Skip to main content
Log in

Commercializing academic research: a social network approach exploring the role of regions and distance

  • Published:
The Journal of Technology Transfer Aims and scope Submit manuscript

Abstract

Relationships between firms and universities have been centre stage for some time. However, empirical studies on firms contracting research to universities remains limited. The likelihood of engaging in contract research depends on the characteristics of the firm and the university. Because existing literature further suggests that location is a key facilitator for knowledge transfer activities, the paper investigates the role played by regions and geographical distance between firms and universities when engaging in contract research. Hence, the analysis combines characteristics from both organisations and adds relationship-specific features with respect to the distance between them and the region they are located in. It also looks at the role played by cognitive distance. The paper contributes to the understanding of how academic research, commissioned by firms, is influenced by locational features: the ability to engage in contract research and the regional context, the regional embeddedness of research contract partners, and the geographical distance between these partners. It builds on an original dataset with information on contract research at firm. Based on a panel of three consecutive waves of R&D surveys in Belgium conducted in 2006, 2008 and 2010, the linkages of universities with R&D active firms are examined by linking a database on universities with one on firm R&D investments. Using the most recent insights in the social network approach, highlights the variables that impact the likelihood of firms engaging in research contracted to a university. Descriptive measurements are calculated from social network analysis to capture the basic structure of the firm-university network and construct an Exponential Random Graph model to predict firm-university relationships based on network characteristics and node attributes. Four main conclusions are drawn. First, more innovative regions do not show a higher likelihood of firms to engage in contract research with universities. Second, the likelihood for contract research is higher, if firms and universities are located in the same region. Third, geographical distance shows a negative relation to the likelihood of contract research suggesting cluster formation. Fourth, in the case of contract research cognitive distance complements geographic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agneessens, F., Roose, H., & Waege, H. (2004). Choices of theatre events: p* models for affiliation networks with attributes. Metodoloski Zvezki, 1(2), 419–439.

    Google Scholar 

  • Arundel, A., & Geuna, A. (2004). Proximity and the use of public science by innovative European firms. Economics of Innovation and New Technology, 13, 559–580.

    Article  Google Scholar 

  • Asheim, B. T., & Isaksen, A. (2002). Regional innovation systems: The integration of local ‘sticky’ and global ‘ubiquitous’ knowledge. Journal of Technology Transfer, 27(1), 77–86.

    Article  Google Scholar 

  • Audretsch, D. B., & Lehmann, E. E. (2005). Does the knowledge spillover theory of entrepreneurship hold for regions? Research Policy, 34, 1191–1202.

    Article  Google Scholar 

  • Azagra-Caro, J. M., Archontakis, F., Gutiérrez-Gracia, A., & Fernández-de-Lucio, I. (2006). Faculty support for the objectives of university–industry relations versus degree of R&D cooperation: The importance of regional absorptive capacity. Research Policy, 35(1), 37–55.

    Article  Google Scholar 

  • Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of inventors and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.

    Google Scholar 

  • Balland, P.-A., & Rigby, D. (2017). The geography of complex knowledge. Economic Geography, 93(1), 1–23.

    Article  Google Scholar 

  • Bathelt, H., Malmberg, A., & Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28, 31–56.

    Article  Google Scholar 

  • Bekkers, R., & Bodas Freitas, I. M. (2008). Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy, 37(10), 1837–1853.

    Article  Google Scholar 

  • Belgian Science Policy Office. (2016). Last Accessed October 8, 2016. http://www.stis.belspo.be/en/statisticsRD.asp.

  • Bodas Freitas, I. M., & Verspagen, B. (2017). The motivations, institutions and organization of university-industry collaborations in the Netherlands. Journal of Evolutionary Economics, 27, 379–412.

    Article  Google Scholar 

  • Borgatti, S. P., & Cross, R. (2003). A relational view in social networks. Management Science, 49, 432–445.

    Article  Google Scholar 

  • Breschi, S., & Lissoni, F. (2001). Knowledge spillovers and local innovation systems: A critical survey. Industrial and Corporate Change, 10, 975–1005.

    Article  Google Scholar 

  • Broekel, T., & Boschma, R. (2012). Knowledge networks in the Dutch aviation industry: The proximity paradox. Journal of Economic Geography, 12(2), 409–433.

