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Abstract
Modern cryptography does not only enable to protect your personal data on the Internet, 
or to authenticate for certain services, but also evaluate a function on private inputs 
of multiple parties, without anyone being able to learn something about these inputs1. 
Cryptographic protocols of this type are called secure multiparty computation and are 
suitable for a broad spectrum of applications, such as for voting or auctions, where the 
vote or bid should remain private.

To prove security of such protocols, one needs assumptions that are often complexity-
theoretic in nature – for example that it is difficult to factorize sufficiently large numbers. 
Security assumptions that are based on physical principles exhibit quite some advan-
tages when compared to complexity-theoretic assumptions: the protocols are often 
conceptually simpler, the security is independent of the computational power of an 
attacker, and the functioning and security is often more transparent to humans2. Exam-
ples of such assumptions are physically isolated or incorruptible hardware components 
(cf. [BKM+18]), write-only devices for logging, or scratch-off cards as common in letters 
for personal PINs. Also, the non-cloneability of quantum states that follows from the 
principles of quantum theory, is a physical security assumption that is, e.g., used to 
realize non-cloneable “quantum money”.

This dissertation covers, besides protocols that use the security of certain simple 
hardware components as a trust anchor, particularly cryptographic protocols for secure 
multiparty computation that is executed with the help of a deck of physical playing cards. 
The security assumption is that the cards have indistinguishable backs and that certain 
shuffling actions can be performed securely. One application of these protocols is a di-
dactic method to illustrate cryptography and to allow for secure multiparty computation 
that can be performed completely without any computer/hardware involved.

In this area of cryptography, researchers aim to construct protocols using a mini-
mal number of cards – and to prove them optimal in this sense. Depending on the 
requirements posed to running time (finite vs. finite only in expectation) and to the 
practicability of the used shuffles, one can derive different lower bounds for the neces-
sary number of cards. This thesis derives a lower bound for all combinations of these 
requirements in the case of AND3 and constructs or identifies protocols in the literature 
that use this minimal number of cards. In total, AND is possible and optimal with 

1With the exception of knowledge that can be deduced from the output and own inputs efficiently.
2For example, the German Constitutional Court demanded: “When electronic voting machines are 
deployed, it must be possible for the citizen to check the essential steps in the election act and in the 
ascertainment of the results reliably and without special expert knowledge.” (BVerfG, Judgment of 
the Second Senate of 03 March 2009).

3A logical AND of two bits encoded in cards; together with negation and duplication of bits, this is 
sufficient for computing arbitrary circuits.
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four (in the case of expectedly finite running time [KWH15; K18]), five (in the case of 
requiring practicable shuffling or a finite running time [KWH15; K18]) or six cards (for 
finite running time and simultaneously using only practicable shuffling [KKW+17]).

For the necessary structural insights we developed “state diagrams”, a graph-based 
representation of all possible protocol runs, which allow for direct reading of correctness 
and security from the diagram [KWH15; KKW+17]. This method has since found broad 
usage in the area-relevant literature. (With this method, proofs of lower bounds with 
respect to the number of cards become proofs that certain protocol states are not 
reachable in the associated combinatorial graph structure.) Using this, we were able to 
formalize the respective notions of card-based cryptography as a C program and prove 
the run-minimality (given certain restrictions) of a card-minimal AND protocol using a 
Software Bounded Model Checking approach [KSK19].

Moreover, we give conceptionally simple protocols in the case of secure multiparty 
computation that additionally protects the function to be computed [KW18] for each of 
the following computational models: (universal) circuits, branching programs, Turing 
machines and RAM machines. Furthermore, we give an analysis of how card-based 
protocols can be executed such that the only interaction is in the other parties watching 
for the correct execution of the protocol. This allows for (weakly interactive in the 
aforementioned sense) program obfuscation, where one party can execute a program 
encoded in cards on his own inputs, without learning anything about its internal 
workings, except what can be deduced from input- and output-behavior. This is in 
general impossible without such physical assumptions. Additionally, we formalize a 
security notion against active attackers and specify a method that – using very weak 
security assumptions – compiles a passively secure protocol fulfilling certain conditions 
into an actively secure version [KW17].

A second physical security assumption analyzed in this thesis is to assume primitive, 
incorruptible hardware, such as a TAN generator. This allows for example a secure 
authentication of a human user via a corrupted/untrusted terminal, without requiring 
that the user conducts cryptographic computation by herself (such as multiplying large 
primes). A construction is given in the case of money withdrawal at a corrupted ATM 
with the help of a very simple trusted second device and with very weak security 
assumptions to the available communication channels [AGH+19b]. The given protocol 
remains secure when being run concurrently with other protocols (exhibits so-called 
Universal Composability security), was designed in a modular way, and uses a plausible 
security assumption. Hence, its functioning is transparent to humans.

Overall, by giving several card-based protocols, systematized proof methods for 
showing lower bounds and respective proofs, as well as our results for the secure 
utilization of a non-trusted terminal, together with a categorization of these into a 
systematic presentation of the different physical assumptions used in cryptography, this 
thesis presents a significant contribution to cryptography based on physical assumptions.
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Zusammenfassung

Moderne Kryptographie erlaubt nicht nur, personenbezogene Daten im Internet zu 
schützen oder sich für bestimmte Dienste zu authentifizieren, sondern ermöglicht auch 
das Auswerten einer Funktion auf geheimen Eingaben mehrerer Parteien, ohne dass 
dabei etwas über diese Eingaben gelernt werden kann4. Kryptographische Protokolle 
dieser Art werden sichere Mehrparteienberechnung genannt und eignen sich für ein 
breites Anwendungsspektrum, wie z.B. geheime Abstimmungen und Auktionen.

Um die Sicherheit solcher Protokolle zu beweisen, werden Annahmen benötigt, die oft 
komplexitätstheoretischer Natur sind, beispielsweise, dass es schwierig ist, hinreichend 
große Zahlen zu faktorisieren. Sicherheitsannahmen, die auf physikalischen Prinzipien
basieren, bieten im Gegensatz zu komplexitätstheoretischen Annahmen jedoch einige 
Vorteile: die Protokolle sind meist konzeptionell einfacher, die Sicherheit ist unabhängig 
von den Berechnungskapazitäten des Angreifers, und die Funktionsweise und Sicherheit 
ist oft für den Menschen leichter nachvollziehbar5. Beispiele für solche Annahmen sind 
physikalisch getrennte oder unkorrumpierbare Hardware-Komponenten (vgl. [BKM+18]), 
Write-Only-Geräte für Logging, oder frei zu rubbelnde Felder, wie man sie von PIN-
Briefen kennt. Auch die aus der Quantentheorie folgende Nicht-Duplizierbarkeit von 
Quantenzuständen ist eine physikalische Sicherheitsannahme, die z.B. verwendet wird, 
um nicht-klonbares „Quantengeld“ zu realisieren.

In der vorliegenden Dissertation geht es neben Protokollen, die die Sicherheit und 
Isolation bestimmter einfacher Hardware-Komponenten als Vertrauensanker verwenden, 
im Besonderen um kryptographischen Protokolle für die sichere Mehrparteienberechnung, 
die mit Hilfe physikalischer Spielkarten durchgeführt werden. Die Sicherheitsannahme 
besteht darin, dass die Karten ununterscheidbare Rückseiten haben und, dass bestimmte 
Mischoperationen sicher durchgeführt werden können. Eine Anwendung dieser Protokolle 
liegt also in der Veranschaulichung von Kryptographie und in der Ermöglichung sicherer 
Mehrparteienberechnungen, die gänzlich ohne Computer ausgeführt werden können.

Ein Ziel in diesem Bereich der Kryptographie ist es, Protokolle anzugeben, die 
möglichst wenige Karten benötigen – und sie als optimal in diesem Sinne zu bewei-
sen. Abhängig von Anforderungen an das Laufzeitverhalten (endliche vs. lediglich im 
Erwartungswert endliche Laufzeit) und an die Praktikabilität der eingesetzten Mischope-
rationen, ergeben sich unterschiedliche untere Schranken für die mindestens benötigte 

4Mit der Ausnahme von Informationen, die aus der Ausgabe und eigenen Eingaben effizient abgeleitet 
werden können

5Zum Beispiel forderte das Bundesverfassungsgericht: „Beim Einsatz elektronischer Wahlgeräte müssen 
die wesentlichen Schritte der Wahlhandlung und der Ergebnisermittlung vom Bürger zuverlässig und 
ohne besondere Sachkenntnis überprüft werden können.“ (BVerfG, Urteil des Zweiten Senats vom 03. 
März 2009)
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Kartenanzahl. Im Rahmen der Arbeit wird für jede Kombination dieser Anforderungen 
ein UND-Protokoll6 konstruiert oder in der Literatur identifiziert, das mit der minimalen 
Anzahl an Karten auskommt, und dies auch als Karten-minimal bewiesen. Insgesamt 
ist UND mit vier (für erwartet endliche Laufzeit [KWH15; K18]), fünf (für praktikable 
Mischoperationen oder endliche Laufzeit [KWH15; K18]) oder sechs Karten (für endliche 
Laufzeit und gleichzeitig praktikable Mischoperationen [KKW+17]) möglich und optimal.

Für die notwendigen Struktureinsichten wurden so-genannte „Zustandsdiagramme“ 
mit zugehörigen Kalkülregeln entwickelt, die eine graphenbasierte Darstellung aller 
möglichen Protokolldurchläufe darstellen und an denen Korrektheit und Sicherheit der 
Protokolle direkt ablesbar sind [KWH15; KKW+17]. Dieser Kalkül hat seitdem eine breite 
Verwendung in der bereichsrelevanten Literatur gefunden. (Beweise für untere Schranken 
bzgl. der Kartenanzahl werden durch den Kalkül zu Beweisen, die zeigen, dass bestimm-
te Protokollzustände in einer bestimmten kombinatorischen Graphenstruktur nicht 
erreichbar sind.) Mit Hilfe des Kalküls wurden Begriffe der Spielkartenkryptographie als 
C-Programm formalisiert und (unter bestimmten Einschränkungen) mit einem „ Soft-
ware Bounded Model Checking“-Ansatz die Längenminimalität eines kartenminimalen 
UND-Protokolls bewiesen [KSK19].

Darüber hinaus werden konzeptionell einfache Protokolle für den Fall einer sicheren 
Mehrparteienberechnung angegeben, bei der sogar zusätzlich die zu berechnende Funktion 
geheim bleiben soll [KW18], und zwar für jedes der folgenden Berechnungsmodelle: 
(universelle) Schaltkreise, binäre Entscheidungsdiagramme, Turingmaschinen und RAM-
Maschinen. Es wird zudem untersucht, wie Karten-basierte Protokolle so ausgeführt 
werden können, dass die einzige Interaktion darin besteht, dass andere Parteien die 
korrekte Ausführung überwachen. Dies ermöglicht eine (schwach interaktive) Programm-
Obfuszierung, bei der eine Partei ein durch Karten codiertes Programm auf eigenen 
Eingaben ausführen kann, ohne etwas über dessen interne Funktionsweise zu lernen, 
das über das Ein-/Ausgabeverhalten hinaus geht. Dies ist ohne derartige physikalische 
Annahmen i.A. nicht möglich. Zusätzlich wird eine Sicherheit gegen Angreifer, die auch 
vom Protokoll abweichen dürfen, formalisiert und es wird eine Methode angegeben um 
unter möglichst schwachen Sicherheitsannahmen ein passiv sicheres Protokoll mechanisch 
in ein aktiv sicheres zu transformieren [KW17].

Eine weitere, in der Dissertation untersuchte physikalische Sicherheitsannahme, ist 
die Annahme primitiver, unkorrumpierbarer Hardware-Bausteine, wie z.B. einen TAN-
Generator. Dies ermöglicht z.B. eine sichere Authentifikation des menschlichen Nutzers 
über ein korrumpiertes Terminal, ohne dass der Nutzer selbst kryptographische Be-
rechnungen durchführen muss (z.B. große Primzahlen zu multiplizieren). Dies wird 
am Beispiel des Geldabhebens an einem korrumpierten Geldautomaten mit Hilfe eines 
als sicher angenommenen zweiten Geräts [AGH+19b] und mit möglichst schwachen 
Anforderungen an die vorhandenen Kommunikationskanäle gelöst. Da das angegebene 
Protokoll auch sicher ist, wenn es beliebig mit anderen gleichzeitig laufenden Protokollen 
ausgeführt wird (also sogenannte Universelle Komponierbarkeit aufweist), es modular 

6Ein logisches UND zweier in Karten codierter Bits; dieses ist zusammen mit der Negation und dem 
Kopieren von Bits hinreichend für die Realisierung allgemeiner Schaltkreise.

8



entworfen wurde, und die Sicherheitsannahme glaubwürdig ist, ist die Funktionsweise 
für den Menschen transparent und nachvollziehbar.

Insgesamt bildet die Arbeit durch die verschiedenen Karten-basierten Protokolle, 
Kalküle und systematisierten Beweise für untere Schranken bzgl. der Kartenanzahl, sowie 
durch Ergebnisse zur sicheren Verwendung eines nicht-vertrauenswürdigen Terminals, 
und einer Einordnung dieser in eine systematische Darstellung der verschiedenen, in der 
Kryptographie verwendeten physikalischen Annahmen, einen wesentlichen Beitrag zur 
physikalisch-basierten Kryptographie. 
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1. Introduction
While the physical world surrounds us in our day-to-day life since the beginning, the 
digital world (the “Neuland”) has (by comparison) only very recently started to permeate 
our world. In the (admittedly rather digital) field of cryptography, it has seemingly 
been the other way round.

Yes, cryptographers have established a long-standing tradition of telling interesting 
stories, and to use real-world analogies to explain their craft. Usually the narrative 
includes at least two protagonists, Alice and Bob1, who have to protect not only from 
honest-but-curious Eve, but also from malicious Malory, and may involve locked boxes 
which are passed between the parties to illustrate the concept of a key exchange protocol. 
But, a formal, rigorous and fruitful treatment of physical methods and assumptions to 
develop cryptographic protocols is quite recent and still flourishing.

