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Abstract

Automotive control-based applications become more and more sophisticated due
to the continuous addition of new functionalities. At present, this functionality is
implemented as runnables that are recurrently and sequentially executed inside software
tasks. These computing-intensive tasks are typically concurrent to each other and hence
can be executed in parallel on multi-core platforms.

Due to the increasing functionality, future tasks will exceed the computational power
of a single core and have to be parallelized. When parallelizing a single task, it is critical
that the order of execution, the communication and its timing of the legacy imple-
mentation is maintained. Otherwise, the behavior may change that could result in an
incorrect functionality. These legacy requirements limit the concurrency inside a task
such that an efficient parallelization is often hardly possible. Due to the high amount
of functional interdependencies and the varying runnable execution times, synchro-
nization is required to ensure the correct order of communication between parallelized
tasks. However, any synchronization can potentially degrade the performance espe-
cially when the observed worst case execution times (oWCETs) of the runnables are
overrun.

In this thesis, we present a parallelization approach that can cope with the require-
ments of automotive legacy software tasks. Our approach provides scalable and efficient
heuristics to exploit the concurrency of real-world legacy tasks for parallelization. By
optimizing the parallelization toward a novel robustness metric, the approach can cope
with oWCETs and reduce the synchronization between resulting parallel tasks.

The concurrency inside legacy tasks is often limited due to various optimizations and
construction principles for single-core platforms. Yet, these limitations are not always
mandatory to the functional correctness. Our approach provides a semi-automated
analysis to detect and eliminate these limitations and to increase the concurrency of
a task that can be exploited for parallel execution. The typical bottleneck resource
in any multi-core migration is the effort to ensure the functional correctness of the
system by consulting functional development experts. This effort is reduced through
our approach by ranking and proposing only the most promising task design changes
to these experts for the validation of functional correctness.

Finally, we have implemented the proposed approach and evaluated it in several case
studies with tasks from real-world automotive engine management systems.
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Zusammenfassung

Aufgrund von neuen Funktionalitäten werden regelungstechnische Anwendungen
im Automobilbereich stetig anspruchsvoller. Aktuell werden diese Funktionalitäten
in Runnables implementiert, die periodisch und sequentiell innerhalb von Software
Tasks ausgeführt werden. Diese rechenintensiven Tasks sind typischerweise zueinander
nebenläufig und können somit auf Mehrkernsystemen parallel ausgeführt werden.

Infolge von zunehmender Funktionalität werden Tasks zukünftig die Rechenleis-
tung eines einzelnen Rechenkerns übersteigen und müssen parallelisiert werden. Bei
der Parallelisierung eines Tasks ist es entscheidend, dass die Ausführungsreihenfolge, die
Kommunikation und dessen zeitliche Abfolge der vorhergehenden Implementierung
beibehalten wird. Andernfalls könnte es das Verhalten so verändern, dass eine Funk-
tionalität unzulässig wird. Diese Alt-Anforderungen beschränken die Nebenläufigkeit
innerhalb eines Tasks, sodass eine effiziente Parallelisierung oft kaum möglich ist. Auf-
grund von einem hohen Maß an funktionalen Abhängigkeiten und unterschiedlichen
Ausführungszeiten der Runnables ist eine Synchronisation notwendig, um eine ord-
nungsgemäße Kommunikation zwischen den parallelisierten Tasks zu gewährleisten.
Allerdings beinhaltet jede Synchronisation das Risiko die Leistung zu verschlechtern,
insbesondere wenn die beobachteten WCETs der Runnables überschritten werden.

In dieser Dissertation präsentieren wir ein Vorgehen zur Parallelisierung, das den
Anforderungen von Software Tasks aus Alt-Systemen im Automobilbereich genügt.
Unser Vorgehen bietet skalierbare und effiziente Heuristiken um die Nebenläufigkeit
von Tasks aus industriellen Alt-Systemen auszunutzen. Durch die Optimierung der
Parallelisierung mittels einer neuen Robustheits-Metrik beherrscht unser Vorgehen
beobachtete WCETs und reduziert die Synchronisation zwischen parallelisierten Tasks.

Oft ist die Nebenläufigkeit von Tasks aus Alt-Systemen jedoch durch Optimierun-
gen für Single-Core Prozessoren beschränkt. Diese Einschränkungen sind allerdings
nicht immer notwendig um die ordnungsgemäße Funktion zu gewährleisten. Unser
Vorgehen bietet eine halbautomatische Analyse, um diese Einschränkungen zu finden
und zu entfernen und damit die Nebenläufigkeit eines Tasks zu erhöhen, die widerum
bei der parallelen Ausführung von Nutzen ist. Der typische Engpass bei jeder Migra-
tion auf Multi-Core Prozessoren ist der Arbeitsaufwand die funktionale Korrektheit
zu gewährleisten indem Funktionsentwickler befragt werden. Dieser Arbeitsaufwand
wird durch unser Vorgehen reduziert, da nur die vielversprechendsten Änderungen
im Design eines Tasks diesen Experten zur Validierung der funktionalen Korrektheit
vorgeschlagen werden.

Wir haben das vorgeschlagene Vorgehen implementiert und in mehreren Fallstudien
mit Tasks aus Motorsteuergeräten aus dem Automobilbereich evaluiert.
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1
Introduction

Today’s automotive applications employ highly sophisticated comfort, safety and power-
train functionalities which will continue to grow in the future [Aoy12, BKPS07]. For
example, the power-train has to fulfill constantly tightened emission limits. The re-
sulting complex functionality is implemented in embedded real-time control software
with an increasing demand for computing power. Parallelism provided by multi-core
processors is the most promising solution to satisfy the computational demand [But12].
To leverage it efficiently, the legacy software, originally developed and optimized for
single-core processors, needs to be parallelized.

1.1 Problem
Automotive legacy control software is composed of interdependent software units.
These software units are allocated to recurrently executed and concurrent tasks. Using
the concept of Logical Execution Time (LET) [HHK01], the tasks can run on single- or
multi-core processors with a deterministic behavior independent of their distribution
to cores. However, there has been the established construction principle to allocate
all software units with the same recurrence pattern to a single task. This construction
principle is optimized for single-core processors and reduces the resource overhead.
With this principle, additional or more complex functionalities cause the number of
software units of a task to grow. The computational demand of tasks thereby increases
and may exceed the computational power of a single core [MHAK15]. Such a task has
to be parallelized by remapping the software units to multiple parallel tasks.

The software units interact through sensors and actors with the physical environ-
ment [SZ16]. The interaction is based on messages that are communicated between the
software units. Every communication creates data and ordering dependencies. While
parallelizing, these dependencies have to be maintained to ensure the data flow and thus
the correct functionality of the legacy software. Also, control-based software is very
sensitive to timing [AEF+14]. A change in the timing of a dependency results either in
earliness or lateness of the communicated data. Especially in the latter case, a delayed
communication potentially alters the functionality of controllers. Depending on the
controller design, the delay may violate latency or stability requirements and other
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1 Introduction

performance criteria. But ensuring all dependencies and their respective timing limits
the parallizability and is prohibitively expensive in terms of synchronization overhead.

For a better understanding of the relationship between dependencies, timing and
parallelization we introduce two fundamental terms by an example. Assuming a task
is periodically executed and has two software units. One software unit samples the en-
gine temperature and communicates the temperature value to the other software unit
that represents the engine thermal controller. Due to the optimization for single-core,
both software units are allocated to the same task as they have the same recurrence
pattern. Furthermore, the two software units are executed in the order such that the
sampling software unit runs before the engine thermal controller and always receives
the latest temperature value. The timing between the two software units results in a
tight coupling and a reduced concurrency, the available concurrency. However, from the
physical and control-engineering perspective the temperature value could be communi-
cated with a delay without compromising the correctness of the system. In our example,
the assumed requirement is that the engine thermal controller has to start the engine
fan when the temperature hits a threshold within 5 seconds. Assuming that the task
that contains both software units is executed every 100 ms, a delay in communication
of 100 ms between the sampler and the controller does not violate this requirement.
With a delay, i. e., a relaxed timing, the thermal controller receives the temperature
value from the sampler of the previous task instance. Hence, the two software units
are decoupled temporally inside the task. The effect is that they become concurrent to
each other which again can be used for parallelization. The resulting concurrency is
called inherent concurrency as it represents the physically required timing and coupling
of the software units.

The key for an efficient parallelization of a task is the knowledge of the inherent
concurrency as the physically required timing is often more relaxed than the available
concurrency. A relaxed timing improves the concurrency between software units inside
a task that in turn can be exploited for parallelization. While the dependencies are main-
tained, relaxing means to change the timing of the communication and thus possibly
changing the functionality. The knowledge where relaxation is allowed is typically not
documented and hence only domain experts of the system are able to determine if the
functionality is still correct. There are various techniques for the experts to evaluate
the impact of an altered timing on the functionality of the controller such as formal
verification or simulation. Nevertheless, the impact on the controllers’ functionality
of a relaxed timing can only be evaluated for a small number of dependencies due to
time and cost reasons.
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1.2 Objectives

1.2 Objectives
This thesis addresses the problem described above which is the parallelization of highly
inter-dependent tasks from automotive control software. Our solution establishes an
analysis to guide a domain expert in finding a suitable and functionally correct paral-
lelization with little effort. We require our analysis to fulfill the following criteria:

• Automotive Ecosystem: The approach should use existing models and respect re-
quirements as well as constraints of the automotive domain. A convenient inte-
gration into the development processes of automotive Electronic Control Units
(ECUs) and its surrounding ecosystem is required.

• Scalable & Efficient: The approach should cope with large and complex software
models from e. g., real-world automotive applications such as an Engine Manage-
ment System (EMS).

• Observed WCET: The approach should cope with execution time bounds that
are measured at certain working points and are thus only observed bounds, i. e.,
tight but unsafe. Due to the complexity of automotive applications and the lack
of predictable hardware, exact execution time bounds are unavailable.

• Improve Concurrency: The legacy design of tasks in the automotive domain
strongly limits the concurrency inside a task. The approach should therefore
be able to increase the level of concurrency, but should always maintain correct-
ness.

• Reduces Interactions with Experts: Interactions with domain experts should be re-
duced in all phases of the approach because the domain expert is a scarce resource
and the invested time needs to be spent efficiently. Requests of information to
the domain expert should be precise and simple to ease information retrieval.

1.3 Proposed Solution
To achieve the objectives given above, we propose a semi-automatic iterative approach
to parallelize a task by leveraging domain knowledge of experts. The main idea is to
relax specific dependencies, i. e., changing the timing of the communication which may
alter the functional behavior but is validated to remain correct. The starting point of
our approach is the abstract representation from the legacy implementation of a task
with its containing software units, dependencies and timing.

In the first step we parallelize a task by exploiting the available concurrency and
check if the resulting parallel tasks match the parallelization goal. We parallelize by
remapping the software units to multiple task partitions within the boundaries of the
available concurrency. The dependencies and the respective timing between the soft-
ware units are hereby maintained to ensure the legacy functionality. For the remapping
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1 Introduction

we have two techniques. The first technique uses domain-specific heuristics that are scal-
able and can cope with high numbers of dependencies. We tackle the problem of widely
varying execution times and Observed Worst-Case Execution Time (oWCET) by intro-
ducing synchronization between task partitions only where absolutely necessary. This
technique can therefore deal with the current state of the practice in the automotive
domain where software is typically not designed to allow tight Worst-Case Execution
Time (WCET) bounds and sporadic misses of task deadlines are often tolerable. The
second technique exploits the functional independent or temporally decoupled soft-
ware units of the available concurrency. According to LET, when two software units of
the same task either do not communicate or communicate solely via a relaxed timing,
each can be allocated to a separate task partition. This technique allows to create task
partitions without any synchronization and thus without any overhead.

If the parallelization goal is not reached, the available concurrency is too limited,
e. g., due to the high number of dependencies or the synchronization overhead. Thus,
in a second step we iteratively advance further towards the inherent concurrency by
relaxing dependencies.

In general, every dependency is a potential candidate for evaluation by an expert
to check if its timing can be relaxed without compromising the correctness of the
system. To reduce the amount of interactions with an expert, we specifically look
for dependencies which are more relevant to solve the parallelization challenge than
others. The central idea is to determine a single dependency as candidate for evaluation
by an expert. Through static analysis of the software units’ dependencies and their
role in the control algorithms, every dependency is assessed by multiple criteria. To
identify the relevance, there are two groups of criteria: The first group indicates the
potential benefit of a dependency, if it is relaxed, toward the given parallelization goal.
Using graph algorithms, this group analyzes properties of the communication between
software units. The second group rates the success, i. e., how likely it is that the timing
of a dependency can be relaxed without significantly degrading the functional behavior.
This can be quantified by the analysis of the physical dynamics of a dependency. These
two groups of criteria are evaluated for each dependency, aggregated, and tuned for the
different parallelization strategies. The results create the basis to select the most relevant
dependency candidate. As our approach is iterative, the most relevant dependency is
presented to the expert on every iteration.

The expert then evaluates if the controller still behaves correctly despite the relaxed
timing of the dependency. On success, i. e., when the timing can be relaxed safely, the
relaxation refines the implemented concurrent design of the task. This refined design
becomes the input for the next iteration in our approach to find a suitable parallelization
of a task.

4



1.4 Main Contributions

1.4 Main Contributions
In summary, the main contributions of this thesis are:

• We propose a general model-based semi-automated workflow to parallelize a task
from automotive legacy control software.

• We present two techniques to create multiple task partitions from a single task
while maintaining all dependencies of the legacy implementation.

– The first most notable technique parallelizes using domain-specific scalable
heuristics while keeping the synchronization to a minimum. By optimizing
for a novel robustness metric, we can handle observed worst case execution
times while sustaining a speedup despite synchronization.

– The second technique exploits the characteristics of LET with functionally
independent or temporally decoupled software units to parallelize a task
without any synchronization overhead.

• To extract the inherent concurrency of a task, we propose an approach to de-
termine the dependencies which are more relevant to ease the parallelization
challenge and thus more promising candidates for evaluation by a domain expert
than others. This approach reduces the interactions with the domain expert and
requests are held simple.

• The whole approach was implemented using the open source platform AMALTHEA
to fit into the complex tool chains in the automotive domain. This supports
interoperability, extensibility and unifies data exchange between tool vendors,
engineering companies and other suppliers in the toolchain.

• We evaluated our approach on a real-word Engine Management System as an
example of a complex application in the automotive domain. We performed ex-
periments to investigate the performance benefit of our parallelization approach
that shows a significant speedup while maintaining correctness.

These contributions have been made as part of the ManyCore research project in
the Corporate Sector Research and Advance Engineering of the Robert Bosch GmbH.
The Robert Bosch GmbH is a multinational company for engineering and electronics
and a leading supplier of automotive components, technologies and services. Within
Bosch, the ManyCore project is researching on systems engineering technologies and
methods for parallel automotive applications. This thesis also represents a contribution
to the project and its vision for parallel and robust control applications.

1.5 Overview of this Thesis
This thesis is structured as follows: In Chapter 2, we give an introduction to the au-
tomotive systems domain with its real-time requirements, feedback control systems,
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1 Introduction

related standards and multi-core platforms. Then, in Chapter 3, we review related work
on parallelization approaches, in particular approaches that utilize domain knowledge.
In Chapter 4, we describe the fundamental problems when searching for concurrency
that can be exploited for parallelization and outline the solution idea. In Chapter 5, we
present our general concept and describe the contained components in detail. Starting
with the fundamental graph structures, this chapter presents the core workflow for
the parallelization of a legacy task. This chapter also describes the integration of the
concept into the automotive development processes. The Chapters 6 and 7 present the
two main components for splitting a task into multiple task partitions and the analysis
to find suitable candidates to improve concurrency. In Chapter 8, we show the benefit
of our approach applied to real-world automotive case studies. In particular, we use an
EMS to demonstrate the efficient parallelization of a task with little effort. We conclude
in Chapter 9 and provide possible directions for future research.
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2
Application Domain

This chapter introduces fundamental background concepts, terminologies and nota-
tions that are used in this thesis. We start with embedded real-time control systems,
then discuss standards and models and finish with the typical development process in
automotive.

Technological advances foster ubiquitous and omnipresent electronic devices that
are integrated in products of today’s everyday life. These devices interact with the
outside world by measuring, controlling and actuating through the product itself to
the physical environment around it. In the following we use the term embedded sys-
tem for an electronic computing device or system that forms an indivisible part or is
tightly integrated into a product and is designed for a dedicated function [Mar10]. In
contrast to general purpose computers, embedded systems have to cope with conflict-
ing priorities such as performance, resource requirements (e. g., size, weight, power)
and costs. Also, ninety-eight percent of all produced microprocessors are integrated in
embedded systems [Bar09] and hence play a huge role in the semiconductor industry.
Besides products that integrate embedded systems such as fridges, ticket machines, or
TVs, safety-critical embedded systems such as pacemakers, robots or the field of Highly
Automated Driving (HAD) are a far greater challenge.

2.1 Automotive Embedded Systems
An especially challenging field for embedded systems is the automotive domain due
to conflicting requirements of safety, performance and resource efficiency, low costs
and coping with the increasing amount of systems and software [Bro05]. Figure 2.3
shows the car as a product with its many and diverse system of embedded systems. In a car,
these embedded systems are typically integrated as an Electronic Control Unit (ECU).
Therefore, embedded systems are not only a challenge due to being safety-critical, but
also due to the complexity as the embedded systems need to cooperate to provide the
dedicated function of a car. Automotive embedded systems have to be safety-critical
because an error can cause high costs, severe injuries or in the worst case the loss of
human lives. Examples that highlight this requirement are the airbag, Electronic Stabil-
ity Control (ESC), Anti-lock Braking System (ABS) or radar-based systems. Resources
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2 Application Domain

for embedded systems in the automotive domain are limited because of efficiency and
power dissipation reasons. For example, the camera for road sign detection is typically
mounted behind the rear mirror. Therefore it cannot be actively cooled as it is part of
the passenger compartment. The hardware parts for embedded systems are highly cost
sensitive due to mass production. Small changes in the price per unit can have a huge
impact on the production and business model. Today, a premium-class car contains 70
to 100 microprocessor-based Electronic Control Units (ECUs) and executes approx-
imately one hundred million lines of code [Cha09]. An overview of such a system
of embedded systems is illustrated in Figure 2.3. This huge amount originates from
an exponential growth in software. The growth is caused by innovation through new
functionalities that depend on complex algorithms and process huge amounts of data
under real-time and safety-critical constraints [UBG+13]. One big driving force for
this trend are the driving assistance systems. Starting with the simple cruise control sys-
tem, these systems develop toward Highly Automated Driving (HAD) and ultimately
autonomous driving.

Figure 2.1: Overview of the system of embedded systems in a car [Don14]. Every box
represents an Electronic Control Unit with a dedicated function inside
the car and is connected to other ECUs.

2.1.1 Feedback Control Systems
A single embedded system inside a car always integrates hardware and software into
a combined product that is interacting with and controlling its environment. In the
following we call the integrated software an application because of its dedicated func-
tionality. In embedded systems and especially in the automotive domain, the main
purpose of applications is to control a chain of cause-and-effect with the environment.
Hence they are control applications for feedback control systems.
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Control applications have the task to influence a time-continuous process such that
it behaves in a certain way. Hereby, a parameter has to be chosen that is adjustable from
the outside and can achieve a certain goal. As this choice depends on the distance to
the specified goal, this process becomes a feedback loop with a controller that has yet
to be defined. Control applications interact with a dynamic system (also called: plant).
A system becomes dynamic when the characteristic parameters are a function of time.
There are two important kinds of characteristic parameters. The input parameters cause
changes inside the system in a time-continuous manner while the output parameters
characterize the behavior of the system to these input parameters. The goal-oriented
interference with a dynamic system is called controlling. A controller calculates a con-
trol signal depending on a reference signal. The controller and the dynamic system are
interacting continuously, hence it is called a control loop.

The more detailed interaction of a controller and a dynamic system in conjunction
with its parameters is shown in Figure 2.2 [Lun16]. In this figure, the controller’s task
is to determine the input parameter u(t ) that is fed into the system such that the output
parameter y(t ) ideally equals the reference value w(t ) at all times t . Hereby y(t ) is
dependent on u(t ) and the disturbance of the dynamic system d (t ) that is manipulable.
For the calculation of u(t ), the controller knows the reference value w(t ) that is to be
achieved and the current output parameter y(t ) of the dynamic system. Based on these
two parameters, the controller can determine the control error e(t )which is important
to calculate the input parameter u(t ) and a unique characteristic of feedback control
systems. The time the controller needs to calculate u(t ) is called dead time.

As the controllers are integrated on ECUs that integrates a digital microcontroller or
-processor, the processing is done discretely. Hence, a continuous input parameter has
to be converted to a time- and value-discrete parameter and a discrete output parameter
back to its external form of the dynamic system. The conversion from continuous pa-
rameters to time-discrete ones is called sampling; the parameters become value-discrete
due to quantization errors in analog-digital converters.

Controller Plant
w(t ) e(t ) u(t )

d (t )
y(t )

−

Reference
value

Control
error

Input
parameter

Disturbance Output
parameter

Figure 2.2: General concept of a feedback control system that shows the interaction
of the controller, the plant and the corresponding parameters [Lun16].

The Engine Management System (EMS) is one of the most complex and computing
intensive examples of an automotive control application [Cha09, But12]. An EMS is a
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control application and the software part of the ECU that controls a combustion engine.
The automotive combustion engine is technically highly complex and sophisticated
[Rei14]. Such an EMS constitutes the use case throughout this thesis. For less complex
systems, the presented approach in this thesis is assumed to be applicable as well.

When looking at the evolving mechanism of the combustion engine itself, its essential
goal is to generate a mechanical force by combustion of a fuel. At the time the Otto
and Diesel combustion engines were invented, the dynamic system of combustion was
controlled purely by mechanical components. However, the continuing development
increased the complexity drastically over the years. This development was and is still
motivated by the automotive industry and the government to increase efficiency and
performance.

Today, the EMS is one of the most complex control applications as it has to control
a wide variety of subsystems. Figure 2.3 gives an overview of the subsystems that an
EMS for an up-to-date Diesel engine has to manage. Similar to the car itself, the EMS
is again a system of systems. In the beginnings of the combustion engine, the throttle,
injection, ignition and exhaust systems were the main components. Today, there are
turbochargers, catalysts, additives injected into the exhaust and many more additional
systems. Each system brings its own dynamic system and controlling challenge.

Internally, each subsystem of an EMS typically controls its own dynamic system. Yet,
most of these systems are not isolated but highly dependent on each other. Additionally,
the physical requirements of an engine demand high quality and stable controllers.
Besides the physical requirements, many stakeholders, laws and regulations require
improved fuel efficiencies, less C O2 emission and other features. This again facilitates
the complexity of the subsystem controlling in an EMS.

All controlling systems in an EMS have to follow a causal loop such that the com-
bustion works properly. For example, the system for the throttle calculates the amount
of air needed by the injection, the injection system calculates the amount of gas that
has to be combusted, air and gas have to be ignited at the right time that is calculated
by the ignition system and so on. This causal loop is a very sensitive process as it de-
pends on a huge amount of parameters that are dictated from the dynamic system and
the controllers. This leads to a tight coupling of the systems and a high amount of
communication between them.

Inside a subsystem of an EMS, a single functionality is encapsulated into a runnable
[ITE]. For example, one functionality of the subsystem for the injection is to calculate
the amount of gas for the combustion. This calculation, i. e., the algorithm, is wrapped
in a runnable. Other typical functionalities are the sampling of parameters from the
environment or driving actuators. A runnable from the set of runnables r ∈R is tech-
nically an encapsulated portion of sequential code, i.e., a void-void function. Besides
the functionality, the characteristic properties of a runnable needed in this thesis are:
Maximum sample interval, service, size and the Observed Worst-Case Execution Time
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Figure 2.3: Overview of the multitude of diverse systems and their respective con-
nection of an up-to-date Engine Management System for a diesel engine
[Rob].

(oWCET). The maximum sample interval is determined by the Nyquist-Shannon sam-
pling theorem [Lun16] and the environment. It is a lower bound for the frequency at
which the runnable has to be executed. As a runnable represents a piece of sequential
code, instructions in this code can call other runnables. When a runnable is only called
from other runnables, it becomes a service. In automotive applications the resulting
call hierarchy is limited in depth and recursive calls are typically not allowed. We as-
sume for our purposes that this call hierarchy is flattened. I. e., the size and oWCET
aggregate all service runnables that are called inside a runnable. The flattening of the
runnable call hierarchy is often done by the compiler. The size of a runnable is the
number of bits the runnable occupies in memory. The Observed Worst-Case Execu-
tion Time (oWCET) of a runnable denotes the upper bound of a runnable’s execution
that has been traced or measured. A comparison to the estimated and exact Worst-Case
Execution Time (WCET) is illustrated in Figure 2.4. We assume that the execution
time bounds of runnables are measured at a certain working point of the ECU and
are thus observed bounds. For example, a working point could be a specific number
of Rotations Per Minute (RPM) when in mode “driving”. The current state of the
practice in automotive is that software is typically not designed to allow tight WCET

11



2 Application Domain

bounds, due to e. g., different operation points, control strategies and failure modes
[BEGL05, MGL06, GE07]. Due to this complexity and the lack of predictable hard-
ware, safe and tight execution time bounds are unavailable.
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Figure 2.4: Execution time distribution of runnables with estimated, exact and ob-
served best- and worst case boundaries [WEE+08].

Runnables have no input and output parameters (void-void), but communicate indi-
rectly via labels. A label represents a data element in our application model. Labels are
used as parameters, temporarily existing variables or represent constants and can be
read and written from runnables at any point in time during their execution. A label
d ∈D can be of different data type, e. g., bit, array, or characteristic map and is stored
in shared memory. Note that large data types such as a characteristic map are typically
read-only and only segments are accessed. Besides the data type, other general proper-
ties of a label are: volatile(Boolean), constant(Boolean) and the initial value. Specific
for the automotive domain is A2L which describes additional properties of labels for
measurement and calibration purposes. The description standard A2L is extensively
covered in Section 2.3.1.

When runnables access a label, these accesses can either be a read or write. Multiple
reads or writes are aggregated using statistical values, i. e., how often a read or write is
performed. The statistical values are typically extracted from source code using code
analysis tools. Hence, when a runnable is executed, a read/write might be performed
but does not necessarily have to. In our application model, these label accesses are un-
ordered and do not follow a specific sequence within a runnable. Due to its complexity,
automotive applications are highly communicative. Figure 2.5 shows a set of runnables
from a real-world EMS, depicted as boxes and their respective communication, depicted
as edges. Each edge represents a read-write relationship of two runnables via a label.
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Figure 2.5: A typical, highly interdependent task with 229 runnables from a real-
world automotive application. Each box represents a runnable and each
edge a read-write communication via a label.

2.1.2 Real-Time Requirements

In the previous sections we have covered automotive applications in its embedded envi-
ronment functionality-wise. In addition to the functionality, the timing is an important
characteristic for automotive embedded systems. An application interacts with the envi-
ronment through the hardware and connected peripherals such as sensors and actuators.
When interacting, it has to respond to external stimuli within a certain amount of time,
known as timing constraints. Thus, the correctness of a response does not depend solely
on the correctness of its value, i. e., the logical result, but also on the time at which the
value is made available. Responding too late or not at all is as bad as responding with a
wrong value. The following definitions are based on Buttazzo’s book on hard real-time
computing systems [But11]. Buttazzo calls a system a real-time system when it “must
react within precise time constraints to events in the environment”. These precise time
constraints, in the following called real-time requirements, are usually defined through
experts of the domain by analyzing the functionality of the system and its environment.
As stated before, real-time systems in the automotive domain are typically control sys-
tems. Hence, the control applications have to react to the environment ensuring certain
real-time requirements. Hereby, a reaction typically implies a functionality that has to
be provided to the environment and within the real-time requirements after a stimulus
has occurred.

In a real-time system, this functionality is contained in a task t from the set of tasks
T that is triggered by a stimulus and responds to this input by producing a result in
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time. Hence, a task is a container for functionalities, i. e., a set of runnables. A task is
an abstract unit of scheduling and executes the containing runnables sequentially. The
stimulus that triggers a task is mostly a recurrent stimulus. It could be an interrupt
coming from a clock or from connected peripherals. For example, a typical trigger for
a task that provides the functionality of sampling a sensor signal is a recurring interrupt
from a clock. When and how a task is triggered depends on the control paradigm of
the provided functionality. In either way, a task ti ∈ T that is triggered by a stimulus
releases a job Ji ,k from an infinite sequence of jobs Ji ,k , k ∈N.

In automotive applications, tasks are typically recurring in the following way [But11]:

Periodic Task: A periodic task ti is cyclically activated with a fixed time interval,
the period Pti

. The task releases jobs Ji ,k , k ∈N at a constant interval. Each job
Ji ,k of task ti is activated at ai ,k+1 = ai ,k + Pti

with ai ,0 = 0. In the automotive
domain, the periods of the tasks are harmonic, i. e., a task’s period is an integer
multiple of the period of any other task. A representative example for runnables
that are mapped to a periodic task is the sampling of a sensor signal.