    Article  Google Scholar 

  • Broström, A. (2010). Working with distant researchers—Distance and content in university-industry interaction. Research Policy, 39(10), 131–1320.

    Article  Google Scholar 

  • Bruneel, J., Spithoven, A., & Clarysse, B. (2017). Interorganizational trust and technology complexity: Evidence for new technology-based firms. Journal of Small Business Management, 55(S1), 256–274.

    Article  Google Scholar 

  • Cairncross, F. (2001). The death of distance 2.0. London: Texere Publishing Limited.

    Google Scholar 

  • Caniëls, M. C. J., Kronenberg, K., & Werker, C. (2014). Conceptualizing proximity in research collaborations. In R. Rutten, P. Benneworth, D. Irawati, & F. Boekema (Eds.), The social dynamics of innovation networks (pp. 221–238). London: Routledge.

    Google Scholar 

  • Caniëls, M. C. J., & van den Bosch, H. (2011). The role of higher education institutions in building regional innovation systems. Papers in Regional Science, 90(2), 271–286.

    Article  Google Scholar 

  • Cantner, U., & Graf, H. (2006). The network of innovators in Jena: An application of social network analysis. Research Policy, 35(4), 463–480.

    Article  Google Scholar 

  • Capello, R., & Caragliu, A. (2018). Proximities and the intensity of scientific relations: Synergies and nonlinearities. International Regional Science Review, 41(1), 7–44.

    Article  Google Scholar 

  • Casper, S. (2013). The spill-over theory reversed: The impact of regional economies on the commercialization of university science. Research Policy, 42, 1313–1324.

    Article  Google Scholar 

  • Charles, D. (2006). Universities as key knowledge infrastructures in regional innovation systems. Innovation: The European Journal of Social Science Research, 19(1), 117–130.

    Google Scholar 

  • Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science, 48(1), 1–23.

    Article  Google Scholar 

  • Cooke, P., Uranga, M. G., & Etxebarria, G. (1997). Regional innovation systems: Institutional and organisational dimensions. Research Policy, 26(4–5), 475–492.

    Article  Google Scholar 

  • Cowan, R., David, P. A., & Foray, D. (2000). The explicit economics of knowledge codification and tacitness. Industrial and Corporate Change, 9(2), 211–253.

    Article  Google Scholar 

  • Cumbers, A., MacKinnon, D., & Chapman, K. (2003). Innovation, collaboration, and learning in regional clusters: A study of SMEs in the Aberdeen oil complex. Environment and Planning A, 35, 1689–1709.

    Article  Google Scholar 

  • Czarnitzki, D., & Delanote, J. (2013). Young Innovative Companies: The new high-growth firms? Industrial and Corporate Change, 22(5), 1315–1340.

    Article  Google Scholar 

  • D’Este, P., & Patel, P. (2007). University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry? Research Policy, 36(9), 1295–1313.

    Article  Google Scholar 

  • D’Este, P., & Perkmann, M. (2011). Why do academics engage with industry? The entrepreneurial university and individual motivations. Journal of Technology Transfer, 36(3), 316–339.

    Article  Google Scholar 

  • Dahl, M. S., & Sorenson, O. (2012). Home sweet home: Entrepreneurs’ location choices and the performance of their ventures. Management Studies, 58(6), 1059–1071.

    Google Scholar 

  • Davids, M., & Frenken, K. (2018). Proximity, knowledge base and the innovation process: Towards an integrated framework. Regional Studies, 52(1), 23–34.

    Article  Google Scholar 

  • De Fuentes, C., & Dutrénit, G. (2016). Geographic proximity and university–industry interaction: The case of Mexico. The Journal of Technology Transfer, 41(2), 329–348.

    Article  Google Scholar 

  • Doloreux, D., & Parto, S. (2005). Regional innovation systems: Current discourse and unresolved issues. Technology in Society, 27(2), 133–153.

    Article  Google Scholar 

  • Döring, T., & Schnellenbach, J. (2006). What do we know about geographical knowledge spillovers and regional growth? A survey of the literature. Regional Studies, 40(3), 375–395.

    Article  Google Scholar 

  • Etzkowitz, H. (1998). The norms of entrepreneurial science: Cognitive effects of the new university–industry linkages. Research Policy, 27(8), 823–833.