This is especially true as using physical objects allow us to circumvent many impossi-
bility results. For example, tamper-proof hardware tokens due to [K07] (to be discussed 
in the next chapter) suffice to construct protocols for general “secure computation” with 
very strong (composable) security guarantees without the need of a trusted authority 
to set up, e.g., a public-key infrastructure – something that was thought impossible 
before, due to seminal results by Canetti and Fischlin [CF01] and Canetti, Kushilevitz, 
and Lindell [CKL03]. Here, a secure computation involves multiple parties, which would 
like to jointly evaluate a function (such as: “who of them is richest”), without giving 
away anything about the individual parties’ input values that is not obvious from the 
output. Throughout this thesis, we will see many instances of such computations. An 
additional example of avoiding impossibilities when trying to authenticate as a human 
via an untrusted platform, is given in Part III on “human-friendly electronic payment”.

Moreover, protocols employing physical assumptions may offer qualitatively stronger 
security guarantees, or other security aspects, such as fairness (informally: if a protocol 
yields an output, all parties learn it), using different trust models, deniability and 
non-coercion. A particular advantage that only-digital protocols cannot offer, is to 
provide a bridge to reality. Examples of this are given in [GBG14; FFN14], where the 
authors provide a protocol for proving (in zero-knowledge) that a nuclear warhead 
that is to be disarmed due to an international treaty conforms to a certain prescribed 
template, without giving away anything about its internal design.

Also, due to our familiarity with the physical world, many protocols that make use of 
day-to-day objects, such as envelopes or ballots used in cryptographic voting schemes, 
are often much easier to understand, or are just more transparent than computer 
hardware executing some program. This might be crucial for a protocol to be even 

1Appearing at the beginning of time, at least counting from [RSA78] – not to make use of tricks in 
https://xkcd.com/1323/.
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considered for real-world use. As cited in the abstract, the German Constitutional Court 
demanded that “[w]hen electronic voting machines are deployed, it must be possible 
for the citizen to check the essential steps in the election act and in the ascertainment 
of the results reliably and without special expert knowledge.” (BVerfG, Judgment of 
the Second Senate of 03 March 2009). Finally, physical tools such as the wooden boxes 
mentioned in the beginning, can be used fruitfully for didactics. Besides giving the 
opportunity to do secure computation without a computer, this is one of the main aims 
of card-based cryptography, which will be covered in detail in Part II.

Outline of the Thesis
Let us give a short overview on how this thesis is organized. The main focus of Part I
is to give an overview of how physical security assumptions have been used in the area 
of cryptography and provable security. We will categorize such physical cryptography 
broadly into three domains (by its main object), namely to obtain security guarantees 
with i) idealized hardware covered in Chapter 2, ii) idealized, easily-manipulateable 
physical objects in Chapter 3 and iii) idealized physical processes or properties. To keep 
the focus of the thesis, we omit the third category from our discussion, as it is not 
connected to research results contained in this thesis. Following this exposition, we 
summarize the main contribution of the thesis, describe how these results fit into the 
developed landscape and give an overview of the author’s publications in Chapter 4.

Part II contains results on secure computation with a deck of cards. It starts with an 
introduction to card-based cryptography (Chapter 5), followed by Chapter 6 on the basic 
computational model. We describe our state diagram formalism for secure protocols in 
Chapter 7 and give several new protocols in Chapter 8. One of the main results of this 
thesis is to deduce how many cards are necessary for AND and COPY protocols, also 
with respect to certain restrictions to running time and practicability of the involved 
shuffles. This is given in Chapter 9, together with an extensive part on methodology 
of such proofs. Additionally, we apply methods of formal verification (bounded model 
checking) to prove the minimality of a protocol’s shortest run in Chapter 10. Protocols 
which additionally protect the function to be evaluated, and hence allow for program 
obfuscation with cards, are given in Chapter 11. Finally, Chapter 12 contains a method 
to achieve actively secure card-based protocols and discusses the insecurity against 
malicious attacks for several protocols from the literature.

In Part III, we make use of partial hardware trust assumptions and use the physical 
security of certain channels to implement secure protocols for electronic payment and 
money withdrawal at a possibly malicious ATM, involving a human user. The problem 
is introduced in Chapter 13. Chapter 14 contains our model of secure payment in the 
UC framework, which is a separate contribution. In Chapter 15 we derive requirements 
for secure payment, and use these findings to show that many real-world protocols 
for money withdrawal do not satisfy this criterion, in Chapter 16. Finally, a secure 
protocol for money withdrawal is proposed in Chapter 17. Part IV concludes, points to 
some resonance in the literature that the present work has evoked and identifies future 
research directions in the field of cryptography from physical security assumptions.
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Many researchers have suggested using hardware as a facilitator for cryptographic 
protocols or as a trust anchor, based on a wide range of security properties or functionality 
features that such hardware might exhibit. Let us go through the most important 
and impactful hardware assumptions used for cryptographic protocols. Throughout 
this chapter, we mostly focus on results that attain security in the strong Universal 
Composability (UC) framework. For an introduction to UC-security, we refer to 
Section 13.3. 

2.1. Physically Uncloneable Functions

Introduced as “Physical One-Way Functions” by Pappu et al. [PRTG02], so-called 
Physically Uncloneable Functions (PUFs) are simple, stateless hardware modules which 
serve as a (noisy) evaluation of a function with high min-entropy output. The used 
manufacturing process unavoidably and purposefully includes imprecision and slight 
variations in the chip, leading to a response behavior that is hard to clone. Although the 
concrete security requirements depend on the cryptographic protocol or application it 
is to be used in, many definitions include one-wayness and unforgeability of the output. 
Armknecht et al. [AMSY16] give a good survey on these notions and integrates them 
into one consistent and unified framework. For a survey on technical implementations 
of PUFs, see [KKR+12].

When it comes to the achievable level of security when using PUFs as hardware 
given to the players, Brzuska et al. [BFSK11] were the first to give a construction of 
secure multiparty computation in the UC framework that is even unconditionally secure. 
However, as noted by Ostrovsky et al. [OSVW13], their construction assumes that the 
PUFs in use are fully trusted. An adversary that is able to create a hardware chip 
which looks and behaves like a PUF can easily break the security of their scheme. These 
malicious PUFs come in two flavors: they can be either stateful1 or stateless, with 
the latter being plausibly much more easy to craft in a way that it is as simple (and 
indistinguishable from the outside) as the PUF that is to be imitated. In the setting 
of stateful malicious PUFs, Ostrovsky et al. [OSVW13] present a protocol for secure 
computation that achieves computational UC-security. Unconditional UC-security in 
the (stateful) malicious PUF-setting has only be attained for commitment protocols, 
cf. [DS13]. Indeed, Dachman-Soled et al. [DFK+14] show that unconditional general 
computation and oblivious transfer is impossible, even in the stand-alone setting. On 

1While these PUFs may, e.g., log all input-output values, it is important to note that PUFs neither 
can communicate back to the adversary, nor does he get access to the PUF after the protocol.
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the positive side, they construct an unconditional and efficient UC-secure protocol for 
general computation, if one restricts the adversary to only issue stateless PUFs.

2.2. Signature Cards
Hofheinz, Müller-Quade, and Unruh [HMU07] proposed using trusted signature cards as 
an alternative setup assumption for UC-secure computation. These are modeled as an 
ideal hardware functionality which, upon receiving a message as an input by its holder, 
outputs a signature to it. Using these, one can also obtain UC-security in the long-term 
setting, as shown in [MU07]. Long-term security guarantees that the cryptographic 
protocol remains secure even if the adversary gets unlimited computational power after 
the protocol has ended, which is a very interesting security feature in the light of possible 
future technological advances that might threaten currently-used cryptographic schemes. 
One example of such an imminent threat is the possible advent of scalable quantum 
computers.

As further research has shown, one can also handle untrusted signature cards, e.g., by 
restricting to signature schemes which have a unique (non-randomized) signature for 
each message, and by taking special care for the case when the card aborts dependent 
on the message to be signed, thereby leaking to the outside that a message from a 
certain set was to be signed. See [MMN18] for reference, which additionally achieves 
reusability of the signature card in multiple protocols without impacting security, as in 
the global UC framework introduced in [CDPW07]. ([HMU07] also offer reusability of 
signature cards, but their signature cards are not modeled in the global UC framework.)

2.3. Tamper-Proof Hardware Tokens
Besides hardware modules which compute a random function (such as PUFs) or im-
plement a signing functionality, one can also assume hardware, such as smart or SIM 
cards or USB authentication tokens, which can execute arbitrary code. These have been 
proposed by Katz [K07] as a setup assumption for UC-secure computation. In contrast 
to previous setup assumptions, such as a common reference string or a public-key 
infrastructure, this does not need a trusted central party responsible for establishing 
the setup assumption. Here, the security relies on two assumptions: i) the code of the 
token and any internal secrets are completely opaque to the holder, i.e., the token is 
tamper-proof  and cannot be brought to reveal its secrets by any engineering measure, 
and ii) the token cannot communicate with the outside (except possibly through regular 
protocol messages), in particular, it cannot send any security-relevant information back 
to its original creator.

Tamper-proof hardware mainly comes in two flavors, dependent on how lightweight 
the used hardware is supposed to be: i) stateful tokens which can reliably store data 
and keep a non-trivial internal state, ii) stateless or (stateful but) resettable tokens 
(such as a smart-card reliant on an external power source) which should still work if 
an adversary repeatedly cuts off power to the token and thereby resetting its state. 
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2.4. Trusted Hardware with Constrained Functionality

Differently from the discussion on PUFs, malicious tokens are always assumed to be 
able to keep a state, aiding the purposes of the attack.

Obviously, assuming stateful tokens is a much stronger assumption, leading to strong 
feasibility results. For example, Goyal et al. [GIS+10] show that even non-interactive 
and unconditionally UC-secure two-party computation is possible with simple stateful 
tamper-proof hardware tokens against malicious adversaries. Here, non-interactive 
two-party computation starts with a single charge of tokens being sent from sender to 
receiver, followed by a computation phase without any communication. In terms of 
efficiency, [DKM11; DKM12] were able to reduce the number of necessary stateful tokens 
to the provable minimum of one and two tokens for interactive and non-interactive 
two-party computation, respectively, while retaining unconditional UC security in both 
cases. (Note that using a single token is especially beneficial, as one does not need to 
take into account the threat of multiple malicious tokens covertly communicating at the 
receiver’s place.)

In the case of stateless or resettable tokens, one is restricted to realizing functionalities 
that are compatible with being reset at any time in the protocol, called “resettable 
functionality” in the following. First of all note that (as pointed out in [GIS+10]) 
stateless tokens by themselves cannot achieve unconditional security, as an unbounded 
adversary can completely learn the behavior of the token (unless one restricts the number 
of resets, as in [DS13; DKMN15b]). In this setting, due to [DMMN13; DKMN15a], one 
can achieve arbitrary resettable two-party functionalities with UC-security using only a 
single token and the existence of one-way functions. More recently, [HPV17] constructed 
constant-round adaptively secure protocols which allow all parties to be corrupted. As a 
variant of the tamper-proof hardware model, Fisch, Freund, and Naor [FFN15] suggested 
to use disposable circuits which can be completely destroyed after the computation, 
to realize unconditional UC-security computation (with input-dependent abort). This 
suggestion is especially useful in the context of physical computations [FFN14], such 
as determining or proving a match of certain genes, where one needs an “information 
barrier” after the protocol. A good survey on the use of tamper-proof hardware tokens 
can be found in [N15].

2.4. Trusted Hardware with Constrained Functionality

The above assumptions on secure hardware have first been introduced as a trusted 
functionality, evoking a search for generalizations to the respective untrusted hardware 
assumptions. This is understandable, as, e.g., a trusted PUF is a strong assumption. 
However, if the functionality to be implemented is very simple and can be formally 
verified as a fixed-function logic circuit, and it might also be plausible to build the 
hardware yourself or to obtain them in usual electronic stores – making targeted attacks 
much more difficult – then, such trust assumptions become more plausible. Moreover, 
often these modules do not carry any secrets themselves, making the tamper-proofness 
assumptions as above less important. Hence, it is worthwhile to consider such trusted
hardware modules, in particular if they lead to strong security results. As an example, 
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[AMR15] uses a very simple secure equality check hardware module, to ensure the 
correct, UC-secure functioning of a parallel firewall setup, protecting against a malicious 
firewall. We will use the assumption of a trusted TAN generator or optical code reader 
in Part III of this thesis.

An example of achieving qualitatively stronger security by using trusted hardware 
such as data-diodes, air-gap switches and “output interface modules” is the Fortified 
UC framework [BKM+18], of which I am a co-author2. A more detailed description is 
given in Section 4.3.

Secure Oblivious Bingo Voting [ALMR16; ABL+17], where the voting machine does 
not even learn the vote cast by the user, has been realized with a special trusted physical 
module. Also in the context of voting, Moran, Naor, and Segev [MNS07] consider 
write-once memory as a trusted hardware assumptions to securely store votes even in 
adversarial environments. These or even simpler write-only devices, such as printer 
can also be used to achieve secure logging. Next, we discuss a special case of trusted 
hardware that deserves separate mentioning, due to its refined modeling and more 
complex functionality.

2.5. Secure Processors
Recently, processors that allow for attested execution in a sandboxed environment, a so-
called enclave, such as Intel’s SGX technology, have been formally modeled by Pass, Shi, 
and Tramèr [PST17] in the global UC framework. An attested execution of a program 
P on inputs i outputs not only the result, but also a signature on P and the output, 
certifying that the program has been correctly executed on this processor, resulting in 
the respective output. As the execution happens in an enclave, it is protected against 
tampering and other forms of modification and/or leakage, dependent on how weak 
the security assumptions are to be modeled. For example, [PST17; TZL+17] describe a 
variant where all internal secrets of the computation are allowed to leak (but not the 
signing key for the attestation), so-called transparent enclaves. Using these, they were 
able to construct UC-secure commitments and zero-knowledge proofs, which remain 
secure in the global UC framework, hence allowing for reusability of the processors after 
the protocol, cf. the discussion above in the case of reusable signature cards. Other 
interesting applications of secure processors are, e.g., given in [FVBG17] – implementing 
functional encryption using Intel SGX enclaves – and [NFR+17], which implements 
obfuscation for RAM programs in a very strong (virtual-black-box) sense. General 
program obfuscation of this strength has been shown to be impossible in software. 
One contribution of this thesis is to give an obfuscation of the same strength in the 
card-based cryptography setting, cf. Chapter 11.

2It was not included in this dissertation to keep the focus on security mechanisms which involve human 
aspects, and there is already an excellent and extensive description in the dissertation of the first 
author, cf. [B19].
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In contrast to secure hardware, physical objects do not carry any internal logic or 
programming but are specifically-crafted or day-to-day things that can be used for 
cryptographic protocols. These are sometimes used as inspiration or analogy, such as 
when using boxes and locks to explain key exchange protocols, but can also be thought 
to really achieve a cryptographic computation, e.g., without a computer, and might 
thereby offer more tangible and transparent security than the digital counterparts. The 
most prominent example is in cryptographic voting schemes, where physical ballots or 
envelopes are formally modeled with a concrete security goal in mind.

Apart from these, one can also use these objects more broadly for recreational 
cryptography, or didactics, e.g., when illustrating secure multiparty computation or 
zero-knowledge proofs to university or high-school students. Finally, some of these are 
suitable for the theoretical interest of studying unconventional computational models.

3.1. Physical Envelopes and Ballots
Exploiting physical properties of voting machines or ballots is common in the cryp-
tographic voting community to achieve seemingly contradictory properties such as 
receipt-freeness (informally, one cannot show others a receipt from which they can 
derive information about how one has voted, an important property for non-coercibility), 
and (public) verifiability of the fact that one’s vote has been counted. For example, 
PunchScan [PH10] employs ballots which consist of two sheets of paper, fixed together 
but separable. The sheet on top has holes through which a code for the available options 
is visible. When voting, an ink punching device that is large enough to mark both 
sheets of paper when applied to a holes, is used. Crucial for the security of the scheme 
is that the two sheets of the ballot, taken together, do uniquely determine which hole is 
to be punched for the respective voting choice, but when separated, each single sheet 
does not give away anything about the vote. Hence, after voting, only one part of the 
ballot can be taken home by the voter to be used for verification that the vote has really 
been counted, while the other is used for the tally. The protocol is also analyzed more 
formally in [MN10b, Sect. 2.4].

Another voting scheme that uses physical properties is Scantegrity [CCC+09; CCC+10], 
and the schemes of Moran and Naor [MN06b; MN06a]. One ingredient common to 
many voting schemes are tamper-evident seals, such as envelopes, locked but breakable 
boxes or scratch-off cards, cf. [MN10a]. Besides voting, they allow to execute many 
cryptographic primitives, such as oblivious transfer and bit commitment (albeit not 
obfuscation). They distinguish four types, dependent on whether the seals are all 
indistinguishable, and on whether honest players have the ability to open a locked seal 
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(such as a closed envelope) and achieve distinct feasibility results for the different seal 
types.

In [IML05], the authors do not only introduce interesting ideas, and problems of 
game theory to the field of cryptography, including the notion of a “rational attacker” 
which tries to maximize its utility, but also employ a ballot-box and envelopes to 
implement unconditionally UC-secure multiparty computation in this rational attacker 
model (without an honest majority). In [ILM08; ILMas], they extend their ballot-box 
method to form the notion of “Verifiably Secure Devices” or “Transparent Computation”, 
which essentially describes a transparent procedure implemented by a human or device 
employing such a ballot box functionality, to compute the desired functionality.1

3.2. Cryptography with Playing Cards

Secure multiparty computation can be done with a deck of physical cards, as first shown 
in [dB90; CK94; NR98]. In this area of card-based cryptography, one designs tangible 
protocols using a deck of cards with information-theoretic privacy features. We will 
cover these extensively in Part II and hence will focus on other uses of playing cards to 
attain interesting security properties.

Famously, Schneier [S99] invented a symmetric cipher, called Solitaire, that is executed 
with cards. While biased and hence not really secure, it is advertised with non-digital 
features such as plausible deniability (everyone may carry a deck of cards) and fast 
“secure erasure” (shuffling destroys the key) in case of a physical search. Toponce [T18] 
provides an overview over several alternative card ciphers that have been proposed and 
which exploit the fact that generating randomness is simple when shuffling cards, to be 
easy to execute.

In a different vein, cards have evoked the interest of cryptographers and researchers 
in combinatorics, via the following “Russian cards problem” introduced by Fischer and 
Wright [FW96]. Here, a prescribed number of cards is dealt to Alice, Bob and also Eve, 
and Alice and Bob want to establish a common secret about which Eve is left clueless, by 
publicly announcing some information about their cards. This is, e.g., further analyzed 
in [MSN99; AAA+05].

3.3. Cryptography with Other Objects

Fagin, Naor, and Winkler [FNW96] give a nice introduction to cryptography for the task 
of securely comparing private values, utilizing different physical objects, which besides 
cards and envelopes also includes a discussion on using cups and Airline reservation 
hotlines.

1Using these, they present a protocol to compute a certain game-theoretic equilibrium, which is a 
certain beneficial subclass of Nash equilibria that are efficiently reachable given a correlated starting 
strategy for the players, usually to be set up by a trusted party (which the authors avoid). The 
UC-security follows from the fulfillment of information-theoretic conditions due to [DM00].
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Balogh et al. [BCIK03] establish secure multiparty computation for arbitrary Boolean 
functions using a (rather large) PEZ dispenser ideal functionality with ideal PEZ candies 
of two colors, where candies of the same color are indistinguishable. Here, each player 
may privately dispense a number of candies, dependent on the input and only this 
player learns the order and color of its candies. After the protocol, the color of the 
candy that is would be dispensed if one pressed once more, encodes the output bit. 
While certainly curious and evoking amusements, their research was motivated by 
the question of how far can one can go with a deterministic ideal functionality, to 
which one cannot trivially offload all the computation: “The main conclusion of our 
work is a surprising affirmative answer to an instance of this question: even a severely 
handicapped, physically realizable, and inherently ‘leaky’ trusted party (as the [PEZ 
dispenser]) allows nontrivial deterministic secure computation.”

Naor and Shamir [NS95] invented “visual secret sharing”, allowing to create physical 
transparent slides, each with random (but correlated) dot patterns, such that when both 
are placed on top of each other, a black-and-white image appears. (There have been 
many extensions, also to allow colors and detectability if someone uses a maliciously 
created transparency. Moreover, it has been used in an early version of the PunchScan 
scheme described above, for the two sheets of the ballot.)

Researchers have been creative in employing other objects for secure multiparty 
computation. For example, [MKS07b] describes how to compute any function with up 
to four variables using a 15 Puzzle where one can turn over the tiles to conceal their 
symbol, similarly to turnable cards in card-based cryptography. Moreover, Mizuki, 
Kugimoto, and Sone [MKS07a] found a way to use a dial lock to compute a specific class 
of functions securely. Similarly to card-based protocols, [SMS+15b] proposes simple 
protocols using polarized plates.

Physical computation is also described in [CV12], as “Physical GMW protocol”, to 
achieve security in the framework of Universal Composability with Local Adversaries 
(LUC). However, they make very strong assumptions on available “machines” (the can 
not, e.g., use the reorderability that is possible with cards).
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4. Contributions and Publication Overview

In this chapter, I would like to put our results into the context of the depicted landscape 
of security from physical assumptions, thereby briefly summarizing the contributions 
with reference to publications, on which this thesis is built.

4.1. Contribution to Security from Physical Objects

All of Part II can be seen as a direct contribution to the field of security from idealized 
physical objects, as it explores models, methods and protocols for secure card-based 
computations. Let us give a very brief summary, with a more detailed contribution 
to be found at the respective referenced chapters, when the used notions have been 
introduced in a bit more detail. In all these works, I am a lead/main author.

Parts of Chapters 6 to 9 are based on the following paper:

[KWH15] A. Koch, S. Walzer, and K. Härtel. “Card-Based Cryptographic Proto-
cols Using a Minimal Number of Cards”. In: Advances in Cryptology – 
ASIACRYPT 2015. Proceedings, Part I: 21st International Conference 
on the Theory and Application of Cryptology and Information Security 
(Auckland, New Zealand, Nov. 29–Dec. 3, 2015). Ed. by T. Iwata and 
J. H. Cheon. LNCS 9452. Springer, 2015, pp. 783–807. doi: 10.1007/978-
3-662-48797-6 32. © International Association for Cryptologic Research 
(IACR) 2015. 

Here, we introduce state diagrams, construct four- and five-card AND protocols and a 
protocol for an arbitrary k-ary Boolean function, and give the first lower-bound result 
on the number of cards for AND, namely that AND protocols with a finite running time 
require five cards. Moreover, we discuss restrictions to the underlying computational 
model.

Similarly, essential parts of Chapters 6 to 9 are also based on the following paper:

[KKW+17] J. Kastner, A. Koch, S. Walzer, D. Miyahara, Y. Hayashi, T. Mizuki, 
and H. Sone. “The Minimum Number of Cards in Practical Card-Based 
Protocols”. In: Advances in Cryptology – ASIACRYPT 2017. Proceed-
ings, Part III: 23rd International Conference on the Theory and Ap-
plications of Cryptology and Information Security (Hong Kong, China, 
Dec. 3–7, 2017). Ed. by T. Takagi and T. Peyrin. LNCS 10626. Springer, 
2017, pp. 126–155. doi: 10.1007/978-3-319-70700-6 5. © IACR 2017. 
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This paper basically extends all lower bounds results and corresponding methods to 
AND protocols with restricted (practicable) shuffles and to COPY protocols, which are 
also an essential building block for computing arbitrary Boolean circuits. It is a merge 
of two papers, where Sections 9.4 and 9.5 stems from the last four authors.

Chapter 12 is based on the following publication:

[KW17] A. Koch and S. Walzer. Foundations for Actively Secure Card-based 
Cryptography. 2017. Cryptology ePrint Archive, Report 2017/423. In sub-
mission. 

Here, we extensively cover the case of active security in card-based cryptography, which 
has not been systematically studied before. Most importantly, we give a generic compiler 
which transforms any passively secure card-based protocol into an actively secure version, 
given certain requirements to the used shuffling actions.

A larger part of Chapter 9, but also some part of Chapter 8 is taken from:

[K18] A. Koch. The Landscape of Optimal Card-based Protocols. 2018. Cryptology 
ePrint Archive, Report 2018/951. In submission. 

This paper completes the picture of tight lower bounds for AND and COPY, by extending 
and systematizing the methodology of lower bound proofs for card-based protocols, 
showing lower bounds for these functionalities and giving two additional AND protocols.

Chapter 11 and Section 8.6 of Chapter 8 are from:

[KW18] A. Koch and S. Walzer. Private Function Evaluation with Cards. 2018. 
Cryptology ePrint Archive, Report 2018/1113. In submission. 

Here, we consider the case of secure multiparty computation where the function to 
be computed is a secret itself, and establish secure card-based protocols for universal 
circuits, branching programs, Turing machines and RAM machines. For this, we develop 
the abstraction of a “sorting” protocol, which allows to sort cards with respect to the 
order of another card sequence, obliviously. Many protocols from the literature can be 
framed as such a sorting protocol.

Focussing on the case of a deck where all cards are distinct, the following paper is 
the basis for parts of Chapter 8, but also contains Chapter 10:

[KSK19] A. Koch, M. Schrempp, and M. Kirsten. “Card-based Cryptography Meets 
Formal Verification”. In: Advances in Cryptology – ASIACRYPT 2019. 
Proceedings: 25th Annual International Conference on the Theory and 
Application of Cryptology and Information Security (Kobe, Japan, Dec. 8–
12, 2019). Ed. by S. Galbraith and S. Moriai. LNCS. Springer, 2019. 
© IACR 2019. In press. 

Here, we construct a new four-card AND protocol for this deck type (improving on a five-
card protocol) and introduce formal verification to the area of card-based cryptography. 
Using a developed bounded model checking technique, we prove that the new protocol 
has an execution path of minimal length. Finally, we consider protocols for card encoding 
conversions and give partial results on lower bounds for AND in this setting.
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4.2. Contribution to Security from Idealized Hardware
Part III of this thesis is directly based on the following publication, to which I contributed 
significantly:

[AGH+19b] D. Achenbach, R. Gröll, T. Hackenjos, A. Koch, B. Löwe, J. Mech-
ler, J. Müller-Quade, and J. Rill. “Your Money or Your Life—Mod-
eling and Analyzing the Security of Electronic Payment in the UC 
Framework”. In: Financial Cryptography and Data Security. 23rd In-
ternational Conference. Revised Selected Papers: FC 2019 (Frigate Bay, 
Saint Kitts and Nevis, Feb. 18–22, 2019). Ed. by I. Goldberg and T.
Moore. LNCS. Springer, 2019. Cryptology ePrint Archive, Report 2019/
924. © International Financial Cryptography Association 2019. In press. 

Here, we model electronic payment and money withdrawal in the UC framework, where 
a human initiator would like, e.g., to authenticate an amount to be withdrawn at 
an ATM which might be malicious. This contributes to the field of security from 
idealized hardware, as we explore the setting of, e.g., a trusted TAN generator for 
authentication. Additionally, more broadly connected to physical security, we analyze 
and employ different types of communication channels that are available due to the 
physical situation that the human interacts in (e.g., his ability to cover the PIN pad 
and thereby establishing a confidential channel to the ATM). Using these constraints 
and resources, we construct a UC-secure payment protocol. For other, more general 
contributions of the paper, including further modeling aspects and necessary criteria for 
security in our setting, see Section 13.1.

4.3. Other Works
This section contains a summary of my other works. Only the first has a connection to 
the topic of cryptography from physical assumptions.

Fortified Universal Composability

The Fortified Universal Composability framework [BKM+18] models different types 
of (physical) channels between the parties and/or between several simple, unhackable 
hardware modules, in particular channels with an air-gap switch (disconnect-able by the 
party in control of the switch) or with a data diode (then constituting a unidirectional 
channel). Using the isolation assumptions that come with these channel types, one 
can define what it means to be connected (by a path through the network) to “the 
outside” at a given point in time. The attacker model is then extended from i) static 
(physical) corruptions that are performed before parties are invoked1, to ii) remote 
hacks, i.e., attacks that are possible during the protocol run, but only when connected 

1Imagine an attacker, getting physical access to your device beforehand and soldering integrated 
circuits (ICs) to your mainboard, thereby permanently corrupting them.
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to the outside. Additionally, one assumes an unhackable encryption module as well 
as an “output interface module”, where the latter performs the task of demasking the 
output dependent on a successful MAC tag verification. Note that all modules do not 
need to carry pre-loaded secrets themselves and in total they implement very simple 
functions. (Moreover, there are variants which use two more such modules, if one aims 
for reactive functionalities or for security in the case that all parties are corrupted.)

We give a construction of protocols for secure multiparty computation with a security 
notion that is qualitatively stronger than commonly aimed-for adaptive security in that 
the inputs and outputs of all parties are completely protected (w.r.t. confidentiality and 
integrity) against remote hacks, unless they happen before the party received its input, 
or the attacker gains control over all parties. In contrast, ordinary adaptive security 
does not protect the inputs and outputs, i.e., they can be learned and modified by the 
adversary.

The new security definitions are given in an extended version of the Universal 
Composability (UC) framework [C01], and also feature the modularity and composable 
security of UC. However, note that the trusted hardware and channels assumed here 
are not already sufficient to circumvent the impossibility of commitments or oblivious 
transfer [CF01; CKL03]. (Hence, these assumptions are weaker than, e.g., tamper-proof 
hardware tokens, as discussed above.)

Fault-Tolerant Aggregate Signatures

In [HKK+16], we develop a notion of fault-tolerance for aggregate signatures schemes 
and give a generic construction that uses the combinatorial structure of cover-free 
families to attain the specified fault-tolerance guarantees. Aggregate signatures are 
signatures that simultaneously certify multiple claims (i.e., statements that a certain 
message has been signed by a specific user’s signing key), and can be generated from 
single or aggregate signatures using an pre-defined aggregation method, cf. [BGLS03]. 
In usual (non-fault-tolerant) schemes, a single faulty signature in the aggregate renders 
the whole aggregate invalid (by the verification algorithm’s output), without providing 
information on which claim to be verified is the culprit. Our construction assures that 
the verification algorithm outputs all signatures that are valid, provided that the number 
of faults does not exceed an a priori bound. (The length of an aggregate signature is 
logarithmic in the bound of tolerable faulty signatures.)

Practical and Robust Secure Logging

As a follow-up work to fault-tolerant aggregate signatures as described before, [HKK+17] 
develops a secure logging scheme that incorporates a similar fault-tolerance mechanism, 
adapted to signature schemes with sequential aggregation (cf. [LMRS04]) which are 
additionally forward secure, i.e., where the signing key is updated repeatedly with the 
guarantee that if an attacker breaks into the system and learns the current signing key, 
this does not help him to forge signatures for earlier signing keys. In the constructed 
logging scheme, signatures for the individual log entries are created as “part” of an 
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aggregate signature by the sequential aggregation process (also featuring forward se-
curity). In combination with a forward-secure signature on the length of the log file, 
this achieves truncation security, i.e., an attacker cannot revert the log file to a state 
from before the current signing key was active. In the logging scenario, fault-tolerance 
is particularly interesting: without this feature, a single bit-flip in one of the log entries 
leaves the administrator clueless on where the error/modification has occurred. Besides 
giving a formal model of secure logging and a matching space-efficient construction, the 
paper includes an implementation together with a performance evaluation.
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5. Introducing Cryptography with Cards

Card-based cryptography is best illustrated by example. Let us begin by giving a concise 
and graphical description1 of the six-card AND protocol of Mizuki and Sone [MS09]. 
This protocol enables two players, Alice and Bob, to securely compute the AND of 
their private bits. For instance, they may wish to determine whether they both like to 
watch a particular movie, without giving away their (possibly embarrassing) preference 
if there is no match. Using card-based cryptography, this is possible without computers 
– making the security tangible and eliminating the danger of malware.2

For this, we use a deck of six cards with indistinguishable backs and either ♡ or ♣
on the front. Each player is handed one card of each symbol and is asked to enter his 
or her bit by arranging the cards in one of two ways.

♣ ♡

♡ ♣♡♣
YES

NO

YES

NO

Bob (on the left) inputs “yes”, by placing his ♡-card in the first position, and “no” by 
placing it in the second position; he places his ♣-card in the unused position. Alice 
encodes her input bit in a similar manner in the first row. We employ two additional 
cards, encoding “no” (♣♡) in the lower right part of the arrangement. Of course, as 
the players want their input bit to be secret, their cards are put face-down on the table, 
hence, making it impossible for the other party to observe the bit at this point. (The 
extra cards encoding “no” can be put publicly on the table and are turned face-down at 
the start of the protocol.)

This puts the protocol in one of the following (hidden) configurations:

1The introductory exposition is mainly taken from [KKW+17], followed by a merge and new content 
of introductory sections of the other card-based cryptography papers forming the basis of this thesis.

2Imagine a setting where Alice asks Bob to enter his bit into an app on a smartphone, which might 
well raise concerns, even if Bob has the app’s source code.
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Yes/Yes Yes/No No/Yes No/No

♡ ♣

♡ ♣ ♣ ♡

♡ ♣

♣ ♡ ♣ ♡

♣ ♡

♡ ♣ ♣ ♡

♣ ♡

♣ ♡ ♣ ♡

Observe that the correct result in the above encoding, (♣♡ = “no”, and ♡♣ = “yes”), 
is on the side of the heart in the upper row. This stays invariant, if we split the cards 
in the middle of the arrangement and exchange both sides. This property is crucial 
for the protocol, as in the following we want to randomly exchange the two halves of 
the arrangement to obscure the input order of Alice’s cards (they will be inverted with 
probability one half). For this, it is suggested to split the cards as discussed and put 
them into two indistinguishable envelopes:

Next, we shuffle the envelopes, such that they changed places with probability one half 
and no player was able to keep track.

?

We extract the cards again and put them back into the geometric arrangement as before. 
(This assumes that they have been carefully put into the envelope so that it is still clear 
which card to place where.)

Due to the shuffling, the upper two cards do not give away Alice’s bit any longer, so 
they can be safely turned over. The invariant ensures that the result is still on the side 
with the heart:

♡ ♣ or ♣ ♡

In total, we have performed an AND protocol in committed format, as the output are 
two face-down cards encoding the result. From observing the protocol (as an outsider) 
we did not learn anything about the order of these cards in the process. We can now 
decide, whether to open the resulting commitment, or whether to use it as input to 
some follow-up protocol.
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For an alternative way to interpret the steps of this protocol, note that a ∧ b is 
equivalent to “if a then b else 0”. If we would not care about privacy, we could directly 
turn over Alice’s cards and if they show ♡♣ = 1, then the result is encoded by Bob’s 
cards (at positions 3, 4), and otherwise by the two helping cards encoding a 0 (at 
positions 5, 6). But privacy requires us to mask Alice’s bit first. For this, observe that 
a ∧ b is also equivalent to “if ¬a then 0 else b”. Hence, we can invert Alice’s bit if and 
only if we also exchange the two branches of the if-statement. In the example above, 
the shuffling (exchanging both halves of the configuration with probability 1/2) does 
exactly this, namely swapping Alice’s cards exactly when Bob’s cards are exchanged 
with the two helping cards encoding 0. This effectively randomizes the order of Alice’s 
cards, which can therefore be turned over without revealing her secret bit. The result is 
then under the cards as specified above. Because the helping cards and Bob’s cards are 
indistinguishable, one cannot tell which of the two is at the specified output positions. 
(There is even a third interpretation, similar to the first, given in Section 8.6 on p. 104.)

The Five-Card Trick
Let us describe one more important card protocol for AND as part of this introduction, 
namely the “Five-Card Trick” by den Boer [dB90]. This is likely the most well-known 
card-based protocol, and can be seen as the start of card-based cryptography. Moreover, 
as it differs from the previous protocol in several aspects, it will allow us to set up all 
relevant notions in the discussion below. For the presentation, we borrow the following 
very beautiful translation due to Verhoeff [V14]:

♣ →
,

♡ →
,

→

Using this, Alice and Bob can input their bits using two cards as before, with an 
additional ♣ card in between. The protocol uses a random cut as a shuffling mechanism, 
i.e., the players take turn in cutting the pile of cards in a fast way, so that nobody can 
keep track of which card ends up on top of the pile. In total this constitutes a cyclic 
rotation of the card sequence with unknown offset. Hence, an alternative implementation 
of the shuffle is to put the cards (with the perfectly suitable shape) face-down on a 
turntable:

YES

NO

YES

NO
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It is easy to see that exactly if both players input “yes”, the ♡ / cards (tiles) end up 
adjacent on the turntable. Hence, we have the following configurations:

Yes/Yes Yes/No No/Yes No/No

Indistinguishable after Rotation

The protocol as specified by den Boer ends with turning the face-down cards (or tiles) 
face-up and when the revealed ♡s are adjacent, this will be interpreted as a “yes”, 
the correct value of the AND computation. In Verhoeff’s setting this is encoded via a 
suggestive emoji (at least for the dating problem). Security of the inputs is immediate, 
apart from what is obvious from the output, as the three configurations that encode a 
“no” output are indistinguishable after rotation by a random and oblivious amount.

Note two differences to the previous protocol: i) the first protocol used a shuffle 
which swaps two halves of a sequence of cards, where the latter employs a random 
cyclic rotation (a random cut), and ii) we do not get the output in the same format as 
the inputs (two distinct face-down cards), and cannot directly reuse them in further 
computations. Hence, it is not in committed format. While most of the thesis focuses 
on committed format3 protocols, it also includes a framework that let us analyze both 
protocols using the same, generalized security notion, cf. Chapter 6.

One distinctive feature is that these protocols do not need a computer, which makes 
their security tangible with no need to rely on opaque hardware or malware-prone 
operating systems. Hence, they are crucial in any situation where using computers 
is not an option. This includes scenarios where i) state-level adversaries have control 
over users’ computers4, ii) there is a plausible fear of Trojans, or iii) we like to prevent 
cheating in (card) games where computers impede the fun of the game. Moreover, the 
utility of these protocols is evident from their use in classrooms and lectures to illustrate 
secure multiparty computation to non-experts to the field of cryptography, or in an 
introductory course.

As Mizuki, Kumamoto, and Sone [MKS12] were able to reduce the number of cards 
in the five-card trick to the best possible of 4, which is already necessary to encode 
the inputs, protocols not in committed format are already well-understood in terms of 
the minimum number of cards. However, given the important disadvantage that they 
unavoidably reveal the final result during the computation, the quest for card-minimal 
committed format protocols has emerged as a central research task in card-based 
cryptography.

3First constructed by [NR98; S01; CK94].
4The protection we have in mind is against a broad targeting, not a powerful adversary targeting you. 
It might be comparatively easy to have widely distributed Trojans or a ban on strong cryptography – 
for attacking card-based MPC in a pervasive surveillance setting, you would need high-resolution 
high-speed CCTV cameras everywhere, which will be much more costly to implement.
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Besides committed-format AND and negation (inverting the cards), there is one more 
ingredient necessary for computing arbitrary Boolean circuits: commitment copy. A 
circuit may contain forking wires which enter two or more gates. To see this, consider 
the three-input majority function as an example:

maj(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1).

Here, before computing x1 ∧ x2 using an AND protocol, we need to duplicate the input 
commitment of x1 and x2, as they are used in the other clauses as well. (Trusting a 
user to just input the same bit again is not an option as he or she might deviate and 
cause wrong outputs, but also because the inputs might not be known to any user if 
they are the output of some previously run protocol.)

Prior to this work, the protocols using the least number of cards for computing AND
in committed format were

• the six-card protocol of Mizuki and Sone [MS09] as shown in the start of the 
introduction. This has a finite, deterministic running time.

• the five-card Las Vegas protocol of [CHL13], as described in Figure 7.7 on page 72. 
This protocol may end in a configuration which needs restarting with probability 
1/2 and utilizes a complex shuffle operation. (In the terminology of Section 6.7: it 
is non-closed.)

(Moreover, concurrent to this work, [AHMS18] published a five-card AND protocol, and 
also the four- and five-cards AND protocols by [RI19] constitute independent work. 
These will be discussed later.) This leads to the natural question on the minimality 
of cards needed for a secure committed format AND, which has been posed in several 
places in the literature, see, e.g., [MS09; MS14a; MKS12]. Moreover in [CHL13], the 
authors ask whether there is a “deterministic” five-card variant of their protocol. In 
this work, we answer these questions and many others, comprehensively.

Of course, the rigorous treatment of questions of this type requires a formal model of 
card-based computations, which was provided in [MS14a]. There, the authors defined 
the possible operations that a card-based protocol can make. To allow for strong 
impossibility results, the authors give a rather wide palette of possible operations that 
can be applied to the cards, e.g., shuffling with an arbitrary probability distribution 
on the set of permutations. Our work shows that this yields also rather strong (but 
unpractical) feasibility results by utilizing “non-closed” shuffles, as defined in Section 6.7.

On the Practicality of Card-based Protocols
Using the very general computational model of Mizuki and Shizuya [MS14a], we present 
a four-card AND protocol in committed format in Section 8.1, albeit with a running time 
that is finite only in expectation (a Las Vegas protocol). While this is an interesting 
achievement, a closer look reveals that there is much more to be hoped for. The most 
pressing point here is not the protocols’ increased complexity, but a certain type of 
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card shuffling which is much more difficult to perform than in previous protocols. The 
authors identified two properties whose violation seems to be a cause of the difficulty in 
their implementation, namely:

Closedness. The set of possible permutations in a card shuffle is invariant under repeti-
tion, i.e., a subgroup of the respective permutation group.

Uniform Probability. Every possible permutation in a shuffle action has the same prob-
ability.

The most extreme example for the power of non-closed shuffles seems to be the 2k-
card Las Vegas protocol which we will propose in Section 8.3 computing an arbitrary 
k-ary Boolean function in three steps: we shuffle, turn and either output a result or 
restart. Here, all the work in computing the function is done by the complex and (in 
general) non-closed shuffle – suggesting that non-closed shuffles in general are too broad 
a shuffle class to consider. Besides these shuffle restrictions, there is one additional 
central parameter for practical card-based protocols, namely running time behavior. 
We consider the following practical:

Finite Running Time. This guarantees an a priori bound on the running time and 
allows to precisely predict how long the protocol will run. We regard this as the 
most practical.

Restart-Free Las Vegas (LV). While the running time of the protocol is finite only in 
expectation, it is usually just a small constant. When executing these protocols 
we may run in cycles but exit these cycles at least with some constant probability 
in every run. More importantly we do not end in a failure state where we have to 
restart the whole protocol and query players for their inputs again.

Protocols which do not fall under this class are called restarting LV protocols. Note that 
running a COPY protocol on the input bits before the protocol itself requires already 
at least five cards for the copy process of a single input bit, as shown in Section 9.4. 
In total this strategy likely needs more cards than just going for restart-free protocols 
instead.

One aim of Part II is to derive tight lower bounds on the number of cards for protocols 
in general, but also for those restricted to using practical – namely (uniform) closed – 
shuffles and/or a practical running time, namely finite running time or restart-free LV, 
for the two central ingredients of Boolean circuits: AND protocols and COPY protocols. 
For n-COPY protocols this can become particularly difficult as there are (2n + 1)!
permutations on 2n + 1 cards, hence you really need to understand the underlying 
structure and cannot explore by just trying out some combinations and generalize from 
there. By giving a systematic approach to impossibility proofs, this work gets around 
these problems. For example, we show that no closed shuffle protocol can go with less 
than 2n+ 2 cards, even if we allow Las Vegas behavior with restarts and non-uniform 
shuffles. This completely tightens all bounds w.r.t. running time (finite-runtime, Las 
Vegas with/without restarts) and shuffle parameters.
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We summarize our results in Table 17.1 on p. 226, which also includes a survey on 
current bounds relative to certain restrictions on the operations.

Note that all protocols are described in the honest-but-curious setting (although some 
analysis of malicious behavior has been done in [MS14b]), i.e., the players execute the 
protocol according to its description, but gather any information they can possibly obtain. 
We will cover the case of active security in Chapter 12. The crucial component here is 
the security of the shuffle action, i.e., the key operations that introduce randomness 
in a controlled manner. All early protocols (such as the five-card trick) relied solely 
on a uniform random cut, which is a shuffle causing a cyclic shift on a pile of cards 
with uniformly random offset. Niemi and Renvall [NR98, Sect. 3] and den Boer [dB90] 
plausibly argue that random cuts can be performed by repeatedly cutting a pile of cards 
in quick succession, as players are unable to keep track of the offsets. Other shuffle 
operations were justified, including “dihedral group” shuffles [NR98] and [S01, Sect. 7], 
random bisection cuts [MS09; UNH+16] and unequal division shuffles [CHL13; NNH+15; 
NHMS16].

Besides this thesis, [MS09; MKS12; NNH+15; AHMS18] try to minimize the number 
of cards for AND, XOR or bit copy protocols, achieving, for instance, the minimum 
number of four cards for AND protocols both in committed5 and non-committed format. 
Moreover, [NHMS15; M16a] and Section 8.3 are concerned with card-minimal protocols 
for general circuits. Except [FAN+17], which extends the work of [KWH15] to two-bit 
output functionalities, no other lower bounds on the number of cards appear in the 
literature, besides the results included in this thesis.

Standard Decks

For simplicity, many protocols in card-based cryptography work with specially created 
decks, i.e., of only two symbols, ♣ and ♡. This is easy for explanation, and there are 
nice and easy-to-describe protocols, such as the five-card trick of den Boer [dB90] and 
the six-card AND protocol of Mizuki and Sone [MS09].

However, the setting where all cards have distinguishable symbols has several advan-
tages. First of all, we assume less about the indistinguishability of cards, which leads 
to stronger security guarantees. (This is also more similar to the (indistinguishable) 
model of tamper-evident seals, such as scratch-off cards, by Moran and Naor [MN10a].) 
We only need that the backs (or envelopes wrapping the cards, if one wishes) are 
indistinguishable. Secondly, these standard decks are more commonly available, in 
contrast to specially created decks. If one where to use standard decks for the protocols 
above, one would need multiple copies of them. Thirdly, considering this setting may 
lead to protocols using less cards than the optimal ones in the two-symbol deck setting. 
In fact, as our work shows, one may needs one card less than with two-symbol decks. 

5In a committed-format protocol, input and output bits are encoded by the order of two face-down 
cards (a “commitment”) that hides the value and hence, may be used as intermediary input to another 
protocol without looking at it, while those not in committed format usually leak the output result in 
the process and are hence unsuitable for larger circuits.
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For example, our new four-card Las Vegas AND protocol in Section 8.4 uses only a very 
basic, practicable shuffling mechanism (random cuts) and uses one card less than the 
provably card-minimal Las Vegas AND protocol (restricted to certain types of practical 
shuffles) in the two-symbol deck setting.

As of yet, there has only been relatively little research in this direction, with [NR99; 
M16b] being the only works that consider the setting where all cards have distinguishable 
symbols, called “standard deck” setting. Nothing is known about non-trivial lower 
bounds on the number of cards. This is likely due to the vastly enlarged state space 
in this domain, as there are many more distinguishable re-orderings of the cards than 
when only given cards of two symbols.

Prior to our work, it was not yet clear, which role the input encoding plays when 
devising new protocols. This is the question on whether it can make a difference for 
the possibility of a protocol, whether to give e.g., 1 2 to Alice and 3 4 to Bob, or 
1 3 to Alice and 2 4 to Bob. We give an analysis of this question, showing that 
with certain restrictions, there is relatively large freedom in choosing the input (and/or 
output) bases. This is a useful prerequisite in proving the impossibility of a protocol 
with a given number of cards.
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Card-based cryptography started out almost thirty years ago with elegant and easy-
to-understand descriptions of how to operate on a deck of physical playing cards to 
securely compute the AND of two bits, as in the five-card protocol by den Boer [dB90]. 
Since then, around this idea of using face-down cards to represent idealized, perfect 
commitments to their symbols, a small scientific subfield of cryptography developed, to 
explore the space of possibilities that actions such as shuffling cards in certain controlled 
ways allow – as we have to concede that the physical world allows us to do a lot of 
things.

As any field matures, it needs formal and rigorous definitions of what its central 
objects are and, e.g., what we mean by properties such as security. This modeling, 
while important, is often non-trivial and allows for many choices to be made and to 
be argued for. In the following, starting from the first proposal of Mizuki and Shizuya 
[MS14a], we give a thorough exposition of how card decks and reorderings of card 
sequences are modeled (Sections 6.1 and 6.2), what protocols are formally (Section 6.3), 
how to encode bits and what it means for a protocol to compute a Boolean function 
(Sections 6.4 and 6.5). Moreover, we give two comprehensive definitions of security 
(Section 6.6), discuss certain natural subclasses of general card shuffling and identify 
additional variants and modifications to the defined model (Sections 6.7 and 6.8), 
conclude and discuss these and other choices for modeling card-based protocols in the 
literature (Section 6.9).

This chapter is an attempt to unify the different notions and concepts used in the 
literature into one framework, to rigorously define security in the strongest attainable 
sense, and to propose some restrictions to the computational model that still allow to 
do everything that is cryptographically meaningful.

6.1. Decks and Card Sequences

Let Σ and B be disjoint sets. A card c of deck alphabet Σ and back alphabet B is a 
pair denoted as c = a/b where either a ∈ Σ and b ∈ B or the other way round. It is 
face-up, if a ∈ Σ and b ∈ B, and face-down otherwise. We call c’s entry from Σ the 
symbol of  c, and its entry from B the back of  c. The card then represents a face-down 
or face-up physical card displaying a to the public, while hiding b. We assume that the 
special symbol ‘?’ is contained in any back alphabet and that, unless explicitly specified, 
cards have back alphabet B = {?}, which we then omit from the specification. If no 
ambiguities arise, we identify face-down cards with their symbol and just speak about a 
“card a” with a ∈ Σ to denote a card ?/a.
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To model decks which may contain multiple identical cards, we use multisets, which – 
in contrast to sets – can contain elements more than once. To disambiguate, we enclose 
multisets in brackets as [·]. A deck D over deck alphabet Σ is then a finite multiset 
of cards of deck alphabet Σ, which we assume w.l.o.g. to be face-down. For example, 
[?/♡, ?/♡, ?/♣, ?/♣], which we will write more concisely as [♡,♡,♣,♣] or [2 · ♡, 2 · ♣], is a 
deck over deck alphabet {♡,♣}, consisting of two cards with symbol ♡ and two cards 
with symbol ♣. The most commonly used decks in the literature are such two-color 
decks, which use a deck alphabet with two elements, and standard decks, in which each 
card occurs only once, such as [1, . . . , 52].1 For notation, we denote unions of multisets 
by ∪, and disjoint unions by +, e.g., [♢,♠,♠] ∪ [♢,♡,♠,♣] = [♢,♡,♠,♠,♣] whereas 
[♢,♠,♠] + [♢,♡,♠,♣] = [♢,♢,♡,♠,♠,♠,♣].

For a card c = a/b, vis(c) = a denotes the “numerator” of c, i.e., the visible part 
of the card, and symb(c) is the symbol of c. In card-based protocols, the cards are 
lying on the table in a sequence. Hence, a full-deck card sequence is obtained by 
permuting D and choosing face-up or face-down for each card. We extend vis(·) and 
symb(·) from cards to card sequences in the canonical way. For a sequence Γ, we call 
vis(Γ) the visible sequence of Γ. As an example, let Γ = (?/♣, ♣/?, ♡/?, ?/♡, ?/♣) be a 
sequence of deck D = [♣,♣,♣,♡,♡], then its visible sequence is (?,♣,♡, ?, ?). The 
set of all sequences and the set of all visible sequences on deck D of length n ≤ |D| is 
denoted as SeqDn and VisDn , respectively. If n = |D|, we just write SeqD and VisD and 
omit the subscript. For notation, the ith entry of a sequence or tuple x is denoted 
by x[i], and we denote the concatenation of two sequences x, y of length i and j by 
x ‖ y := (x[1], . . . , x[i], y[1], . . . , y[j]).

6.2. Permutations, Groups and Group Actions

Central to card-based cryptography is reordering card sequences. Formally, a per-
mutation of a set X is a bijective map π : X → X. For n ∈ N, the set Sn of all 
permutations of {1, . . . , n} is called symmetric group. It has a group structure with the 
identity map id as neutral element and composition (∘) as group operation. Note that 
(π2 ∘ π1)(x) = π2(π1(x)) meaning π1 is applied before π2.

We will frequently make use of cycle notation for permutations. For distinct elements 
x1, . . . , xk ∈ X the cycle (x1 x2 . . . xk) denotes the cyclic permutation π with π(xi) =
xi+1 for 1 ≤ i < k, π(xk) = x1, and π(x) = x for all x ∈ X not occurring in the cycle. 
The domain of π is not apparent from the cycle alone but can be any superset of the 
elements in the cycle. For multiple cycles on pairwise disjoint sets, we write them 
next to one another to denote their composition. For instance (1 2)(3 4 5) denotes a 
permutation with mappings {1 ↦ 2, 2 ↦ 1, 3 ↦ 4, 4 ↦ 5, 5 ↦ 3}. Every permutation 

1While two-color decks appear more often in the literature than standard decks, we follow Mizuki 
[M16b] in naming them in this way, because decks of common card games (with all cards being 
distinguishable from each other) are a good representation of these formal decks. These decks were 
first used by Niemi and Renvall [NR99] for card-based protocols.
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can be written in such a cycle decomposition. The cycle structure of a permutation is 
the multiset of cycle lengths occurring in a permutation’s cycle decomposition.

By a conjugate of a permutation π ∈ Sn we mean any permutation of the form 
π′ := τ−1 ∘ π ∘ τ where τ ∈ Sn. Interestingly, conjugates have the same cycle structure 
as the original permutation. For a set Π ⊆ Sn of permutations and τ ∈ Sn the set 
τ−1 ∘Π ∘ τ := {τ−1 ∘ π ∘ τ | π ∈ Π} is a conjugate of Π.

Let G be a finite group. If g1, g2, . . . , gk ∈ G are group elements, ⟨g1, . . . , gk⟩ is 
the smallest subgroup of G containing g1, . . . , gk and called the subgroup generated by
{g1, . . . , gk}. For g ∈ G the order of g is ord(g) = |⟨g⟩| = min{k ≥ 1 | gk = id}. A 
group G = ⟨g⟩ = {g0, . . . , gord(g)−1} generated by a single element g is called cyclic. In 
the following, we identify a group with the set of its elements and vice versa.

Let us describe more formally how cards or other objects are reordered by permutations. 
Given an arbitrary sequence of objects Γ = (Γ[1], . . . ,Γ[n]) and a permutation π ∈ Sn, 
then applying π to Γ yields the sequence π(Γ) := (Γ[π−1(1)],Γ[π−1(2)], . . . ,Γ[π−1(n)]). 
Intuitively, the object in position i is transported to position π(i). A particular way to 
say this and to make the well-behavedness of this operation evident, is to define it as a 
group action.

Definition 6.1 (Group action, e.g., [DM96, Sect. 1.3]). Let X be a nonempty set, G
a group, and ϕ : G ×X → X a function. For g ∈ G, x ∈ X, we write g(x) := ϕ(g, x). 
Then, G acts on X via ϕ, or G is a group action on X (leaving ϕ implicit), if

• id(x) = x for all x ∈ X, where id denotes the neutral element in G,

• (g ∘ h)(x) = g(h(x)) for all x ∈ X and all g, h ∈ G.

It is easy to see that every permutation group acts on reorderable objects such as 
card sequences in this way, by applying the permutation as defined above. Given these 
prerequisites we are able to define more formally what a card-based protocol is.

6.3. Formal Card-based Protocols

We introduce a modified version of the model for card-based computations as introduced 
by Mizuki and Shizuya [MS14a; MS17]. We will later discuss variants to the model 
in Sections 6.8 and 6.9. We will refer to them as formal protocols or Mizuki–Shizuya 
protocols to distinguish them from two-player protocols we introduce in Chapter 12. 
This is because their notion “abstracts away” the players conducting the protocol (a 
fact that we will discuss in Chapter 12).

We define a (Mizuki–Shizuya) protocol as a 5-tuple (D, U,H,Q,A), where D is a deck, 
U is a set of same-length input sequences of face-down cards from D all sharing the 
same visible sequence, H is a (possibly empty) sequence of additional cards from D, 
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which we call helping cards,2 and Q is a set of states with two distinguished states q0
and qfin, being the initial and the final state. Finally, A is a (partial) action function

A : (Q \ {qfin})× VisDℓ → Q× Actionℓ,

which specifies the state to be entered and the action to be done next, dependent on the 
current state q ∈ Q\{qfin} and the current visible sequence v ∈ VisDℓ . Here, ℓ is the total 
length of the card sequences to be acted upon, namely the unique length of the input 
sequences plus the length of the helping card sequence3. Moreover, Actionℓ is the set of 
the following formal actions to be performed on a sequence Γ = (c1, . . . , cℓ) ∈ SeqDℓ :

• (perm, π), for a permutation π ∈ Sℓ, permutes Γ according to π. Formally, this 
yields the sequence π(Γ) = (Γ[π−1(1)], . . . ,Γ[π−1(ℓ)]).

• (turn, T ), for a set T ⊆ {1, . . . , ℓ}, flips the cards at positions specified by the 
turn set T . Formally, for a card c = a/b we define swap(c) := b/a and transform 
Γ into turnT (Γ), where turnT (Γ)[i] := swap(Γ[i]) if i ∈ T , and turnT (Γ)[i] := Γ[i], 
otherwise.

• (shuffle,Π,F), for a permutation set Π ⊆ Sℓ and a probability distribution F on 
Π, draws a random permutation π ∈ Π according to F and obliviously applies it 
to Γ.4 Note that security will crucially rely on the assumption that nothing about 
π is learned by any observers at this step, except what can be learned from F and 
the visible sequences vis(Γ) and vis(π(Γ)). If F is the uniform distribution on Π, 
we may omit it and write (shuffle,Π).

• (rflip,Φ,G), for a probability distribution G on 2{1,...,ℓ} with support Φ ⊆ 2{1,...,ℓ}, 
draws a set T from Φ according to G, and turns the cards at the positions in T . 
The sequence afterwards is turnT (Γ). This is meant as a probabilistic version of 
the turn action. (We will discuss in Section 6.8 a more general variant of this 
action.)

• (result, p1, . . . , pr), for a list of distinct positions p1, . . . , pr ∈ {1, . . . , ℓ}, halts the 
protocol and specifies that O = (Γ[p1], . . . ,Γ[pr]) is the output of the protocol. 
When this command occurs, we require the cards at the respective positions to be 
face-down, and the first component of A’s output (the next state to be entered) to 
be the final state qfin. Moreover, we require that qfin is only entered in company 
with an action of this type.

2In introducing the helping card as a separate entry in the tuple, we deviate from the literature, to 
make it more clear which cards encode inputs.

3We require that the deck of a protocol does not contain any unnecessary cards, i.e., that D is the 
union of all input sequences (interpreted as multisets), on which we apply the disjoint union of the 
helping card sequence (interpreted as multiset). In the most common case that all input sequences 
use the same cards, we have ℓ = |D|.

4Note that we usually require that the support of F is Π, i.e., that no elements of Π are assigned a zero 
probability by F . Relaxing this allows us to encode in the protocol description that some permutations 
(those with a probability of zero) may be done without impeding security and correctness, which 
honest players however will not perform. We will come back to this in Chapter 12.
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• (restart), transforms the current sequence into the original start sequence. When 
this command occurs, we require the first component of A’s output to be the 
initial state q0. (This allows protocols to start over when they hit an “unlucky” 
case. In real implementations this might require the players to reenter their inputs, 
unless they have been securely copied beforehand.)

An execution or run of a protocol P = (D, U,H,Q,A) proceeds as follows: it starts in 
state q0 and with a sequence Γ0 = Γin ‖H, where Γin ∈ U is the part of the sequence 
encoding the input and H is the sequence of helping cards. The execution then proceeds 
in steps, where in each step of the protocol, the output of the action function (given the 
current state and the current visible sequence as input) determines the next state to be 
entered and the next action to be performed. The action is then applied as described 
above. The protocol terminates if it reaches state qfin.

A (finite) sequence trace of P is a tuple (Γ0,Γ1, . . . ,Γt) of sequences, such that t ∈ N, 
Γ0 = Γin ‖H as above, and Γi+1 arises from Γi by the action specified via the action 
function in a protocol execution, for i = 0, . . . , t−1.5 We call (vis(Γ0), vis(Γ1), . . . , vis(Γt))
a visible sequence trace of P. Additionally, the permutation trace T of P contains all 
randomly chosen permutations in the shuffle steps of the protocol execution, in their 
order of appearance. The execution yields an execution trace (I,O, T , V ), containing 
input, output, permutation trace and the visible sequence trace V . The output of 
non-terminating protocols is O = ⊥.

Running Time of a Protocol. A protocol is called finite-runtime6 if there is a fixed, 
a priori bound on the number of steps, and, in contrast, Las Vegas, if it terminates 
almost surely (i.e., with probability 1) and in a number of steps that is only expectedly
finite. Moreover, we call a Las Vegas protocol restart-free if it does not use any restart
actions. These notions are important, as the running time of a protocol is central for 
its practicability.

On the Verifiability of Actions. Implicit in the action function domain (Q \ {qfin})×
VisDℓ is that all actions depend only on public information, not on players’ private 
inputs or on what they did before, which would not be directly verifiable. While usually 
assuming an honest-but-curious setting for card-based cryptography, we think this design 
choice is important, as otherwise one would overstretch this assumption by allowing a 
player to easily deviate from the protocol without any chance of detection. The more 
refined active security of the respective actions will later be discussed in Chapter 12.

6.4. Encoding Bits with Cards
In the introduction, we described how two cards with distinct symbols ♡ and ♣, resp. 
encode a bit via the following rule: if they are in order ♣♡, they represent a 0, and if 

5Note that traces in our sense also capture prefixes of complete protocol runs.
6We avoid the term “deterministic” here, as, for their security, card-based protocols use randomness as 
an intrinsic property, albeit not necessarily as a speedup of the protocol.
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they are in order ♡♣, they represent a 1. Formally, we introduce a possibly randomized, 
injective encoding function ⟦·⟧ that maps bits to (same-length) card sequences. For 
example, we can define a function ⟦·⟧2c (for 2-color decks) that maps 0 to (?/♣, ?/♡)
and 1 to (?/♡, ?/♣). We denote the corresponding decoding map by val⟦·⟧ or valx, if x
is a subscript given to ⟦·⟧x. We will also call this function a valuation, as it gives an 
interpretation to a given card sequence. In this sense, val2c maps the card sequence 
(c1, c2) to 0 if symb (c1, c2) = (♣,♡), and to 1 if symb (c1, c2) = (♡,♣). If we want to 
make the randomness r (which we can also see as a choice) explicit in a randomized 
encoding, we write ⟦·; r⟧. Then, (c1, . . . , cn) encodes a bit b ∈ {0, 1} w.r.t. encoding ⟦·⟧
and randomness r, if (c1, . . . , cn) = ⟦b; r⟧.

Note that while above’s encoding is fine for two-color decks, we would like it to be 
general enough to work with arbitrary decks. For this, we assume a linear order < on 
the deck alphabet Σ and also write c1 < c2 if symb(c1) < symb(c2) for cards c1, c2 of 
deck alphabet Σ. Let c1, c2 be two such cards with c1 < c2. Then, as in [NR99], we 
define an encoding ⟦·⟧> via

⟦b; {c1, c2}⟧> :=

{︄
(c1, c2), if b = 0,

(c2, c1), if b = 1.

where r = {c1, c2} represents7 the choice or randomness that one may have with this 
encoding, here the used cards. We call these cards the basis of the encoding. In the 
case that the deck does not allow any choice (as in the two-color deck case), we call the 
encoding deterministic and do not specify the basis explicitly.

The respective valuation function is then

val>(c1, c2) :=
{︄
1, if c1 > c2,

0, otherwise.

In the case of c1 and c2 having the same symbol s ∈ Σ, this is undefined and may be set 
to an error symbol ⊥s. Note that if one sets ♣ < ♡, we recover the behavior of val2c
above. Unless explicitly stated, ⟦·⟧> is the standard encoding throughout the thesis and 
we will just write that (c1, c2) encodes b ∈ {0, 1}, or that (c1, c2) is a commitment to b.

We extend any encoding ⟦·⟧ to bit strings b ∈ {0, 1}k (and randomness vectors r⃗
of length k) via ⟦b; r⃗⟧ := ⟦b[1]; r⃗[1]⟧ ‖ · · · ‖ ⟦b[k]; r⃗[k]⟧ and any corresponding valuation 
function val to bit sequences via

val(c1, . . . , cnk) := (val(c1, . . . , cn), . . . , val(cn(k−1)+1, . . . , cnk)) ∈ {0, 1}k,

where n is the output length of ⟦·⟧. Then we say that a card sequence Γ of length nk
encodes a bit string b ∈ {0, 1}k (w.r.t. ⟦·⟧), if val(Γ) = b. Similarly, a card sequence Γ of 
length 2k is a commitment to b ∈ {0, 1}k, if val>(Γ) = b.

7Note that, we avoid specifying what the randomness is formally, as it might have a natural inter-
pretation, e.g., as two-element card sets, or as rotations represented by Z/5Z, as in the case of the 
output of den Boers five-card trick [dB90], in which case we prefer to use this natural representation.
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6.5. Protocols Computing Boolean Functions
As described above, a protocol P = (D, U,H,Q,A) takes as input a card sequence from 
U , and outputs a card sequence as specified by its result action. We would like to define 
what it means for a protocol to compute a Boolean function, using the encoding rules 
as discussed in the previous section.

We say that a protocol P = (D, U,H,Q,A) computes a function f : {0, 1}k → {0, 1}m
w.r.t. input encoding ⟦·⟧i and output encoding ⟦·⟧o, if the following holds:

• U = ⟦{0, 1}k⟧i, i.e., U is the image of the domain of f under input encoding.

• Correctness: A protocol run starting with a sequence encoding b ∈ {0, 1}k w.r.t. 
⟦·⟧i terminates almost surely with an output encoding f(b) w.r.t. ⟦·⟧o.

We say that a protocol is in committed format if it computes a function w.r.t. the 
standard input and output encoding ⟦·⟧>. This is the usual and natural commitment 
format in the literature, which can be again used as inputs for other protocols due to 
this standardization. We will discuss this choice of encoding below.

Note that there is an important distinction to make, and which is unlike most protocols 
in the wider cryptographic literature: Card-based protocols can be seen as protocols, 
which start with commitments to the inputs, and end with a commitment to the output. 
We also call this delegated computation or commitment-in/commitment-out paradigm, 
as it allows to compute on the values without any player being aware of inputs or 
learning the output, and gives strong composition guarantees. (Additionally, we make 
sure that opening the output commitment does not give away anything about b that 
is not already obvious from f(b). We will do this more formally in the next section, 
and also in Chapter 12 on active security, where we include a discussion on protocols 
requiring input awareness.)

While the thesis focuses almost entirely on committed-format protocols, we wanted 
our definitions to encompass also two important so-called “non-committed format” AND
protocols from the literature, namely [dB90; MKS12], which deviate from committed 
format protocols in using a non-standard output encoding. We will present them 
in Protocol 6.2 and Figure 7.12. Previously, these protocols have been interpreted 
as protocols necessarily revealing their output to learn their result, but we feel that 
by introducing non-standard encodings (and possibly finding conversion protocols to 
standard format), we can analyze all these protocols in a common framework.

We call protocols computing functions f∧ : {0, 1}2 → {0, 1} with (a, b) ↦ a∧ b, and 
fcopy : {0, 1} → {0, 1}n with a ↦ an = (a, . . . , a), n ≥ 2, AND and n-COPY (or just 
COPY) protocols, respectively. In the following Example 6.1, we describe the committed 
format six-card AND protocol of Mizuki and Sone [MS09] (cf. the introduction for an 
informal description), using the Mizuki–Shizuya formalism above. This is meant as an 
illustration of the definitions, and not as a convenient way to write down card-based 
protocols. Hence, in Protocol 6.1 we also give a pseudocode version for comparison, and 
we will switch to pseudocode in all that follows.
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Example 6.1. The six-card AND protocol of Mizuki and Sone [MS09], with deck 
D = [3 · ♡, 3 · ♣], input set U = {⟦b⟧> : b ∈ {0, 1}2} and helping card sequence 
H = (?/♣, ?/♡), is defined as PAND = (D, U,H, {q0, q1, q2, qfin}, A), with A as follows:

1. A(q0, (?, ?, ?, ?, ?, ?)) = (q1, (shuffle, ⟨(1 4)(2 5)(3 6)⟩)

2. A(q1, (?, ?, ?, ?, ?, ?)) = (q2, (turn, {1, 2})), i.e., turn the first two cards.

3. A(q2, (♡,♣, ?, ?, ?, ?)) = (qfin, (result, 3, 4)), and
A(q2, (♣,♡, ?, ?, ?, ?)) = (qfin, (result, 5, 6)).

(shuffle, ⟨(1 4)(2 5)(3 6)⟩)
(turn, {1, 2})
Let v be the current visible sequence
if v = (♡,♣, ?, ?, ?, ?) then

(result, 3, 4)
else if v = (♣,♡, ?, ?, ?, ?) then

(result, 5, 6)
Protocol 6.1. Pseudocode version of Example 6.1, a protocol to compute AND in 
committed format using deck D = [3 · ♡, 3 · ♣].

The five-card AND protocol of den Boer [dB90] is given in Protocol 6.2 and computes 
AND with respect to the following non-standard output encoding ⟦·⟧♡♡. For this, let 
b ∈ {0, 1} and r ∈ Z/5Z:

⟦b; r⟧♡♡ :=

{︄
(1 2 3 4 5)r((?/♡, ?/♡, ?/♣, ?/♣, ?/♣)), if b = 1,

(1 2 3 4 5)r((?/♡, ?/♣, ?/♡, ?/♣, ?/♣)), otherwise.
(6.1)

In other words, we choose a given sequence (candidates as above, the hearts are 
adjacent, iff b = 1) and then rotate by a random offset r ∈ Z/5Z. The respective 
valuation val♡♡(c1, . . . , c5) then decides whether the sequence (c1, . . . , c5) contains two 
(cyclically) adjacent hearts, and decodes to b = 1 in this case, or to 0 otherwise. We 
will later see that the protocol of Abe et al. [AHMS18] can be seen as continuation of 
this protocol to convert its output to the standard encoding. (This will be made precise 
in Section 7.5.)

Properties of Encodings and Rerandomization
One may ask what makes for the best encoding. In this section we would like to 
introduce important properties and argue for why the standard encoding is a worthy 
choice. For the discussion, let ⟦·⟧ be an encoding function and let us consider the 
following list of desiderata:

1. There are (easy-to-use) protocols for AND, NOT and COPY which use ⟦·⟧ for 
encoding inputs and outputs. (This is because AND, NOT and 2-COPY together 
is a complete set to allow computing any Boolean function.)
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(perm, (3 5))
(shuffle, ⟨(1 2 3 4 5)⟩)
(result, 1, 2, 3, 4, 5)
Protocol 6.2. The five-card trick of den Boer [dB90]: an AND protocol with deck 
D = [2 · ♡, 3 · ♣], input set U = {⟦b⟧> : b ∈ {0, 1}2}, and helping card sequence 
H = (?/♣). The protocol uses a non-standard, randomized output encoding ⟦·⟧♡♡, 
given in (6.1).

2. ⟦·⟧ should use the same set of cards for all values to be encoded. (In card-based 
protocols involving players, we have to hand them all cards necessary for encoding 
arbitrary inputs, anyway. Moreover, it is easier to guarantee security, if this 
property holds, for the same reasons as in the discussion on the previous item 
below.)

3. ⟦·⟧ should use as few cards as possible.

4. ⟦·⟧ should be either deterministic or rerandomizable. For the latter, we want the 
existence of a protocol that computes the identity function with the encoding used 
for inputs and outputs, but the output uses fresh randomness for the encoding. 
(Ideally, this protocol should not leak the randomness used in the input encoding, 
we will discuss this fact in the next section.)

While item 1 looks like a relatively pragmatic reason, it is crucial if inputs/outputs 
are to be used in general circuits. For example, the single-card encoding ⟦·⟧♡, which 
maps 1 ↦ ?/♡ and 0 ↦ ?/♣, violates this property, as Mizuki and Shizuya [MS14a] 
showed the impossibility of perfectly secure single-card COPY protocols. We believe 
their arguments can be extended to the impossibility of NOT and AND single-card 
encoding inputs and outputs. Moreover, there are no protocols in the literature which 
use the five-card encoding ⟦·⟧♡♡ for inputs.

Item 2 is clearly violated by the single-card encoding ⟦·⟧♡, but holds true for ⟦·⟧♡♡
and ⟦·⟧> (the latter using a fixed choice of basis). Item 3 is a less strict requirement, but 
given that the single-card encoding does not fulfill the previous properties, we need at 
least two cards, which should be distinct for all values due to item 2. This identifies the 
standard encoding as optimal, and justifies its common use in card-based cryptography.

Concerning item 4, this holds for all three encodings discussed so far. While the single 
card encoding is deterministic, the five-card encoding is rerandomizable by applying a 
uniform random cut (shuffle, ⟨(1 2 3 4 5)⟩) to the cards. For the standard encoding, it 
depends on the randomness domain. If there is no choice, e.g., we restrict it to exactly 
the basis {?/♣, ?/♡}, then the encoding is deterministic. If we want to make the basis 
choices explicit in the encoding, we may write it as a superscript as in the following 
example: ⟦b; r⟧{{1,2},{3,4}}> is an encoding of b ∈ {0, 1} in basis r ∈ {{?/1, ?/2}, {?/3, ?/4}}. 
Note that if there is more than one choice, we can rerandomize by randomly selecting a 
pair of cards from a sequence containing all permissible base choices and then applying 

51



6. Models of Card-based Cryptography

a base conversion protocol (as in [M16b]). We will discuss these protocols later in 
Chapter 8, but to prepare a discussion in the next section, let us point out here, that 
such a base conversion protocol leaks the previously used basis.

6.6. Security of Card-based Protocols
In [MS14a], the authors essentially define security as the stochastic independence of 
input sequence and what is visible during a protocol execution. More formally, they 
require that the random variable Γ0 = I with values in U specifying the input sequence, 
and V , which is the random variable of the visible sequence of an execution starting 
with input Γ0, are stochastically independent. This definition is then applied to show 
the impossibility of single-card COPY protocols featuring this security notion.

While having relatively weak but meaningful notions strengthens impossibility results 
like this and the security notion is perfectly fine for these deterministic COPY protocols, 
we think that this definition falls short to really capture the security that is to be wished 
and that is offered by common card-based protocols. For example, it does not protect 
the output of a protocol, which is important, e.g., when computing randomized functions 
to be used in a larger circuit, where we do not want any intermediary results leaked. 
This can be accommodated by having the pair (I,O) being stochastically independent 
from V , if O is the random variable of the output sequence of a protocol run starting 
with input Γ0 = I and visible sequence trace v = V . (This implies that if the function 
to be computed is randomized, the used randomness should not be contained in V .)

However, this still fails to give a rigorous explanation on why non-committed format 
protocols, such as the five-card trick above, are secure, where there is some choice in 
the output encoding, which should not leak anything upon opening the output cards or 
using them in subsequent protocols. Hence, this section aims to generalize the above 
security notion to the case of randomized encodings. For the special case of deterministic 
encodings, both notions to be discussed next are equivalent to (I,O) being stochastically 
independent from V . For a concise notation, we denote stochastic independence of 
random variables X and Y by X ⊥Y . Let us start with the formal definition:

Definition 6.2 (Security). Let P = (D, U,H,Q,A) be a protocol computing a func-
tion f w.r.t. input encoding ⟦·⟧i and output encoding ⟦·⟧o. Let I be a random variable 
with values in U , V be a random variable denoting the visible sequence trace of a run 
on input Γ0 = I, and O the random variable of its output. Moreover, let Ri and Ro be 
the random variables of the randomness used in encoding I and O, respectively. Then 
P is secure if

Ri ⊥ vali(I) implies that (vali(I), valo(O)) ⊥ (V,Ro, Ri).

In other words, given that Ri does not give anything away about vali(I), then, from 
learning the public visible sequence trace V and the randomness R = (Ri, Ro) used in 
the encodings, one does not learn anything about inputs and output values encoded in 
I and O, respectively, as well as about any (non-trivial) relations between them.
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Additionally, if we are interested in protecting not only the bits but also the full card 
sequences used for in- and output, we say that P is full-sequence secure if it is secure 
and V is independent of (Ri, Ro), i.e., by looking at the public information, one does 
not learn anything about the randomness used in the input and output encodings.

In terms of probabilities, security means that if Pr[Ri = ri | vali(I) = i] = Pr[Ri = ri], 
then

Pr[vali(I) = i, valo(O) = o |V = v,Ri = ri, Ro = ro] = Pr[vali(I) = i, valo(O) = o],

where ri, ro is the randomness used in I and O, respectively.
We can guarantee that Ri ⊥ vali(I) in the very beginning of a computation by 

either only allowing a deterministic encoding, or by prepending a re-randomization 
protocol. In the case where there is a correlation between Ri and vali(I), e.g., because 
the randomness has been chosen adversarially, we want the re-randomization protocol to 
be full-sequence secure in order to hide Ri, which would leak information about vali(I)8. 
Then, security of the protocol guarantees that Ro ⊥ valo(O), which will be the input to 
following protocols, then already satisfying the prerequisite in the security definition.

Security of Common AND Protocols. Let us discuss why both the committed-format 
six-card AND protocol from [MS09] and the five-card trick of [dB90] are secure. To see 
security of the first protocol, note that its input and output is deterministic as it uses 
the standard encoding and is in the two-color deck case. Hence, Ri and Ro do not have 
any entropy and it suffices to show that (vali(I), valo(O)) is stochastically independent 
of V . Up until the turn, V contains only trivial visible sequences, so the only non-trivial 
observation to be made is the two symbols of the turned cards. As discussed in the 
introduction, the shuffle will ensure that the turned cards encode ⟦vali(I)[1]⊕m⟧>, i.e., 
the first bit masked by a uniformly random m ∈ {0, 1}. Hence, vali(I)[1] ⊕ m, and 
consequently V , is independent of vali(I), and as AND is a deterministic function, also 
of (vali(I), valo(O)).

Let us turn to the security of den Boers protocol. While the input encoding is 
deterministic, Ro has values in Z/5Z specifying the rotation of the candidate card 
sequence, as defined in (6.1). Because the protocol does not turn any cards, V is trivial 
and it remains to show that (vali(I), valo(O)) is stochastically independent of Ro. But 
this is certainly true, as Ro contains fresh randomness generated by the uniform cut, 
which by definition does not depend on any content of the cards shuffled.

Discussion. While the security definition may look a little complex at first sight, in 
Chapter 7 we will define an enriched way to speak about protocols, compressing all 
possible runs into a simple diagram, from which one can systematically check the security 
property by checking a local criterion for all turn and result actions. This will allow for 

8As discussed above, this is not the case in the re-randomization protocol for the standard encoding 
⟦·⟧>, cf. the previous section. However, we can just require all immediate inputs to have a deterministic 
encoding, which is the case in all protocols in the literature we know of.
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even simpler, more systematic security proofs. Moreover, in Chapter 12 we will extend 
the discussion to the setting where adversarial players may try to influence the shuffling 
process or know how they took part in performing a shuffle operation.

In the above security definition, we have just one input string, where each bit might 
depend on the others. When the input is provided by players, e.g., each player has one 
bit of input, each of them has partial knowledge on the input sequence. Ideally, the 
security definition should also imply that, given this partial knowledge, one should not 
be able to learn any additional information from V,Ro, Ri about the other players input 
values or the output value, relative to their prior knowledge. Note that our definition 
given above implies that, even given this partial knowledge on vali(I) and Ri, then 
vali(I) and (V,Ro, Ri) are still independent conditioned on the partial knowledge (given 
that vali(I) and Ri are independent).

While in this section, we take extra care to define the strongest security notion that 
we could conceive, but which is still attainable, we want to stress that our impossibility 
results in Chapter 9 are based on much weaker notions of security, namely that at the 
end of the protocol, all outputs in the image of the function to be computed shall still be 
possible (have probability greater that zero). We call this output-possibilistic security 
and refer to Definition 9.1 for a formal account.

6.7. Restricted Shuffling

The formal model as defined by Mizuki and Shizuya [MS14a] allows shuffling operations 
with arbitrary permutation sets and an arbitrary real-valued probability distribution 
on them. This is arguably a very strong assumption, allowing for similarly strong 
impossibility results. However, we will later present a protocol in Section 8.3 for 
computing arbitrary n-ary Boolean functions with 2n cards, using a shuffle that – while 
allowed in the formalism by [MS14a] – is of questionable practicality. We could not 
conceive of a way to perform it with actual people and actual cards such that the players 
do not learn anything about the permutation that was done in the shuffle. It somehow 
does all the “hard work” in computing the function in one lucky case to be hit, while 
all the other visible sequences after the following turn will force the protocol to restart. 
One may argue that at least for possibility results, one should aim for less.

In this thesis, we identify a natural subclass of these general shuffles, which we 
dubbed “practicable shuffles” in the introduction. While this name is suggestive, it is 
also debateable due to its subjective nature. Hence, we prefer the more exact definition, 
namely of shuffles that are

• uniform, i.e., where the probability distribution on the permutations in the shuffle 
is the uniform distribution, and

• closed, meaning that the permutation set really is a subgroup of Sℓ. (The name 
originates from the set being closed under the composition operation.)
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Together, the properties insure that when shuffling twice in this way, the probability 
distribution of resulting card sequences is the same as when shuffling once, as, e.g., 
closedness implies Π2 := {π1 ∘ π2 | π1, π2 ∈ Π} = Π.

Note that a good real-world implementation of the shuffles is important to back up 
the claim that the commitments used are binding. When viewing single face-down 
cards as commitments to their symbols, the bindingness is immediate, if there is no 
possibility of the players to exchange the card by a new one. However, when viewing 
multiple face-down cards as a commitment to a bit value, the perfect bindingness of 
the commitment (as assumed in the card-based cryptographic literature), i.e., that no 
player can for example invert the respective bit before it is revealed, depends mostly on 
the secure implementation of the shuffle actions. For this, we have to ensure that in 
these steps nobody can swap the cards of a bit if it is not an allowed action.

The proposed uniform closed shuffles can be easily implemented in the honest-but-
curious setting by the parties taking turns in performing a random permutation from 
the specified permutation set, while the other parties are not looking. While this is 
usually sufficient for didactic settings, we will describe an actively secure implementation 
of uniform closed shuffles in Chapter 12, enforcing players to only perform permutations 
from the allowed set. This will provide evidence to the assumed bindingness in card-based 
protocols.

Also, note that uniform closed shuffles suffice to compute any function, as almost all 
existing Mizuki–Shizuya protocols, e.g., [CK94; dB90; ICM15; MAS13; M16a; MKS12; 
MS09; MS14b; NHMS15; NR98; S01; AHMS18] and the protocols in Figures 8.5 and 8.6, 
use only these. This list contains protocols for AND, NOT and COPY, hence allowing 
arbitrary circuits. (More general shuffles appear in [CHL13; NNH+18] and Sections 8.1
and 8.2 only for the purpose of using less cards.9 In this sense, our results on lower 
bounds on the number of cards will show that restricting to these shuffles really does 
affect how many cards are needed to compute AND or COPY.)

Other authors suggest to further restrict the class to shuffles of a few basic types, 
namely random cuts, random bisection cuts and unconstrained (Sk-)shuffles, and their 
generalizations to piles (i.e., instead of shuffling cards, one shuffles piles that are somehow 
forced to stay together). Arguably, random cuts are the most basic type of shuffling, 
and we will defend this view in Chapter 12. Moreover, Mizuki and Sone [MS09] and 
Ueda et al. [UNH+16] argue for nice ways to implement the random bisection cut. While 
we feel that it is natural to consider uniform and/or closed shuffles for meaningful 
impossibility results, we agree to prefer these even more restricted shuffles to devise 
really practicable protocols.

Formally, a shuffle is a random cut if its permutation set is a group, generated by 
an element π which is a single cycle (x1 x2 . . . xl). A shuffle is a random bisection 
cut if its permutation set is generated by a permutation π which is the composition of 

9Note that non-uniform and/or non-closed shuffles used therein have been implemented in [NHMS16] 
using sliding cover boxes, but such an approach requires extra tools and the security that we achieve 
using our transformation in Chapter 12 is not achieved against attackers that reorder the boxes in an 
illicit way in their implementation.
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pairwise disjoint cycles of length 2. Finally, an Sk-shuffle for k ≤ ℓ is a shuffle with 
permutation set Sk. Pile shuffles will be further explored in Chapter 12.

Algebraic Properties of Closed Shuffles
As the shuffle set Π of a closed shuffle is a subgroup of Sℓ, it also defines a group action 
on the card sequences, allowing us to exploit their algebraic structure. This structure is 
captured in the orbits associated with the group action of Π.

For this, let G be a group acting on a set X, as in Definition 6.1. Then we define the 
orbit of an x ∈ X as G(x) := {g(x) : g ∈ G}, i.e., all elements in X that are reachable 
from x via some g ∈ G. Note that orbits G(x), G(y) of x, y ∈ X are either disjoint or 
equal. Hence the orbits form a partition of X, called the orbit partition of X through G. 
(A partition of X is a set of disjoint subsets from X, such that their union is X.) In 
our setting, G = Π ⊆ Sℓ is a permutation group of a shuffle and X = SeqDℓ is the set of 
sequences on a deck D, and Π acts on X naturally via reordering the cards according to 
π ∈ Π as described above. We will use orbit partitions to analyze protocols using closed 
shuffles and prove lower bounds on the number of cards in such protocols in Sections 9.7
and 9.10. Moreover, we give a criterion for the secure application of so-called sort 
protocols in terms of orbit partitions, cf. Definition 8.1. For a shuffle with permutation 
set Π we also say that the orbit partition of Π is the orbit partition of the shuffle.

As an example, consider the orbit partition on the sequences SeqD of deck D =
[♣,♣,♡,♡] that ⟨π = (1 2)(3 4)⟩ generates (written as strings):

{{♡♡♣♣}, {♡♣♡♣,♣♡♣♡}, {♡♣♣♡,♣♡♡♣}, {♣♣♡♡}}.

That is, e.g., because π maps ♡♣♡♣ ↦ ♣♡♣♡ and vice versa, but leaves ♡♡♣♣ and 
♣♣♡♡ fixed. Sometimes, it is useful to speak of all permutations that leave a given 
sequence fixed, e.g., in that they only exchange cards with indistinguishable symbols. 
Obviously, the set of these permutations includes the identity permutation, and in fact 
it forms a group. Formally, the stabilizer subgroup Stabx(G) of a group G with respect 
to an x ∈ X, is defined as Stabx(G) = {g ∈ G : g(x) = x}, i.e., the group of all g ∈ G
that fix x, meaning that g(x) = x.

We will later make use of the following interesting fact about orbit partitions and 
stabilizer subgroups:

Lemma 6.1 (Orbit-Stabilizer theorem). Let G be a group, X a nonempty set and let G
act on X as specified above. Then, |G(x)| = |G|/|Stabx(G)| for all x ∈ X.

Proof. The simple proof is given e.g., in [DM96, Thm. 1.4A].

6.8. Variants of the Computational Model
The computational model defined in Section 6.3 includes an rflip action that is meant 
as a randomized version of the turn action. Note however that in contrast to shuffling, 
this does not introduce uncertainty, as the turned cards are publicly observable. While 
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having public randomness in the formalism seems useful (albeit we are not aware of any 
protocols in the literature that make use of it), we think that in this case, it is natural 
to choose more generally which action to perform (instead of only which set of cards to 
turn) based on, e.g., whether a coin flipped by the players ends up heads or tails.

For this introduce an additional class of actions in protocols, that produces public 
randomness: The action rand(p1, . . . , pi) for real numbers p1, . . . , pi ∈ (0, 1) summing 
to 1 appends a value x ∈ {0, 1, . . . , i} to the visible sequence trace10 with Pr[x = j] = pj .

Note that public randomness needs to be handled with care when assuming our security 
notion above. An example for this would be a protocol that starts with a commitment 
to a bit and outputs either this bit unchanged with probability 1/3 or its negation with 
probability 2/3. This can be implemented by a rand(1/3, 2/3) action and, depending on 
the outcome, exchanging the two cards or leaving them as-is, followed by a result action. 
(This is also possible with a shuffle, but requires a non-uniform probability distribution 
on the permutations, something we are inclined to prohibit as discussed in Section 6.7.) 
However, this protocol is not secure since the result of the random experiment is part 
of the visible sequence trace (it is public) which introduces a non-trivial relationship 
between output and visible sequence trace precluding independence.

Let us turn to a simplification of the model. Shuffling with face-up cards or with 
distinct backs, i.e., with the current visible sequence v being non-trivial, may result in 
several visible sequences v′, depending on how the cards are permuted. It is easy to see 
that such a branching shuffle can be simulated with a rand action, determining which v′
is obtained, followed by a shuffle action restricted to those permutations that transform 
v into v′. In the following lemma and the following discussion, we argue that this still 
works for uniform and/or closed shuffles, i.e., if the original branching shuffle was closed 
(uniform), the restricted shuffles can be implemented using closed (uniform) shuffles as 
well, possibly accompanied by a deterministic permutation action.

Lemma 6.2. Let Π be any closed permutation set and v and v′ visible sequences. 
Assume Πv ↦v′ := {π ∈ Π: π(v) = v′} is non-empty. Then for any πv ↦v′ ∈ Πv ↦v′, the 
set Πv := Πv ↦v′ ∘ π−1

v ↦v′ is closed.

In particular, we can implement (shuffle,Πv ↦v′) using (perm, πv ↦v′) followed by the 
closed shuffle (shuffle,Πv).

Proof. Let x = ϕ1 ∘ π−1
v ↦v′ and y = ϕ2 ∘ π−1

v ↦v′ be two elements of Πv, in particular 
ϕ1, ϕ2 ∈ Πv ↦v′ . We have (ϕ1 ∘ π−1

v ↦v′ ∘ ϕ2)(v) = v′, so ϕ1 ∘ π−1
v ↦v′ ∘ ϕ2 ∈ Πv ↦v′ . This 

implies:
x ∘ y = ϕ1 ∘ π−1

v ↦v′ ∘ ϕ2 ∘ π−1
v ↦v′ ∈ Πv ↦v′ ∘ π−1

v ↦v′ = Πv.

For uniform shuffles, the analogous claim is even easier, as a uniformly random 
variable conditioned to be contained in some subset is still uniform on that subset. For 
uniform and closed shuffles these arguments can be combined.
10We refrain from extending the definition of a visible sequence trace (“view”) to contain x ∈ {0, 1, . . . , i}, 

as the required adaptations are only technical and straightforward.
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From the discussion above, we can derive the following corollary, for general protocols 
and for protocols restricted to uniform and/or closed shuffles.

Corollary 6.1 (We can assume all cards are face down). It suffices to look at protocols 
which start with face-down cards and which, after turning any card, directly turns it 
face-down again.

Note, however, that branching shuffles are useful, if one wants to restrict shuffles in 
other ways. For example, if we are interested in protocols which only use random cuts, 
the analogous statement of Lemma 6.2 is false, because the resulting Πv will in general 
not again be a random cut, even if Π is a random cut. Because of this, we use cards 
with different backs in Figures 7.4 and 12.2 later on. To give a counterexample, let the 
back alphabet B = {?,#} and assume one is given a card sequence of even length with 
alternating backs, e.g., with visible sequence (?,#, ?,#, ?,#). Then there are exactly 
two configurations this can end up, if we apply (shuffle,Π = ⟨(1 2 3 4 5 6)⟩), namely 
(?,#, ?,#, ?,#) and (#, ?,#, ?#, ?). The set of all permutations compatible with the 
first visible sequence is ⟨π⟩, with π = (1 2 3 4 5 6)2 = (1 3 5)(2 4 6). As π is not a single 
cycle, shuffling with this set is no longer a random cut. Hence, we cannot implement 
this shuffle in the way above using only random cuts and only ‘?’ as back symbols.

Finally, note that if one wants to restrict to random bisection cuts or more generally 
shuffles with groups of order 2, branching shuffles also do not help, because in the case 
of branching, one completely learns the chosen permutation from the resulting visible 
sequence, and can then implement it with just a rand operation, followed by perm.

6.9. Discussion
All definitions and efforts to pinning-down the right notions bring with them the danger 
of excluding other worthwhile options. Let us briefly discuss the choices that we have 
not covered.

Most notably, concerning the modeling of cards and the available actions, the above 
definitions ignore a possibility present in many common card games, namely to rotate
the typical rectangular cards by 180 degrees, as pointed out in [MS14b, Sect. 4]. Hence, 
when actually running a card-based protocol with real cards, one either has to assume 
that both back and front of the cards are rotation-invariant, i.e., one cannot tell the 
orientation as it looks the same both ways, or if not, the back side has to tell the 
orientation to detect whether cards have been rotated. Otherwise, a player could input 
their cards upside-down to “mark” them and to subsequently learn the position of 
the other players’ cards and their value. On the flip-side, [MS14b; SNN+16] point 
out how one can exploit cards with rotationally symmetric backs to input single-card 
commitments via ♡ or ♡depending on the input bit. Using this encoding by card 
orientation, the authors devise two-card XOR, three-card COPY and three-card AND
protocols, the latter featuring a so-called “tornado shuffle”. Shinagawa et al. [SMS+15a] 
and Shinagawa and Mizuki [SM18] developed the idea further to allowing regular n-gonal 
cards to represent values in Z/nZ and to compute on these values. Moreover, [MWS15, 
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Sect. 3.4] proposes a simple AND protocol with a single square-shaped, rotate-able card 
which one can partially reveal by folding half of it up.

Another route that one may go is to define the cards’ hidingness as less perfect, as in 
the setting of tamper-evident seals introduced by Moran and Naor [MN10a]. Here, players 
may tear open envelopes or scratch off scratch-off-cards (corresponding to turning cards 
in our setting), but with the consequence that this is detectable, leading to an abort of 
the protocol. We assume that players can observe an adversary turning cards during 
execution, as card-based cryptographic protocols are typically performed with all players 
around a table. In this setting, card-based cryptography cannot really protect from 
illegitimate card turning, besides generic methods, such as compiling the circuit to be 
computed into a private circuit, as defined by Ishai, Sahai, and Wagner [ISW03]. Hence, 
this is excluded from the model. The perfect hidingness of card-based commitments is 
also based on the indistinguishability of the cards’ backs and of cards using the same 
symbols. As in private circuits, Mizuki and Shizuya [MS14b] propose to strengthen this 
assumption by handling scuff marks on the cards via XOR-secret sharing the value in 
many bits.

When discussing the available actions in a protocol, one may introduce formal 
privatePerm or inputPerm operations, which allow for a player to permute the cards in a 
way unobserved by the other players, but restricted in its choice. This may be done, e.g., 
to implement shuffling (as argued above, this is at least as powerful as allowing uniform 
closed shuffles) or to input bits (requiring that players are aware of their inputs). We 
will cover these protocols in Chapter 12. In the same way, privateTurn operations might 
be of use, but only if players are modeled that can do actions dependent on private 
knowledge, not verifiable by other players. Hence, this is excluded in the definition 
given above. Moreover, one may conceive that players may provide inputs later in the 
protocol, as in reactive secure multiparty computation by a special inputCards action. 
In our exposition we focus on the case of secure function evaluation where all inputs 
are fixed in the beginning, as one can easily update this to the reactive case, if needed.

In [KKW+17, Sect. 4], the authors use a variation of the computational model that 
does not use state machine semantics as in Section 6.3, but possibly infinite, directed 
trees, where the actions are prescribed to the nodes of the tree, and the outgoing edges 
are chosen according to the observed visible sequence, similar to the diagrams that we 
will introduce in Chapter 7. Given a protocol defined in this way, one can eliminate the 
occurrences of rflip and rand actions by deterministic replacements.

Conclusion. In this chapter, we have given a unified presentation that combines many 
of the different notions and implicit intuitions scattered throughout the literature into 
one consistent framework. For this, we refined and strengthened what is to be understood 
by security in card-based protocols, which has been lacking in sufficient generality so far. 
The definitions are general enough to account for both committed and non-committed 
format protocols and for more flexible encoding as in the case of a standard deck, and 
will be further extended in Chapter 12 to also encompass protocols requiring input 
awareness, in that the players input their bits by performing a permutation.
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Moreover, we identify uniform closed shuffling as a natural restriction to the more 
general shuffling allowed in the formalism, offering a conceptually simple implementation 
in the real world, e.g., by players taking turns in shuffling. We see this as a middle 
ground between too strong and too weak (im-)possibility results, which will be later 
backed up by a protocol using shuffles, for which no implementation has been proposed, 
yet. Additionally, this class allows to exploit the rich algebraic structure that orbit 
partitions of the corresponding shuffle groups induce – a fact that will be important in 
Chapter 9.

Finally, we propose variants and simplifications to the computational model, e.g., 
that shuffling with open cards or using different backs is unnecessary, unless one wants 
to restrict shuffling to specific classes, such as random cuts. In what follows, we will 
use this as a basis to give rigorous possibility and impossibility proofs for card-based 
protocols.
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This chapter is mainly based on [KWH15; KKW+17] and introduces state diagrams, 
which are representations of protocols describing all possible runs simultaneously in a 
way that makes correctness and security of the protocol directly recognizable.

They have been formally introduced in [KWH15] and have since found widespread 
use in the literature, e.g., [FAN+17; MS17; AHMS18; MK18; MUH+18], where they are 
also called KWH diagrams or trees. In essence, they are labeled graphs, which specify 
for each step of a protocol run, which card sequences are possible at this point in time, 
and how likely they are, in terms of the probabilities for the inputs.

The way it is defined, a state diagram is not only a structured way to describe protocols, 
but also a direct witness for a main aspect of the security of the protocol, as protocols 
violating this security aspect do not even admit well-formed state diagrams. We will 
make this precise below. Moreover, correctness and the security w.r.t. Definition 6.2 are 
verifiable via a simple criterion to be checked at the leaf nodes of the diagram. What is 
more, state diagrams allow for structural insights and play a central role in our proofs 
for the impossibility of AND and COPY protocols for certain decks and requirements in 
Chapter 9.

Let us start with an example of how we represent states in such a diagram:

symb(⟦b1⟧ ‖H) Xb1

symb(⟦b2⟧ ‖H) Xb2...
...

symb(⟦b2k⟧ ‖H) