroneously matched tracks but also the image points with deviation

would deliver unreliable results.

• Tracer Particles: The helium-filled soap bubbles used as tracer particles in the

3D-MVPTV measurements are generated using the bubble generator as defined

in section 4.1. The buoyancy neutrality of these tracer particles is controlled vi-

sually. If the helium-filled soap bubbles are sinking or rising, their buoyancy is

readjusted manually through changing the proportions of helium, air, and soap

utilized. This manual workflow makes it possible to achieve a qualitative global

buoyancy. Since not all generated tracer particles are identical, local buoyancy
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neutrality deviations occur. On the other hand, as the qualitative global buoy-

ancy is controlled manually, it is also possible to have deviations due to the com-

petence of the person operating the bubble generator. These local and global

random errors due to the manually controlled bubble generation process lead to

underestimation or overestimation of velocities which are calculated through the

tracer particles’ motions.

• Object Recognition: The miscalculation of the object positions in the image

space can result from the inhomogeneous illumination and erroneous object

recognition. Inhomogeneous illumination of the tracer particles results in a de-

viation of the object centroid positions in the image space. Also, the threshold

used for the conversion of 8−bit images to the 1−bit images before the object

recognition, can lead to a similar deviation and also result in added noise or loss

of captured tracer particles. That will lead to an error propagation to the next

steps especially for the object tracking and track matching.

• Object Tracking: The multi-pass tracking algorithm with robust initialization

developed in this study utilizes primarily the object positions in image space

but also the object size. Therefore, the errors during the determination of these

parameters propagate as further errors into the object tracking step. If only the

tracking algorithm is considered, the tracking efficiency parameter defined in

section 4.2.3 describes its accuracy. The SIL-Simulations show that the mean

value of this accuracy is 80% under simple flow conditions like vertical and hor-

izontal flows. For helicoidal flow cases, which exhibit extremely complex flow

structures, the mean accuracy drops to 22%. The realistic flow cases generated

with CFD simulations exhibit a mean accuracy of 59%.

• Track Matching: The track matching step uses the fundamental matrices, the

image point coordinates, and the tracking matrices as inputs as described in sec-

tion 3.2.7. Therefore, the errors in the track matching step base directly on the

camera calibration, the object recognition and the object tracking steps. The

errors during the calculation of the fundamental matrices, the determination of

the coordinates of the image points and the tracking of the objects mislead the

calculation using the epipolar constraint.

• Multi-View Triangulation: As one of the final steps in the 3D-MVPTV workflow,

the multi-view triangulation is affected by its all preceding steps. However, the

most dominant factors influencing the triangulation accuracy is the camera cal-

ibrations step and the choice of the camera set for multi-view triangulation. As
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discussed in section 5.3, with the same camera calibration results the minimum

triangulation error varies between 0.1 and 100mm depending on which camera

set is in use.

• Post-processing: In the final step of the 3D-MVPTV workflow the velocity vec-

tors are calculated using the triangulated world points of the tracks. That means

the factors affecting the accuracy of the object tracking and the multi-view trian-

gulation also affects the calculation of the velocity vectors. However, the frame

synchronized video capture step has also a significant influence on this calcu-

lation. As shown in equation 3.4 the time interval between frames ∆t is also

included in the calculation of the velocity vector. Therefore, if this time inter-

val does not remain constant during the video capture, namely the video capture

is not synchronized, an erroneous calculation of the velocity component is not

preventable.

As mentioned in most of these points, the errors in each step are linked with the oth-

ers and propagate towards to the last step. The errors in the main focus points of this

study—object tracking and multi-view triangulation including camera calibration—

were quantified using the SIL-Environment. In this context, the SIL-Environment

makes further detailed investigations possible not only for the accuracy of each step

but also for the links and error propagation between them. Such a detailed analysis

and quantification of the error is also necessary for the further development of the

individual steps of the 3D-MVPTV workflow.
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In this study a new flow visualization method, the 3D Multi-View Particle Tracking

Velocimetry (3D-MVPTV), and a new tracking algorithm, the Multi-Pass Tracking

Algorithm with Robust Initialization, were developed. With the utilization of multi-

view vision, the 3D-MVPTV is capable of carrying out fluid visualization in large

indoor environments even in the presence of optical obstacles. The system uses web-

cams which incur lower cost compared to the usually utilized scientific cameras. The

workflow developed for this measurement system makes it possible to perform the

individual steps of the measurements in a systematic way. In this study, a software-

in-the-loop (SIL) environment is also developed, which enables detailed analysis and

further improvements for this measurement system.