Sporadic Task: A sporadic task is activated and releases jobs at a priori unknown
times but its activations are separated by a minimum inter-arrival time. An ex-
ample for runnables that are mapped to sporadic tasks are runnables depending
on a specific angle of the crank in an automotive engine.

Our approach is independent of the job release intervals and can thus handle all kinds
of tasks (i. e., also aperiodic tasks that release jobs with no pattern and irregularly). In
examples and use cases we mainly demonstrate the approach on periodic and sporadic
tasks.

Besides the stimuli of tasks and the recurrent creation of jobs, there are also require-
ments in real-time systems when a task has to respond. As stated before, the correctness
of the response from tasks is based on the logical result of the computation and also on
the point in time when the response is available. This specific point in time is called a
deadline. A task ti has a relative deadline Dti

when a task must be completed and has
to provide the desired response. The deadline Dti

is relative and thus an offset to the
activation time of the task ai ,k . Missing the deadline has different consequences and
depends on the system and its environment.

In automotive real-time applications, we usually have the following kinds of deadlines
[But11]:

Firm Deadlines: The response, that is produced after the deadline, is discarded or
useless for the system. In automotive applications, sporadic deadline misses are
often tolerable [ZH15]. An example is the EMS where e. g., the injection con-
troller maintains stability despite missed deadlines and thus sampling losses due
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to the physical inertia of the combustion engine1. Systems with firm deadlines
are also called weakly hard real-time systems.

Hard Deadlines: People are hurt when a deadline is missed. The most widely
known example for such requirements is the airbag system. When the deadline
of the airbag task is missed, the inflation module cannot provide the cushioning
and restraint for the occupants during a crash event.

The approach presented in this thesis is applicable to tasks with both kinds of dead-
lines, hard and firm. Also, for our applications we assume constraint deadlines which
are typical for automotive systems. In such systems, the relation between the period
Pti

and the deadline Dti
of a task ti is Dti

≤ Pti
. Figure 2.6 summarizes the notation of

the presented real-time properties.

t
Ji ,k

ai ,k si ,k ci ,k ai ,k+1

WCET

Dti Pti

ti

Figure 2.6: Real-time properties of a task ti with a deadline Dti
and a period Pti

. The
task is activated at ai ,k and releases a job Ji ,k that starts its execution at si ,k
until it is finished at ci ,k .

A task ti ∈ T encapsulates runnables and is an abstract unit of scheduling. Runnables
are thus mapped to a task by the function m : R→ T. In the automotive domain there
is the established construction principle to map all runnables with the same recurrence
pattern to a single task. This is most resource efficient on single-core processors and
allows static control of dependencies between runnables with the same recurrence
pattern. Inside a task, the runnables are executed sequentially, yet the runnables can
be concurrent to each other. Let ti be a task, then the order of execution of runnables
is defined as the totally ordered set of precedences P(Rti

,≺). A task can be divided in
its structure by remapping the runnables to task partitions. We denote the j -th task
partition by ti , j from the set of task partitions Ti of a task ti . This means that each
task ti can be splitted into an arbitrary number of task partitions Ti . A task partition
requires the same properties as the task itself. Hence, each task partition in Ti has to
have the same recurrence pattern and deadline as the original task ti .

Besides being a container for runnables, a task is also the unit of scheduling for the
underlying operating system. For automotive systems the operating system is typically

1Tobuschat et al. [TEHZ16] presented a timing feasibility test that exploits the robustness of control
applications.
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OSEK-compatible [OSE05]. OSEK (dt. Offene Systeme und deren Schnittstellen für
die Elektronik im Kraftfahrzeug) is a standard for an open-ended architecture for dis-
tributed control units, e. g., ECUs in automotive vehicles. Among others, the objective
of OSEK is to create independence from the hardware and implementation to provide
portability and reusability. The scheduling algorithm provided by the OSEK Operat-
ing System (OS) is static, preemptive and uses priorities [ZH15]. In the automotive
domain, the priority of a task ti is based on the period Pti

(also called: rate) of the
task. The smallest period being the highest priority. This is known as a rate monotonic
scheduler. Specifically, the OSEK-compatible operating system for the EMS discussed
throughout this thesis uses an (offline) partitioned fixed-priority preemptive scheduling
policy with a deadline-monotonic priority assignment scheme.

The concept of the OSEK OS knows two different task models for scheduling: The
basic and extended task model. The task models differ in the state machine, as illustrated
in Figure 2.7. The state machine of the basic task model in Figure 2.7a consists of only
three states: running, ready, suspended. When a task is in the state running, the task
is assigned to a core and instructions are executed. In the state ready, all functional
requirements for running the task are met but another task is assigned to the predestined
core, hence it is waiting for a scheduling decision. When a task is not activated, it is
in the state suspended. In this task model, a task can never be blocked as there is no
waiting state. Thus, it is primarily used for systems or functionalities that have no
synchronization or complex I/O. In the extended task model, shown in Figure 2.7b,
there are the same three states from the basic task model, plus an additional waiting state.
In this state, a task is waiting of at least one event. This task model allows that tasks can
be blocked and is hence used for complex systems with interfering resource accesses
and communication. There is also an additional overhead when using the extended
task model compared to the basic task model due to the event processing feature. It
also increases the complexity when developing applications that use the extended task
model because applications have to be analyzed for possible deadlocks. These are also
the reasons why the EMS is using the basic task model.

Event chains are another approach to specify and describe real-time requirements.
When scheduling real-time tasks and their runnables, there are also real-time require-
ments that follow the propagation of a signal through the system. A typical example
for such a requirement is the braking system with brake-by-wire [BP03]. By law it is
required that the actuators for the brakes respond to the brake pedal within a certain
timeframe. As there can be many ECUs, subsystems, tasks and runnables between
sensing the brake pedal and the actuation for the brakes, these timing requirements
have to be specified over a chain of events. These event chains allow to specify timing
information and requirements on causal loops of events through the system.

Event chains can reference highly diverse events but have to contain at least two of
them: the stimulus event and the response event, e. g., a sensor to actor. An event can
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Figure 2.7: State machines of the basic and extended task model defined in the OSEK
OS in comparison [OSE05].

be the activation or termination of a runnable, it can be an interrupt, or an external
stimulus from the driver. But the stimulus is always the first event of an event chain
and the response is always the last event. All other events that are defined in between
are called event segments and are optional. Event chains can have different end-to-end
timing constraints. For example, a reaction constraint or an age constraint. Reaction
constraints are one of the most widely used constraints for control systems and define
how long after a stimulus a corresponding response must occur with a minimum and
maximum value. Figure 2.8 gives an example of an event chain between a sensor and
an actuator with a reaction constraint over multiple tasks.

Stimulus
e.g. Brake Pedal

Brake
Pedal

Position

Brake
Controller

Brake Force
Actuator

Response
e.g. Wheels

event chain segments

end-to-end timing
event chain

Figure 2.8: Example of a brake-by-wire event chain. A list of event chain segments
from a stimulus to a response create an event chain.

Event chains and their corresponding timing constraints can be formally specified
using the Timing Augmented Description Language (TADL) (presented in [FRNJ08],
specified in [C+09]). Event chains can be modeled on different levels of abstraction,
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from the vehicle level to the design level. In this thesis we focus on tasks and hence on
event chains on the design level.

2.1.3 Multi-core Platforms
In the beginning of this chapter we argued that the software of automotive embed-
ded systems follows an exponential growth. Modern automotive control algorithms
become increasingly complex as a result of more comfort, safety and power-train func-
tionalities. This software has to be integrated into ECUs. Hence, there is an increasing
computational demand from the software to the hardware resources of an ECU. Pro-
cessors in the consumer electronics industry already faced the technology change from
single-core platforms to multi- and many-core platforms. This same change in tech-
nology is currently challenging the automotive domain [BDN+15], delayed due to
longer development cycles and certification processes. Although the demand for more
computing power has always been there, for consumer electronics as well as for auto-
motive electronics, the boundary conditions for this technology change are different.
Still, the primary motivation roots in the physics of our processors. This technology
change is often called “the free lunch is over” [Sut05] and essentially describes the up-
coming power wall. In the automotive context, the power wall (also known as the end
of Dennard Scaling) is the main reason why single-core processors cannot reasonably
cope with the computational demand. When increasing the clock speed of a processor,
power consumption increases as well and leads to an advanced heat generation. Current
automotive-grade cooling solutions are not able to dissipate this amount of heat and
also the environment around an ECU does not allow advanced cooling mechanisms
such as liquid cooling. Processors have to cope with difficult and alternating environ-
ment conditions, e. g., high temperature in an engine compartment. This excludes con-
sumer electronics processors with high clock rates to be used in automotive in many
cases. Besides that, advanced cooling solutions would be very expensive for automotive
grade solutions. Furthermore, as transistors get smaller due to improved manufacturing,
power density increases even more. Another way to provide computational power is to
support Instruction-Level Parallelism (ILP). In processors of consumer electronics, ILP
is a common feature. Yet, ILP increases the processor complexity and thus the power
consumption while its performance gains are diminishing.

In the following we describe the characteristics of a typical architecture of multi-core
platforms for the automotive domain. An automotive multi-core platform typically
consists of a number of identical cores that are connected by a common shared resource.
In contrast to single-core processors, the architecture of a core on a multi-core platform
is much simpler. The cores have short in-order instruction pipelines, a reduced instruc-
tion set and preferably no speculative execution. The automotive domain has high
predictability requirements and needs guarantees to satisfy timing constraints. Hence,
components that improve the average-case performance are generally not integrated
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into automotive processors [CFG+10]. There is typically no hardware prefetching
integrated. Prefetchers work in the background, consume interconnection network
bandwidth and make latency computation difficult. While prefetching is great from a
performance perspective, it should be avoided when deterministic systems are needed
as within the automotive domain. Determinism is also the reason why automotive
multi-core platforms have no caches or only caches for constants and code. Modern
caches are very difficult to analyze due to high associativity and replacement strategies.
Also, cache coherence becomes inefficient when the number of cores increases. Hence,
a flat cache-less memory hierarchy is typically employed in automotive multi-core plat-
forms which is also attractive when considering chip area and power consumption.
However, besides the a processing unit on which a runnable is executed, a core contains
also local memory for program code and temporary data. To obtain data from other
cores or the global memory and flash, there is a common shared resource which is
typically a bus or a cross bar. A bus architecture is often used because the needed chip
area is small. In comparison, a cross bar provides a higher throughput but needs more
chip area than a bus as it connects all components with each other. This is also the
limiting factor when the number of cores increases. Example manufacturer for automo-
tive multi-core platforms used in our EMS case study are JDP and Infineon with 3–6
cores. The block diagram in Figure 2.9 shows the architecture of a typical automotive
multi-core platform.

It is important to note that our approach can also be applied to many-core platforms.
Many-core platforms bypass the limiting cache-coherence mechanisms by e. g., using
core-local memories as scratchpads in conjunction with a Network-on-Chip. Although
the interconnect is different to multi-core platforms, its influence to our method is
negligible.

Core c0 Core cn

Bus or Cross Bar

Flash Memory

Processing Unit

Memory

Processing Unit

Memory
. . .

Figure 2.9: Block diagram of a typical automotive multi-core platform consisting of
n cores, flash, memory and a bus or cross bar.
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2.1.4 Model of Computation and Communication
As automotive control software is highly communicative, there is a tight link between
the computation and communication. Especially the communication timing and its
effect on control applications is of interest to us. While the runnables inside tasks
encapsulate the functionality and hence the computational part, the communication
between runnables always takes place indirectly via labels. There are two kinds of
communication among runnables that any communication semantic of a Model of
Computation (MoC) has to address. This semantic depends on the task the runnables
are mapped to. When a runnable communicates to another runnable inside the same
task it is called intra-task communication. When a runnable communicates to another
runnable inside a different task it is called inter-task communication.

The most widely-used and established communication semantic in automotive is
Last Is Best (LIB). LIB relies on the fact that all communication between runnables
goes through labels that are shared in global memory. The data that is written to a label
is available globally as soon as the writing instruction has finished. In other words,
while a task is executing a set of runnables, the values of labels change continuously.
Hence, by writing to a label its new value is immediately available to all other runnables
as well as reading a label always transfers the latest values from shared memory. This
applies to intra-task as well as to inter-task communication. The advantage of LIB is
that it has generally short latencies after being optimized for the given platform. LIB
was originally used and still is for applications running on single-core platforms. On
multi-core platforms, this communication concept has some consequences.

The consequence of LIB on multi-core platforms is that runnables get either stale
data (or there are even sampling losses) or fresh data. This communication semantic
is not deterministic and depends on the distribution scenario, workload and order
of execution inside a task [ZH15]. Figure 2.10 illustrates two cases on a multi-core
platform in which runnables of a fast task t1 communicate with runnables of a slower
task t2 using the LIB semantic under different workload scenarios. The figure shows that
the point in time where the communication is executed is dependent on the execution
time of the runnables and hence the task. In the average case, the communication of
both tasks is executed within the period of task t2 while in the worst case it takes
almost twice the time. The drawback is that controllers have to be designed to cope
with different timeliness of the data. Controllers have to be tested if they are stable and
adhere to required performance criteria (e. g., robustness). Such a controller design is
costly in terms of development effort and resource efficiency. For example, controllers
would need to run at a higher rate to be stable enough. Also, data consistency has to
be enforced by critical sections due to concurrent accesses from different cores. These
sections have to be added manually and can lead to race conditions.

In contrast to LIB, the concept of Logical Execution Time (LET) [HHK01] provides
a deterministic communication semantic among runnables in tasks. The advantage
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(a) LIB communication on multi-core from fast to slow in the average case.
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(b) LIB communication on multi-core from fast to slow in the worst case.

Figure 2.10: LIB communication on multi-core platforms from fast to slow tasks un-
der different workload scenarios. The runnables indicated as green boxes
communicate inside a task as well as across tasks. The communication
between runnables is illustrated as a dashed arrow, start and end of all
communication is depicted as black dots.

of Logical Execution Time (LET) is that its read and write semantic enforces a deter-
ministic data exchange, for single- and multi-core platforms. As stated before, this is
a very useful property for designing and composing control software2. The described
communication semantic is also known as Timed Implicit Communication in the AU-
TOSAR environment [KQnBS15]. In the concept of LET, the same result/response
is produced from the same input/stimulus independent of distribution, workload, or
task execution timing (meaning e. g., the offset). Hence, LET can provide task-level
determinism and guaranteed data consistency3. The benefit of LET is that it enables
portability and allows to map tasks to different cores under the assumption that the
WCET of a task is less than its LET interval [GSVK+06]. The only drawback is that
the communication latency is fixed to the worst-case of LIB.

LET as used for deterministic multi-core platforms in the automotive domain sep-
arates the computation from the communication. The logical specification of a LET
task consists of the following [GSVK+06]:

2Presented at the Embedded Multicore Conference (EMCC) by Jochen Haerdtlein
3The data consistency is dependent on the implementation of the copy operation at release and

termination event.
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• A sequential piece of code that has its own local memory space.
• A set of program variables (input variables), i. e., the labels that are read by the

task.
• A set of program variables (output variables), i. e., the labels that are updated by

the task.
• Some timing constraints, i. e., a release event and a termination event.

While the program variables are accessible by any task and thus global, the local
memory space of a task is only accessible by itself. The timing constraints define the
LET of a task, cf. Figure 2.11. Within the LET interval, a task can start later than the
release event, complete before the termination event and can be preempted and resumed
at any time inbetween. When a LET starts (the release event), all program variables that
are input variables are read from global memory and copied to the local memory of the
task. Likewise, at the end of a LET (the termination event), the program variables in
the global memory are updated by the state of the output variables in local memory of
the task. The process of copying the program variables to and from the global memory
happens in logical zero time.
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release
event
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Figure 2.11: Definition and notation of a task’s Logical Execution Time in relation
to its physical execution.

In case of intra-task communication, the runnables simply read and write to and
from the program variables located in the task’s local memory. Within the task’s LET
this altered data is only available to the task itself.

The inter-task communication between jobs happens logically instantaneous at fixed
points in time: at the beginning and end of each LET. Figure 2.12 shows two cases on
multi-core platforms under different workload scenarios that follow the LET semantic
when communicating. In both cases the boundaries represent the beginning and end
of a LET for the corresponding task. At each write, the label is only altered in the local
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memory of the task. As soon as the LET is finished the global memory is updated with
the state of the local memory of the task. At this point in time, the altered values of
the labels are available to other tasks. Figure 2.12 also illustrates that this behavior is
independent of the workload.

t

t

t2

t1

(a) LET communication on multi-core from fast to slow in the average case.

t

t

t2

t1

(b) LET on multi-core from fast to slow in the worst case.

Figure 2.12: LET communication on multi-core platforms from fast to slow tasks
under different workload scenarios. The runnables indicated as green
boxes communicate inside a task as well as across tasks. The LET interval
of a task is the time between subsequent activations. The communication
is illustrated as a dashed arrow, start and end of all communication is
depicted as black dots.

For our approach we use LET as a model of computation and communication with
the following notation, cf. Figure 2.11. Let ti be a task with a deadline Dti

= Pti
, then for

a job Ji ,k , the LET starts with its activation ai ,k and ends latest with the next activation
ai ,k+1. For tasks with a constraint deadline Dti

≤ Pti
holds and the termination event

is the deadline Dti
. For our approach, the point in time when updates of program

variables are made is highly important, i. e., when the updated labels are available and
to whom they are available. We call this point in time the publication event.

For intra-task communication the communication is defined as follows. Let m be
a mapping such that runnables ra and rb are mapped to the same task m(ra) = ti ,
m(rb ) = ti and runnable ra writes to label dv that is read by runnable rb . I. e., ra
communicates with rb and ra ≺ rb . In this case, as soon as runnable ra finished writing
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to label dv in the task’s local memory, the updated value of dv is immediately available
to rb and all other runnables that precede ra within the task. The updated value of dv
is published during the execution of ra to all runnables rk ∈Rti

, ra ≺ rk . For runnables
that precede runnable ra in the job instance Ji ,k , the updated value is available in the
following job instance Ji ,k+1. This is similar to the inter-task communication, which
we explain in the following.

The inter-task communication with LET is defined in the following way. Let m be
a mapping such that runnable ra is mapped to producer task m(ra) = tp and runnable
rb to consumer task m(rb ) = tc . Also, runnable ra writes to the label dv that is read
by runnable rb , i. e., ra communicates with rb . Again, we assume harmonic periods,
i. e., the period of one task is always an integer multiple of the period of any other task.
As soon as runnable ra finishes writing to label dv , only the corresponding program
variable located in the task’s local memory contains the updated value of dv . This value
is published instantly at the earliest of the termination event of the producer task tp .
Hence, the updated value is available to rb , all following jobs Jp,k+1 of the same task
and all other runnables outside the producer task tp .

As already mentioned, LET fixes the communication latency to LIB worst-case.
Hence, the transition from LIB to LET introduces a delay in communication for most
cases. When doing such a transition, the application has to be checked for increased
latencies that exceed the worst-case scenario of the LIB implementation or affected crit-
ical paths that do not allow additional latencies. Our approach is based on applications
that are fully transitioned to LET. We assume that all additional latencies, critical paths,
or event chain constraints have been checked and do not violate any requirements of
the system.

2.2 Software Development Process

In the automotive industry, the development of systems, hardware and software typ-
ically follows the V-model [SZ16]. The V-model [KKuBdBfIidB98] is a phase-based
development process model and an extension of the waterfall methodology. It is de-
fined in multiple standards that differ in abstraction and domain e. g., ISO 12207, V-
Modell 97, V-Modell XT. The idea of the V-model is the separation of the specification,
implementation and integration phases, cf. Figure 2.13. The model requires that results
of a phase are complete before entering the next phase. For example, the requirements
of design or architecture clearly have to be defined before going into the next phase, the
implementation. Hence, the V-model only defines activities and results and excludes
the order of the activities. The V-model is also divided by layers such that each phase
during the specification has its counterpart within the same layer during integration.
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For example, for the architecture design there is the counterpart that provides unit-tests
during integration.

The benefit of the V-model is that it improves the process of planning the develop-
ment with its clear process lifecycle. This is especially important for the automotive
industry with its heavy supply chain. Figure 2.13 shows the V-model when developing
a car. The Original Equipment Manufacturers (OEMs) are typically responsible for
the top layers of the V-model and set up the requirements for a car and integrate the
products from the suppliers, while the suppliers are responsible for the bottom layers
of the V-model. The phases of the V-model can also be aligned to other major standards,
e. g., Automotive SPICE, the domain specific variant of the ISO/IEC 15504 standards
to assess the development process. Besides the OEMs, also the suppliers typically use
the V-model to develop the supplied products that are integrated by the OEM. In fact,
the V-model can be used for various products and in different shapes and sizes. When
focusing on a single ECU, the development process follows the Double-V-Model having
one development process for the hardware part of the product and one for the software
part. In this approach we refer to the V-model as the software development process of
an ECU application.

2.2.1 Model-based Development
As the systems and software of ECUs in the automotive domain gain more and more
complexity over the last decades, so has the process of developing these systems. In the
early days, these systems were developed within the domain of mechanical engineer-
ing. Today, automotive systems development is a highly interdisciplinary challenge
at a unique complexity level. In the previous sections we showed that standards such
as AUTOSAR can contribute and ease the system development by abstraction and au-
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Figure 2.13: Example of a simple V-model for the development of a car that is devided
into design, implementation and integration [SZ16].
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tomation. Another concept that targets the problem of efficient systems development
is the model-based approach. The model-based approach also abstracts and automates
the systems’ development process, ideally to cope with complexity. And because of its
benefits, model-based development has become a standard methodology in the automo-
tive industry [BKK+13]. Modeling aims at improving the effectiveness of engineering
by using models as important artifacts in the development process and not solely for
documentation purposes. Modeling enables early verification and validation activities
on various stages which reduces costs, supports generation of lower-level artifacts (e. g.,
source code) and can be used for communication with other multidisciplinary stake-
holders [SZ16].

AMALTHEA [ITE] is a tool platform for embedded multi- and many-core software
systems engineering. It is an ITEA2 funded project, created in 2013, and primarily fo-
cuses on, but not limited to, automotive systems. The main goal of AMALTHEA is to en-
able efficient software engineering especially for multi-core platforms. As a model-based
development platform, it promotes and simplifies data exchange in cross-organizational
projects. Figure 2.14 illustrates this benefit. Complex tool chain elements such as simu-
lation and validation can be managed easily. Hence, products and knowledge from tool
vendors and other suppliers can be integrated efficiently. This allows to explore the
decision space extensively and to support decisions in designing automotive systems
with accurate information [WKH+15].

The AMALTHEA system model contains information on the software, hardware,
timing behavior and constraints for the embedded system under development. It hereby
extends AUTOSAR by dynamic architecture details. AMALTHEA and AUTOSAR share
the same concept of tasks, runnables, components and interfaces, yet with a different
implementation. Also events, event chains and timing constraints are implemented in
both platforms as they share a common origin.

2.2.2 Legacy Software
Since the beginning of E/E (electric/electronic) systems in cars, embedding additional
systems with software has been a major trend for the automotive industry. While the
number of individual systems and ECUs has increased, also the communication in-
frastructure had to grow with it. In 2010, innovations in the form of electronics and
software inside an automotive are at a staggering 90 % [Fü10]. Premium-class cars inte-
grate close to one hundred million lines of code in 2009 [Cha09]. Whereas a low-end
car already embeds 30–50 ECUs, a premium-class car consists of up to 70 ECUs that
are connected via 5 different system busses [Fü10]. When focusing on a single ECU,
the automotive supplier Bosch has been experiencing a 15 % increase of load per year
in an ECU for an EMS on average. This number is obviously depending on the project
and segment, but the increase in software on ECUs is nevertheless steady and signifi-
cant. However, decades of ECU software development have also left a huge amount
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Figure 2.14: Model-based development using the AMALTHEA platform [ITE]. The
common AMALTHEA system model is the foundation for all activities
on the model.

of legacy software. This legacy software is built for single-core platforms and cannot
be executed on multi-core platforms without issues. It needs to be migrated to multi-
core platforms. Yet, a complete redesign and reengineering of the legacy software for
multi-core platforms is prohibitive due to cost and time-to-market reasons. The transi-
tion from single-core to multi-core platforms also carries a paradigm change which we
explain in the next paragraph.

Previously with single-core platforms, communication followed the blackboard prin-
ciple. Memory accesses were virtually for free because the single global memory had a
very low access delay. Hence, the challenge when integrating software was solely the
scheduling of the computations. There were little to no consistency issues due to a sin-
gle master that handled all communications. As a rule of thumb, it was more efficient
to store or communicate data than to compute it. On multi-core platforms, commu-
nication between the different cores is expensive. Furthermore, there is the need to
synchronize access to shared resources which brings a high overhead with increasing
number of cores. Hence, the waiting time for resources and communication increases.

As mentioned before, scheduling the computations is a major challenge on single-core
platforms. Hence, construction principles were created to efficiently map runnables to
tasks. An important and established construction principle is to allocate runnables with
the same activation pattern to a single task. This is most resource efficient for single-
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core platforms and allows static control of dependencies between runnables with the
same activation pattern. Also, runnables follow a fixed and optimized order within
a task. When migrating this single-core software to multi-core platforms, the fixed
order within a task limits the parallel execution. The fixed order ignores the increased
communication costs on multi-core platforms and hence causes a decreased utilization
due to higher waiting times.

Another issue when migrating is that preemptions via priorities are used heavily on
single-core platforms to get a computing resource. Priorities are used as a tool to enforce
implicit assumptions for data consistency requirements or scheduling policies. This is
also the reason why there are no precedence constraints between tasks of different
periods. Yet, when migrating to multi-core platforms, tasks with the same activation
pattern may run in parallel. They can even jitter in their activation because of different
clocks on the cores. However, the fundamental assumptions that originally created
an optimized scheduling policy with priorities are unspecified. This can lead to data
inconsistencies, increased overhead due to additional preemptions or synchronization,
or even functional issues when precedence constraints are not enforced.

In summary, migrating legacy software that is optimized for single-core platforms
to multi-core platforms by distributing the functionality is a complex problem. The
legacy software controls inherently concurrent physical systems through highly opti-
mized task schemes and scheduling. However, the foundations for these optimizations
are not explicitly known. Yet, these foundations are needed to migrate legacy control
software to multi-core platforms due to the strong link between computation and
communication.

2.3 Standards
There are numerous contributors for hardware, software and other parts for embedded
automotive systems. In fact, the list of suppliers that provide parts of a car to an OEM
seems endless. Only the adoption of established standards can streamline this huge
variety of contributions and the corresponding development effort. The standards that
govern the automotive industry are mainly influenced by four factors: Technology such
as AUTOSAR [AUT], processes like the ISO 26262 [Int11] for functional safety of road
vehicles, organization such as the improvement program Capability-Maturity-Model-
Integration (CMMI) [cmm] and regulations e. g., for emissions.

In the following sections we give a brief overview of standards important to this
thesis and how they interact with each other. We focus only on the essential ones and
describe the foundations they provide to this approach. Also, many standards have a
close relationship and build on each other. For a better understanding of the context
and landscape of automotive standards, Figure 2.15 presents a historical overview of
the set of standards described in the following.
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Figure 2.15: Timeline of the set of standards used for this thesis. Starting in 1990
with MSR up to today’s standards such as AUTOSAR and ASAM [AUT,
ASA15b, MSR].

2.3.1 ASAM
In 1990, the Manufacturer Supplier Relationship (MSR) [MSR] was founded as a joint
project of several major automotive organizations and suppliers in the German industry.
Its goal has been to improve the collaboration among the members of the project for the
electronic systems development. It should help describe methods and realize structured
and tool-based interfaces among the project partners. The standards developed by MSR
are used for describing automotive electronics and are based on SGML and later on
XML.

MSR was then merged into ASAM MSR in 2001. The Association for Standardiza-
tion of Automation and Measuring Systems (ASAM) [ASA] was founded in 1998 and
is an incorporated association under German law. It was primarily founded by inter-
national automotive manufacturers, suppliers and engineering service providers and
has more than 140 members today. The standards created by ASAM define protocols,
data models, file formats and Application Programming Interfaces (APIs) for develop-
ment and testing of automotive ECUs. ASAM also works closely with the ISO and
AUTOSAR organization.

MDX

MDX was initially published in 2006 by ASAM. The Model Data Exchange Format
(MDX) [ASA15b] is an XML-based description of interfaces of functions, their data
(variables and calibration parameters) and scheduling information for ECU software.
The benefit of MDX is the integration of functions as a black box into the overall

29



2 Application Domain

ECU software. The functions can be integrated as object code without having access
to the source code which is usually the intellectual property of the various automotive
suppliers. ASAM MDX is used by the suppliers and OEMs for data management and
documentation purposes. It is hereby typically implemented as an exchange format for
the in-house development tools.

MDX belongs to the group of the Measurement, Calibration and Diagnostic (MCD)
standards. Related standards in this group are ASAM MCD-2 MC (covered in Sec-
tion 2.3.1), ASAM CDF and ASAM MDF which define calibration parameters and
measurement variables. ASAM MCD-2 MC and ASAM MDX use the same seman-
tics for the same elements, yet they are applied for different use cases. The AUTOSAR
Software Component Template (SWC-T) (AUTOSAR is described in Section 2.3.2) is
strongly influenced by ASAM MDX and target a similar use case but in a different
ecosystem. While MDX contains the data constructions, ASAM FSX contains the
behavioral description of software functions.

There are various use cases and file types defined in ASAM (MSR/MDX). For our
approach, we use PaVaSt and DySched which both are originally developed by Bosch
and merged into ASAM (MSR/MDX).

PaVaSt The Parameter Variable Structure (PaVaSt) is a technical data specification
used for software integrated into ECUs. It specifies calibration parameters, variables,
messages, classes, system-constants and more. All objects that require to generate dec-
larations, that are relevant for the calibration engineer and which are needed for in-
terface validation are handled by PaVaSt. For each function in PaVaSt there is a de-
scription of its interface, used data and relationships. In MDX it is represented as the
SW−DATA−DICTIONARY−SPEC element.

For our approach, PaVaSt is important as it is the data specification for the labels used
in our application model. The PaVaSt Data Dictionary contains the data structures as
well as required auxiliary objects for each data element within the ECU. We focus on
the following dictionary elements:

• SW−VARIABLES: Specifies the characteristics of variables and means of com-
munication, e. g., the value, the type, its scope etc.

• COMPU−METHODS: The method to apply when converting a physical value
into an ECU internal value and vice versa.

These dictionary elements are the source for the label’s properties in our application
model.

DySched The Dynamic Scheduling (DySched) describes the mapping of functionali-
ties, i. e., runnables, to tasks and in which order they are executed. In MDX, the element
SW−SCHEDULING−SPEC is a superset of DySched and includes the description of
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the tasks, the mapping and order of the runnables inside a task. Together it creates the
scheduling architecture of an application. For our application model, the task set T and
the mapping function m : R→ T are specified by DySched.

MCD-2 MC

ASAM MCD-2 MC [ASA15a] also belongs to the group of MCD standards. The stan-
dard is titled “Data Model for ECU Measurement and Calibration” and contains data
types, record layouts, dimensions and memory locations of ECU variables in its corre-
sponding A2L file format. This information is needed for the calibration of the ECU
software. ASAM MCD-2 MC supports the separation of the process of measurement
and calibration with the process of software development. It provides a description of
the ECU targeted specifically for calibration engineers.

While being independent from ECU-internal data formats, ASAM MCD-2 MC de-
scribes the physical understanding of the parameters in an ECU. Using this understand-
ing, our approach can improve the parallelization process.

2.3.2 AUTOSAR
The AUTomotive Open System ARchitecture (AUTOSAR) [AUT] is a consortium
and worldwide automotive development partnership. It was founded in 2003 and has
been developed in multiple phases since then. Members of the consortium are OEMs,
suppliers of different Tier stages and also tool suppliers. AUTOSAR aims to create an
open and standardized software architecture for automotive ECUs. The specifications
established by the consortium describe the whole vehicle ECU development with its ar-
chitecture, methodology and application interfaces. This is also the major difference to
ASAM MSR/MDX that focuses only on a single ECU. AUTOSAR pursues the objective
to increase reuse and exchangeability between OEMs and suppliers, to manage com-
plexity of ECU architectures and to improve scalability and transferability of software
components. Its ultimate goal is to establish a collaboration between various partners
throughout the whole product life cycle.

AUTOSAR defines a three-layered architecture, illustrated in Figure 2.16. This ar-
chitecture allows to develop software components that can be integrated into vehicles
of different OEMs, variants or product generations. This leads to a high reliability of
the overall vehicle’s system with cost reduction and capacity benefits. Note that the
AUTOSAR operating system is primarily based on OSEK OS.

The three layers of the AUTOSAR architecture are (bottom-top):

• Basic Software (BSW): This layer represents a common definition for hardware re-
lated software. These are for example components such as controller peripherals,
various drivers and abstractions for memory or I/O.
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• Runtime Environment (RTE): This layer abstracts from the inter- and intra-ECU
communication and acts as a middleware between the ASW and the BSW. As
a middleware the RTE is responsible to provide a uniform environment for the
ASW such that any implementation is independent from communication mech-
anisms and the hardware.

• Application Software (ASW): This layer includes the application that consists
of AUTOSAR software components and AUTOSAR ports. The software com-
ponents are an atomic piece of software and the ports define the interface for
communication among the components.
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Figure 2.16: AUTOSAR architecture overview of the basic software, the runtime en-
vironment and the application software [AUT].

This standardization of interfaces across manufacturers and suppliers and between
the different software layers builds the foundation for achieving the goals of AUTOSAR.
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Parallel Architectures have been around for decades in many different forms [Sar89,
CSG99]. The spectrum of related research on the topic of software parallelization is
therefore very broad. Parallelism can be applied at very different levels of hardware and
software designs and strongly relates to many architectural concepts. In the following
two sections we survey and discuss existing coarse-grained parallelization approaches
specifically for complex embedded systems. The focus of the first section is on fully
automated approaches, while the second section discusses approaches that interact with
experts from the corresponding domain to integrate additional domain knowledge.

3.1 Automatic Parallelization
The primary problem for an efficient parallelization is to partition the application into
smaller processes that can be assigned to different processor cores. Finding the optimal
assignment of processes to a limited number of partitions is a computational challenge
because the corresponding problem is NP-complete [Kar72, GJ90]. As a consequence,
heuristics are needed to find near-optimal solutions for real-world applications in rea-
sonable time. The sequential software applications are hereby commonly represented
in the form of a Directed Acyclic Graph (DAG). The nodes of the DAG represent the
smallest entity that is executed sequentially while the edges indicate communication
or causal dependencies among the nodes. Typically, the node weight denotes the execu-
tion time and the edge weight the communication costs. Over the last decades, a wide
range of partitioning heuristics using DAGs have been proposed. These heuristics uti-
lize various techniques such as branch-and-bound, integer-programming, graph-theory,
randomization, genetic and other evolutionary methods. Kwok and Ahmad [KA99]
and McCreary et al. [MKTM94] give an overview and compare a remarkable set of
algorithms.

In the last years, more advanced graph representations have been developed. Cordes
et al. [CMM10] presented an approach to extract coarse-grained task level parallelism
from sequential embedded software written in C. It is based on the intermediate rep-
resentation of the Hierarchical Task Graph (HLT). It provides an abstraction to make
the parallelization step manageable and is similar to the representation by Girkar and
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Polychronopoulos [GP94]. A HLT consists of simple nodes as basic statements, hier-
archical nodes for loop or function bodies and communication in- and out-nodes. The
edge weights represent the communication costs and the average execution time of a
statement is the node weight. The execution time of a statement is measured via a cycle
accurate simulation of the target platform. Cordes et al. published approaches for homo-
geneous [CMM10, CM12] as well as heterogenous architectures [CNEM13, CENM13]
that are either single or multi-objective. The approaches with a single objective to min-
imize the execution time incorporate Instruction-Level Parallelism (ILP). Genetic algo-
rithms were used to find a parallel solution with multiple objectives such as execution
time, energy consumption, communication costs or load balancing. Experiments on
picture and video codecs as well as several industrial benchmarks have validated the
approaches.

The previously surveyed approaches by Kwok and Ahmad, McCreary et al. and
Cordes et al. were presented for embedded systems in general but cannot be directly
applied to automotive systems. In the automotive domain, parallelization is typically
applied on the task-level where runnables are mapped to multiple tasks that in turn
are assigned to processor cores. In particular, when parallelizing existing automotive
applications, the legacy design has to be considered to avoid functional changes. We
survey automotive-grade solutions in this section that respect automotive architectures
and their ecosystem.

The approach by Höttger et al. [HKI15] derives dependencies from read and write
accesses using the application model AMALTHEA [ITE]. These dependencies and to-
gether with the specified runnables form a Weighted Directed Acyclic Graph (WDAG).
This WDAG contains the communication costs as well as the computation costs from
the application model. The presented approach assumes tight and safe upper bounds of
the execution times. Höttger et al. presented two model-based parallelization heuristics
that consider the critical path of the system and earliest start scheduling. Both heuristics
maintain the behavior by respecting the ordering constraints that are derived from the
application model. The presented approaches specifically address automotive embed-
ded multi-core systems and were evaluated on a real-world automotive application e. g.,
Engine Management System (EMS). However, the work by Höttger et al. assumes tight
and safe Worst-Case Execution Times (WCETs) that are unavailable to us due to the
complexity of our EMS and the lack of predictable hardware.

Several authors proposed parallelization approaches based on the AUTOSAR appli-
cation model which we discuss in the following. An overview of the general challenges
related to AUTOSAR when migrating to multi-core platforms is presented by Becker
et al. [BDN+15].

During the earlier phases of AUTOSAR, Long et al. [LLP+09] presented a ruleset
based on the mapping rules of the runtime environment to map runnables to tasks.
The rules have the objective to reduce the communication of AUTOSAR application.
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The work also provides an equation to evaluate the efficiency of the mapping solution
but no mapping algorithm was proposed.

The work by Zhang et al. [ZG11] proposes a runnable to task mapping for AU-
TOSAR software components using a variant of a genetic algorithms. Yet, the process
of mapping the runnables does not consider multi-core platforms.

A heuristic algorithm to map runnables to tasks and tasks to cores was presented
by Monot et al. [MNBSL12]. The motivation to this work is the integration of AU-
TOSAR software from different sources onto one Electronic Control Unit (ECU). The
runnables are grouped into clusters and allocated to cores while considering locality
constraints and load balancing. In a second step, the runnables of a core are sequenced
by assigning the least loaded slot. Whereas the approach respects locality constraints
due to e. g., shared variables, it does not consider inter-runnable data dependencies.
Based on the analysis of our EMS software, these data dependencies between runnables
are however the main limitation when parallelizing. With our approach we can find
the most limiting inter-runnable dependencies and evaluate its usefulness together with
an expert.

RunPar presented by Panić et al. [PKQn+14] focuses on the allocation problem of
runnables from AUTOSAR applications on homogeneous multi-core processors and
optimizes the load balancing among the cores. It utilizes the idea of runnables being the
unit of scheduling to allocate dependent and independent runnables to the least utilized
core while maintaining the execution order of the legacy task. The RunPar assignment
is based on a variant of the worst-fit decreasing heuristic and assigns runnables of the
same task to different cores. As RunPar assumes safely bounded WCET, the runnables
are statically scheduled such that no run-time synchronization is needed. The result
follows the task ordering of the behavior of the legacy application and does not allow
runnables from different tasks to be executed in parallel. Hence, the same functional
behavior is guaranteed on single- as well as on multi-core platforms and the AUTOSAR
application configuration is maintained. The presented approach was evaluated on a
real-world automotive EMS. In contrast to the assumption of safely bounded WCET in
this approach, we only have unsafe Observed Worst-Case Execution Times (oWCETs)
of our EMS such that run-time synchronization is needed. However, our approach
can reduce the overhead due to run-time synchronization without compromising the
functionality.

The presented approach by Faragardi et al. [FLN13, FLSN14b, FLSN14a] is also us-
ing the AUTOSAR ecosystem. Based on a runnable interaction graph, a set of runnables,
their precedences and the rates of communicated data are modeled [FLN13]. This graph
is used to map the containing runnables onto multi-core platforms while minimizing
the overall communication costs and ensuring all timing and precedence constraints.
The presented model and mapping heuristic [FLN13]was extended by an evolutionary
algorithm inspired from simulated annealing to allocate the tasks to cores [FLSN14b].
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It assumes homogeneous multi-core platforms and tight and safe WCET bounds which
is different from our approach that has to cope with oWCET. In these approaches,
the task creation as well as the allocation of the tasks to cores complement each other
and refine the solutions. The experiments to evaluate the approach were performed
using a set of randomly generated applications which are supposed to be executed on a
multi-core platform with 4–6 cores.

Similar to the procedure by Faragardi et al. is the work by Saidi et al. [SCCM15].
The AUTOSAR runnables are not mapped to tasks that are in turn allocated to cores,
but are directly mapped to cores. Based on this mapping, the runnables are assigned to
tasks which are then internally sequenced. The authors developed an Integer Linear
Programming (ILP) formulation of the mapping problem that minimizes inter-core
communication and balances the processor load. The presented approach was evaluated
using a steer-by-wire application with 22 runnables but the authors did not consider
the scalability with more complex applications. Our approach can handle one of the
most complex automotive applications, an EMS.

The approach presented by Hennig et al. [HvHM+16] is very similar to our ap-
proach. Their work is also motivated by the increased computational workload of
tasks and builds on Logical Execution Time (LET). Their approach extracts a dataflow
graph from an existing AUTOSAR task that contains runnables and forward as well
as backward dependencies in the form of edges. This dataflow graph is similar to our
dependency graph as we share the same semantic for the runnables and dependencies.
However, we only allow the manipulation of the graph’s dependencies when the ma-
nipulation has been verified by a domain expert. In the next step, clusters are identified
in the dataflow graph. The runnables within a cluster must not have any forward de-
pendencies between them. They are only allowed to have forward dependencies to
runnables of another cluster. This enables the free distribution of runnables of a cluster
to different cores. The runnables are distributed and sequenced according to the legacy
specification using Timing Description Language (TDL). While the work by Hennig
et al. is similar to ours, it does however not cope with oWCET.

3.2 Parallelization using Domain Knowledge
It is critical to maintain all dependencies and their respective timing while parallelizing.
Unfortunately, the amount of dependencies in automotive application is huge. As a
consequence, these dependencies limit the solution space when parallelizing a legacy
task. Yet, some dependencies are based on past design decisions in regards to the legacy
system and not physically required. This provides the opportunity to find and review
these dependencies with the goal to remove the limitations on the parallelization. In
the following we survey related work that introduces domain knowledge to improve
the parallelization process.
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There is a lot of research in the area of parallelization by using software engineering
methods that introduces domain knowledge. The general and well-established PCAM
approach (partitioning, communication, agglomeration, and mapping) was proposed
by Foster [Fos95]. The idea is to decompose the problem into as many parts as possible,
then communication is introduced, the combined result is evaluated according to trade-
offs and finally mapped to the processor platform. Similar to this approach is the well-
known method described by Culler [CSG99]. It also starts with the decomposition
of the computational problem into small parts, then combines these parts into tasks,
introduces communication and synchronization mechanisms and maps the result to
the processor platform.

The general idea of parallelization presented in these textbooks by Foster and Culler
can be found in many publications to some degree. However, most of these publications
on parallelization presented approaches that are performed manually. Due to the huge
amount of legacy software in our domain, a manual parallelization is too expensive. In
the following we discuss parallelization approaches that are semi-automatic and hence
supported by procedures that are executed automatically. The parallelization can either
be guided by a software engineer respectively domain expert or the domain knowledge
is requested during the approach.

As part of the EU funded parMERASA project [UBG+13] the patternsupported par-
allelization approach was developed [JGU13b]. The approach is an extension of the one
described by Jahr et al. [JGU13a]. It provides a methodical model-based migration from
sequential legacy software to a parallel representation for multi-core platforms that is
executed by an engineer or software developer. One of the main goals is that existing
legacy code is migrated and hence improved in performance by applying parallel design
patterns. The pattern-supported parallelization approach is based on two principals:
the construction cycle of Foster [Fos95] and the usage of patterns as building blocks
by Mattson et al. [MMS01]. In contrast to the work by Foster and Mattson et al. that
targets high performance computing, the pattern-supported parallelization approach
focuses on embedded systems. In its first phase, the platform independent Activity and
Pattern Diagram (APD) is constructed from the sequential legacy implementation. The
APDs are related to UML Activity Diagrams and contain sequential code blocks and
parallel design patterns. APDs are also similar to Petri nets and the already discussed
HTGs by Cordes et al. [CMM10]. This first phase exposes the maximum degree of
parallelism in form of the APDs. In the second phase, the APDs are aggregated and
mapped to provide a optimal degree of parallelism for the target platform while respect-
ing the corresponding trade-offs. Subsequently, the resulting parallel design patterns of
the second phase are implemented. The pattern-supported parallelization approach was
evaluated on an Unmanned Aerial Vehicle (UAV) case study [JGU13a], an EMS and a
construction machinery [JFG+14, JFGU14]. While this pattern-supported paralleliza-
tion approach is semi-automatic, the interactions with the domain expert is reduced
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only by the help of well-known parallel design patterns. When using this approach the
expert is still the major component when parallelizing an application.

The approach presented by Ceng et al. [CCS+08] is called the MPSoC Application
Programming Studio (MAPS). It provides an integrated framework to parallelize legacy
applications written in C for multi-core platforms. MAPS assists a developer in devel-
oping parallel C applications by combining machine analysis and domain knowledge
to suggest partitions to the developer. Starting with the sequential legacy code, the
approach provides partitioning suggestions by detecting typical parallelism patterns to
the developer. These suggestions are generated by a clustering heuristic on a weighted
statement control data flow graph. The generated partitions can be modified, discarded
or extended by other partitions, the developer hereby decides the granularity level of
the partitions. Based on these partitions and the sequential legacy code, MAPS emits
parallelized C code. The approach by Ceng et al. is also commercially available and
developed further through Silexica. Their product SLX Parallelizer still relies on inter-
actions with the developer, yet in combination with the SLX mapper the parallelization
becomes more and more automated. In contrast to our approach, MAPS suggests com-
plete partitioning solutions for evaluation with the expert while our approach reduces
it to one single dependency that has to be evaluated.

3.3 Summary
As elaborated in this chapter, a considerable amount of work has been done to develop
approaches that extract task-level parallelism from sequential legacy applications in an
automated as well as semi-automated way. However, all of the presented approaches
have their limitations. The majority of the published approaches do not consider the
conditions in the automotive domain.

Most related approaches assume tight and safe bounds on WCET that are typically
not obtainable for automotive applications such as an engine control. To our knowl-
edge, the partitioning of a task with varying execution times and observed WCET has
not yet been studied. In contrast to exact WCET bounds, observed WCETs require
synchronization at run-time. However, any synchronization may degrade the statically
computed speedup at run-time due to runnable execution times exceeding the oWCET.
In addition, most approaches assume that there is enough concurrency available inside
a task that is worth exploiting. In the automotive domain however, many dependencies
and their respective timing are leftovers from the legacy design that drastically limit
the concurrency that could be exploited. Whereas there are notable approaches that
introduce domain knowledge into the parallelization process, the developers still have
to identify the parallelism inside the application to some degree. Hence, a developer
has to have a not only good understanding of the functionality of the application, but
also on the concurrent architectural design.
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3.3 Summary

To the best of our knowledge, a comprehensive parallelization approach that sup-
ports the aforementioned automotive state-of-the-practice and legacy design applica-
tions does not exist. With our approach, we provide such a parallelization method for
tasks. A comparison of the discussed related work with respect to the objectives of this
thesis is presented in Table Table 3.1 on the following page.
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Table 3.1: Comparison of approaches that leverage domain knowledge to par-
allelize automotive legacy tasks with respect to the proposed objec-
tives and solution in this thesis.
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Considers the automotive ecosystem — ✓ ✓ ✓ ✓ ✓ ✓ ✓

Considers scalability and efficiency ✓ ✓ ✓ ✓ — ✓ ✓ ✓

Copes with oWCET — — — — — ✓ — ✓

Improves concurrency — — — — — ✓ ✓ ✓

Reduces interactions with experts1 — — ✓
1 Only applies to approaches that improve the concurrency using domain knowledge
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As automotive applications are often complex and originate from a concisely standard-
ized development process, the understanding of a task’s design is crucial. In particular,
the development process for single-core platforms is the reason for a legacy design that
brings limitations to the parallelization approach. These limitations define therefore
the boundaries of the solution space when parallelizing a task.

This chapter describes the solution space when solving the challenge of parallelizing
a task and describes the solution idea of our approach. It is structured in five sections
as outlined below. The first two sections describe the automotive development process
and its implications toward the legacy design of tasks. The last three sections describe
the solution idea of our approach in respect to the legacy design of tasks.

Legacy Design of Tasks The huge amount of communication, implicit require-
ments and construction principles have formed today’s process of designing au-
tomotive application. This section shows how an application and its tasks were
designed for a single-core platform in retrospective.

Evolving Tasks As legacy applications continue to evolve, their integration on
single- and multi-core platforms becomes a challenge. This section elaborates
possibilities on how additional functionality can be added to tasks without ex-
ceeding the computational power of a single core.

Splitting In this section, we introduce our approach of task splitting to parallelize
a legacy task. Task splitting exploits the concurrency inside a task. The concur-
rency is bound by the data dependencies, their respective timing as well as the
ordering of runnables. We show two paths to exploit the task’s concurrency for
an efficient task splitting.

Relaxation The strict timing of data dependencies is not always physically required.
For some dependencies, adjusting its timing would ease the task splitting but
could potentially alter the behavior of the application. In this section we intro-
duce our approach to detect these dependencies and modify its corresponding
timing while maintaining the functionality of the legacy implementation.

Parallelization Strategies In this section we propose two strategies to parallelize
a legacy task. These strategies combine the splitting and relaxation approach and
support a typical automotive development process.
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4.1 Legacy Design of Tasks
We start by briefly elaborating the process of developing a control application for an au-
tomotive Electronic Control Unit (ECU) that controls a dynamic system as introduced
in Section 2.1. This lays the foundation to understand the solution space with its con-
ditions and boundaries. It is important to further understand the architecture of legacy
tasks found in the automotive domain and its implications toward parallelization.

Developing a controller for a dynamic system is a complex process in the automotive
domain. Due to its complexity, the automotive industry uses specific development
processes such as the V-model from Section 2.2. In this section we focus on the design
phases on the concept and architecture level. We assume that the hardware is given in
the form of a single-core platform and all software requirements are specified.

In the V-model, a controller is gradually designed, implemented and integrated. The
specification created in the design phase includes the requirements of the control loop,
the modeled environment and specified performance goals. This specification is then
implemented into a software and integrated into the application that is deployed into
the system. In the beginning, the engineer for the controller creates the conceptual
design of a controller. The engineer defines requirements, performance goals and the
mathematical models of the control loop. Based on this information, the runnables
of the controller are defined. A controller typically samples the continuous state via
a sensor, processes the data discretely and adjusts actors to interact with the physical
and continuous environment in a recurrent way. We illustrate this design process using
an example that is consecutively modified throughout this section. We start with a
very simple controller that includes three separate runnables in the conceptual design.
One for the sampling, one for the processing and one for the actuation. Besides the
runnables that encapsulate functionality, the resulting conceptual design also includes
the communication between them.

In the next step, this conceptual design is further refined into an architecture design.
The goal of this refinement is to provide a complete architecture that can be imple-
mented in the subsequent phase of the V-model. For our approach, the main interest
in the architecture design are the tasks. A task is a container for runnables and releases
recurring jobs as an abstract scheduling unit. When refining the conceptual design to an
architecture design, the runnables have to be mapped to a task as well as the order of exe-
cution inside the task has to be determined. The mapping and execution order depends
on the execution rate requirements of the runnables and on the communication. When
mapping runnables to a task, the maximum sample interval plays a key role as there is
the established construction principle to allocate all runnables with the same maximum
sample interval to a single task. Mapping a runnable to a task with a shorter sample
interval is also possible and can simplify and improve the controller design. However,
smaller sample intervals are bounded by the available computing power. Also, with
smaller sample intervals, numerical problems may occur due to e. g., missing floating
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point units in the underlying hardware. For our simple controller example with three
runnables that sample, process and actuate, we assume that all three runnables have the
same maximum sample interval.

Following these established construction principles, the architecture design for such
a controller is shown in Figure 4.1. All three runnables of the controller are executed
inside a single task t1 with the same sample interval τ: First, the runnable rs samples
the continuous state. Based on the resulting value, denoted as label ds , the runnable
rc computes the value for the actor, typically together with the controller state of the
previous job, denoted as dc . The result in form of the value of label da is then given to
the actor runnable ra that adjusts the actor to the continuous environment.

t1(τ)

rs rc ra
ds da

dc

Plant
control path, environment, continuous

Figure 4.1: Architecture design of an atomic controller with a sampling, a processing
and an actuation runnable mapped to a single task t1.

In our automotive systems, simple controllers such as the one presented are uncom-
mon and are typically more complex. Often, sensor signals have to be filtered due to
noise and other interferences before they can be used and processed. The raw signals are
typically sampled (runnable rs ) and filtered (runnable r f ) at a smaller intervalτ/n, n ≥ 1
than the processing and actuating runnable rc and ra. Afterwards, the filtered value
is communicated to the processing runnable at the corresponding rate, e. g., every n
times. This change in the conceptual design has to be reflected by the architecture.

When refining such a controller into its architecture design, there are two different
sample intervals, namely the smaller interval τ/n for the sampling and filtering, and τ
for the processing and actuation. Figure 4.2 shows the architecture design of this con-
troller. Again following the construction principles, the design for this single controller
then contains two tasks that are communicating with each other. Another example
for controllers that are divided into tasks running at different sample intervals is when
using a solver. Often a solver for differential equations is needed which is specified in
the mathematical model of the controller. Hence, in this case the solver is also separated
and executed at a much longer interval.

Many controllers in the automotive domain also must learn to adapt to the envi-
ronment. Thus, in addition to the main control algorithm, there are algorithms that
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t2(τ/n) t1(τ)

rs r f rc ra
ds

d f da

Figure 4.2: Architecture design of a controller with a filtering runnable for the raw
sensor signal. The filtering runnable is mapped to a task t2 with a smaller
period than task t1 that contains the processing and actuating runnables.

approximate changes in the environment. The most straight forward objective to a
learning controller is to optimize the quality of the control algorithm. But the con-
trol algorithm can also adapt to the deterioration of materials, sensors and actuators.
Another typical use case is the error detection that can influence the main control
algorithm over a long period of time.

Such an adaptation can usually be executed at a much longer interval τ× n, n ≥ 1
than the main control algorithm. Hence, there is a runnable added to the conceptual
design of the filtering controller that is responsible for the adaptation and receives all
the needed state and signal information of the system. Figure 4.3 shows the architecture
design of this controller which includes a filtered sensor signal and an adaptation. The
main controller runnable rc receives a filtered sensor signal d f and sends the actuation
result da to an actuator. The main controller rc is executed at the sample intervalτ,while
the sensor signal is sampled in runnable rs and processed through a filtering runnable r f

every τ/n. The controller sends its state dc and learns/adapts the parameter dl from the
adaptation rl every n×τ. As we can see from Figure 4.3, the design on the architecture
level has increased by one runnable that is mapped to one additional task. The extra
runnable is responsible for the adaptation of the main control algorithm. Hence, it
collects all available state and signal information of the system that adds a huge amount
of communication to the design.

Controllers can further be related and connected in very different ways. Controllers
can be part of an hierarchical design such that a parent controller provides the reference
input for various child controllers. A real-world example for such a hierarchy is the
cruise control that is regulating the driving torque controller. A hierarchy of controllers
on the architectural level brings additional communications typically from different
tasks. In other controller designs, the controllers may be siblings and connected with
each other on the same level. There can be controllers that influence the plant through
different actuators but are strongly coupled within the physical environment and hence
use the same input signals. For example, the front camera delivers the pictures for the
Automatic Interval Control System (AICC) to control the distance to the preceding car,
as well as delivers the pictures for the lane assist controller. Other controllers may use
the same actuators but have a very distinct functionality. For example, the Anti-lock
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t1(τ/n)

t3(n×τ)

t2(τ)

rs r f rc

rl

ra
ds

d f da

dl

d f
dc

Figure 4.3: Architecture design of a controller with a filtering runnable for the raw
sensor signal and an adaptation that maintains a higher level view of the
system. Due to the different sample intervals of the runnables, this archi-
tecture contains three different tasks.

Braking System (ABS), Traction Control System (TRC), or AICC all use the brakes
as actuators. Hence, the controllers have to exchange information, e. g., sensor values,
estimates, states, strategies etc. but typically have different sample intervals and are thus
assigned to different tasks.

Due to this process of designing controllers with the corresponding construction
principles, the resulting control applications are very communicative, highly inter-
dependent, tightly coupled and timing sensitive. Besides this strong functional inter-
dependence, there are additional architectural characteristics to the legacy design of
embedded control applications. The communication follows the blackboard princi-
ple. Runnables communicate via shared variables with a very low access delay, i. e., a
memory access is virtually for free. Also, the order of the runnables inside a task pro-
vides a static control of dependencies. And on the task-level, preemptions and priorities
enforce implicit assumptions for data consistency requirements or scheduling policies.

4.2 Evolving Tasks
The controller designs are continually evolving as functionality is added while the de-
scribed construction principles remain unchanged. Every year, there is an 15 % increase
of the workload for an Engine Management System (EMS) on average1. To illustrate
the effect of this evolution, we assume a task t1 with a set of runnables Rt1

is allocated
to a core c1. The task t1 is a periodic task with the period Pt1

and the relative deadline
Dt1
= Pt1

. From simulations and measurements we know that the Observed Worst-
Case Execution Time (oWCET) of t1 is smaller than the deadline Dt1

on the assigned

1This trend is based on experience at the Robert Bosch GmbH but generally supported [MHAK15].
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core. Specifically, the time to execute the workload of task t1 on the assigned core c1 at
the observed worst-case is oWCET(t1) = 0.9× Pt1

. Due to the nature of the oWCET,
there is typically a safety margin of e. g., 10 % of execution time before the task would
violate its deadline. Clearly, when the workload of task t1 increases by 15 %, which
equals only one year of development, the task exceeds the computational power of the
assigned core. In this case, the task t1 would violate its real-time requirements when
executed on core c1.

There are obviously two possibilities to cope with this problem, one is to adjust the
hardware, the other one to optimize the software.

From the hardware point of view, the workload of a task would complete earlier
and within its real-time requirements when the performance of the task’s core is in-
creased. The performance can simply be increased by raising the clock speed, but also
optimizations of the core pipeline or architectural changes such as decreasing the access
latency to the memory can boost a core’s performance. However, major performance
gains for multi-core platforms by tuning the architecture of a single core are not to be
expected [CSG99]. As explained in Section 2.1.3, the trend for multi-core platforms is
to integrate more cores on a processor to boost its overall performance. Certainly, the
performance of a single core will also see improvements, but it will not satisfy the high
and continuously increasing demand from software.

Optimizing the software is another way to solve the workload problem. However,
optimizations on the runnables with the goal to reduce its oWCET is not a valid op-
tion for us. Optimizing the runtime of all legacy runnables in a task is a huge effort
and benefits are typically nonrecurring or decreasing on each revision. Also, such an
approach does not match our objective to provide a scalable and efficient method for
real-world automotive applications. Hence, we generally assume that runnables are the
smallest entity and cannot be optimized, changed or divided further.

4.3 Splitting
In our approach we focus on the idea of splitting tasks to solve the workload problem
and hence transforming a single heavy task into multiple light tasks. As mentioned
before, a runnable is the smallest entity that has to be executed sequentially and a
task specifies the runnables’ order of execution. Despite this fixed order, the runnables
provide concurrency inside a task and do not necessarily have to run as specified. By
detecting this concurrency among the runnables and mapping the runnables to mul-
tiple task partitions, the task partitions also become concurrent to each other. These
concurrent task partitions have the same real-time properties and requirements as the
heavy task but can run in parallel. When these n light task partitions are assigned to n
different cores on a multi-core processor, there is theoretically n times the workload
capacity available than with the single heavy task.
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As elaborated before, the main reasons to do task splitting roots in the design of
legacy automotive real-time applications, the continuing addition of functionality and
the technology change from single-core to multi-core platforms. These roots however
limit the concurrency that can be exploited via task splitting. The following coherent
limitations when exploiting the concurrency of legacy tasks are order, timing and
synchronization.

The order in which runnables are executed inside a task originate from manifold
requirements. These requirements have evolved over time and are typically not docu-
mented or modeled. When splitting a task, these requirements could be violated. There
are three basic requirements that have the potential to be violated:

Precedence relations. Although runnables theoretically neither have an input nor
an output, they communicate heavily via shared memory. To illustrate this be-
havior, let two runnables communicate with each other, one runnable filters
data and the other runnable processes this filtered data inside a task. It is safe to
assume that the data has to be filtered before it can be processed. Hence, the fil-
tering runnable should precede the processing runnable in the order specified by
the task. But such precedence relations are unfortunately often not documented.
When splitting a task with undocumented precedence relations, these implicit
requirements could be violated.

Race conditions. Similar to the order of execution inside a task, there is also an
order of communication. In general, an altered order of communication may
result in an incorrect computation. The order of communication is implicitly
given by the execution order of the runnables inside a task. Yet, this order may be
altered due to task splitting as there is typically no specification to respect while
splitting.

Mutual exclusion. This is often used to prevent race conditions. For example, there
can be a requirement that two runnables should not be executed in parallel at
any point in time. When the two runnables are in two different task partitions,
the runnables can potentially be executed simultaneously and violate this require-
ment.

Timing is another limitation when exploiting the concurrency of legacy tasks. De-
spite that the result of a runnable is correct, it can be time-wise incorrect. Control-based
applications are highly sensitive to timing. Any change in the timing of a communi-
cation between runnables might change the functionality of the corresponding con-
trollers. Depending on the robustness of the controller’s algorithms, a change in timing
can violate latency or stability requirements. Such timing requirements can be defined
using event-chains but are unfortunately often unknown. However when splitting a
task, the timing requirements have to be fulfilled nevertheless.

Synchronization mechanisms to allocate resources to prevent unwanted side effects
are another obstacle when detecting concurrency in tasks. Automotive applications use
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synchronization mechanisms typically against side effects such as e. g., data, mode or
other inconsistencies. When a task is split, such synchronization can be problematic. In
case of a central locking mechanism it creates an additional overhead. When fine-grained
locking is used it is possible that deadlocks are created.

These three limitations, order, timing and synchronization, interact with each other
and influence the functionality. To enforce the functionality of the legacy task, the
order of execution as well as the communication has to be maintained. Hence, the con-
currency of runnables inside a task depends heavily on the communication and order
of execution. In our approach, we split a task into multiple task partitions by exploiting
the concurrency of runnables inside a task while maintaining the communication and
order of execution.

In this thesis we propose two alternative splitting modes, the unsynchronized and
the synchronized splitting mode. The unsynchronized splitting mode exploits the avail-
able concurrency of a task. The concurrency is called available because it represents
the legacy and natural real-time design of the runnables inside a task. The goal of this
mode is to create task partitions that are fully decoupled from each other and strictly
follow the Logical Execution Time (LET) semantic of a task. Figure 4.4 shows a simple
example where our approach detects concurrency between runnables in a task. The
task has four runnables and contains only two communication relationships between
r1 to r2 via the label d1 and between r3 to r4 via the label d2. For simplicity reasons, we
assume that there are no additional functional requirements for the order of execution.
Based on the information on the communication, the order of execution and functional
requirements, the approach creates precedence relations. When ensuring these prece-
dence relations while splitting, the functionality of the legacy task is maintained. In this
example, the two groups of runnables r1, r2 and r3, r4 are detected to be concurrent to
each other. I. e., the legacy functionality is maintained independent of the distribution
of the two groups of runnables as long as the order inside the group is preserved. The
two groups of runnables are hence called task partitions and can be executed in parallel.
Unsynchronized splitting detects the available concurrency inside a task and transitions
a task into concurrent task partitions without changing the functionality. The single
objective for unsynchronized splitting is to reach the parallelization goal as close as
possible. For our approach, a parallelization goal for a selected task ti comprises the
number of resulting task partitions as well as the speedup. This approach is presented
in detail in Section 6.2.

As shown in the previous section, the tasks in our domain are highly communica-
tive that is addressed by the synchronized splitting mode. Due to the high amount of
communication, there is often not much concurrency to find and to exploit in the
unsynchronized splitting mode. Because of the huge amount of communication, the
resulting task partitions would have to communicate inter-task-wise. To which extend
the task partitions have to communicate depends on the mapping of the runnables to
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(a) Legacy task t1.
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(b) Splitted into t1,1 and t1,2.

Figure 4.4: Splitting a legacy task t1 by detecting concurrency and mapping runnables
to multiple task partition t1,1 (green) and t1,2 (blue) with no intra-task
dependencies.

the task partitions. When task partitions communicate with each other, the communi-
cation has to be coordinated. This coordination is viable to ensure that the runnables
communicate in the right order and at the right time. The functionality of a task is
not only depending on the communication and order of execution, but also on the
timing of the communication. A change in the timing in either direction may change
the functionality. For the synchronized splitting mode, we allow the analysis to create
coordination rules for certain communication among the task partitions. This allows
to exploit a higher level of available concurrency. Still, when splitting a task into mul-
tiple task partitions, this stategy exploits the available concurrency of runnables inside
a task and maintains the communication and order of execution. In the following we
call this coordination synchronization. Figure 4.5 shows an example with a task of four
runnables. This time, there is an additional communication between r1 and r3 via the
label d3. Assuming that the parallelization goal is two equally balanced task partitions,
there is no concurrent solution that does not include inter-task communication. In this
case, the analysis of the synchronized splitting mode can find a solution that creates
concurrent task partitions with the appropriate synchronization. For our example, the
solution is similar to the one from unsynchronized splitting, but with synchroniza-
tion between r1 and r3. This mode adds another objective to the parallelization goal,
namely the overhead due to the synchronization. There are two problems with syn-
chronization: (1) The constant overhead of the coordination between the runnables.
(2) The synchronization in combination with oWCET is a brittle connection: When
a runnable is synchronized with another and takes longer to compute, then the other
runnable and all following runnables are also influenced by that. This may result in
a situation different from the solution that was determined by the approach. Our ap-
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proach that can handle synchronization together with oWCET is presented in detail
in Section 6.3.
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(a) Legacy task t1.
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(b) Splitted into t1,1 and t1,2.

Figure 4.5: Splitting a legacy task t1 by detecting concurrency and mapping runnables
to multiple task partition t1,1 (green) and t1,2 (blue) with synchronization
between r1 and r3.

4.4 Relaxation
Both modes, the synchronized and unsynchronized splitting, exploit the available con-
currency of the real-time design in a legacy task. However, the available concurrency
may not be sufficient to reach the parallelization goal. Again, this is due to the typically
huge amount of communication that constrains the concurrency. The challenge of this
section is how to improve the concurrency of the task’s design while maintaining the
functional behavior. The main idea to solve this challenge is to change the timing of
a communication. Our thesis is that the physically required communication timing
often allows a higher delay than specified by the legacy task. Controllers are typically
more robust and can cope with a delayed communication without breaking the func-
tionality. However, the physically required communication timing is often not known
or too complex to document.

For the purpose of this thesis we define the term relaxing a communication as to allow
a delay in the transmission. Relaxing the timing of a communication can improve the
concurrency of a task, Figure 4.6 illustrates this. The legacy task t1 again contains four
runnables and three communication relationships. Assuming that the parallelization
goal is two equally balanced task partitions, there is no splitting solution that does not
include synchronized inter-task communication. Fortunately, when a communication
is relaxed and thus allows a delay, the concurrency of the task improves. In Figure 4.6,
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the communication from runnable r1 to r3 via label d3 is allowed to be delayed. Now,
runnable r3 is also allowed to read the value of label d3 in the subsequent task instance
of t1. This enables us to remove the synchronization from the example in Figure 4.5.
Overall, relaxation can improve the concurrency that can be exploited by our splitting
approach to create parallel task partitions without any synchronization.

But the main problem still persists, a delayed communication of data potentially
alters the functionality of a controller. It can violate latency or stability requirements
and other performance criteria. Hence, this change in functionality has to be evaluated.
In an ideal world, all latency requirements of the controllers are documented such that
potential latency violations can be checked automatically. As stated before and based
on our experience, this is not the case for real-world automotive applications. Instead,
domain experts have to manually evaluate the change in functionality on the controller
design level. There are various techniques to evaluate the impact of an altered commu-
nication timing on the functionality of the controller such as formal verification or
simulation [ZH15]. But the massive number of communications prohibits the evalua-
tion of all communication by a domain expert. It is simply unfeasible due to time and
cost reasons and also contradicts to our objective of an efficient analysis that should be
automated as much as possible. Due to this evaluation overhead, only a small number
of comunications can be evaluated. To narrow down the search space to find the right
communications that are suitable for relaxation and a subsequent evaluation, we have
two objectives: (1) Relaxing the communication has the potential to improve the con-
currency of the task such that the parallelization goal is met. (2) It is likely that a domain
expert would approve a delayed communication without violating any requirements.
According to these objectives, our approach proposes the most suitable communication
to a domain expert for evaluation. That way, we can increase the concurrency inside
a task. The basis for this analysis is the available concurrency and works toward the
inherent concurrency. The ultimate goal of our approach is to gradually find and iterate
toward the inherent concurrency, i. e., the concurrency that is pureley motivated by
the physics instead of the legacy design.

4.5 Parallelization Strategies
In our approach we want to support different stages of the automotive development life-
cycle. For this purpose, we created the two parallelization strategies early and late. In the
following we explain the two strategies, their corresponding task splitting approaches
and where relaxation can be performed.

In the early parallelization strategy, the approach may alter the behavior but should al-
ways maintain correctness. This is the case in early development stages, hence the name.
In the early stages of the development lifecycle, runnables with their functionality and
communications are designed, but the timing is undecided for most communications.
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Figure 4.6: Splitting of a task ti by exploiting the relaxed communication from
runnable r1 to r3 via label d3.

There is also no implementation of the current design, just a reference architecture from
previous lifecycles. Using the early strategy, both splitting modes can be performed on
a task. When using the early strategy, our approach is hooked into the design phase on
the concept level as shown in the V-model of Figure 4.7. Our approach provides the
benefit that architecture decisions regarding the concurrency can be evaluated early in
the development lifecycle. At this point, our approach eases the process of evaluating
communication timing decisions for domain experts. Challenges such as evaluating the
impact of the timing on the task’s concurrency when integrating can be solved with
little effort. The overall goal of this strategy is to improve the concurrency of a task’s
design.
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Figure 4.7: Our approach in the product development lifecycle when using the early
strategy.
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In contrast to the early strategy, there is the late parallelization strategy. As the
name suggests, this is used in late stages of the development lifecycle, as illustrated in
the V-model of Figure 4.8. The typical problem at this stage is that tasks exceed the
computational power of a single core due to its increased functionality. At this time,
architecture changes are very expensive because the development process is set back to
the design phase. Changes of the hardware are similarly connected to high costs. Thus,
this strategy should exactly maintain the communications and the respective timing
of the legacy implementation. The solution provided by our approach is the splitting
of a single task that exceeds the computational power of a single core. In Figure 4.8,
our approach is performed in the integration phase on the architecture level. The im-
plementation of the task’s design is given e. g., runnables, communications with fully
specified timing and the execution order. Again, both splitting modes, unsynchronized
and synchronized can be used in this strategy. Results are fed back into the reference
architecture for future lifecycles while results from previous lifecycles can improve the
splitting. Although it is not mandatory, this strategy may be assisted by an expert if
the parallelization goal cannot be reached. In that case, our approach can improve the
concurrency by relaxing single yet important communications inside a task. As any
change in a communication’s timing would result in an expensive evaluation, it is not
considered best practice. The overall goal of this strategy is to split a task while exactly
maintaining the communication and the respective timing of the legacy implementa-
tion. Changes in the timing and thus in the functionality should be prevented whenever
possible.
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Figure 4.8: Our approach in the product development lifecycle when using the late
strategy.
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4.6 Summary
In this chapter we have shown that the continuing evolution of the controller design has
influenced the architecture of today’s tasks. We have elaborated how the huge amount
of communication, implicit requirements and construction principles for single-core
platforms define the boundaries in the solution space when parallelizing a task. Fig-
ure 4.9 illustrates the resulting solution space together with our parallelization approach
for tasks. In this figure, the x-axis shows the level of concurrency that can be extracted
through task splitting while the y-axis shows the independence of the resulting task
partitions. As the concurrency of a task is the foundation for parallelizing a task, we
distinguish between the available and the inherent concurrency. The available concur-
rency is the concurrency that is implicitly given by the legacy design of the task and
can be extracted using synchronized and unsynchronized splitting. The selection of
the splitting mode depends on the targeted level of independence and available con-
currency of the parallel tasks. Synchronized splitting can exploit a higher level of con-
currency but at the costs of independence while unsynchronized splitting creates fully
independent tasks exploiting less concurrency. In addition, our approach of relaxation
can further improve a task’s concurrency as it alters the design to reflect the inherent
concurrency. The inherent concurrency represents the concurrency that is purely mo-
tivated by physics. It is not yet specified in the task’s design but can be found by our
approach using the assistance of a domain expert.
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Figure 4.9: The solution space when splitting a task using our approach. The x-axis
shows the level of concurrency that can be exploited while the y-axis shows
the independence of the resulting task partitions.
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5
Parallelization Concept

In this chapter we present a novel parallelization concept for embedded real-time and
control-based legacy tasks in detail. Figure 5.1 shows a high-level view of the concept
with its four components and the workflow path from start to exit. Three components
are automatic components and one is a manual component that interacts with a domain
expert. We outline the purpose of each component in the following.

start
Dependency
Graph Ex-
traction

Splitting exit

Concurrency
Analysis

Dependency
Analysis

until goals
reached

Manual

Automatic

Figure 5.1: High-level view of our parallelization concept with four components and
all possible workflow paths.

The Dependency Graph Extraction component is a preprocessing component and
mandatory for each workflow. This component extracts dependencies from the legacy
application model and creates the dependency graph for a legacy task. The dependency
graph is the fundamental graph structure of our approach and used by all other compo-
nents. It abstracts from the fine grained application model with the purpose to specify
all needed information that is related to concurrency and parallelism.

The Splitting component evaluates the level of parallelism based on the dependency
graph by identifying the available concurrency and creates pareto-optimal splitting
solutions. It maps runnables of the legacy task to multiple task partitions while consid-
ering the overhead due to communication. It also creates all necessary communication
mechanisms such that the task partitions can be executed within the Logical Execution
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Time (LET) model. The component is able to split complex legacy tasks with a high
number of interdependent runnables while maintaining the functional behavior of the
legacy implementation. The result of the splitting component is an application model
with pareto-optimal solutions of parallel task partitions. The resulting parallel task
partitions are freely distributable.

The Concurrency Analysis component identifies potential inherent concurrency of a
task using the pareto-optimal solutions given by the splitting component. The idea is to
find dependencies that can potentially improve the concurrency of the task when they
are relaxed. This component is looking for the most suitable dependencies for which
the timing can be relaxed without compromising the correctness of the application.
Hereby, the dependency search considers the impact toward the concurrency as well as
the probability that the timing is allowed to be relaxed. During this process, the inherent
concurrency of the physical environment is exposed. As a result, the concurrency
analysis component specifies dependency candidates from the dependency graph that
have to be evaluated by a domain expert.

The Dependency Analysis component leverages domain knowledge of expert(s) to
evaluate if the proposed dependencies can be relaxed. The input for this component are
the most suitable dependencies found by the concurrency analysis to increase the con-
currency of the task. This is the only component that relies on the manual interaction
with one or more experts to check if a relaxed timing of the proposed dependencies is
allowed.

We propose workflows that define how the components are used in our paralleliza-
tion concept. Our parallelization concept is flexible such that different workflows can
be constructed depending on the parallelization strategy. For the automotive domain
we define two essential workflows that are used in the early and late parallelization
strategy. The workflow for the late strategy uses the following components in that or-
der: Dependency Graph Extraction and Splitting. The workflow for the early strategy
additionally uses the Concurrency Analysis and Dependency Analysis. Together with
the Splitting component, these three components create the expert-in-the-loop workflow.
This workflow determines the dependencies in which the expert and the machine are
in an interactive loop until the parallelization goals are met.

Independent of the strategy, the goals that guide the workflow are as follows. The
number of task partitions together with the speedup specify the main parallelization goal.
In addition, there is a Boolean goal if the resulting task partitions must contain syn-
chronization. If synchronization between the task partitions is allowed, the associated
costs add further requirements to the solution. These costs can be measured using our
brittleness metric. The goals are explained further in the chapters that describe the
components.

All components of our parallelization concept have been implemented using the
model-driven tool-platform AMALTHEA [ITE]. In AMALTHEA, each component is
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implemented as an AMALTHEA workflow element. AMALTHEA workflow elements
are Java classes with an AMALTHEA model as in- and output.

The remainder of the chapter is organized as follows: Section 5.1 describes the in-
tegration of the proposed concept into the automotive software development process.
Section 5.2 defines graph structures that are used as an intermediate representation of
a task’s design throughout our parallelization concept. In Section 5.3 we describe the
Dependency Graph Extraction component which is the entry point to the concept for
each workflow.

5.1 Software Development Process
In this section we elaborate how our parallelization concept is integrated into the auto-
motive software development process. The integration into this process is independent
of the used strategy and current position in the development lifecycle. Figure 5.2 illus-
trates the integration using a bipartite graph with artifacts and processes. At the top
and in the beginning, there is the artifact Executable Units Sources & Specification.
This artifact contains all related resources for the functionality that is contained in
runnables. This contains but is not limited to source code in various languages, object
code from other vendors, used libraries, data specification and configuration files. It
also includes AUTOSAR related specifications. Besides the functionality, there is the
Task Specification artifact. It describes the mapping of runnables to tasks and also the
execution order inside a task. This information can be described using specifications
from the widely-used automotive standard Model Data Exchange Format (MDX). Both
artifacts are input to the Model Generator that creates an application model from the
sources and specifications. In our case, this is a proprietary software which generates the
AMALTHEA application model. The non-functional AMALTHEA application model
is enriched by information from the Execution Time Analysis. It adds the observed
execution times of runnables in the best, average and worst-case. This execution time
data can have different sources and can e. g., come from simulations, a reference ar-
chitecture or measurements. The application model is one of the two inputs for our
parallelization concept. The second input are the Goals, i. e., the requirements on the
result of our method.

Output of our parallelization concept are two artifacts: the Modified Application
model and additional Synchronization Code. Based on the modified application model
that contains the specification for the parallelized tasks, the Runtime Generator creates
and builds an Operating System (OS) Library. The Modified Application model also
contains communication timing information that may have changed during the paral-
lelization. Hence, it is input for the final Target Build. The Target Build compiles all
sources according to the configurations and specifications provided by the Executable
Units Sources & Specification artifact. Note that this artifact is not altered by our par-
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allelization concept. In addition, potentially generated Synchronization Code has to
be included in the compilation process of the Target Build. Using all four artifacts, the
Target Build can create a binary for the target platform which can be integrated into
the Electronic Control Unit (ECU).

5.2 Graph Structures
In this section we formalize the parallelization concept. The concept is relying on
graph structures as an intermediate representation of the design of a task. The graph
structures contain all information related to concurrency that can be extracted from
the application model.

All graph structures depend on a basic set of definitions which we introduce in the
following. A single graph always corresponds to a single legacy task t ∈ T. This task
contains of a set of runnables Rt . The containing runnables depend on each other
that is specified by the set of dependencies Q. A dependency qk ∈ Q always has a
source runnable src(qk) = ra and a destination runnable dst(qk) = rb . As there can be
multiple dependencies between two runnables ra and rb , this specific set is defined as
Qa,b ⇔∀qk ∈Qa,b : src(qk) = ra ∧ dst(qk) = rb . A specific dependency between two
runnables ra and rb is denoted as qa,b

k ∈Qa,b .
Figure 5.3 shows the parallelization concept and the graphs used by the compo-

nents. We define two graph structures for a task: The Dependency Graph and the
Precedence Graph. The Dependency Graph constitutes the design of a task including
all concurrency-related information. The graph shows how the runnables of a task are
communicating or are otherwise dependent on each other. The Precedence Graph is
derived from the dependency graph and the basis for task splitting. This kind of graph
shows the requirements of runnables that have to be executed before other runnables.
Both graph structures can be enriched by the Partitioning Information.

5.2.1 Dependency Graph
The Dependency Graph (DG) is a directed cyclic multigraph representation of a task
t ∈ T. It is constructed from the legacy application model using the Dependency Graph
Extraction component. A dependency graph for a task t ∈ T is denoted as

DG(t ) :=<V,EC ,EF , w,γ ,σ > .

Each node in the set of nodes represents a runnable V = Rt . Hereby every node
has a weight that is represented by the function w : V → oWCET ∈ N. We mainly
use the Observed Worst-Case Execution Time (oWCET) as a weight for a runnable,
but best-case and average-case execution times are also possible and supported by our
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Figure 5.2: Toolchain integration of our parallelization concept
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Figure 5.3: High-level view of the parallelization concept with used graphs.

approach. There are two sets of edges that connect the nodes, the set of functional edges
EF and the multiset of communication edges EC .

The set of functional edges EF = QF ⊆ (V×V) contains functional dependencies
between two runnables ra, rb ∈Rt that is denoted as qk ∈QF . A functional dependency
is user-specified and defined by an expert of the application. The dependency qk ∈QF
indicates the requirement that src(qk) = ra runs before dst(qk) = rb is executed to ensure
a functional requirement e. g., the correct order of interaction with peripherals.

The multiset of communication edges EC =QC ⊆ (V×V) defines communication
dependencies between two runnables ra, rb ∈ Rt and is denoted as qk ∈ QC . A com-
munication dependency qk ∈ QC indicates the requirement that src(qk) = ra sends
data to dst(qk) = rb . All communication dependencies are distinct through the corre-
sponding label label(qk) = dv ∈D. Besides the corresponding label, a communication
dependency has an associated criticality γ : QC →{0,1,0..1} that specifies the commu-
nication timing in terms of LET. A criticality of 0 requires a strict communication
without delay (also called strictly undelayed). Hereby the destination runnable has to
consume the data from the source runnable within the same job instance. In contrast,
a criticality of 1 requires that the communication must be delayed (also called strictly
delayed). The destination runnable has to consume the data from the source runnable
from the previous job instance. Furthermore, there is the criticality 0..1 which requires
a communication with or without a delay (also called relaxed). Hence, an undelayed
and delayed communication timing is allowed.

For all pairs of runnables in the graph, there is an associated evaluation flag/status
σ : 〈ri , r j 〉→ {t , f , r }. It indicates if all dependencies between the two runnables were
evaluated (t ), not evaluated ( f ), or requested for evaluation (r ) by an expert. This is
especially important for the Concurrency Analysis and the subsequent Dependency
Analysis.
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By the definition of the dependency graph, the graph can contain cycles. A cycle with
a path length of one means that a runnable communicates with itself. In this case the
communication dependencies between the same runnables have to be strictly delayed:
∀qk ∈Qa,b

C , ra = rb : γ (qk) = 1.
The dependency graph DG of a task is created by the Dependency Graph Extraction

component. It is used as the in- and output for the Splitting as well as the Concurrency
and Dependency Analysis components. For a better understanding we illustrate a de-
pendency graph using the following notation. The nodes V=Rt are shown as boxes
while the size of the box indicates the nodes weight w. For illustration reasons, many
examples have the same node weight. Directed edges E = QC ∪QF show a depen-
dency between two runnables. A dashed edge is used for a communication dependency
qk ∈QC and a solid edge for a functional dependency qk ∈QF . The label label(qk ∈QC )
as well as the criticality γ is annotated to each communication dependency.

Table 5.1 summarizes the notation of a dependency graph and Figure 5.4 illustrates
an example graph.

Table 5.1: Notations of the Dependency Graph

Description Symbol Visualization

Node v ∈V boxes
Functional edge e ∈ EF directed solid edges
Communication edge e ∈ EC directed dashed edges
Node weight w(v ∈V) size of node box
Criticality γ (e ∈ EC edge annotation
Label label(e ∈ EC ) edge annotation
Flag σ(〈vi , v j 〉 ∈V×V) —

5.2.2 Precedence Graph
The Precedence Graph (PG) is a directed graph of a task t ∈ T. It is constructed from
the dependency graph DG(t ) by the Splitting component. How the precedence graph
is generated is covered in Section 6.1. A precedence graph for a task t ∈ T is denoted as

PG(t ) :=<V,EP , w, o > .

While the nodes follow the same definition as in the dependency graph, the edges
have a different meaning. The set of edges specify precedences EP = C ⊆ (V×V). A
precedence ck ∈C indicates the requirement that src(ck) = ra runs before dst(ck) = rb is
executed. All precedences have an origin o : C→{ f , u, d} that denotes the reason why
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Figure 5.4: Example Dependency Graph with boxes as runnables, dashed edges as
communication dependencies and solid edges for functional dependencies.

this precedence exists. It can either be because of functional requirements f , because
of strictly undelayed communication u or due to strictly delayed communication d .
There can only be one precedence between two runnables. Hence we often notate a
precedence from ra to rb as ca,b . As summarized in Table 5.2 and illustrated in Fig-
ure 5.5, the graph notation is similar to the dependency graph. Again, the nodes show
the runnables of the task. The solid edges EP illustrate the precedences ck ∈C with its
origin o annotated to the edges. The precedences of the graph correspond to the order
of the runnables inside a single job instance of a task. When the graph contains cycles,
no order of execution can be created. Without an order of execution, the task cannot
be implemented. Hence, the precedence graph does not allow cycles.

Table 5.2: Notations of the Precedence Graph

Description Symbol Visualization

Node v ∈V boxes
Precedence edge e ∈ EP directed solid edges
Node weight w(v ∈V) size of node box
Precedence origin o(e ∈ EP ) —
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Figure 5.5: Example Precedence Graph with boxes as runnables and solid edges for
precedences.

5.2.3 Partitioning Information
The Partitioning Information adds properties to a dependency or precedence graph.
The partitioning information is created by the Splitting component and represents
a solution to the parallelization problem. This information is also used during the
Concurrency Analysis to identify potential inherent concurrency. The Partitioning
Information Part is defined as follows:

Part :=< m,P,S >

Figure 5.6 shows an example dependency graph with and without the additional
properties from the partitioning information.

The first additional property is the mapping function m : V→ T that describes the
affiliation of each node v ∈V to a task partition tt , j ∈ Tt . The mapping function m is
shown as boxes around nodes that are labeled with the corresponding task partition.

The strict total order P(V,≺) represents the order of execution for all runnables of
a task. This totally ordered set P is represented as indices to the nodes.

There may be the need for synchronization between task partitions which is denoted
by S ⊆ (V×V) with a single synchronization s ∈ S . Similar as with dependencies,
the source runnable of a synchronization is denoted as src(s) = ra and destination
runnable as dst(s ) = rb . It requires a runnable ra with a synchronization s a,b to only be
activated after rb has finished execution. As a synchronization is invoked at a specific
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point in time, it is also called a synchronization point. The synchronization points S
are illustrated as double edges in the graph.

This illustration of the partitioning information can be used as an overlay for the
dependency and precedence graph. Hence, this overlay creates a partitioned dependency
graph P DG(t ∈ T) := < DG(t ), m,P,S > as shown in Figure 5.6b and a partitioned
precedence graph P PG(t ∈ T) := < PG(t ), m,P,S >.
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Figure 5.6: Example dependency graph with and without partitioning information.

5.3 Dependency Graph Extraction
The Dependency Graph Extraction component is the entry point of every workflow
in our approach. Input for this component is the application model and a selected task
t . From the legacy application model we know the set of runnables Rt , all correspond-
ing label accesses and the order of execution for the given task. Using this data, the
component extracts all information that relates to the concurrency of a task. We call
this information the dependencies. There are two kinds of dependencies that relate
to the concurrency inside a task, namely the communication and functional depen-
dencies. In the following sections we elaborate the process of extracting both kinds of
dependencies.
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5.3.1 Communication Dependencies
The huge amount of communication between the runnables of a task is a serious limita-
tion for concurrency. To maintain the same behavior of the legacy implementation, the
data has to be send and received by the runnables in the correct order but also from the
same job instance. We model these requirements using communication dependencies
between runnables of the task. A communication dependency is directed, has a source
and destination runnable and a criticality. When a communication dependency qk is
extracted from the legacy application model, its flag is set to σ(qk) = f as no domain ex-
pert has evaluated it before. The extraction depends on the label accesses and the order
of execution. Hence, there are three different kinds of communication dependencies,
the forward, backward and loop communication dependency.

A communication dependency is forward if runnable ra writes to a label dv and is
executed before runnable rb reads from it. In other words, ra produces data which rb
consumes afterwards, as shown in Figure 5.7a. It is not important when rb consumes
the label’s value, as long as it is after ra finished execution within the same job instance.
In terms of LET, runnable ra writes to a copy of label dv that is located in the local
memory of the job instance. The written value is immediately available to all other
runnables inside the same job. Hence, runnable rb that is executed after ra can read the
updated value within the same job instance. The timing of the legacy application model
states that the communication has to be strictly undelayed. In this case, the extraction
component adds a communication dependency qk with label(qk) = dv and γ (qk) = 0
to the dependency graph. The source runnable of communication dependency qk is ra
and the destination runnable is rb . Figure 5.7 illustrates the extraction from the legacy
application model to the dependency graph.

t
ti ra rb

dv

w r

(a) Legacy Application Model

ra rb

dv , 0

(b) Dependency Graph

Figure 5.7: Extraction of a forward communication dependency from two runnables.
Runnable ra writes to label dv while ra reads from the label afterwards.

In case runnable ra writes to a label dv and is executed after rb , then it is a backward
communication dependency. This dependency has to ensure that rb reads the value of
dv before ra overwrites it. This is illustrated in Figure 5.8a. In terms of LET, runnable
ra writes its value to a copy of label dv in the local memory of the job instance Ji ,k .
But runnable rb was already executed in Ji ,k such that the runnable has to read the
updated value of dv in the next job instance Ji ,k+1. Hence, all label copies in the local
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memory of the job update the global labels at the end of Ji ,k . At this point in time, all
runnables of the application can read the value written by ra. Subsequently, runnable
rb reads the updated value in job instance Ji ,k+1. Between the start of job Ji ,k+1 and
execution of runnable rb , runnable ra is not allowed to be executed as it would overwrite
the label’s value. The timing of the legacy application model explicitly states that the
communication has to be strictly delayed. In this case, the extraction component adds
a communication dependency qk with label(qk) = dv and γ (qk) = 1 to the dependency
graph. The source runnable of communication dependency qk is rb and the destination
runnable is ra. Figure 5.8 illustrates the extraction from the legacy application model
to the dependency graph.
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(a) Legacy Application Model

ra rb

dv , 1

(b) Dependency Graph

Figure 5.8: Extraction of a backward communication dependency from two
runnables. Runnable rb writes to label dv in job Ji ,k which ra reads from
in the subsequent job instance Ji ,k+1.

When a runnable communicates via a label with itself, it is called a loop communi-
cation dependency. Hence a runnable ra performs a write access to label dv as well as a
read access to the same label. This is shown in Figure 5.9a. Obviously, such a commu-
nication makes only sense with a strictly delayed timing. Hence, runnable ra updates
the label in job instance Ji ,k to make use of it in the subsequent job instance Ji ,k+1. This
communication behavior is very similar to the one of backward communication de-
pendencies. In this case, the component adds a communication dependency qk with
label(qk) = dv and γ (qk) = 1 to the dependency graph. The source and destination
runnable of communication dependency qk is runnable ra. Figure 5.9 illustrates the
extraction from the legacy application model to the dependency graph.

To extract these communication dependencies QC for the dependency graph, we
created Algorithm 1. The input for the algorithm is a single task t from the legacy
application model. The algorithm iterates through the call sequence of the task and
checks if a combination of runnables (line 2–3) reads and writes to the same label (line 4).
If they do, the order of execution is important and decides the direction and criticality
of the dependency as explained before.
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Figure 5.9: Extraction of a loop communication dependency from a single runnable.
Runnable ra writes from and also reads to label dv .

Algorithm 1 Extraction of communication dependencies from a legacy task.

1: procedure E X T R AC TC O M M D E P S(tk ∈ T)
2: QC ←∅
3: n← numRunnables(ti )
4: for all i ← 1, n and ri ∈ tk do
5: for all j ← i , n and r j ∈ tk do
6: if ∃dv ∈D : ri writes to dv and r j reads from dv then
7: if ri ≺ r j then
8: add qk with src(qk) = ri ,dst(qk) = r j ,γ (qk) = 0 to QC

9: else if ri ≻ r j then
10: add qk with src(qk) = r j ,dst(qk) = ri ,γ (qk) = 1 to QC

11: else if r j == ri then
12: add qk with src(qk) = ri ,dst(qk) = ri ,γ (qk) = 1 to QC
13: end if
14: end if
15: end for
16: end for
17: return QC
18: end procedure

5.3.2 Functional Dependencies
Besides communication dependencies, there are other dependencies that correlate with
the concurrency inside a task. We call these dependencies functional. Functional depen-
dencies specify a precedence relationship between a source and a destination runnable.
Hereby, the source runnable has to finish execution before the destination runnable is
allowed to start its execution due to some functional requirement. It is important to
note that such requirements are specified by an expert. These requirements are verified,
hence the status flag for these dependencies is set to σ(qk) = t and required for a correct
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functional behavior. Due to their relation to the functionality, they typically originate
from earlier phases (e. g., requirements) of the application design. However, from our
experience and case studies based on variations of a single Engine Management System
(EMS), the amount of functional dependencies specified that way has been very small.
Most functional dependencies that occurred in our case studies stemmed from the error
management system of the EMS. Nevertheless, if functional dependencies are specified,
they have to be added to the dependency graph as well. In this case, the extraction com-
ponent adds a functional dependency qk ∈QF for a precedence requirement between
ra and rb to the dependency graph. The source runnable of this dependency qk is ra
and the destination runnable is rb .

A special case where functional dependencies are needed and have to be extracted
from the legacy application model is when having multiple writers. A motivational
example for this special case is shown in Figure 5.10. The example shows four runnables
with two runnables containing functionality for a separate mode. Runnable r2 for
mode 1 and r3 for mode 2. Both runnables read the selected mode that is set by runnable
r1, process the data according to their mode and write the result back to the same label
that is read by the actuation runnable r4. Here, a functional dependency has to be
created to ensure the order of writing from the legacy application model, shown in
Figure 5.10a. Without such a dependency, as shown in Figure 5.10c, r3 could write to do
before r2 and may alter the behavior of the system. In the legacy application, r2 always
writes to do before r3 does. This behavior has to be represented in the dependency
graph. Hence, we create a functional dependency between r2 and r3 to ensure the order
of writing. This is called a multi-writer protection and shown in Figure 5.10c.

In general, there are multi-writers when two runnables ra and rb write to the same
label dv inside a task and another runnable reads from that label dv that is executed after
the two writers. Such a multi-writer communication is usually considered bad practice.
The reason is that it is unspecified which writing runnable actually writes to the label
during execution. Neither runnable could write to the label, the latter runnable could
overwrite the label or the label could be written by only the first runnable that is
executed. Thus, it creates some kind of race condition which results in an unspecified
design. Multi-writers are therefore typically forbidden by design guidelines. Because it is
unknown to us which scenario is the actual preferred scenario, a functional dependency
has to be created to preserve the order of writing. The general case to extract these
functional dependencies for multi-writers is as follows. Let rn be the last writer to dv
in a sequence of writing runnables rn−k . . . rn. Then a functional dependency is needed
from every writer rn−k that is executed before rn to rn. Algorithm 2 shows how
functional multi-writer dependencies are extracted from the legacy application model.
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(a) Legacy application model.
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(b) Dependency Graph without multi-writer protection.
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(c) Dependency Graph with multi-writer protection.

Figure 5.10: Extraction of functional dependencies for multi-writers using the exam-
ple of a mode selection.

5.4 Summary
In this chapter we have presented our novel parallelization concept and its integration
into existing automotive development toolchains. We introduced the concept compo-
nents that create workflows to parallelize a legacy task. Starting point of a workflow is
the Dependency Graph Extraction that creates a dependency graph. The dependency
graph is the fundamental graph structure that contains all information related to con-
currency and abstracts from the application model. Based on this graph, the Splitting
generates a precedence graph to evaluate the level of parallelism by exploiting the avail-
able concurrency in the task’s design. The result of the Splitting is the Partitioning
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Algorithm 2 Extraction of multi-writer dependencies from a legacy task.

1: procedure E X T R AC T F U N C D E P S(ti ∈ T)
2: QF ←∅
3: n← numRunnables(ti )
4: for all i ← 1, n and ri ∈ tk do
5: for all j ← 1, n and r j ∈ tk do
6: if ∃dv ∈D : ri ≺ r j and both ri and r j write to dv then
7: add qk with src(qk) = ri ,dst(qk) = r j to QF

8: end if
9: end for

10: end for
11: return QF
12: end procedure

Information that represents a parallel solution. Our concept can further increase the
task’s concurrency through the relaxation of suitable dependencies. These suitable de-
pendencies are determined by the Concurrency Analysis and evaluated by a domain
expert in the Dependency Analysis. The workflow is iterative and finishes when the
parallelization goals for the given legacy task are met.
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Splitting a task is the core component of our parallelization concept. It maps runnables
to parallel task partitions based on the concurrency of the task’s design. Our splitting
component provides two modes, namely unsynchronized and synchronized, to split a
task. When splitting unsynchronized, the resulting task partitions are fully decoupled
whereas the task partitions are still dependent on each other when splitting synchro-
nized.

Unsynchronized

The resulting task partitions when performing unsynchronized splitting are fully de-
coupled such that each task partition communicates based on the LET semantic. Each
task partition complies with the Logical Execution Time (LET) requirements and is
therefore a LET task that can be distributed freely. Figure 6.1 illustrates this. Any com-
munication of a task partition is fully managed by LET. The dependencies from r1 to
r2 and from r3 to r4 require a strictly undelayed communication via the labels d1 and d2.
Respecting the LET semantic, this data is therefore transfered via the task’s local copies
of the labels d1 and d2. For any dependencies that require stricly delayed communication
between runnables of the same task, the data of the corresponding label is transfered at
the LET boundaries. At the LET boundaries, the communicated data becomes globally
available and can be read by any other runnable independent of the task. In case of a
strictly delayed communication dependency, the receiving runnable reads the data in
the subsequent job instance. Similar to the strictly delayed intra-task communication,
the single dependency from r2 to r3 also requires a strictly delayed communication but
to a different task. This dependency represents an inter-task communication. The data
of label d3 is also transfered at the LET boundaries, yet the receiving runnable r3 reads
the data in the subsequent job instance inside of task t1,2. Hence, both task partitions
are executed within their respective LET. Note that the unsynchronized splitting mode
does not allow any strictly undelayed communication between the task partitions.
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Figure 6.1: Example of resulting task partitions when splitting unsynchronized in
terms of LET.

Synchronized

The resulting task partitions for synchronized splitting can be executed in parallel
but are still dependent on each other. While all task partitions together form a LET
task, the inter-task partition communication does not comply with the LET semantic
due to synchronization between the partitions. Figure 6.2 shows the resulting task
partitions after splitting in synchronized mode. Any intra-task communication of the
task partitions that is either strictly delayed or undelayed is handled by LET. This is
similar to unsynchronized splitting. The major difference is that strictly undelayed
communication is also allowed between task partitions. Both task partitions hereby
share the same local memory of the legacy task (here: t1). This is not LET compliant and
any such communication needs to be synchronized, yet a higher level of concurrency
can be exploited in this splitting mode. In the illustrated example, the requirement of the
legacy task is that runnable r2 communicates strictly undelayed with r4 via d4. Thus,
when mapping the two runnables to different task partitions, this communication
has to be synchronized to ensure this requirement. Due to synchronization, the task
partitions are dependent on each other to some degree. This is especially important
when a preemptive task scheduler is used. Should the task partition that contains the
source runnable of a synchronization be preempted, the other task partition has to
wait as well.

When specifying the parallelization goals for our concept, one can define which
splitting mode should be performed. In general and for both splitting modes, LET en-
sures that all task partitions communicate consistently and deterministically. Note that
only the strictly undelayed and delayed communication dependencies are of interest
to this component. Relaxed communication dependencies may or may not be delayed
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Figure 6.2: Example of resulting task partitions when splitting synchronized in terms
of LET.

and thus do not provide any requirement to the splitting. The result produced by the
Splitting component is the partitioning information Part.

In the following we start by presenting the generation of the precedence graph. The
precedence graph is generated from the dependency graph and the basis for any splitting
mode. Then we describe the unsynchronized and synchronized splitting modes in
detail.

6.1 Precedence Graph Generation
The first step of the splitting component is to create the precedence graph from the
dependency graph. The graph transformation generate : DG → PG is performed by
Algorithm 3 and works as follows: First, all nodes V and node weights w are copied
from the dependency graph to the precedence graph. Then the algorithm iterates over
all communication dependencies that is the set of edges EC in the dependency graph. It
creates precedences for each dependency qc ∈ EC depending on its criticality γ (qc). If
the dependency is strictly undelayed, the order has to be ensured such that the destina-
tion runnable always receives the updated value within the same job instance. Hence,
a precedence ca,b from the sending runnable ra to the receiving rb is created. On the
other hand when the dependency is strictly delayed, a precedence has to ensure that the
destination runnable rb receives the updated value from runnable ra in the following
job instance. This is ensured by creating a precedence c b ,a, i. e., runnable rb always
has to run before ra. With a relaxed criticality, the communicated data can be delayed.
When a delay is allowed then the destination runnable becomes independent of the
order of execution inside the task. It can either receive the data from the current job or
from the previous job instance. Hence, no precedence is created for a relaxed communi-
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cation dependency. By the definition of functional dependencies these are precedence
requirements and hence are added to the precedence graph as is.

Algorithm 3 Generation of the precedence graph from a dependency graph.

1: procedure G E N E R AT E(DG :=<V,EC ,EF , w,γ ,σ >)
2: EP ←∅
3: for all qc ∈ EC do
4: if γ (qc ) = 0 then
5: add ca,b with ra = src(qc ), rb = dst(qc ) and o(ca,b ) = u to EP
6: else if γ (qc ) = 1 then
7: add c b ,a with ra = src(qc ), rb = dst(qc ) and o(ca,b ) = d to EP
8: else if γ (qc ) = 0..1 then
9: no precedence needed

10: end if
11: end for
12: for all q f ∈ EF do
13: add ca,b with ra = src(q f ), rb = dst(q f ) and o(ca,b ) = f to EP

14: end for
15: return PG :=<V,EP , w, o >
16: end procedure

Figure 6.3 shows an example of the precedence graph generation process. There
are five communication dependencies and one functional dependency in the given
dependency graph of Figure 6.3a. The two dependencies q1,2 and q2,4 are specified
with the timing strictly undelayed. Hence, this order has to be maintained and two
precedences with the same direction are added to the precedence graph in Figure 6.3b.
The dependency of source and destination r2 is a strictly delayed loop communication
dependency. No precedence is required for this dependency. The same holds for relaxed
communication dependencies such as the one between r1 and r4. Such a dependency
does not create any precedence requirements. The dependency between r3 and r4 is
strictly delayed. Hence, the order of communication is that r4 always has to receive the
value written by r3 from the preceding job instance. This requirement is enforced by a
precedence in the opposite direction of the dependency. Besides the communication,
the functional dependency between r1 and r4 is added to the precedence graph as is. One
might note that the precedence c1,4 is redundant because the order is already specified
by c1,2 and c2,4. The reason is that the precedence relation is transitive. The resulting
set of precedences creates a directed acyclic precedence graph, as shown in Figure 6.3b.

There can only be one precedence between two runnables. If a precedence depen-
dency is added that has the opposite direction, the component cannot split the task.
Hence, the precedence graph becomes invalid when there are edges in the opposite
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Figure 6.3: Example precedence graph generation. Based on the dependency graph
with two strictly undelayed, two strictly delayed, one relaxed commu-
nication dependency and one functional dependency, 4 precedences are
generated.

direction for each pair of runnables. If there are precedences in the opposite direction,
the precedence graph becomes cyclic. A cyclic precedence graph is not schedulable and
thus cannot be used for splitting as the component uses scheduling methods.

For the splitting of a task, the precedence graph has to be free of cycles. Precedence
graphs that are extracted during late phases of the development lifecycle are always
acyclic. When extracting the dependency graph from the application model, the existing
order of execution already prevents the generation of cycles. However, cycles may be
created during early phases of the development, i. e., when communications between
runnables are specified and there isn’t an execution order yet. During the precedence
graph generation we check for such cycles and provide feedback on how to resolve
cycles with reduced effort. Cycles can be resolved in different ways by the domain
expert e. g., by relaxation, changing communications or adjusting the execution order.

To detect cycles, we use some properties of the directed graph [MS08]. In a directed
graph G = (V , E), a path in graph G is a sequence of nodes to get from an origin node
to a destination node by traversing the direction of edges in the graph. A sequence
is denoted as a list of nodes e. g., [ra, rb , . . .]. A path becomes elementary if no node
appears twice in this sequence. A cycle is then a path where the first and last nodes
are identical and is elementary if no node but the first and last appears twice. For our
purpose, we are interested in the elementary cycles that are distinct to each other, i. e.,
that are not permutations of each other [Joh75].

In general, a precedence can be part of multiple cycles in a precedence graph. The
set of precedences that are part of a cycle is called Feedback Arc Set (FAS). To remove
cycles with minimal effort, it is important to find the smallest set of precedences, i. e.,
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the Minimum Feedback Arc Set (MFAS). Given the precedence graph PG, the MFAS
is the set with the fewest number of edges, i. e., precedences which, if removed, make
the graph acyclic.

In general, finding the MFAS is an NP-hard problem [GJ90]. To solve the MFAS
problem, there is a heuristic from Eades et al. [ELS93]. The heuristic is inspired by the
selection sort algorithm and time-bounded by the number of nodes (runnables) and
edges (precedences) O (|V|+ |E|).

Yet, if a precedence constraint is not part of MFAS, it can still be part of a cycle that
has to be resolved. To find and resolve these cycles with minimal effort, we create the re-
lation between the number of cycles a precedence is a member of to the total number of
cycles in the precedence graph. To enumerate the distinct elementary cycles in a prece-
dence graph we use the algorithm by K. A. Hawick and H. A. James [HJ08]. The algo-
rithm by K. A. Hawick and H. A. James is a variation of Johnson’s algorithm [Joh75]
that can be applied to multigraphs, recognizes self-loops and can be implemented effi-
ciently. The complexity of this algorithm is time bounded by O ((|V|+ |E|)(|C |+ 1))
where C is the number of cycles and space bounded by O ((|V|+ |E|)).

Based on the set of distinct elementary cycles a precedence ca,b from the precedence
graph PG is evaluated. Let VH J (PG) be the set of cycles of a precedence graph found by
the algorithm of K. A. Hawick and H. A. James. Then |VH J (PG)| denotes the number
of total cycles in the graph. Additionally, the function cycles : (ca,b ∈C,VH J (PG))→N
counts the number of cycles the precedence ca,b is a part of. It counts by looking for the
sequence of [ra, rb ] in the set of cycles. This number determines the number of cycles
the precedence can resolve if the corresponding dependencies are removed. To rank
the precedences according to their potential to remove cycles, we calculate the ratio of
the number of cycles the precedence would resolve to the total number of cycles in the
graph:

rank(ca,b ) =
cycles(ca,b ,VH J (PG))

|VH J (PG)|
, |VH J (PG)| ̸= 0 . (6.1)

The rank is zero if the precedence is not part of any cycle. The rank is 1 for prece-
dences that are part of MFAS and thus highly beneficial to resolving cycles. Values
inbetween are relative to the number of cycles in the graph.

Figure 6.4 shows an example precedence graph PG with five cycles: [r1, r2], [r5, r6],
[r1, r4, r2], [r6, r3, r5] and [r1, r4, r5, r6, r3, r2]. All cycles can be resolved by removing the
corresponding dependencies of c2,1 and c5,6. Hence, in this example the rank for these
precedences is 1, as they are part of MFAS. The rank for all the others are annotated to
the precedences.
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Figure 6.4: Example precedence graph that contains five cycles. Each precedence is
annotated with the result of rank.

6.2 Unsynchronized Splitting
The goal of the unsynchronized splitting mode is to create task partitions that are com-
pletely decoupled, independent and unsynchronized. The idea of unsynchronized split-
ting is to find groups of runnables that can be distributed freely among the tasks parti-
tions according to their precedences. These groups of runnables are part of the available
concurrency of a task. However, any dependency limits the available concurrency as
the runnables have to be executed in the given order and are thus not concurrent to
each other. This is especially true for strictly undelayed dependencies and functional
dependencies. Such dependencies requires that the resulting precedence is ensured and
that the source and destination runnables are mapped to the same task partition. The
requirements for strictly delayed dependencies are fortunately a bit more loose. The
source and destination runnables can either be mapped to the same task partition or
can be mapped to different task partitions. As there are no precedences generated for
relaxed communication dependencies, there are also no requirements to the mapping.

The Splitting component in the unsynchronized mode works as follows. The input
for the component is the dependency graph of a given task DG(t ) and a parallelization
goal g . The parallelization goal g consists of the number of desired task partitions as
well as the desired speedup. The number of task partitions to achieve is a fixed num-
ber k > 1, n ∈ N that is often set based on requirements from other parts within
the development lifecycle. The speedup measures the achieved parallelism of the split-
ted task partitions in relation to the single legacy task. The speedup does not come
naturally in mind when considering real-time systems, because processing the same
problem faster, does not result in a better system. Real-time systems generally require
the completion of computations in the correct order before deadline. However, for our
approach, the speedup is an important indicator of how much additional functionality
can be integrated after the task is splitted. Splitting a task into multiple task partitions
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frees up capacity for additional dependent functionalities within the task’s LET in
the corresponding period. The speedup is defined as the fraction of the makespan of
the non-splitted legacy task makespanSC to the makespan of all splitted task partitions
makespanMC . The makespan is the overall completion time of a task or task partition.
Thus, the speedup is defined as

speedup=
makespanSC

makespanM C

where makespanSC is the sum of the Observed Worst-Case Execution Time (oWCET)
of all runnables inside the legacy task. The makespanM C is the overall completion time,
i. e., the finish time of the last runnable in any task partition.

Using this input, the steps to split unsynchronized are:

1. Generate the precedence graph from DG(t ).
2. Search for connected components.
3. Merge connected components to create task partitions.

The first step of generating the precedence graph was already discussed in Section 6.1.
Based on the resulting precedence graph we search for connected components in

the second step. Connected components represent the groups of runnables that can be
distributed freely among the task partitions. These components of runnables only have
undelayed or functional precedences inside the component and only delayed or no prece-
dences to other components. To find connected components we utilize an algorithm
from the well-known Java Universal Network/Graph Framework (JUNG) [OFW+05].
The algorithm iterates over all nodes of the precedence graph and performs a breadth-
first search for each unvisited node to find connected nodes in the corresponding neigh-
borhood. It hereby ignores all delayed precedences. The runtime of the algorithm for
our precedence graphs is upper bounded by O (|V|+ |E′P |),E

′
P = ∀ck ∈ EP : o(ck) ̸= d .

Figure 6.5 illustrates an example precedence graph of a task t1 with five runnables
and three precedences. The precedence edges are annotated with the origin o. Using
our algorithm, there are three connected components found in this precedence graph.
The first component containing runnable r1 and r2 are connected by an undelayed
precedence but have no precedence relation to other components. The second compo-
nent with runnable r3 and r4 are also connected by an undelayed precedence but r4
also has a delayed precedence relation to r5. Runnable r5 forms the third component
and has a delayed precedence relation to the second component.

In the last step, we merge the resulting connected components to find a solution
for the given parallelization goal g . For this purpose, an adapted first-fit decreasing
bin-packing algorithm is used. The algorithm packs the task partition bins ti ,1, . . . , ti ,k
provided by the number of task partitions k in g with the connected components
m1, . . . , ml from the graph search. The sum over all runnables’ weights of a component
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Figure 6.5: Weakly connected components of a task t1 with 5 runnables and 3 com-
munication dependencies.

ml is used as the size wl for the packing. The first fit decreasing algorithm is a greedy
strategy that packs the components one after another in decreasing order of their size
into the first task partition bin they fit in. The runtime for this algorithm is upper
bounded by O (l log l ), with l being the number of connected components [JDU+74].
The components can be distributed among the task partition bins freely and also be
rearranged inside the bins as long as the order inside the component is maintained.
This order is specified by the precedence graph. However, when a component with a
delayed precedence to another component is packed into the same task partition bin,
the precedence has to be ensured. These precedence checks and the potential reordering
inside a task partition bin is performed after the bin-packing.

Using the example from Figure 6.5, the task partitions are created as follows. We
assume that the number of task partitions in the parallelization goal g is set to k = 2 and
all runnables have the same weight. Hence, the three connected components are packed
into two task partition bin. Bin ti ,1 gets the first component with runnables r1 and r2.
The second bin ti ,2 gets the second component containing runnables r3 and r4. The last
component with runnable r5 is then packed to bin ti ,1. Here, no reordering inside the
bins has to be done, as there are no delayed precedences among the components inside
a bin. If the last component would have been packed to bin ti ,1, the reordering had to
ensure that r5 is always executed after the component with r1 and r2. In this example,
the resulting speedup is 1.67.

Based on the resulting task partitions bins and the precedence graph, the partitioning
information Part can be created. The mapping m of runnables to a task partition is
derived from the contents of the bins. The order of execution P is adapted from the
precedence graph for each connected component and the order of the components
inside each bin. As the connected components are concurrent to each other, the order
of the components in P can be arbitrary. And finally, the set of synchronization points
S is empty because the task partitions are fully independent.
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6.3 Synchronized Splitting
If the parallelization goal cannot be reached by the unsynchronized splitting our re-
quirements to create fully independent task partitions has to be loosened up. The
available concurrency given by the task’s design is simply not enough to create fully
independent task partitions and simultaneously meet the parallelization goal. In con-
trast to unsynchronized splitting, we allow strictly undelayed communication between
the resulting task partitions in the synchronized splitting mode. By loosening the re-
quirements for independent task partitions we can increase the solution space to find
concurrent task partitions. Yet, allowing strictly undelayed communication raises the
need for synchronization. Synchronization is needed to ensure the order of execution
and communication among the parallel task partitions. With the splitting component
using the mode synchronized, we can achieve a higher degree of parallelization with
as little synchronization as possible. Similar to unsynchronized splitting, the goal is
to create multiple task partitions from a single legacy task that are as independent as
possible.

In this section, we propose a process to split complex legacy tasks with a high number
of interdependent runnables. The main advantage of this novel task splitting process
over similar approaches is that it can handle runnables with widely varying execution
times and oWCETs. Hence, it can deal with the current state of practice in the automo-
tive where software is typically not designed to allow tight WCET bounds and sporadic
misses of task deadlines are often tolerable [ZH15].

Input for the splitting component is the dependency graph of a given task DG(t )
and a parallelization goal g . Using this input, synchronized splitting follows three steps
which we discuss in the next subsections in detail:

1. Generate the precedence graph from DG(t ).
2. Split the task into multiple task partitions respecting the precedences, accord-

ing to the parallelization goal and based on a static makespan-centric allocation
heuristics (see Section 6.3.2).

3. Generate necessary synchronization points to ensure precedence constraints be-
tween task partitions (see Section 6.3.3).

6.3.1 Objectives
Similar to the unsynchronized mode, the parallelization goal that contains the objec-
tives is input to the Splitting component. It contains the number of desired task parti-
tions and the speedup that should be reached (discussed in Section 6.2). The number of
task partitions is defined as n > 1, n ∈N. The speedup is the fraction of the makespan
of the legacy task to the makespan of all splitted task partitions. It is important to note
that the makespan includes possible idle or waiting times that may appear due to syn-
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chronization between the task partitions and is especially important in this splitting
mode.

As mentioned before, introducing synchronization between task partitions comes
at a cost. We therefore use the brittleness as an additional metric for synchronized
splitting to compare solutions against the parallelization goal. The actual cost that
comes with each synchronization point is that the statically calculated speedup may
degrade when the task partitions are executed in parallel. These potential costs of a
single synchronization point are measured by the brittleness while the overall brittleness
measures the costs of a whole splitting solution.

The brittleness is based on the gradient metric. To motivate the gradient metric
we illustrate in the following how and why the speedup can be degraded. Figure 6.6
shows a precedence graph example where a runnable ra has to precede runnable rb .
This is specified by the precedence ca,b . Due to other precedences not illustrated here
for brevity reasons, the two runnables are mapped to different task partitions, ra to
t1,0 and rb to t1,1. In such a case of inter-task partition precedences and thus commu-
nication, synchronization has to be introduced to enforce this behavior. Hence, the
precedence ca,b has to be backed by a synchronization point s a,b . Until this point, the
task partitions and the synchronization is statically determined. In contrast, the top
half of Figure 6.6 shows the execution of all runnables at their respective oWCET or
better. As one can see, the calculated speedup of 2.0 for the two task partitions holds
as long as the runnables execute at oWCET or better. Even the synchronization does
not add any additional waiting time in this scenario. Note that we neglect the constant
overhead that typically comes with synchronization in this example. On the other
hand, the bottom half of Figure 6.6 shows a oWCET overrun of a runnable in the task
partition t1,0. Again, Observed Worst-Case Execution Times are the state of practice in
the automotive domain. As there are no safe and exact WCET available, it is possible
that runnables overrun their measured and observed WCET. In such a case, the syn-
chronization s a,b takes action such that rb has to wait for its execution until ra finished.
At the synchronization point s a,b , the additional time that the destination task parti-
tion t1,1 has to wait is directly added to the overall makespan. The additional waiting
time is called a makespan penalty δ of the synchronization point s a,b . In this scenario,
the runnable before ra overruns its oWCET by 2.5 times and the statically calculated
speedup of 2.0 degrades to 1.78.

But there are also synchronization points that are, to some degree, more robust
against oWCET overruns. For example, Figure 6.7 shows in the bottom half that de-
spite the overrun, there is no makespan penalty. Still, when the first runnable in task
partition t1,0 overruns its oWCET and takes twice the time for its execution, the syn-
chronization point s a,b does not lead to additional waiting times. The makespan of t1,0
increases but the resulting overall makespan for both task partitions is the same as in
both cases. Hence, also the statically calculated speedup of 2.0 is maintained.
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Figure 6.6: Scenario where the synchronization point s a,b with a gradient of zero im-
mediately results in a makespan penalty δ in case of an oWCET overrun.

The difference between the examples in Figure 6.6 and Figure 6.7 is the gradient of a
synchronization point. The gradient expresses an important factor to determine how
likely it is that a synchronization point will add extra waiting time to the makespan
and thus degrade the speedup. The gradient of a synchronization point is the time
the runnables of a source task partition can overrun its oWCET without creating a
makespan penalty. The gradient is calculated as

grad(s a,b ) = ST (dst(s a,b ))− F T (src(s a,b ))

where ST is the start time of the destination runnable of s a,b and F T is the finish time
of the source runnable of s a,b . As depicted in Figure 6.6, the gradient of synchronization
point s a,b is zero such that any oWCET overrun results in a makespan penalty. On the
other hand, the gradient of synchronization point s a,b in Figure 6.7 is greater than zero,
i. e., the runnables of task partition t1,0 can overrun the oWCET by up to the gradient’s
value without creating a makespan penalty. It is important to note that any oWCET
overrun degrades the performance of a task, irrespective of being executed sequentially
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Figure 6.7: Scenario where the synchronization point s a,b with a gradient of > 0
creates no makespan penalty δ in case of an oWCET overrun.

or in parallel. However, when parallelizing a task using synchronized splitting, the
introduced synchronization could potentially degrade the performance even further.

As the gradient is an absolute metric, it has always to be seen in relation to the task
partitions. Therefore, the gradient is used to compute the brittleness. The brittleness is
the normalization of the gradient in relation to the makespan of the task partitions and
represents the costs of a synchronization point. By reducing the brittleness one can
increase the robustness of the splitted tasks toward oWCET overruns. The brittleness
of a synchronization point s a,b is defined as

brittleness(s a,b ) = (
grad(s a,b )

makespanM C

− 1)k (6.2)

while k ≥ 1 ∈ N. The brittleness function with e. g., k = 4 is plotted in Figure 6.8.
The y-axis measures the brittleness of a synchronization point s a,b while the x-axis
represents the gradient in ratio to a fixed makespan. The brittleness is zero when the
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gradient of s a,b equals the makespan. This is the best possible case when synchronizing.
The oWCET overrun of a single runnable would have to be greater than the overall
makespan to result in a makespan penalty. However, a gradient that equals the makespan
is only possible when both runnables have an oWCET of zero and are executed at the
beginning and end of the respective task partition. A brittleness of zero is therefore only
a theoretical value. The brittleness of a synchronization point in a splitting solution
increases depending on k while the gradient decreases. In case the gradient is zero, the
brittleness is defined to be at 1. This is the worst case for a synchronization point as
any oWCET overrun directly results in a makespan penalty. Depending on the system
and domain, the synchronization costs might not increase linearly with the gradient.
Hence, the exponent k is used to adjust this correlation. Based on our experience with
synchronization in an EMS, we will use k = 4 throughout this thesis.

brittleness= ( grad(sa,b )
makespanM C
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Figure 6.8: Trend of the brittleness in relation to the gradient. The y-axis measures
the brittleness of a synchronization point s a,b , the x-axis measures the
gradient in ratio to a fixed makespan.

To compare different splitting solutions with each other and the parallelization goal,
we introduce the overall brittleness. The lower the overall brittleness the more robust
is the splitting solution against oWCET overruns. It is defined as the sum over the
brittleness of all synchronization points S in a given splitting solution:

brittleness(S ) =
∑

sk∈S
brittleness(sk) (6.3)

In future work we would also like to include the probabilities that a runnable exceeds
its worst-case execution. The brittleness metric would benefit from current research on
Probabilistic Worst-Case Execution Times as it becomes more accurate in determining
when overruns might happen.
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6.3.2 Mapping

In this section we explain how a task is split by mapping the runnables of a single legacy
task to multiple parallel task partitions. The splitting is based on the precedence graph
extracted in Section 5.3 and uses an algorithm based on list scheduling to reach the
parallelization goal. The algorithm has two major phases, the prioritizing phase and the
selection phase.

Starting with the prioritizing phase, our algorithm assigns a priority to each runnable.
These priorities create a topological order that ensures all precedences of the PG. We
use Highest Level First with Estimated Times (HLFET) [Hu61] for that purpose which
is a widely-used static makespan-centric list scheduling heuristic. Hereby, the HLFET
algorithm uses the longest path from a runnable ri to the exit runnable that is called
b− level as shown in equation 6.4. In our case, the weight wi is the observed Worst-Case
Execution Time (WCET) of ri . The b− level is computed recursively by traversing the
graph starting from the exit runnable with b− level(rexit) = wexit. The resulting list that
is sorted by its b− level ensures all precedences of the PG.

b− level(ri ) = wi + max
r j∈succ(ri )

{b− level(r j )} (6.4)

In the following selection phase, a task partition for each runnable is selected to which
the runnable is mapped. Hence, the first runnable of the ordered list produced by
HLFET is chosen and mapped to a task partition based on a mapping heuristic. In the
following we present three simple yet powerful heuristics to map runnables that can
be combined effectively.

We distinguish between dependent and independent runnables. A runnable ri ∈R
is dependent if it produces (or consumes) data that is consumed (or produced) via a
dependency q i , j by another runnable r j ̸= ri ∈ R. Hence, as soon as a runnable has
to precede or is preceded by another runnable, it is a dependent runnable. A runnable
ri ∈ R is independent if for all runnables r j ∈ R there is no dependency between
ri and r j . In terms of the precedence graph, if there is no precedence connecting the
runnable to another runnable, it is an independent runnable. Note that these runnables
are only independent in the context of their respective task. They can certainly con-
sume or produce data for runnables outside of this task or for themselves. However,
these dependencies are always of the kind strictly delayed and thus do not have to be
considered.

The presented heuristics can map both dependent and independent runnables. Sepa-
rating the independent runnables from the dependent ones can improve the solution
because the mapping of independent runnables can be optimized further.
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Dependent Runnables

In the following we present three greedy heuristics to map runnables to task partitions
as part of the selection phase. Each heuristic implements the function select : R,T→
T that selects a task partition for the given runnable from the set of provided task
partitions. All three heuristics are optimized toward one of the presented objectives
and can be combined.

The first mapping heuristic is earliest possible execution. Figure 6.9 illustrates the idea
of the heuristic. The selected runnable is hereby mapped to the task partition with the
smallest makespan at the time. The task partition is selected by

select(rk ,Ti ) = min
∀ti , j∈Ti

(makespan(ti , j )) (6.5)

while makespan calculates the oWCET sum over all runnables of a task partition.
From all task partitions, the one with the minimum makespan is returned by min.
When there is a tie, the smallest index of the task partition decides. In the given example,
runnable r6 is taken from the priority list and should be mapped to a task partition.
The heuristic chooses to map the runnable to task partition ti ,1 because its makespan is
smaller than ti ,0. The earliest possible execution mapping heuristic is optimized for the
speedup. This heuristic is also used as a tie-breaker for the following more specialized
heuristics.

ti ,0 r1 r2 r3

ti ,1 r4 r5 r6

r6

makespan(ti ,0) = 3

makespan(ti ,1) = 2

Figure 6.9: Mapping a runnable r6 to a set of task partitions based on the earliest
possible execution heuristic.

With the max-parents mapping heuristic, shown in Figure 6.10, the selected runnable
is mapped to the task partition with the most preceding parents. The preceding parents
for a given runnable rk is the set of precedences from runnables mapped to the given
task partition ti , j to the destination runnable rk :

parents(rk , ti , j ) = {C
l ,k : m(rl ) = ti , j } (6.6)
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Using this, the task partition is selected by the maximum number of preceding par-
ents over all task partitions:

select(rk ,Ti ) = max
∀ti , j∈Ti

(|parents(rk , ti , j )|) (6.7)

In the example from Figure 6.10, the runnable r5 is taken from the priority list and
mapped to a task partition. The heuristic selects task partition ti ,1 for r5 as there are
two parents on this task partition (c3,5, c4,5) in contrast to ti ,0 that has only one parent
(c2,5).

The max-parents heuristic reduces the cross-task partition precedences and thus aims
at reducing the number of synchronization points. In addition, a seeding phase enforces
an initial seeding on the task partitions by mapping one runnable on each partition
before all other runnables are mapped. To break ties, the earliest possible execution
heuristic is used.

ti ,0 r1 r2

ti ,1 r3 r4 r5

r5

parents(r5, ti ,0) = {c2,5}

parents(r5, ti ,1) = {c3,5, c4,5}

Figure 6.10: Mapping a runnable r5 to a set of task partitions based on the max-parents
heuristic.

With the min-distance heuristic, shown in Figure 6.11, the selected runnable is mapped
to the task partition with the smallest distance to its parents. The distance is the sum of
the oWCET of the runnables that are executed after the last parent runnable. Using the
distance, the min-distance mapping heuristic tries to increase the gradient and hence
reduces the brittleness of the cross-partition precedences.

Independent Runnables

As independent runnables have no precedences, they can be executed at any time
within the task’s LET duration. Therefore, we can use remaining idle time slots for
independent runnables. This is shown in Figure 6.12. Our method maps the inde-
pendent runnables by an adapted worst-fit decreasing heuristic [Joh74] after all de-
pendent runnables were mapped. Based on the task partition bins ti ,1, . . . , ti ,k that al-
ready contain the dependent runnables, the algorithm maps the remaining independent
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ti ,0 r1 r2

ti ,1 r3 r4 r5

r5

distance= 0

distance= oWCET (r2)

Figure 6.11: Mapping a runnable r5 to task partitions based on the min-distance
heuristic.

runnables r1, . . . , rl . The oWCET of a runnable is used as the size wl for the packing. In
the first step, the runnables are sorted in decreasing order based on their size. Then, the
greedy strategy of the worst fit decreasing heuristic maps the biggest runnable into the
biggest idle slot of all task partition bins. An idle slot is the remaining space between
two runnables in the schedule of a task partition bin. The idle slot always has to be
greater than the size of the runnable to fit. If there is no fitting idle slot available in all
task partition bins, the runnable is appended to the task partition with the smallest
makespan. The runtime for this algorithm is upper bounded by O (l log l ) whereas l is
the number of independent runnables.

6.3.3 Synchronization

In this last step of synchronized splitting, the component generates the synchronization
that ensures the inter-task precedences of the legacy task. When splitting a task, our
method maintains the precedences and thus the dependencies among the runnables.
A precedence c i , j ensures that the runnable r j can only start its execution after ri has
finished. As shown in the previous section, a runnable may execute longer than the
specified oWCET bounds. While the precedences within a task partition are guaranteed
by the order of execution at design time, the inter-task precedences have also to be
ensured at run-time. To ensure these inter-task precedences, we employ synchronization
and specifically synchronization points. As explicit synchronization at run-time is
costly in terms of resources, we have to analyze for all precedences whether they have
to be enforced at run-time by an explicit synchronization point.
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ti ,0 r1 r10 r2 r3 r11 r4

ti ,1 r5 r6 r12 r7 r8 r9

r10 r11

r12

Figure 6.12: Mapping of the independent runnables r10, r11, r12 into idle slots using a
worst-fit decreasing heuristic.

Our approach benefits from the fact that one synchronization point can guarantee
multiple other precedences. In Figure 6.13 we give an example of two task partitions
with four runnables each and three precedences. In this example, creating a synchro-
nization point for c2,7 would be sufficient to ensure also c1,8 such that r8 runs after r1. In
this case precedence c2,7 dominates c1,8. Graphically speaking, the precedence with the
minimum gradient dominates all other constraints that cross it. Again, the gradient of a
precedence c i , j is the difference from the start time of r j to the finish time of runnable
ri . We use this dominating characteristic of the precedences to reduce the number of
explicit synchronization points. This can reduce the overall synchronization overhead
when executing the task partitions in parallel.

ti ,0 r1 r2 r3 r4

ti ,1 r5 r6 r7 r8

Figure 6.13: Precedence c2,7 dominates precedence c1,8 such that only s 2,7 needs to be
synchronized which reduces the overhead.
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The crossing precedences are determined by Algorithm 4 and works as follows. A
precedence crosses another if the source runnable starts at the same time or later (succ)
and the destination runnable starts earlier or at the same time as the runnables of the
given precedence (pred). A precedence can only cross another if the direction (i. e., the
source and destination task partition) is the same. In Figure 6.13, the precedence c1,8

crosses c2,7, but not c6,4. The result of this algorithm is a sorted list of the crossing
precedences sorted based on their gradient.

Algorithm 4 Determine crossing precedences.

1: procedure C R O S S I N G(c k ,l ,C)
2: for all precedence c ′i , j ∈C do
3: if c ′i , j ̸= c k ,l and

src(c ′i , j ) ∈ succ(src(c k ,l )) and
dst(c ′i , j ) ∈ pred(dst(c k ,l )) and
m(src(c ′i , j )) = m(src(c k ,l )) and
m(dst(c ′i , j )) = m(dst(c k ,l )) then

4: cc.add(c k ,l )
5: end if
6: end for
7: return cc
8: end procedure

Using the lists of crossing precedences, we determine the dominating precedence of
the set of all precedences C by following Algorithm 5. For each precedence c i , j , we find
the crossing precedences (line 3). If there are no crossing precedences, the precedence
c i , j needs to be synchronized (line 11). If the set of crossing precedences already con-
tains a synchronization point, there is no need to synchronize another precedence with
a more loose gradient (line 5–7). In case that all crossing precedences are not synchro-
nized, pick the dominating one, i. e., the one with the minimum gradient and create a
synchronization point (line 8–9). The resulting set of synchronization pointsS is free
of deadlocks because the underlying precedence graph is directed and acyclic.

6.3.4 Integration
Due to the extra synchronization, the resulting task partitions are not fully indepen-
dent and have to be coordinated. This coordination as part of our splitting approach
is performed by one master task partition that manages itself and n other slave task
partitions. The coordination and integration of the master and slave task partitions is
shown in Figure 6.14. The figure shows a splitting solution with three task partitions.
The task partition with the longest makespan becomes the master. This way, the cores
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Algorithm 5 Create synchronization for dominating precedences.

1: procedure D O M I N AT E(C)
2: for all precedence c i , j ∈C do
3: Cx ← crossing(c i , j ,C)
4: if |Cx |> 0 then
5: if ∃s i , j ∈Sx then
6: continue;
7: end if
8: c ′k ,l ← pick-min-gradient(Cx);
9: S ← new-sync-point(s k ,l )

10: else
11: S ← new-sync-point(s i , j )
12: end if
13: end for
14: return S
15: end procedure

executing the slave task partitions are freed as soon as the respective task partition
finished its execution and has notified the master. The master task also contains code
that has to be executed before (Start) and after (End) all task partitions. The start-code
contains the barrier that has to be initialized before the slave task partitions can be ac-
tivated. Once all start-code was executed, the master activates the slave task partitions
via an inter-process activation (IPA). Typically, the slave task partitions start execution
of their runnables after a small delay. The reason for the delay is the operating system
overhead when activating tasks across cores. The master also provides a barrier at the
end of its execution for all slave task partitions to synchronize with it. As soon as a
slave task partition finishes execution, it notifies the master’s barrier and frees up the
core. Hence, the core that executes the master is blocked until it receives all notifica-
tions from the slave task partitions. In practice however, the master only has to wait
for notifications when runnables of slave task partitions overrun its oWCET or are
preempted by higher priority tasks. After the master received all notifications, optional
end-code is executed to e. g., reset variables or free up memory space.

From the implementation point of view, the runtime environment has to enforce
the synchronization points. In the automotive domain, this is typically achieved by
the OSEK operating system [OSE05]. OSEK provides extended tasks (as introduced
in Section 2.1.2) that allows a task to go into a waiting state and requires an event to
continue. Due to the significant resource overhead of extended tasks, we implemented
synchronization points using basic tasks. Our lean implementation uses events as syn-
chronization primitives that act as barriers. Hereby, the source runnable of a synchro-
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Figure 6.14: Integration of the task partitions by using a coordinating master task
that manages the slave tasks.

nization point sets a specific event after it finished execution, while the destination
runnable performs a busy wait for the event and resets it afterwards.

Obviously, the performance benefit depends on the overhead of the synchroniza-
tion implementation. Our busy waiting implementation has a very low overhead for
task splittings with a high speedup and low brittleness which is also the main goal of
our approach. For splittings with a high brittleness, other implementations such as
extended tasks may incur less overhead and are better suited. An overview of related
synchronization techniques was published by Gerdes et al. [GKU+12].

6.4 Summary
In this chapter we have presented our Splitting component to efficiently split tasks
into multiple task partitions and to evaluate their level of concurrency. In contrast to
other approaches, the splitting component can handle Observed Worst-Case Execution
Time such that the splitting solution can be optimized for robustness against oWCET
overruns. Based on the precedence graph that is generated from the dependency graph,
a task can be split with and without synchronization. While ensuring all precedences,
both splitting modes maintain the behavior of the legacy task. Unsynchronized splitting
creates fully independent task partitions by analyzing the task’s design for connected
components. Splitting with synchronization allows to exploit even more concurrency
from the task’s design but introduces synchronization. We have shown an algorithm
that reduces this synchronization overhead dramatically and a lean implementation for
synchronization with OSEK basic tasks.
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In this chapter we present the components to advance from the limited available concur-
rency of a legacy task toward its inherent concurrency. While the available concurrency
stems from single-core design principles, the inherent concurrency reflects the actual
physical requirements of the environment. Legacy tasks have strict requirements re-
garding the communication’s timing to maintain its functional behavior. This strict
communication timing limits the concurrency of a task by a high degree but is in fact
not always necessary. Some communication dependencies may not require such a strict
timing and can be relaxed. Relaxing the timing of a communication dependency in-
creases the task’s concurrency but can also potentially change the behavior. Hence, a
domain expert is needed to evaluate that the functionality is still within its specifica-
tions and correct. However, due to the huge evaluation effort, not all dependencies can
be evaluated. Therefore, our Concurrency Analysis component rates all dependencies
to find the most relevant and promising dependency candidates for evaluation. The
analysis is looking for potential evaluation candidates for which the timing can be re-
laxed without compromising the correctness of the application. The most promising
evaluation candidate is then presented to a domain expert as part of our Dependency
Analysis component. This component provides the interface to the expert and retrieves
the expert’s decision.

7.1 Relaxing Dependencies
Relaxing a dependency is a change in the design of a task as well as in its behavior and
thus is a crucial modification. In our approach, a task’s design is represented by its de-
pendency graph containing all communication and all known functional requirements
in the form of dependencies. In the following, the communication dependencies are
especially important to the relaxation process. Functional dependencies are typically
already specified and verified by a domain expert. When starting the relaxation process,
we have to assume that all communication dependencies are either strictly delayed or
strictly undelayed. To relax a dependency in this graph, we change the timing of the
communication which may alter the functional behavior. We define the term relaxation
as follows:
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Definition 7.1. A relaxation is the verified transition of a single communication depen-
dency qk between two runnables ra and rb from the criticality strict delayed γ (qk) = 1 or
strictly undelayed γ (qk) = 0 to relaxed γ (qk) = 0..1.

Performing a relaxation always has to be verified by a domain expert or other means
such that the functional behavior remains correct. Hence, relaxing a communication
dependency is a two-step process:

1. Verify that the change in timing of the communication dependency maintains
the functional behavior.

2. Change the timing of the communication dependency to relaxed.

The benefit of this relaxation transition is the potentially improved concurrency
in the task’s design. In case all communication dependencies between two runnables
are relaxed and there is no functional dependency, then there is also no need for a
precedence requirement among the two runnables. A removed precedence improves
the task’s concurrency that in turn can be exploited for parallelism by our Splitting
component. It is important to note however, that if the verification step fails, the result
is still beneficial to the overall approach. When a domain expert has verified the fact
that a communication dependency needs to have a strict timing, then it is safe to assume
that the physical environment requires it. In this case our approach can safely skip this
dependency in future iterations.

For our approach, single dependencies are not relaxed for practical reasons. Instead,
we relax the dependencies that are related to a pair of runnables. Only when all de-
pendencies between a pair of runnables are relaxed and therefore do not require a
precedence, the concurrency of a task’s design is improved. Such a pair is denoted as
〈ra, rb 〉. A relaxation is applied to the dependency graph for a given pair of runnables
relax : DG, 〈ra, rb 〉→ DG that is defined by Algorithm 6. The algorithm first retrieves
all dependencies that are related to the given pair of runnables (line 2). This resulting set
of dependencies is then checked for dependencies that cannot be relaxed (line 3). If all
dependencies in this set can potentially be relaxed, they are given to the domain expert
for evaluation (line 4–7). Subsequently, the expert’s decisions modify the dependency
graph.

The naive approach to find the related dependencies of a runnable pair would be to
collect all dependencies between such pair, independent of their direction. However, the
application may also contain dependencies for multi-writers. In case of a multi-writer,
there are at least two dependencies communicating the same label to the same runnable.
Figure 7.1 illustrates this by using the mode-switching example from before. It shows
a dependency graph for a task with five runnables and two multi-writers. Namely, r2
and r3 write to the same label dx that is read from r4. We assume that we want to
relax the pair of runnables 〈r3, r4〉 to improve the task’s concurrency. Using the naive
approach as described before, the related dependencies are all dependencies between the
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Algorithm 6 Relaxation of a pair of runnables.

1: procedure R E L A X PA I R(DG, 〈ra, rb 〉)
2: Qx ← getRelatedDependencies(DG, 〈ra, rb 〉)
3: if isRelaxable(Qx) then
4: for all qk ∈Qx do
5: DG← relax(qk)
6: end for
7: end if
8: return DG
9: end procedure

runnables r3 and r4. In this example, this is only the dependency q3,4
x . If this dependency

is relaxed, the precedence between r3 and r4 is removed. But without this precedence, we
can construct the following execution sequence: r1 ≺ r2 ≺ r4 ≺ r3. The problem here is
that the value written by r3 can never be read by r4, because it is overwritten every time
by r2. Despite that the timing of q3,4

x is correctly relaxed, the communication behavior
of the multi-writers has changed. This is a general problem with multi-writers: When
relaxing an incoming communication dependency of a runnable that receives data
from different runnables via the same label, the change in timing also affects the other
writing dependencies. Despite that the writing order is maintained by the functional
dependency, the timing of the reading runnables influence each other.

r1 r2 r3 r4dm, 0

dm, 0

dx , 0

dx , 0

Figure 7.1: Relaxation of dependencies in a multi-writers scenario using the example
of a dependency graph for mode-switching.

Thus, when evaluating a communication dependency that is part of multi-writing,
all other dependencies that write to the same label have to be evaluated as well. In
our example, we need to evaluate q2,4

x additionally to q3,4
x . The dependency q2,4

x is an
incoming communication dependency to r4 and writes to the same label dx . When
both dependencies q2,4

x and q3,4
x are presented to the domain expert for evaluation, the

expert has the complete multi-writer picture and can evaluate it accordingly. This way,
it is ensured that the timing in a multi-writer scenario is evaluated as a closed group.
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Theoretically, it is also possible to completely eliminate the multi-writing by removing
the functional dependency that ensures the order of writing. But to do that, we need
to know the functionality of the writing runnables and under which conditions they
write to the label. Unfortunately, this is not possible from our level of abstraction.

Algorithm 7 specifies how all dependencies that relate to a pair of runnables in a
dependency graph are determined. The algorithm includes the following related depen-
dencies:

(1) All dependencies, communication and functional,between the two given runnables
in either direction (line 2).

(2) All incoming dependencies of a target runnable that have the same label as one
of the dependencies between the given pair of runnables. This ensures that com-
munication dependencies of multi-writers are relaxed as a group (line 3–7).

Algorithm 7 Get all dependencies that relate to a pair of runnables for relaxation.

1: procedure G E T R E L AT E D D E P E N D E N C I E S(DG, 〈ra, rb 〉)
2: Qx ←Qa,b ∪Qb ,a

3: for all qk ∈QC : dst(qk) = ra or dst(qk) = rb do
4: if ∃qi ∈Qx : label(qk) = label(qi ) and dst(qk) = dst(qi ) then
5: add qk to Qx
6: end if
7: end for
8: return Qx
9: end procedure

Based on the related set of dependencies for a pair of runnables, Algorithm 8 de-
termines if the dependencies meet the requirements for relaxation. The requirements
are:

(1) The set does not contain a functional dependency.
(2) The set does not contain any dependency that is already evaluated and still re-

quires a strict communication timing.

If one of these requirements are not met, the whole set of dependencies is not allowed
to be relaxed.

The actual relaxation sets a communication dependency to relaxed and evaluated.
This is described by Algorithm 9. The algorithm provides the interface to the domain
expert and is part of the Dependency Analysis component described in Section 7.6. The
expert is asked a boolean question if the given dependency can be relaxed, described
by the eval function (line 2). If the expert approves the relaxation, the timing of the
dependency in the dependency graph is set accordingly (line 3–5). In either case, the
status of the dependency is set to evaluated (line 6).
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Algorithm 8 Determine if a set of dependencies can be relaxed.

1: procedure I S R E L A X A B L E(QC )
2: if ∃qk ∈QC ⇒ qk ∈QF or

∃qk ∈QC ⇒ γ (qk) ̸= 0..1∧σ(qk) ̸= t then
3: return false
4: else
5: return true
6: end if
7: end procedure

Algorithm 9 Relaxation of a communication dependency.

1: procedure R E L A X(DG, qk )
2: relax← eval(qk)
3: if relax then
4: γ (qk) := 0..1
5: end if
6: σ(qk) := t
7: return DG
8: end procedure

7.2 Workflow
Due to the huge amount of dependencies in legacy automotive applications, the biggest
challenge is to find the most relevant ones for relaxation. In this section we present the
overall workflow to find relevant dependencies, depicted in Figure 7.2. This workflow
is implemented into the Concurrency Analysis component. Input for the component
is the dependency graph, the precedence graph and the partitioning information of a
task.

r1 r2

r4 r5

Criteria A

Criteria B

Criteria Z
#2#3 #1

DG + PG + Part Analysis Aggregation & Ranking

r1 r2

r4 r5

Figure 7.2: Overview of workflow inside the Concurrency Analysis component.
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Based on the input, the analysis checks every pair of runnables with its related de-
pendencies. Every pair is a candidate for evaluation and every candidate is analyzed
according to a number of independent criteria. The analysis consists of criteria with
each criterion having its own objective. The criteria are grouped in the following way:

• The impact group indicates the potential benefit of a dependency, if it is relaxed,
toward the given parallelization goals. Using graph algorithms, this group ana-
lyzes properties of the communications between the runnables. The input of a
criterion of this group is a pair of runnables and the corresponding precedences
from the precedence graph.

• The success group rates how likely it is that the criticality of a dependency can
be relaxed without significantly degrading the functional behavior. This can be
quantified by the analysis of the physical dynamics a dependency represents. The
input of a criterion of this group is a pair of runnables with all dependencies
inbetween from the dependency graph.

The result of a criterion is a value between 0–1 and indicates either the success or
impact of the analyzed objective on the given dependency or precedence (higher is
better). Table 7.1 gives an overview of all criteria in our analysis, their respective use
case and aggregation group. The criteria are described in detail in the following sections
of this chapter.

Table 7.1: Overview of criteria and their respective use case
and aggregation group.

Strategy Group

Criteria Early Late Impact Success

Synchronization Points1 — ✓ ✓ —

Forward Evaluation ✓ ✓ ✓ —

Dependency Classification ✓ ✓ — ✓

Reaction Constraints ✓ ✓ — ✓
1 Can only be used if the parallelization allows synchronization.

The results of the analysis are weighted and aggregated for each pair of runnables
to a score that represents the relevance for the evaluation by an expert. Based on the
score, a ranking is created. The candidate with the best score becomes the result of
the concurrency analysis and is marked for evaluation. In the next step the marked
candidate is proposed to the domain expert.
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7.3 Impact Criteria
An impact criterion indicates the benefit toward the parallelization goal if the corre-
sponding dependencies of a precedence are relaxed. Impact criteria are only applied
to precedences and specialized toward a single objective. An impact criterion is a nor-
malized function impact : C→ [0,1] ∈ R. An impact result of 0 means that relaxing
all dependencies that correspond to the given precedence has no positive effect on the
objective for the parallelization goal. When the impact is 1, relaxing the corresponding
dependencies results in the highest possible benefit in respect to the criterion’s objective.
Inbetween, the benefit is relative to the impact. There are two impact criteria which
we present in the following:

Synchronization Points: Synchronization due to precedences is expensive in terms
of robustness and overhead. The relaxation of dependencies that correspond to a
precedence can improve the robustness and reduce the synchronization overhead.

Forward Evaluation: The relaxation of dependencies that correspond to a prece-
dence can improve the concurrency among the runnables in a task. This criterion
analyzes the potentially gained concurrency.

7.3.1 Synchronization Points
Any synchronization within a task is costly in terms of robustness and overhead. A
synchronization point always adds an overhead to the makespan, if it is used or not
during execution. As shown in Section 6.3.3, our overall goal is to reduce the number
of synchronization points because a synchronization can also decrease the robustness.
Additional synchronization influences the robustness since Observed Worst-Case Exe-
cution Time (oWCET) overruns may result in makespan penalties. Here, the relaxation
of dependencies has the potential that a corresponding synchronization point is im-
proved in terms of its gradient or even removed from the task completely. This is an
impact criterion as it indicates the benefit toward the parallelization goal in terms of
synchronization. Obviously, this criterion is only enabled when the parallelization
goal allows synchronization.

This criterion exploits the effect, that other precedences can potentially replace an
existing synchronization point. When the dependencies of a pair of runnables are suc-
cessfully relaxed, the precedence between the two runnables is removed. If this prece-
dence previously resulted in a dominating synchronization point for other precedences,
then another synchronization point has to be created. In such case, the replacing prece-
dence and synchronization point has a better gradient than the previous one. Selecting
the next best synchronization point is described in the optimization process in Sec-
tion 6.3.3 and reused here. In general, evaluating the benefit toward synchronization
when relaxing a dependency is twofold:
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• The relaxation reduces the brittleness as synchronization points can safely be
removed or another precedence creates a synchronization points that has a better
gradient.

• The relaxation decreases the overall makespan when there is idle time in the
schedule due to a synchronization point.

The input for the synchronization point criterion is one precedence from the PG of
a task t together with the Part information. Based on this input, the synchronization
point criterion analyzes the precedence in the context of the precedence graph. We
found three different cases that influence the impact toward robustness/brittleness of
the given precedence ca,b which we elaborate in the following.

The first and most trivial case is when the given precedence ca,b does not result
in a synchronization point with the given partitioning information. In this case, the
relaxation of the dependencies that relate to the given precedence have no effect on
the synchronization and thus will not improve the task toward its parallelization goal.
Clearly, the impact is 0.

In the second case the precedence ca,b results in a synchronization point as specified
in the given partitioning information. The precedence ca,b can only be removed if
all communication dependencies are relaxed and there is no functional dependencies
inbetween them. In other words, when there is only one unrelaxed communication
dependency or a functional dependency between ra and rb , the precedence will remain
and so will the synchronization point. In this case, the criterion evaluates the benefit
when the given precedence is removed by relaxing all related dependencies between the
source and destination runnable. Due to the optimization of the synchronization points
(see Section 6.3.3), another precedence may replace the given one as a synchronization
point when relaxed. Still, replacing the synchronization point with another one can be
beneficial. The benefit is, that the replacing precedence cr leads to a synchronization
point with a better gradient than the old precedence ca,b , i. e., grad(cr )> grad(ca,b ).

Algorithm 10 describes how to determine the precedence replacement. The algo-
rithm works similar to the algorithm that reduces the number of synchronization
points. Based on the reduction algorithm from Section 6.3.3, we can safely assume
that the given precedence is the one with the smallest gradient in the set of crossing
precedences. The algorithm follows this assumption. In the set of all precedences, it
looks for precedences that cross the given one (line 3–7). In contrast to the reduction
algorithm, the algorithm looks for predecessors of the source runnable and successors
of the destination runnable. The resulting set is again sorted based on the gradient (line
9) and the precedence with the smallest gradient is picked as potential replacement cr
(line 10).

If a replacing precedence is found, the calculation of the impact is described in Equa-
tion 7.2. It assumes that ca,b is the original precedence and cr is the replacement. The
impact is calculated as
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Algorithm 10 Determine the replacing precedence.

1: procedure F I N D R E P L AC I N G P R E C E D E N C E(ca,b ,C)
2: Lx ←{}
3: for all c j ∈C do
4: if c j ̸= ca,b and

src(c j ) ∈ pred(src(ca,b )) and
dst(c j ) ∈ succ(dst(ca,b )) and
m(src(c j )) = m(src(ca,b )) and
m(dst(c j )) = m(dst(ca,b )) then

5: add c j to list Lx

6: end if
7: end for
8: if Lx ̸=∅ then
9: sort(Lx ,grad)

10: return cr ←min(Lx )
11: else
12: return null
13: end if
14: end procedure

cr = findReplacingPrecedence(ca,b ,C) (7.1)

impactSP(c
a,b ) =

weighting factor
  

makespan
grad(ca,b )+makespan

×

normalized difference
  

grad(cr )− grad(ca,b )
makespan

=
grad(cr )− grad(ca,b )

grad(ca,b )+makespan
(7.2)

where the normalized difference is the difference in the gradient of the replacing
precedence to the original precedence. As grad(cr )> grad(ca,b ) holds, the difference can
be normalized by the overall makespan. Additionally to the difference in the gradient,
also the gradient of the replaced precedence has an impact on the benefit. As shown in
Figure 7.3, when the difference in the gradient is the same, replacing a precedence with
a gradient of zero is better than replacing a precedence with a gradient> 0. The reason
is that the improvement in robustness decreases exponentially with the gradient of the
replaced precedence. This is represented by the weighting factor.
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A special case is when there is a precedence replacement which has a better gradient
and there is also idle time before the receiving runnable. When the resulting synchro-
nization point has a gradient of zero, the relaxation additionally improves the makespan.
Figure 7.4 illustrates this additional benefit. Here, the precedence ck is removed due
to relaxation and replaced by precedence cr . Before the removal of ck , the resulting
synchronization point created idle time between r3 and r4. This idle time disappears
with the replacing precedence cr and also improves the makespan.

t

t

r1 r2 r3 r4t1,0

r5 r6 r7 r8t1,1

c r c k

(a) grad(ck ) = 0, grad(cr ) = 2

t

t

r1 r2 r3 r4 r5t1,0

r6 r7 r8 r9 r10t1,1

c r
c k

(b) grad(ck ) = 2, grad(cr ) = 4

Figure 7.3: Two scenarios where the difference in gradient is the same but the original
precedences differ. We rate the left scenario higher because robustness
increases exponentially with the gradient.

In the third case, the given precedence ca,b results in a synchronization point. When
relaxing the corresponding dependencies, the precedence is removed and there is no
other precedence that replaces the given one. In this case, the Algorithm 10 returns
null. The synchronization is completely removed which is the best possible outcome
when relaxing in terms of synchronization. Hence, the impact criterion results in the
value 1.

Combining all cases, the impact is calculated as follows assuming the replacing prece-
dence cr = findReplacingPrecedence(ca,b,C):

impactSP(c
a,b ) =

⎧

⎪

⎨

⎪

⎩

0, s a,b /∈S .
grad(cr )−grad(ca,b )

grad(ca,b )+makespan , cr ̸= null .

1, cr = null .

(7.3)

In future work we consider probabilistic worst-case execution times to improve
the ranking of the synchronization points. With probabilistic Worst-Case Execution
Times (WCETs) we know the chances for a oWCET overrun and at what costs. This
could improve the calculation of the impact when relaxing related dependencies of a
precedence that leads to a synchronization point.
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t

t

r1 r2 r3 r4t1,0

r5 r6 r7 r8t1,1

c r c k

makespan

t

t

r1 r2 r3 r4t1,0

r5 r6 r7 r8t1,1

c r

makespan
δ

Figure 7.4: Improvement of the makespan when the corresponding precedence to a
synchronization point with idle time is relaxed.

7.3.2 Forward Evaluation

One of the high level objectives of our approach is to improve concurrency and exploit
it for parallelization. Thus we need to evaluate the benefit of relaxing dependencies
toward the parallelization goal in terms of concurrency. For this purpose, the forward
evaluation criterion simulates the influence of a relaxation and measures the resulting
concurrency. Clearly, the objective of this criterion is concurrency.

With this criterion we measure concurrency by finding (weakly) connected compo-
nents in the precedence graph, similar to the unsynchronized splitting from Section 6.2.
The criterion is however independent of the splitting mode. Given a precedence graph
PG, a connected component is a maximal subgraph such that all nodes of the subgraph
are reachable from every other in the underlying undirected graph. I. e., there is an
undirected path from ra to rb and a directed path from rb to ra. Each component in a
precedence graph represents a set of runnables that has unrelaxed dependencies inbe-
tween. Due to these dependencies, the runnables communicate with a strict timing and
thus have to follow a specific order of execution as specified in the precedence graph.
Between components there are no precedences which implies that there are no or only
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relaxed dependencies. Figure 7.5 gives an example precedence and dependency graph
with three weakly connected components.

r1 r2 r3

r4 r5 r6

r7

d1, 0

d2, 0 d3, 1

d4,0..1

d5, 0

d7,0..1

d6,0..1

(a) Dependency Graph

r1 r2 r3

r4 r5 r6

r7

(b) Precedence graph

Figure 7.5: Weakly connected components in a precedence graph and its implied de-
pendency graph used in the forward evaluation criterion.

A connected component in a precedence graph has the property that all communi-
cation to the outside of the component is either relaxed or non-existent. Therefore, a
component can be executed, as a group of runnables and precedences, at any point in
time within the boundaries of the Logical Execution Time (LET) of the task. Each
component inside a task is concurrent to another. Furthermore it is even possible to
extract a component as an exclusive task with the same recurrence as the original task.
The number and size of components in a precedence graph hence indicates the level of
concurrency inside a task.

To determine the components in a precedence graph we use the algorithm by Hopcroft
et al. [HT71]. Let CC i ∈CC(PG) be the i -th weakly connected component in the set
of components of the precedence graph PG. The component CC i is the maximal sub-
graph such that all nodes of the subgraph are reachable from every other in the under-
lying undirected graph. We denote |CC i | as the number of nodes in the subgraph CC i .
The algorithm Hopcroft : PG→CC finds all components of the precedence graph PG
in linear time of max(|V|, |E|). As relaxing a precedence can create new components, we
can evaluate the potential benefit by simulating the relaxation of the given precedence.
We measure the impact by means of the change in the components structure with and
without this assumption. First of all, one relaxed precedence can create one additional
component at most. This is denoted by the boolean function

createCC(c i , j ) =|Hopcroft(relax(DG, 〈ri , r j 〉))| − |Hopcroft(PG)| . (7.4)
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If a precedence c i , j creates an additional component when the corresponding depen-
dencies are relaxed, createCC results in 1, otherwise the result is 0.

If an additional component is created, we differentiate it by its consisting runnables
and relation to other components. The objective hereby is to create well-balanced
components. We denote the oWCET of a component oWCET (CC i ) as the sum over all
runnables’ oWCET of CC i and use the share per component in the set of components
to determine the balance

ICC i
= oWCET (CC i )/

∑

CCk∈CC

oWCET (CCk) . (7.5)

The components are equally balanced if the standard deviation σ of the component’s
share is zero. To favor additional components that add a benefit to the balance, we use
1−σ . All combined, the aggregated criterion impactFE is

impactFE(c
i , j
k ) =
¨

1−σ , if createCC(c i , j ) = 1 ,
0, otherwise .

(7.6)

The function impactFE covers the two cases: (1) When the precedence does not create a
new component when relaxed, impactFE returns zero (2) When relaxing the precedence
creates a new component, impactFE returns the benefit toward the components’ balance.

Figure 7.6 shows an example wherein the oWCET of the runnables is annotated
below the node name. The original precedence graph is given in Figure 7.6a with six
different runnables and four precedences. Based on this graph, the impact is evaluated
for the precedence c2,5 and c1,2. Figure 7.6b shows the components when the depen-
dencies for precedence c2,5 would be relaxed. In this case, the relaxation creates a new
component with the single runnable r5. The impactFE(c

2,5) for this scenario is 0.895.
Figure 7.6c shows the components when the dependencies for precedence c1,2 would
be relaxed. In this case, the relaxation creates a new component with the two runnables
r2 and r5. The impactFE(c

1,2) for this scenario is 0.948.
In future work we also want to support the evaluation of more than one precedence.

Currently, the forward evaluation criterion is local to one precedence for which the
dependencies should be relaxed. However, a new component may only be created if
the precedences of more than one pair of runnables are relaxed.

7.4 Success Criteria
A success criterion indicates the probability of success in the terms that a communication
dependency is granted to be relaxed by an expert. There are a multitude of ways for
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Figure 7.6: Resulting precedence graphs for the forward evaluation criterion when
the dependencies for precedence c2,5 and c1,2 are relaxed.

a domain expert to evaluate if a dependency can be relaxed. This kind of criterion
anticipates parts of the evaluation that a domain expert would do. From the set of
tools for evaluating a dependency, some can be done automatically. Hence, a success
criterion supports the manual evaluation process of the expert. It can perform checks
prior to the dependency analysis by the expert.

A success criterion uses local properties of a dependency as well as the context of
the whole dependency graph. The criterion is only applied to communication depen-
dencies. Functional dependencies are left out, because they are either user-defined or
derived from other communication dependencies. A success criterion is the normalized
function success : QC → [0,1] ∈R. If the result of success is 0, chances are extremely low
that an expert will allow a relaxation after a manual evaluation. If the result is 1, the
objective of the criterion is fulfilled and it is likely that an expert grants the relaxation.
Inbetween, the benefit is relative to the success. In the following we present two success
criteria:

Dependency Classification: The criterion analyzes the dynamics of the data that
is communicated via a dependency and how a change in the timing may have an
impact on the values.

Reaction Constraints: When event chains with timing constraints are defined for
the application, then this criterion analyzes if a change in the timing may violate
such a constraint.
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7.4.1 Dependency Classification
The dependency classification criterion targets the following main question: How does
the value of a label change over time? Based on the answer to this question we can evalu-
ate if and how a delay in the communication of a label has an effect on the behavior. For
example, when the outside temperature of a car is used for control purposes. Figure 7.7a
shows an example plot of the development of the outdoor temperature label over time.
While the blue line represents the actual value, the black dots represent the sampled
values that are stored in the label. Adding a delay to the communication of such a tem-
perature label may have only a neglecting effect on the behavior due to the physics of
the environment. However, this is also dependent on the sampling interval. On the
other hand, the value of a crank-angle based label follows a different trend as shown
in Figure 7.7b. The runnables that read such a crank-angle based label might corrupt
the behavior with a delayed communication. Hence, labels that represent a physical
value are sensitive to changes in the environment. Some labels are highly sensitive such
that the trend of the corresponding value is unsteady and uncertain to predict. For
other labels the trend of the value is predictable to some degree and follows a steady
development. Another motivation for this criterion is that runnables might perform an
oversampling of a sensor due to architectural reasons. Such an oversampling might not
be necessary as the runnable would emit the same behavior at a slower frequency. This
criterion elaborates if the behavior of the system is maintained even when a runnable
reads an older value from a label that was updated in a previous job instance.

time t

va
lu

e

(a) Label with low time-sensitivity

time t

va
lu

e

(b) Label with high time-sensitivity

Figure 7.7: Sensitivity of a label in terms of the change in its value over time.

The motivation for this criterion is to examine the change of a label’s value over time
and its resulting effect on the behavior. In general, every communication dependency in
the dependency graph relates to a communicated label from one runnable to another. In
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control-engineered systems, these runnables are typically the implementation of time-
discrete controllers, observers, and estimators. Thus, the labels represent mostly data
from continuous parts of the system and discrete state machines e. g., for modes. While
a label typically represents a value from the continuous environment, they become
discrete values by the sampling of the system. Yet, many properties of the value from
the continuous environment still apply to the discrete value of the label. These labels
are the in- and output of runnables and form a relation together with the runnable as
illustrated in Figure 7.8. In this relation, the change of a label’s value over time from the
continuous environment can be used for a sensitivity analysis in the discrete system.

r1

dx

dy

dz

dz = dx +(4 ∗ dy)

Figure 7.8: Relation of two labels dx and dy that are input to runnable r1 and the
output label dz .

As each runnable represents complex control-engineering algorithms, each input
label potentially has an influence on the output label. Given the mathematical repre-
sentation of the runnables, we can create a system of equations between the in- and
output labels. Obviously, this works only for the continuous parts of the system. For
hybrid systems, i. e., systems with switches, the control-flow has to be analyzed such
that each mode with only continuous parts can be evaluated.

Based on this system of equations, one can analyze and quantify changes of a label’s
value. In the given example, we can quantify the change in the label’s value dx of 1 leads
to a change of the label’s value dy by 4. This method is called sensitivity analysis. The
sensitivity analysis studies the relation of uncertainty between the output of a model
to the input. In our case, the model is a runnable, in- and output are labels and the
sensitivity analysis is local, i. e., it is specific to a change of a single label. The local
sensitivity analysis is based on taking the derivative of the output dy with respect to an
input factor dx at some fixed point [Cac07, SRA+08]. Of a function

f : Rn→ R, y = f (x1, . . . , xn) (7.7)

the derivative is

d y =
n
∑

i=1

∂ f
∂ xi

(x1, . . . , xn)d xi . (7.8)
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For this criterion we specifically want the evaluate the sensitivity over time. Hence
the question is: What is the effect of a change in a label’s value at time t0 to a time
t > t0? By transforming the time-discrete dynamic system into its state representation,
the system of equations can be simulated and the result shows the sensitivity over time
for a given label.

However, such a sensitivity analysis needs the equations and in case of a hybrid
system also all modes and the corresponding equations to work properly. For a hybrid
system at the scale of an Engine Management System (EMS), creating and simulating
these equation systems is very time-consuming and a huge effort. While a sensitivity
analysis is a powerful method to determine the effect of changes in a label’s value, we
focus here on a more scalable solution that follows this idea.

Instead of representing a label’s value in the context of equations, our solution is
based on the technical representation of a label. From the technical perspective, a label
represents an Electronic Control Unit (ECU) variable. ECU variables are described
using A2L [ASA15a], the standard description format for measurement and calibration
data in the automotive industry and introduced in Section 2.3.1. It describes e. g., the
data type, format, and computation method used for measurement and calibration
purposes. Thus, A2L creates a context for a label’s value. As with the sensitivity analysis,
the labels that represent a continuous value are of interest for our solution. Especially
for these labels, one can extract unit, range, precision and other contextual information
from A2L. For example, a label that represents the oil temperature of an engine is a
measured value, it is measured in Celsius and is stored with a 3-decimal digits precision.
A2L also stores the task with the runnable that samples the label’s value which provides
the sampling rate. A control engineer can interpret this A2L information and decide
how sensitive the corresponding value of the label is. The sensitivity hereby is solely
based on the A2L information that is annotated to a label and thus more generic than
the sensitivity analysis of systems of equations. Based on this contextual information
and the control engineer’s knowledge on how the label represents the dynamics of
the value from the continuous environment, the sensitivity can be estimated. In our
example of the engine’s oil temperature, the control engineer likely realizes that the
label has a low sensitivity over time. The next step is then to decide how the sensitivity
is affecting the behavior. This is in the hands of a control engineer as well. In our case,
the control engineer might decide that the effect on the behavior is neglecting. Any
temperature in the given embedded system changes slower than any sampler could
detect a change. Obviously, this decision is generalized, depending on the domain and
specific to the application.

To prevent the interpretation of A2L of each and every label, control engineers can
create classes with similar time-sensitivity prior to the analysis. As the A2L information
is standardized, all attributes and value ranges are known beforehand. Using the A2L
specification, a control engineer can create classes. A class features the labels that have a
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similar sensitivity over time. The key to each class is a set of attributes and values from
the A2L specification. For example, there can be a class of labels that has a low sensitivity.
The keys to this class are the A2L properties unit = temp_cels or vehicle_speed. We
measure the time-sensitivity on a scale from 0–1, with 0 meaning the value is developing
steadily and 1 meaning the value is oscillating fast. This scale directly relates to the
success when doing a manual evaluation of a dependency by a domain expert. Hence,
it is also the result of the dependency classification criterion.

Let B be the set of classes created by control engineers prior to the analysis. Each
class is characterized by properties from the A2L specification and has an associated
time-sensitivity for the containing labels. The key to each class is the A2L information
such that the function class : D→ B can identify the corresponding class of a label as
part of a dependency during the analysis. The success rate is then given by the time-
sensitivity of the class, i. e., by the function dyn : B→ [0,1] ∈R. Typically the classes
create a staircase function in relation to the success, as shown in Figure 7.9.

The complete criterion successDC of a communication dependency is denoted as:

successDC(qk) = dyn(class(label(qk))) (7.9)
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Figure 7.9: Staircase function of the relation of A2L classes to the success. The ex-
ample plot shows six different classes with a success value from 0.9 to
0.1.

In future work we want to consider the classification of dependencies based on its
sensitivity toward other dependencies. As mentioned in the motivation for this cri-
terion, there is an interconnection between the inputs of a runnable and its outputs.
We would investigate this interconnection to determine how the sensitivity classes are
propagated through runnables and ultimately the whole graph.

7.4.2 Reaction Constraints
When relaxing a dependency, the end-to-end timing inside the system may change due
to a higher degree of flexibility in the mapping of runnables. In fact, the end-to-end tim-
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ing between the runnables of a dependency may increase by the period of the runnables’
task. Assuming that there are event chains modeled with end-to-end timing constraints,
then the process of relaxing a dependency may violate a timing constraint. Such tim-
ing constraints are typically modeled as reaction constraints. Reaction constraints are
domain knowledge and specified by experts. Thus, if a domain expert evaluates the pos-
sibility to relax the timing of a dependency, the expert would check against any timing
constraints of event chains. The idea of the reaction constraints criterion is to pro-
vide automatic checks against reaction constraints. The criterion is a success criterion
because it can potentially eliminate a dependency from being proposed to a domain
expert. If relaxing a dependency violates a reaction constraint, then this dependency
should not be proposed to an expert.

Due to the determinism in the LET model of computation, the reaction latency
of an event chain can be calculated statically. Note that we calculate the maximum
reaction latency of an event chain. There are typically more upper bounds of reactions
constraints specified in our domain than lower bounds. Hence, we check for violations
of the upper bound of a reaction constraint in this criterion, but the criterion can be
easily extend to support lower bounds as well. Algorithm 11 calculates the reaction
latency of an event chain ec from the application model based on the dependency
graph DG and the partitioning information Part. It assumes that the communication
dependency qk that has to be analyzed by the criterion is part of the event chain. If it
is not, the criterion returns 1.

Algorithm 11 Calculate the reaction latency of an event chain.

1: procedure C A L C R E AC T L AT(EventChain ec, q src,dst
k )

2: latency := 0
3: for all subeventchain tuple (rsrc, rdst) in ec do
4: if m(rsrc) = m(rdst) then
5: if ∃q src,dst

k : γ (q src,dst
k ) = 0..1∨ γ (q src,dst

k ) = 1 then
6: latency+= Pm(rsrc)

7: end if
8: else
9: latency+= Pm(rsrc)

10: end if
11: end for
12: latency+= Pm(rdst)
13: return latency
14: end procedure

The algorithm iterates over all tuples in the event chain and checks every tuple of
runnables for dependencies and mapping (line 3). If both runnables are mapped to
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the same task and only one dependency between them is either strictly undelayed
or relaxed, the latency is increased by the period of the source runnable’s task (line
4–6). The period of the source runnable’s task is also added to the latency when the
runnables are mapped to different tasks (line 8–9). Lastly, the period of the task that
the last runnable of the event chain is mapped to is added to the latency (line 12). It can
only be ensured that the last runnable has finished execution at the end of the LET.

To evaluate successRC of a dependency qk , the criticality is tentatively set to relaxed
and calcReactLat is calculated for the event chain that contains the runnables. In the
subsequent step the resulting latency from calcReactLat is checked against the reaction
constraint of the specified event chain. If the resulting latency is greater than the con-
straint, then the relaxation of the dependency qk would violate the reaction constraint.
Hence, successRC would evaluate to zero as shown in the following equation.

successRC (qk) =
¨

0, if qk violates any reaction constraint if relaxed
1, otherwise

(7.10)

Unfortunately, event chains have often not been specified for legacy designs. Due to
this fact, only a small amount of event chains with reaction constraints were available
to us such that we have not implemented this criterion for our case studies.

7.5 Candidate Aggregation & Ranking
In the candidate aggregation & ranking phase of the Concurrency Analysis component,
all pairs of runnables are evaluated by the presented criteria. For each pair of runnables
that is connected by a precedence, all dependencies inbetween are evaluated by the
success criteria and the precedence inbetween is evaluated by the impact criteria. After
evaluating the criteria of each dependency and precedence, the results are aggregated.
The overall success score of a dependency qa,b

k is the product of the n success criterion
results.

success(qk ∈Qa,b
C ) =

n
∏

i=0

successi (qk) (7.11)

The overall impact score of a precedence ca,b is the weighted sum of the m impact
criterion results.

impact(ca,b ∈C) =
m
∑

j=0

w j × impact j (c
a,b ) (7.12)
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The impact criteria are weighted and the weights are specified beforehand but can also
be changed during the workflow to control the analysis. For example, when the main
objective besides the parallelization goal is to remove or improve the synchronization,
then the weight of the SP criterion can be increased.

The score(〈ra, rb 〉)) of a pair of runnables is then the sum of the overall success score
over all dependencies times the overall impact score.

score(〈ra, rb 〉)) =
∑

qk∈Qa,b
C

success(qk)× impact(ca,b ) (7.13)

The calculated score and the dependencies of the pair of runnables are used to cre-
ate an evaluation candidate. These evaluation candidates are inserted into a prioritized
queue. The evaluation candidate 〈ra, rb 〉with the highest score is marked for evaluation
σ(Qa,b

C ) = r and proposed to the domain expert as part of the Dependency Analysis
component. For the current iteration, the candidate with the highest score represents
the most suitable and probable candidate for an evaluation in respect to the paralleliza-
tion goal.

7.6 Dependency Analysis
The Dependency Analysis component is the interface to the domain expert. During
the execution of this component the domain expert evaluates if the proposed evaluation
candidate allows a relaxed timing and responds with a boolean decision.

Any evaluation candidate is part of a controller with a certain functionality. When
relaxing the timing of the corresponding dependencies, the communicated data can be
delayed or accelerated. This change in timing may alter the timing of the controller
which in turn potentially alters the functionality. Depending on the controller design,
the change may violate latency or stability requirements, and other performance cri-
teria. As a complete specification of these requirements for each single controller and
their interactions is not available, a manual evaluation by an expert in this domain is
mandatory.

For the evaluation, the Dependency Analysis component presents the evaluation
candidate together with the criteria values to the expert. The expert receives the set of
dependencies of the candidate together with the scoring. The scores and criteria values
give hints why a candidate’s dependency is the most relevant one among the others.
This can influence how the expert evaluates a dependency. There are various techniques
to evaluate the execution timing impact on the functionality of the controller such as
formal verification or simulation [ZH15]. It is up to the expert which technique is
the most suitable one. The presented evaluation process within this component thus
follows our objective to provide a simple interface to the domain expert.
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After the expert evaluated all dependencies of the evaluation candidate, a decision
is made. If the decision is positive, the dependencies are set to relaxed and refined in
the application model. Independent of the decision, all dependencies are marked as
evaluated. This finishes a workflow iteration.

7.7 Summary
The contribution of this chapter are the two components, Concurrency Analysis and
Dependency Analysis. The two components are part of the workflow to find the most
beneficial and probable dependencies for evaluation by a domain expert. Dependencies
and precedences are hereby analyzed using multiple criteria within the Concurrency
Analysis. The impact criteria analyze a precedence between two runnables and evaluates
how beneficial the relaxation of the corresponding dependencies would be toward
the parallelization goal. The success criteria yields indicators if a dependency is likely
to be relaxed by a domain expert. Both groups of criteria are applied to precedences
and dependencies alike and aggregated to a final score. This score allows to select the
most promising candidate for evaluation. The best candidate is then presented to a
domain expert as part of the Concurrency Analysis component. Based on the score
and the criteria details, the domain expert evaluates the corresponding dependencies
and makes a decision. This decision refines the application model and advances it toward
its inherent concurrency.

In future work we want to consider multiple partitioning informations. The splitting
component already provides a range of splitting heuristics, each following its own
objective. The resulting partitioning information from the different heuristics provides
additional data that can be a benefit to the criteria.
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In this chapter, we evaluate the proposed parallelization concept from the previous
chapters. The evaluation was conducted in the form of case studies and applied to differ-
ent real-word Engine Management System (EMS). The EMS is used in these case studies
as it is one of the most complex examples of embedded real-time control software from
the automotive industry. A premium-class car contains 70 to 100 Electronic Control
Units (ECUs) executing approximately 100 Mio lines of code [Cha09] while an EMS
executes the biggest portion. In the future the most code might be executed by the
ECUs responsible for Highly Automated Driving (HAD) and autonomous driving.
The case studies use different EMS from leading automotive manufacturers. Due to IP
restrictions, we cannot disclose further details but the benchmark published by Kramer
et al. [KZH15] characterizes these EMS to some degree.

8.1 Standalone Synchronized Splitting
In this case study we evaluate the parallelization concept specifically toward its task
splitting capabilities. The concept is used as part of the late strategy in the integration
phase and on the architecture level of the product development. At this point in time, all
functionality is designed and implemented as well as almost all architectural decisions
were made. The architecture is ready to be integrated into the system. For this case
study we assume the issue that the implementation of a task’s set of runnables exceeds
its capacity for the specified multi-core platform. The implemented task exceeds the
computational power of a single core on this platform and hence cannot be integrated.
Our parallelization concept is used to split the given task such that the resulting task
partitions can be integrated into the system. We hereby assume that the multi-core
platform provides enough computational power in terms of number of cores. Due to
being at the end of the product development lifecycle of the EMS, the costs associated to
changes are high. Hence, we allow synchronization between the splitted task partitions
as it enlarges the solution space to find a suitable solution at low costs.

In this case study, the path through our parallelization concept uses three compo-
nents, all of which are automatic components. The components for relaxation are dis-
abled to prevent any changes in the behavior of the application. Input for our approach
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is the application model of the EMS as well as the parallelization goals. We assume that
the oversized heavy task ti should be splitted into two task partitions ti ,0 and ti ,1 which
is a typical request in our domain and that kind of scenario. The speedup goal for the
two task partitions is set to 1.7 which is a realistic goal for real-world applications. As
mentioned before, our concept is allowed to introduce synchronization points. The
amount of synchronization should hereby not exceed an overall brittleness of 12 to
prevent major speedup degration for Observed Worst-Case Execution Time (oWCET)
overruns.

For this case study, we selected a heavy task ti from the EMS that has 144 runnables
and communicates via 3171 labels. The task ti encapsulates the most runnables in the
application. In the first step of our concept, the dependency graph of the task ti is ex-
tracted from the legacy application model. The extracted dependency graph contains
496 dependencies in total. There are 477 communication dependencies with 296 for-
ward, 110 backward and 71 loop dependencies. The Dependency Graph Extraction
component also found multi-writers that lead to 19 functional dependencies. Besides
the functional dependencies due to multi-writers there were no other functional depen-
dencies extracted from the application model for this task. Based on the dependency
graph, the Splitting component generates the precedence graph needed to perform task
splitting. The component generated 425 precedences for the precedence graph of task
ti .

According to the given goals, the Splitting component performs the task splitting
in the synchronized mode. For evaluation purposes, we applied all available heuristics
of this mode to task ti . Table 8.1 show the results of the heuristics earliest possible
execution (EPE), min-distance (MinD), max-parents (MaxP) and independent runnable
allocation (I). When independent runnables are handled separately, this is denoted as
“+ I”. When a tie-breaker is used that is different from Section 6.3.2, this is indicated in
brackets. E. g., “MaxP(MinD)” is using the tie-breaker MinD instead of EPE. We have
also implemented and evaluated RunPar [PKQn+14] to compare our approach with
related work. The table contains the number of synchronization points, the speedup
and the brittleness of the splitting solutions.

The best speedup of 1.75 is achieved by the MaxP+I heuristic with 11 synchroniza-
tion points and with the third best brittleness of 8.267. It is closely followed by RunPar
[PKQn+14] with a speedup of 1.71 and 13 synchronization points, but with a signifi-
cantly worse overall brittleness of 10.796. This is expected as RunPar assumes safe and
tight bounds for Worst-Case Execution Times (WCETs). It does not focus on possi-
ble overruns which could result in a degraded speedup. In terms of robustness against
oWCET overruns, the MaxP+MinD+I heuristic provides the best solution with the
lowest brittleness of 6.628 and the lowest number of synchronization points at a very
competitive speedup of 1.66.
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Table 8.1: Results of the splitted task from the EMS.

Heuristic SyncPoints Speedup Brittleness

EPE 22 1.65 18.859
MinD 9 1.64 12.056
MaxP 9 1.39 7.020
MaxP+I 11 1.75 8.267
MaxP(MinD)+I 8 1.66 6.628
RunPar [PKQn+14] 13 1.71 10.796

The developer can now do focused tradeoffs based on the speedup, number of syn-
chronization points and brittleness. To assist the developers decision, the results are
illustrated in a point map as shown in Figure 8.1. In our case study, the pareto-optimal
solutions considering speedup and brittleness are MaxP+I and MaxP+MinD+I. Exper-
iments with other tasks confirm the general trend that the proposed heuristics achieve
similar speedups but with a significantly improved robustness against oWCET overruns
compared to related work.

We chose the pareto-optimal solution MaxP+I for evaluation in a vehicle. Based on
this solution an OS configuration was created containing the two parallel task parti-
tions ti ,0, ti ,1 and also synchronization code using our lean implementation. Further
following the toolchain described in Section 5.1, a build is created using the artifacts
generated by our concept. The resulting build of the ECU software was deployed in a
prototype vehicle and put into field test.

We observed the following from the evaluation of the prototype vehicle. First of
all, we could validate through functional tests that there was no observable change in
functionality compared to the original legacy application with the unsplitted task ti .
This is a strong hint that all dependencies are indeed maintained and mandatory func-
tional dependencies were not left out. Next, we measured the execution time and hence
the waiting time at the synchronization points. By measuring the actual waiting times
at the synchronization points we can evaluate and compare the statically determined
values with the runtime values. Figure 8.2 shows the measured average waiting times
in comparison with the statically determined waiting times and the brittleness for each
of the 11 synchronization points. The figure shows, that for all synchronization points
with a brittleness strictly less than one (points 1, 2, 7, 9), the waiting time at the synchro-
nization point is on average 0.8µs. This time interval represents the operating system
and scheduling overhead indicated by the dashed line. At these synchronization points
there is no busy waiting as the barrier event is already set. This shows that the brittleness
of a synchronization point is a suitable indicator for its robustness. Furthermore, it can
be seen in Figure 8.2, that the statically determined waiting times at the synchroniza-
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Figure 8.1: Results of the splitted task ti from the EMS.

tion points match the actual average waiting times quite well. The statically determined
waiting time is the time between the start of execution of the receiving runnable of a
synchronization point to the finish time of its predecessor. Exceptions are the synchro-
nization points 3, 4, and 5 where the actual waiting times are longer due to preemptions
of the source task by higher priority tasks. The opposite effect with a shorter waiting
time of these preemptions are seen for the synchronization point 11. When accounting
for the preemptions observed in the execution traces, the adjusted waiting times show
the same deviation from the computed waiting times as for the other synchronization
points. Taking these preemptions into account, the splitting algorithm could be used
to minimize waiting times. However, this remains future work.
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Overall, we could observe that the actual makespan observed in the worst-case is
only 0.5 % below the calculated oWCET makespan. The MaxP+I solution is thus very
robust against varying execution times such as oWCET overruns.
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Figure 8.2: Measured and statically determined waiting time compared to the brittle-
ness of each synchronization point.

8.2 Relaxing & Unsynchronized Splitting
In this case study we evaluate the parallelization concept toward its relaxation and un-
synchronized task splitting capabilities. It is used as part of the early strategy where the
product development lifecycle is still in its design phase. On the architecture level of the
design, functionality will be changed while the application is further refined. The mo-
tivation for this case study is that architecture decisions regarding the concurrency can
be evaluated early in the development lifecycle. Our parallelization concept facilitates
the process of evaluating communication timing decisions for domain experts while
designing the application. It is used to evaluate the impact of a change in a communica-
tion’s timing quickly. The domain expert can iteratively simulate timing decisions on
the application model without leaving the lifecycle phase. In this case study we want to
specifically evaluate the unsynchronized splitting mode to create fully decoupled task
partitions.

The workflow path through our parallelization concept uses all components in this
case study. Input for our approach are the parallelization goals as well as the application
model of the EMS. As the application model is still under development, there is no
implementation of the current design and also no runtime information. However,
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previous development lifecycles provide such information in the form of a reference
architecture. This reference architecture completes the application model with needed
oWCET information. We assume that we want to evaluate the concurrency of a task
te . Ideally, it should be provide two fully decoupled task partitions te ,0 and te ,1. The
speedup goal for the two task partitions is set to 1.9 to provide a variability of 10 %
when balancing the tasks.

For this case study we have selected a heavy task te from a different customer project
than in the case study in Section 8.1. The dependency graph of the selected task te was
extracted from the application model. The resulting dependency graph contains 234
runnables, 248 communication dependencies and no functional dependencies. Based
on the dependency graph, the Splitting component generates the precedence graph.
The generated precedence graph with 234 runnables has 113 precedences. The graph is
shown in Figure 8.3a. It shows the runnables as nodes, excluding the runnables that are
not connected via a precedence for illustration reasons. It shows the initial distribution
of connected components in the graph. The largest component contains 65 % of the
task’s oWCET and is thus the main focus for this case study. All other components are
smaller than 4.9 %.

Due to the complexity of this EMS, we would need to involve many different ex-
perts to evaluate the functional impact on each controller. To efficiently assess our
approach in this case study, we therefore simulate the experts based on the Dependency
Classification success criterion. For each proposed dependency, the simulated expert
decides randomly with the probability of successDC if the dependency can be relaxed.
This follows our argument that the criterion successDC indicates how the expert would
decide. In the future we plan to test our approach with real-world domain experts and
compare the results.

To assess the benefit of our approach, the key metric is the number of expert-in-
the-loop workflow iterations. As our objective is to reduce interactions with domain
experts at all times because an expert is a scarce resource, the number of iterations
reflects the efficiency of our concept. Less iterations mean less involvement of the
experts and thus a higher efficiency. We assume that it takes a fixed amount of work for
the expert to evaluate a proposed dependency. Hence, the number of iterations times
the fixed amount of work becomes the metric for the evaluation effort. For comparison,
we executed the same workflow but selected dependencies for evaluation at random.
Both approaches were repeated 100 times.

The results in Figure 8.3 show one execution of how our parallelization concept
splitted the task ti . In Figure 8.3b the parallelization goal was reached after 9 itera-
tions using our simulated expert. The largest component with initially 65 % of the
task’s oWCET could be reduced to below 50 % which creates the first task partition
te ,0. Hence, the Concurrency Analysis could find dependencies that were successfully
relaxed such that additional components were created. These additional components
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that were split of the component with 65 % form the second task partition te ,1. Note
that 126 components with a size of one runnable are left out for illustration reasons.

(a) Iteration #0 (b) Iteration #9

Figure 8.3: Task te in comparison from iteration #0 to iteration #9.

In Figure 8.4 the results of our case study are visualized in a boxplot. It shows the
number of iterations needed to reach the given parallelization goal for our Concurrency
Analysis in comparison to a random selection. On average, after 9.4 iterations, the
Concurrency Analysis has found suitable dependencies for relaxation that satisfies the
parallelization goal. Even though the simulated expert decides against the relaxation of a
proposed dependency in some iterations, the error is very small. Except for four outliers
that need 11, 13, 20 and 24 iterations, all workflows finished after 8–9 iterations. In
comparison, when dependencies were selected randomly, approximately 74.5 iterations
were needed on average to reach the parallelization goal. The upper quartile and lower
quartile are 99.0 respectively 55.25 iterations and their were no outliers. Comparing
the average of both approaches, our Concurrency Analysis needs only 12.6 % of the
iterations compared to selecting dependencies randomly for evaluation. This shows
that our approach successfully guides the selection of dependencies for evaluation and
significantly reduces the number of iterations and thus the evaluation effort for reaching
the parallelization goal.

8.3 Relaxing & Synchronized Splitting
This case study serves the purpose to evaluate how the parallelization concept can
decrease the brittleness when task splitting. A task that would contain synchronization
points when splitting can potentially be splitted into fully decoupled task partitions
by relaxing specific dependencies. In this case study we specifically target dependencies
that lead to synchronization points. Synchronization points increase the brittleness for
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Figure 8.4: Number of iterations needed to reach the parallelization goal with our
Concurrency Analysis in comparison to a random selection. The decision
to relax the proposed dependency is made by a simulated domain expert.

makespan penalties at oWCET overruns. Any synchronization between task partitions
prohibits them of being truly decoupled Logical Execution Time (LET) tasks. However,
the dependencies that lead to synchronization can be relaxed using our Concurrency
Analysis and the domain expert. The parallelization concept is used as part of the early
strategy. In this strategy, the product development lifecycle is still in its design phase.
The design phase allows and promotes changes in the functionality. Changes such as
the relaxation of dependencies can be made at low costs in this phase.

All components of our parallelization concept are in use during this case study. Input
for our approach are the parallelization goals as well as the application model of the EMS.
As the application model is still under development, the needed oWCET information
for the application model is retrieved from previous development lifecycles. We require
that the task ti should be splitted into two task partitions ti ,0 and ti ,1. Ideally, the
splitting should provide two fully decoupled task partitions ti ,0 and ti ,1 without any
synchronization. The amount of synchronization should be zero as well as the overall
brittleness. To enforce this goal, the speedup to achieve for the task is set to 2.0. This
demands perfectly balanced task partitions as it allows no variability. Such a goal can
typically never be reached and thus the workflow will never exit. We stop the workflow
manually as soon as the solutions converge and remain unchanged over more than two
iterations.

For this case study we chose a relatively small task with 21 runnables from the EMS.
It is a task that is executed with a high frequency and is mainly responsible for parts
of the exhaust management. The precedence graph of this task is shown in Figure 8.5.
We chose this task because of two reasons. First, the task’s architecture contains a
low level of available concurrency. Hence, splitting it always leads to synchronization
independent of the used splitting heuristic. Second, the task is less complex than the
tasks of the other case studies. This reduces the overall runtime of the task splitting due
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to the additional exhaustive search in conjunction with the task splitting to illustrate
the benefit of our approach.

The exhaustive search is needed because the heuristics presented in Section 6.3 to split
a task may find a sub-optimal solution. We use these heuristics because our objective is
scalability such that we cannot provide optimal solutions due to the complexity of real-
world automotive applications. Due to providing sub-optimal splitting solutions, the
solutions potentially differ in mapping, order and synchronization on every iteration
of our workflow. Ideally, one or more dependencies are relaxed in every iteration. As
soon as a dependency is relaxed, the concurrency of the application model is changed.
While it is a minor change in the precedence graph of the application, this change has a
dramatic effect on the resulting splitting solutions. Thus, to demonstrate the benefit of
the concurrency analysis for synchronization points, we perform an exhaustive search
to find the optimal solution for the splitting. Still, the exhaustive search is only used for
demonstration purposes in this case study. Due to the two metrics used for evaluation,
speedup and brittleness, there is more than one optimal solution. In fact, there is a
pareto-optimal set of solutions.

Figure 8.5: Precedence graph of the task used in this case study.

To perform the exhaustive search we use an approach similar to Genetic Algorithms
(GEs), but without the population and operators. The encoding of the problem in genes
of an individual should represent all possible solutions of the search space and also be
unique. The obvious encoding method for our mapping problem is to encode the order
of execution for each task partition into an individual. This idea was already published
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by [HAR94] and [CFR96]. Although [CFR96] is using a precedence graph to ensure
that only valid individuals are created, the genetic operators become complex as they
have to ensure the correctness when generating new individuals.

In our approach we encode the mapping of a runnable to a task partition, independent
of the order of execution and precedence constraints. Given the set of runnables of
a task Rti

= {r1, r2, . . . , rn}, the gene of an individual encodes the mapping of Rti
to

the task partitions ti ,1, ti ,2, . . . , ti ,k . The gene is composed of the task partition that a
runnable is mapped to, i. e., the individual s = {m(r1), m(r2), . . . , m(rn)}. For example,
to encode that r1 is assigned to ti ,2 and r2 is assigned to ti ,1, the gene of the individual is
specified as s = {ti ,2, ti ,1}. The encoding only specifies the mapping and not the order
of execution inside a task partition. The order is later determined by a scheduler. The
scheduler hereby ensures that all precedences are met and the runnables are mapped
to the task partition specified by the individual. The benefit of this gene encoding is
that there are no invalid individuals and the mapping of an individual to a solution is
straightforward. The only drawback we know of is that not all solutions in the search
space can be represented by an individual. As the order of execution is determined
by the scheduler, solutions that e. g., delay the activation of a runnable are left out.
However, we haven’t seen any delayed activation in our application models.

To find all pareto-optimal solutions we evaluate every possible solution that can be
represented using this encoding scheme. For this case study we use HLFET as scheduler
for the encoded solutions. Note that other schedulers for precedence graphs could be
used as well. For a task with 21 runnables that has to be split into two task partitions,
the encoded solution space consists of nk = 221 possible solutions. Note that there are
duplicates within these 2 Mio solutions. Two solutions in the encoded solution space
represent one solution to the original problem. For example, let r1, r2 be two runnables
that are mapped to two task partitions. This can be encoded in two different ways:
s = {m(r1) = ti ,0, m(r2) = ti ,1} and s = {m(r1) = ti ,1, m(r2) = ti ,0}. The duplicates are
of use to an GE but for our exhaustive search it is of no benefit. Therefore, we removed
the duplicates.

Furthermore, we configured the weights for the criteria in the Concurrency Anal-
ysis such that the synchronization point criterion dominates. All success criteria are
disabled and the weight for the synchronization point criterion is set to one thousand
times the weight of the forward evaluation criterion. By setting the weights as described
we can break potential ties using the FE criterion. For simplicity reasons, we assume
that all dependencies that are proposed to the domain expert are relaxed.

Figure 8.6 shows the solutions on the pareto-front between the speedup and the
brittleness. Each solution represents a splitting solution using the exhaustive search
and on each iteration a relaxation took place. The single-core solutions with a speedup
of 1.0, no synchronization and hence a brittleness of zero are left out. Our focus in
this figure is on the solutions with a high speedup and low brittleness. In this range,
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the pareto-front is changing due to the relaxation of dependencies. We can see that the
pareto-optimal solutions do not or only marginally improve in speedup due to removal
of idle-time in the overall makespan. The brittleness is however drastically reduced due
to the relaxation of dependencies related to synchronization points. The pareto-fronts
show a clear trend: The fronts are developing toward a solutions where there is no
synchronization without degrading the speedup. After 10 iterations, the two pareto-
optimal solutions are: 1.999957 with no synchronization and 1.999935 with a very low
brittleness of 0.11. After another iteration, there is no synchronization point left with
a speedup of 1.999935. This solution cannot be optimized any further.

Hence, in this case study we have shown that our parallelization concept can decrease
the brittleness when task splitting with little effort. By proposing the dependencies
that relate to synchronization points for relaxation, our concept can efficiently guide
an expert to fully decoupled task partitions.
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Figure 8.6: Development of the pareto-front of the splitting solutions when relaxing
dependencies that lead to synchronization points.
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9
Conclusion & Future Work

In this final chapter, we summarize and review the central results of this thesis according
to the problem statement and objectives defined in the beginning. We finish this chapter
by outlining and discussing future research directions.

9.1 Summary
In this thesis, we have presented a concept to parallelize legacy real-time tasks from
automotive control applications on multi-core platforms. The proposed model-based
concept offers automatic workflows to parallelize a single task from legacy Electronic
Control Unit (ECU) applications that can optionally be supported by a domain ex-
pert. It can be integrated seamlessly into existing automotive toolchains using the well-
established AMALTHEA platform. The provided parallelization concept can be used in
typical phases of the automotive development lifecycle. The concept can evaluate early
design decisions toward parallelism prior to the implementation as well as parallelizing
already implemented tasks with reduced effort during the late integration phase.

When parallelizing, the concept can either completely maintain the behavior of the
legacy task or maintain the functional correctness while altering the behavior. The
legacy real-time design of the tasks is hereby the greatest limiting factor to the paral-
lelization. Established construction principles for the design of tasks on single-core
platforms have introduced a huge amount of dependencies. These dependencies limit
the task’s concurrency that can be exploited for parallelism.

Our parallelization concept can efficiently extract the concurrency available inside
a task. Based on the extracted concurrency, a task is split into multiple parallel task
partitions. The resulting task partitions can either be fully decoupled in terms of Log-
ical Execution Time (LET) or may allow synchronization with other task partitions.
The presented splitting algorithms for this challenge are highly scalable and can cope
with tasks from real-world applications. Splitting a task is performed by a combination
of a list-scheduling algorithm and multiple mapping heuristics that are optimized for
speedup and robustness. The robustness is important because overruns of observed
Worst-Case Execution Times (WCETs) in combination with synchronization can re-
sult in a speedup degradation of the splitted task at runtime. It is the current state of
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practice and lack of predictable hardware in the automotive domain such that only
observed boundaries on the WCET are available to us. Our approach can cope with
these domain specific aspects by providing a robustness metric that indicates the likeli-
hood that Observed Worst-Case Execution Time (oWCET) overruns lead to a speedup
degradation. To minimize the overhead of potential synchronization, we also provide
an algorithm to reduce the amount of synchronization together with a lean implemen-
tation for OSEK basic tasks.

The limited available concurrency inside a legacy task originates from the single-core
design process but is not always mandatory. To further improve the concurrency for
parallelization, the proposed concept can increase the concurrency by altering the be-
havior but still maintain correctness. The behavior is altered through the relaxation
of suitable dependencies inside the task. A relaxation is the verified removal of timing
constraints of a dependency. To find these suitable dependencies, our analysis performs
an efficient ranking of all dependencies of a task. It evaluates the impact of a relaxation
toward the parallelization goal as well as the likelihood of success that the relaxation of
a dependency is approved by the domain expert. The evaluation is performed using an
extensible set of criteria that are applied to each dependency and precedence inside a
task. We have presented two impact criteria: (1) The forward evaluation determines the
benefit in terms of concurrency. (2) The synchronization point criterion measures the
change in robustness against oWCET overruns. Furthermore we have proposed two
success criteria: (1) The dependency classification determines the dynamics of the com-
municated data to classify how a relaxation may impact the behavior. (2) The reaction
constraints criterion checks if a relaxation may violate specified reaction constraints of
event chains. The results from these criteria are aggregated and create a ranking to find
the most suitable dependencies for relaxation. The most suitable dependencies are then
presented to a domain expert for validation of the altered behavior. To validate that
the behavior is still within its specifications and correct, we provide an interface with a
simple yes-no question to reduce the effort for the domain expert. After the validation,
the application model is refined accordingly and reflects the improved concurrency of
a task. Following the iterative nature of our concept, this improved concurrency can
again support task splitting to achieve the specified parallelization goal.

In this thesis, we have evaluated the presented parallelization concept with real-world
case studies from different automotive engine management systems. We have shown
the task splitting capabilities of our concept for a heavy task that encapsulates the most
runnables in the application with 144 runnables and 496 dependencies. In this case
study, our concept was used during late development lifecycle phases to solve the issue
that the implemented task exceeds the computational power of a single core. We could
show that the task splitting successfully exploits the concurrency of the given legacy
task and provides results comparable to other approaches but with improved robustness
against oWCET overruns. In order to validate the solution, the resulting splitted task
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was integrated into a prototype vehicle that successfully drove on a proving ground. In
another case study we have shown that our workflow to find and relax suitable depen-
dencies facilitates the evaluation of the concurrency during early development lifecycle
phases with little effort. For this purpose we also selected one of the biggest tasks with
234 runnables and 248 dependencies from an Engine Management System (EMS). Our
concurrency analysis was able to reach the parallelization goal of two balanced and
unsynchronized task partitions at an average of 12.6 % of the iterations compared to
selecting dependencies randomly for evaluation. The target of the third case study have
been tasks with a low level of concurrency and a high degree of synchronization as a re-
sult of the splitting. We have shown that these tasks can be freed from synchronization
by relaxation with little effort.

9.2 Future Work
During our research, we have identified several interesting open questions and oppor-
tunities that are worth further investigation. In the following, we outline research
directions that extends our presented parallelization concept.

Preemption and Synchronization

Preemptive schedulers are commonly used in the automotive industry for both single-
and multi-core platforms. Many automotive multi-core platforms currently have less
cores than tasks such that many tasks have to share a core. Hence, when tasks are
sharing a core, preemptions are very likely. While the preemption do not interfere with
a splitted and fully decoupled task, it has an effect on a splitted and synchronized task.
Preemptions do not invalidate the splitting solution but it has an impact on the overall
task performance. We have seen this impact during the case study in Section 8.1 that
one of the two splitted tasks was interrupted by another task with a higher priority. The
splitting solution contained synchronization such that the non-preempted task had to
wait additionally for the preempted task at the next synchronization point. Therefore,
the overall task performance decreased due to the additional waiting time. To detect
these scenarios, an extension to the synchronized splitting could be to integrate the list
of tasks that can potentially preempt the splitted and synchronized task. This extension
could improve the splitting toward robustness.

Probabilistic Worst-Case Execution Times

Due to the current state of practice in the automotive industry, there are typically no
exact worst-case execution times available. However, besides the observed WCET, also
the deviation and the number of times a runnable over- or underruns this bound can be
measured. Based on this information, the distribution of the observed execution times
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could be calculated. In future work we would consider including this distribution into
our metric to measure the brittleness of synchronization points. The brittleness metric
would improve its accuracy in determining when overruns might happen.

Splitting with Genetic Algorithms

The splitting heuristics we have presented are scalable and can cope with tasks from
real-world applications. The drawback to this scalability is that the splitting solutions
are not optimal. On the other hand, algorithms to find optimal solutions for the task
splitting problem cannot complete in reasonable time due to the complexity of real-
world automotive applications such as an EMS. One possibility to improve the task
splitting without losing the scalability is to incorporate Genetic Algorithms (GEs). In
particular, we would use our heuristics to create the initial population for the GE and
further optimize the task splitting solutions toward robustness or speedup.
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