    Article  Google Scholar 

  • European Commission. (2017). Regional innovation scoreboard. Luxembourg, European Commission. http://ec.europa.eu/growth/industry/innovation/facts-figures/regional_en.

  • Fontana, R., Geuna, A., & Matt, M. (2006). Factors affecting university-industry R&D projects: The importance of searching, screening and signalling. Research Policy, 35(2), 309–323.

    Article  Google Scholar 

  • Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81, 832–842.

    Article  Google Scholar 

  • Fritsch, M., & Stephan, A. (2005). Regionalization of innovation policy—Introduction to the special issue. Research Policy, 34(8), 1123–1127.

    Article  Google Scholar 

  • Garcia, R., Araújo, V., Mascarini, S., Santos, E. G. D., & Costa, A. R. (2018). An analysis of the relation between geographical and cognitive proximity in university-industry linkages. Proceedings of the 44th Brazilian Economics Meeting, no. 132.

  • Gertler, M. S. (1995). “Being there”: Proximity, organization, and culture in the development and adoption of advanced manufacturing technologies. Economic Geography, 71(1), 1–26.

    Article  Google Scholar 

  • Godin, B., & Gingras, Y. (2000). The place of universities in the system of knowledge production. Research Policy, 29, 273–278.

    Article  Google Scholar 

  • Goodreau, S. M., Handcock, M. S., Hunter, D. R., Butts, C. T., & Morris, M. (2008). A statnet tutorial. Journal of Statistical Software, 24(9), 1–27.

    Article  Google Scholar 

  • Greunz, L. (2005). Intra- and inter-regional knowledge spillovers: Evidence from European regions. European Planning Studies, 13(3), 449–473.

    Article  Google Scholar 

  • Grillitsch, M., & Trippl, M. (2014). Combining knowledge from different sources, channels and geographical scales. European Planning Studies, 22(1), 2305–2325.

    Article  Google Scholar 

  • Hagedoorn, J., & Zobel, A. K. (2015). The role of contracts and intellectual property rights in open innovation. Technology Analysis & Strategic Management, 27(9), 1050–1067.

    Article  Google Scholar 

  • Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2003). Statnet: Software tools for the statistical modeling of network data. http://statnetproject.org.

  • Hansen, T. (2015). Substitution or overlap? The relations between geographical and non-spatial proximity dimensions in collaborative innovation projects. Regional Studies, 49(10), 1672–1684.

    Article  Google Scholar 

  • Holcomb, T. R., & Hitt, M. A. (2007). Toward a model of strategic outsourcing. Journal of Operations Management, 25(2), 464–481.

    Article  Google Scholar 

  • Huber, F. (2012). On the role and interrelationship of spatial, social and cognitive proximity: Personal knowledge relationships of R&D workers in the Cambridge information technology cluster. Regional Studies, 46(9), 1169–1182.

    Article  Google Scholar 

  • Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks, 29, 216–230.

    Article  Google Scholar 

  • Isaksen, A. (2008). The innovation dynamics of global competitive regional clusters: The case of Norwegian centres of expertise. Regional Studies, 43(9), 1155–1166.

    Article  Google Scholar 

  • Isaksen, A., & Karlsen, J. (2013). Can small regions construct regional advantages? The case of four Norwegian regions. European Urban and Regional Studies, 20(2), 243–257.

    Article  Google Scholar 

  • Jensen, P. H., Palangkaraya, A., & Webster, E. (2015). Trust and the market for technology. Research Policy, 44, 340–356.

    Article  Google Scholar 

  • Keeble, D., Lawson, C., Moore, B., & Wilkinson, F. (1999). Collective learning processes, networking and ‘institutional thickness’ in the Cambridge region. Regional Studies, 33(4), 319–332.

    Article  Google Scholar 

  • Klein Woolthuis, R., Hillebrand, B., & Nooteboom, B. (2005). Trust, contract, and relationship development. Organization Studies, 26(6), 813–840.

    Article  Google Scholar 

  • Knoben, J., & Oerlemans, L. A. G. (2006). Proximity and inter-organizational collaboration: A literature review. International Journal of Management Reviews, 8(2), 71–89.

    Article  Google Scholar 

  • Kramer, J.-P., & Revilla-Diez, J. (2012). Catching the local buzz by embedding? Empirical insights on the regional embeddedness of multinational enterprises in Germany and the UK. Regional Studies, 46(10), 1303–1317.