One of the two main focuses in this study, the camera calibration, was carried out

successfully with 16 webcams. Its accuracy characterized by the mean reprojection

error was too high after a conventional implementation. However, this could be re-

duced by 90% by implementing an image filtering step. The final mean reprojection

error of this camera set with 16 cameras is with 3px in the lower segment of the ac-

ceptable range. A critical question related to multi-view vision and its calibration is

the choice of camera set for multi-view triangulation, which was also investigated in

this work using two different methods. Here the first method, choosing the camera set

with elimination according to the mean reprojection error, helped to find a good cam-

era set with less triangulation error. However, the second implemented method with

precalculation, which delivers a triangulation map for the observed domain, delivered

much better results. As this method uses the global average of the triangulation error,

it can also be improved using local values of the triangulation error. That will enable

a further reduction of the triangulation error depending on the positions of the tracer

particles.

For the second main focus of this study, the object tracking, two tracking algorithms

were developed. The conventional tracking algorithm uses a monodirectional, one-

pass tracking with a simple initialization process. On the other hand, the multi-pass
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tracking algorithm with robust initialization has a bidirectional, multi-pass character

with a robust initialization. Both tracking algorithms were then compared with 108

virtual tracks with various flow structures in the SIL environment. In 100 of these

SIL simulations, the multi-pass tracking algorithm with robust initialization delivered

considerably better results. If the overall tracking efficiencies are compared, this algo-

rithm also delivers with 65% significantly higher results than the conventional tracking

algorithm with 37%. The efficiency of the multi-pass tracking algorithm with robust

initialization also does not decrease with ascending seed rates.

In the last part of this study, 3D-MVPTV measurements were carried out in the test

stand, which were then compared with a conventional measurement method using hot-

sphere probes. This comparison showed that the 3D-MVPTV delivers plausible results.

The possible error sources causing the difference in this comparison were analyzed.

Beside the systematic errors, the random errors of the hot-sphere probes were difficult

to quantify. In this context, further detailed error analyses for the individual steps of

the 3D-MVPTV measurements and its workflow are essential. These points can be

carried out in further development steps using advanced measurement methods like

PIV and the SIL environment.

One of the most important error sources in the 3D-MVPTV measurements was the

size and distribution of the tracer particles. The bubble generator used in this study is

controlled manually to produce the tracer particles. That leads to significant oscilla-

tions in size, number, and distribution of the tracers particles depending on the capa-

bility of the operator of the bubble generator. However, a recently developed bubble

generator can generate smaller (down to 0.3mm) tracer particles for air flows with auto-

matically controlled size and seeding rate [22]. In the future carrying out 3D-MVPTV

using such a bubble generator would not only reduce the errors but also increase the

resolution of the system due to smaller particle sizes and higher seeding rates.

Parallel computing is utilized in most steps of the 3D-MVPTV workflow and the SIL

environment. Here a linear acceleration in computation times is achieved, especially

in the camera calibration, object recognition and multi-view triangulation steps. On

the other hand, the complexity of the new multi-pass tracking algorithm with robust

initialization results in a rise of computational times. However, the implementation

of parallel processing using CPUs for this algorithm is restricted due to its sequen-

tial execution. Here, the implementation of parallel processing using GPUs will help

to decrease the computational times greatly. A further necessary improvement of the

software implementation would be the development of a grayscale driver for the web-
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cams. This will not only improve the image acquisition performance but also reduce

the size of the data captured.

As described at the beginning of this study, Leonard da Vinci carried out the first

fluid visualization studies using his eyes and artistic as well as scientific skills. Nearly

500 years later, the measurement method developed in this study runs with 16 web-

cams, a bunch of software components and computational resources. The huge im-

provement achieved through this would probably continue to accelerate in the next

years with novelties in imaging and computational technologies. In this context, espe-

cially software-in-the-loop environments, also utilized in this study, will enable faster

and more precise development of flow visualization.

104



Bibliography

Books

[1] T. T. Lim A. J. Smits. Flow Visualization: Techniques and Examples. 2nd. Lon-

don: Imperial College Press, 2012. ISBN: 9781848167919.

[5] Asim Bhatti. Stereo Vision. 1st. In-Teh, 2008. ISBN: 978-953-7619-22-0.

[6] Pascal Henry Biwole. Large Scale Particle Tracking Velocimetry for 3-Dimensional

Indoor Airflow Study. National Institute of Applied Sciences of Lyon, 2009.

[7] John F. Foss Cameron Tropea Alexander L. Yarin. Springer Handbook of Ex-

perimental Fluid Mechanics. Berlin, Heildelberg: Springer-Verlag, 2007. ISBN:

978-3-540-25141-5.

[9] Marc Christenfeldt. Entwicklung eines Mess- und Reglermoduls für einen Blasen-

generator. 2014.

[10] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MAT-

LAB. 1st. Springer, 2011. ISBN: 978-3-642-20143-1.

[16] Alessandro Verri Emanuele Trucco. Introductory Techniques for 3-D Computer

Vision. 1st. Prentice Hall, 1998. ISBN: 978-0132611084.

[18] Olivier Faugeras. Three-dimensional computer vision: a geometric viewpoint.

1st. The MIT Press, 1993. ISBN: 978-1-4471-6320-6.

[20] Adrian Kaehler Gary Bradski. Learning OpenCV. 1st. O’Reilly, 2008. ISBN:

978-0-596-51613-0.

[21] Eugen Hecht. Optics. 4th. London: Addison Wesley, 2002. ISBN: 0-321-18878-

0.

[26] Reinhard Klette. Concise Computer Vision: An Introduction into Theory and

Algorithms. 1st. Springer, 2014. ISBN: 0-262-06158-9.

[27] Robert Laganiere. OpenCV 2 Computer Vision Application Programming Cook-

book. 1st. Packt Publishing, 2011. ISBN: 978-1-849513-24-1.

105



8 Conclusion and Outlook

[34] Wolfgang Merzkirch. Flow Visualization. 2nd. Orlando, Florida: Academic Press

Inc., 1987. ISBN: 9780080506586.

[37] Dirk Müller. Optische Erfassung und numerische Berechnung von zwei- und

dreidimensionalen Geschwindigkeitsfeldern mit niedrigen turbulenten Reynolds-

Zahlen. Aachen: Shaker, 2000. ISBN: 3-8265-8222-5.

[39] Frans T. M. Nieuwstadt. Flow Visualization and Image Analysis. 1st. Springer,

1993. ISBN: 978-94-010-5191-0.

[40] Steven L. Eddins Rafael C. Gonzalez Richard E. Woods. Digital Image Process-

ing Using MATLAB. 2nd. Gatesmark Publishing, 2009. ISBN: 9780982085400.

[41] Andrew Zisserman Richard Hartley. Multi View Geometry in Computer Vision.

2nd. The Edinburgh Building, Cambridge CB2 8RU, UK: Cambridge University

Press, 2003. ISBN: 978-0-521-54051-3.

[46] Wen-Jei Yang. Handbook of Flow Visualization. 2nd. New York: Taylor & Fran-

cis, 2001. ISBN: 1-56032-417-1.

Articles

[2] Ronald J. Adrian.
”
Particle-Imaging Techniques for Experimental Fluid Me-

chanics“. In: Annu. Rev. Fluid Mech. 23 (1991), pp. 261–304.

[8] K. L. Chan and A. K. Forrest.
”
An empirical study on the effects of spatial

discretization error in a stereo vision system“. In: (1990), pp. 48.1–48.6.

[11] G. H. Jirka D. Groß W. Brevis.
”
Development of a LED-based PIV/PTV system:

Characterization of the flow within a cylinder wall-array in a shallow flow“. In:

River Flow 2010 (2010), pp. 1665–1672.

[14] Daniel J. Simons Deborah E. Hannula and Neal J. Cohen.
”
Imaging implicit

perception: promise and pitfalls“. In: Nature Reviews Neuroscience 6 (2005),

pp. 247–255.

[19] Peter Freymuth.
”
Flow visualization in fluid mechanics“. In: Review of Scientific

Instruments 64 (1993).

[25] Andrew K. Forrest Kap Luk Chan.
”
An empirical study on the effects of spatial

discretization error in a stereo vision system“. In: (1990), pp. 48.1–48.6.

106



Electronic resources

[29] Manolis I. A. Lourakis and Antonis A. Argyros.
”
SBA: A Software Package for

Generic Sparse Bundle Adjustment“. In: ACM Transactions on Mathematical

Software 36 (2009).

[30] Rasmus Lund Jensen Martin Heine Kristensen Jakob Søland Jensen.
”
Air Tem-

perature Measurements Using Dantec Draught Probes“. In: (2015). ISSN: 1901-

726X.

[33] Kenneth I. Joy Mauricio Hess-Flores Shawn Reckerz.
”
Uncertainty, Baseline,

and Noise Analysis for L1 Error-Based Multi-View Triangulation“. In: (2014).

[35] Pirkko Oittinen Mikko Kytö Mikko Nuutinen.
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