    Article  Google Scholar 

  • Laursen, K., Reichstein, T., & Salter, A. (2011). Exploring the effect of geographical proximity and university quality on university-industry collaboration in the United Kingdom. Regional Studies, 45(4), 507–523.

    Article  Google Scholar 

  • Lerner, J., & Malmendier, U. (2010). Contractibility and the design of research agreements. American Economic Review, 100(1), 214–246.

    Article  Google Scholar 

  • Lusher, D., Koskinen, J., & Robins, G. (Eds.). (2013). Exponential random graph models for social networks: Theory, methods, and applications. Cambridge University Press.

  • Malecki, E. J. (2010). Global knowledge and creativity: New challenges for firms and regions. Regional Studies, 44(8), 1033–1052.

    Article  Google Scholar 

  • Malmberg, A., & Power, D. (2005). (How) do (firms in) clusters create knowledge? Industry and Innovation, 12(4), 409–431.

    Article  Google Scholar 

  • Manning, S. (2013). New Silicon Valleys or a new species? Commoditization of knowledge work and the rise of knowledge services clusters. Research Policy, 42, 379–390.

    Article  Google Scholar 

  • Markman, G. D., Siegel, D. S., & Wright, M. (2008). Research and technology commercialization. Journal of Management Studies, 45(8), 1401–1423.

    Article  Google Scholar 

  • Marrocu, E., Paci, R., & Usai, S. (2013). Proximity, networking and knowledge production in Europe: What lessons for innovation policy? Technological Forecasting and Social Change, 80(8), 1484–1498.

    Article  Google Scholar 

  • Marsan, G. A., & Maguire, K. (2011). Categorisation of OECD regions using innovation-related variables. OECD Regional Development Working Papers, 2011/03. Paris: OECD Publishing.

  • Marsili, O., & Verspagen, B. (2002). Technology and the dynamics of industrial structures: An empirical mapping of Dutch manufacturing. Industrial and Corporate Change, 11(4), 791–815.

    Article  Google Scholar 

  • Marzucchi, A., Antonioli, D., & Montressor, S. (2015). Industry-research co-operation within and across regional boundaries. What does innovation policy add? Papers in Regional Science, 94(3), 499–524.

    Article  Google Scholar 

  • McCann, P., & Ortega-Argilés, R. (2013). Modern regional innovation policy. Cambridge Journal of Regions, Economy and Society, 6, 187–216.

    Article  Google Scholar 

  • McDonald, D. W., & Gieser, S. M. (1987). Making cooperative research relationships work. Research Management, 30(4), 38–42.

    Article  Google Scholar 

  • Mellewigt, T., Madhok, A., & Weibel, A. (2007). Trust and formal contracts in interorganizational relationships—Substitutes and complements. Managerial and Decision Economics, 28(8), 833–847.

    Article  Google Scholar 

  • Miguélez, E., & Moreno, R. (2015). Knowledge flows and the absorptive capacity of regions. Research Policy, 43, 833–848.

    Article  Google Scholar 

  • Monjon, S., & Waelbroeck, P. (2003). Assessing knowledge spillovers from universities to firms: Evidence from French firm-level data. International Journal of Industrial Organization, 21(9), 1255–1270.

    Article  Google Scholar 

  • Morgan, K. (2004). The exaggerated death of geography: Learning, proximity and territorial innovation systems. Journal of Economic Geography, 4(1), 3–21.

    Article  Google Scholar 

  • Morris, M., Handcock, M. S., & Hunter, D. R. (2008). Specification of exponential-family random graph models: Terms and computational aspects. Journal of Statistical Software, 24(4), 1548–7660.

    Article  Google Scholar 

  • Mowery, D. C., & Ziedonis, A. A. (2015). Market versus spillovers in outflows of university research. Research Policy, 44, 50–66.

    Article  Google Scholar 

  • Muscio, A., Quaglione, D., & Vallanti, G. (2015). University regulation and university-industry interaction: A performance analysis of Italian academic departments. Industry and Corporate Change, 24(5), 1047–1079.

    Article  Google Scholar 

  • Nachum, L., & Zaheer, S. (2005). The persistence of distance? The impact of technology on MNE motivations for foreign investment. Strategic Management Journal, 26(8), 747–767.

    Article  Google Scholar 

  • Navarro, M., & Gibaja, J. J. (2009). Patterns of innovation in EU-25 regions: A typology and policy recommendations. Environment and Planning C: Government and Policy, 27, 815–840.

    Article  Google Scholar 

  • Niosi, J. (2002). National Systems of innovations are “x-efficient” (and x-effective). Why some are slow learners. Research Policy, 31, 291–302.

    Article  Google Scholar 

  • Nooteboom, B., Vanhaverbeke, W., Duysters, G., Gilsing, V., & Van den Oord, A. (2007). Optimal cognitive distance and absorptive capacity. Research Policy, 36(7), 1016–1034.

    Article  Google Scholar 

  • OECD. (2007). Higher education and regions: Globally competitive, locally engaged. Paris: OECD.

    Book  Google Scholar 

  • OECD. (2013). Regions at a Glance. Paris: OECD.

    Google Scholar 

  • OECD. (2015). Frascati manual. Proposed standard practice for surveys on research and experimental development. Paris: OECD.

    Google Scholar 

  • Office, Belgian Science Policy. (2010). Belgian report on science and technology indicators. Brussels: BELSPO.

    Google Scholar 

  • Ohmae, K. (1995). The borderless world: Power and strategy in an interdependent economy. New York: Harper Business.

    Google Scholar 

  • Paci, R., & Usai, S. (2009). Knowledge flows across European regions. Annals of Regional Science, 43, 669–690.

    Article  Google Scholar 

  • Perkmann, M., & Schildt, H. (2015). Open data partnerships between firms and universities: The role of boundary organizations. Research Policy, 44, 1133–1143.

    Article  Google Scholar 

  • Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Broström, A., D’Este, P., et al. (2013). Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy, 42, 423–442.

    Article  Google Scholar 

  • Perkmann, M., & Walsh, K. (2007). University–industry relationships and open innovation: Towards a research agenda. International Journal of Management Reviews, 9(4), 259–280.

    Article  Google Scholar 

  • Ponds, R., Van Oort, F., & Frenken, K. (2007). The geographical and institutional proximity of research collaboration. Papers in Regional Science, 86(3), 423–443.

    Article  Google Scholar 

  • Poppo, L., & Zenger, T. (2002). Do formal contracts and relational governance function as substitutes or complements? Strategic Management Journal, 23, 707–725.

    Article  Google Scholar 

  • Porter, M. E. (1998). Clusters and the new economics of competition. Harvard Business Review, 76(6), 77–90.

    Google Scholar 

  • Power, D., & Malmberg, A. (2008). The contribution of universities to innovation and economic development: In what sense a regional problem? Cambridge Journal of Regions, Economy and Society, 1(2), 233–245.

    Article  Google Scholar 

  • Ramos-Vielba, I., & Fernández-Esquinas, M. (2012). Beneath the tip of the iceberg: Exploring the multiple forms of university-industry linkages. Higher Education, 64, 237–265.

    Article  Google Scholar 

  • Rothaermel, F., Agung, S., & Jiang, L. (2007). University entrepreneurship: A taxonomy of the literature. Industrial and Corporate Change, 16(4), 691–791.

    Article  Google Scholar 

  • Santoro, M. D., & Gopalakrishnan, S. (2001). Relationship dynamics between university research centers and industrial firms: Their impact on technology transfer activities. The Journal of Technology Transfer, 26(1–2), 163–171.

    Article  Google Scholar 

  • Sanz-Menéndez, L., & Cruz-Castro, L. (2005). Explaining the science and technology policies of regional governments. Regional Studies, 39(7), 939–954.

    Article  Google Scholar 

  • Scandura, A. (2016). University-industry collaboration and firms’ R&D effort. Research Policy, 45, 1907–1922.

    Article  Google Scholar 

  • Schartinger, D., Rammer, C., Fischer, M. M., & Flöhlich, J. (2002). Knowledge interactions between universities and industry in Austria: Sectoral patterns and determinants. Research Policy, 31(3), 303–328.

    Article  Google Scholar 

  • Schepker, D. J., Oh, W. Y., Martynov, A., & Poppo, L. (2014). The many futures of contracts: Moving beyond structure and safeguarding to coordination and adaptation. Journal of Management, 40(1), 193–225.

    Article  Google Scholar 

  • Skvoretz, J., & Faust, K. (1999). Logit models for affiliation networks. Sociological Methodology, 29(1), 253–280.

    Article  Google Scholar 

  • Snijders, T. (2002). Markov Chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3, 1–40.

    Google Scholar 

  • Snijders, T. A. B., Pattison, P. E., Robins, G. L., & Handcock, M. S. (2006). New specifications for exponential random graph models. Sociological Methodology, 36(1), 99–153.

    Article  Google Scholar 

  • Spithoven, A., & Teirlinck, P. (2015). Internal capabilities, network resources and appropriation mechanisms as determinants of R&D outsourcing. Research Policy, 44(3), 711–725.

    Article  Google Scholar 

  • Spithoven, A., Vanhaverbeke, W., & Roijakkers, N. (2013). Open innovation practices in SMEs and large enterprises. Small Business Economics, 41(3), 537–562.

    Article  Google Scholar 

  • Sternberg, R., & Litzenberger, T. (2004). Regional clusters in Germany—Their geography and their relevance for entrepreneurial activities. European Planning Studies, 12(6), 767–791.

    Article  Google Scholar 

  • Storper, M. (1995). The resurgence of regional economies, ten years later: The region as a nexus of untraded interdependencies. European Urban and Regional Studies, 2(3), 191–221.

    Article  Google Scholar 

  • Storper, M., & Venables, A. J. (2004). Buzz: The economic force of the city. Journal of Economic Geography, 4, 351–370.

    Article  Google Scholar 

  • Subramani, M. R., & Venkatraman, N. (2003). Safeguarding investments in asymmetric interorganizational relationships: Theory and Evidence. Academy of Management Journal, 46(1), 46–62.

    Google Scholar 

  • Teirlinck, P., & Spithoven, A. (2005). Spatial inequality and location of private R&D activities in Belgian districts. Tijdschrift voor Economische en Sociale Geografie, 96(5), 558–572.

    Article  Google Scholar 

  • Tödtling, F., Lengauer, L., & Höglinger, C. (2011). Knowledge sourcing and innovation in “thick” and “thin” regional innovation systems—Comparing ICT firms in two Austrian regions. European Planning Studies, 19(7), 1245–1276.

    Article  Google Scholar 

  • Tödtling, F., & Trippl, M. (2005). One size fits all? Towards a differentiated regional innovation policy approach. Research Policy, 34(8), 1203–1219.

    Article  Google Scholar 

  • Torre, A., & Rallet, A. (2005). Proximity and localization. Regional Studies, 39(1), 47–59.

    Article  Google Scholar 

  • Trippl, M., Grillitsch, M., Isaksen, A. (2017). Exogenous sources of regional industrial change: Attraction and absorption of non-local knowledge for new path development. Progress in Human Geography (forthcoming).

  • Trippl, M., Tödtling, F., & Lengaur, L. (2009). Knowledge sourcing beyond buzz and pipelines: Evidence from the Vienna software sector. Economic Geography, 85(4), 443–462.

    Article  Google Scholar 

  • Uyarra, E. (2010). Conceptualizing the regional roles of universities, implications and contradictions. European Planning Studies, 18(8), 1227–1246.

    Article  Google Scholar 

  • Uzzi, B., & Gillespie, J. J. (2002). Knowledge spillovers in corporate financing networks: Embeddedness and the firm’s debt performance. Strategic Management Journal, 23, 595–618.

    Article  Google Scholar 

  • Varga, A., Pontikakis, D., & Chorafakis, G. (2014). Metropolitan Edison and cosmopolitan Pasteur? Agglomeration and interregional research network effects on European R&D productivity. Journal of Economic Geography, 14, 229–263.

    Article  Google Scholar 

  • Wang, P., Pattison, P., & Robins, G. (2013). Exponential random graph model specifications for bipartite networks—A dependence hierarchy. Social Networks, 35(2), 211–222.

    Article  Google Scholar 

  • Wang, P., Sharpe, K., Robins, G. L., & Pattison, P. E. (2009). Exponential random graph (p*) models for affiliation networks. Social Networks, 31(1), 12–25.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. Psychometrika, 61, 401–425.

    Article  Google Scholar 

  • Waxel, A., & Malmberg, A. (2007). What is global and what is local in knowledge generating interaction? The case of the biotech cluster in Uppsala, Sweden. Entrepreneurship and Regional Development, 19, 137–159.

    Article  Google Scholar 

  • Woodward, D., Figueiredo, O., & Guimarães, P. (2006). Beyond the Silicon Valley: University R&D and high technology location. Journal of Urban Economics, 60(1), 15–32.

    Article  Google Scholar 

  • Zaheer, A., McEvily, B., & Perrone, V. (1998). Does trust matter? Exploring the effects of interorganizational and interpersonal trust on performance. Organization Science, 9, 141–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Spithoven.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: examining model fit

Appendix: examining model fit

As a first goodness-of-fit check, we compare the statistics of simulated networks of the model against the observed network in below table. Note that p values closer to one are better (Goodreau et al. 2008; Lusher et al. 2013).

Variable

Model 1

Model 2

Model 3a

Model 3b

p value

p value

p value

p value

Network level

    

 Edges

0.90

0.88

0.74

0.90

 gwb1degree

0.88

0.84

0.78

0.88

Node level: business

    

 Age (relative to 2009)

    

  < 6 years

0.98

0.76

1.00

0.88

  ≥ 6 years (ref)

    

 Size

    

  Micro (ref)

    

  Small

1.00

0.94

0.96

0.92

  Medium

1.00

0.88

0.74

0.78

  Large

1.00

0.96

0.82

0.86

 Sector

    

  No service (ref.)

    

  Service

1.00

0.80

  

 R&D intensity

    

  Low (ref.)

    

  Mid

0.78

0.82

0.86

0.88

  High

0.78

0.94

0.92

0.93

 Subsidized

    

  Low (ref.)

    

  Mid

1.00

0.86

0.98

0.74

  High

0.64

0.70

0.58

0.78

 Regio (nuts1)

    

  Brussels Capital Region (ref.)

    

  Flemish Region

 

0.76

0.94

0.88

  Walloon Region

 

1.00

0.86

0.98

 Concurrent

    

  Brussels Capital Region

 

1.00

0.76

1.00

  Flemish Region

 

0.72

0.80

0.84

  Walloon Region

 

1.00

0.90

1.00

Node level: university

    

 Bibliometric quality

    

  Low (ref.)

    

  Mid

1.00

0.96

0.98

1.00

  High

0.90

0.86

0.84

0.94

 R&D expenditures

    

  Low (ref.)

    

  Mid

0.96

1.00

0.94

1.00

  High

0.74

0.82

0.82

0.96

 Regio (nuts1)

    

  Brussels Capital Region (ref.)

    

  Flemish Region

 

0.80

0.92

0.98

  Walloon Region

 

1.00

0.82

0.98

Dyad level

    

 Regional embeddedness

    

  Brussels Capital Region

 

0.90

0.86

0.90

  Flemish Region

 

0.96

0.96

0.92

  Walloon Region

 

0.72

0.96

0.96

Distance (km)

0.88

0.82

0.96

 

 Cognitive distance based on bibliometric specialization

    

  0 Firm in services—University in social sciences (ref.)

    

  1 Firm in manufacturing—University in social sciences

  

0.70

 

  2 Firm in manufacturing—University in exact sciences

  

0.76

 

  3 Firm in services—University in exact sciences

  

0.96

 

 Cognitive distance based on R&D specialization

    

  0 Firm in services—University in social sciences (ref.)

    

  1 Firm in manufacturing—University in social sciences

   

0.92

  2 Firm in manufacturing—University in exact sciences

   

0.96

  3 Firm in services—University in exact sciences

   

1.00

A second typical GOF check for ERGMs is comparing a selection of network statistics of the simulated networks with the observed network. The network statistics do not necessarily have to present a predictor in the model itself. Below we plot the distribution of minimum geodesic distance, dyad-wise shared partners on the log-odds scale and degree for mode 1 (Morris et al. 2008). All plots show that the GOF of our models is at least reasonable.

1.1 Model 1 GOF plots

figure a

1.2 Model 2 GOF plots

figure b

1.3 Model 3a GOF plots

figure c

1.4 Model 3b GOF plots

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spithoven, A., Vlegels, J. & Ysebaert, W. Commercializing academic research: a social network approach exploring the role of regions and distance. J Technol Transf 46, 1196–1231 (2021). https://doi.org/10.1007/s10961-019-09740-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10961-019-09740-1

Keywords

JEL Classifications

Navigation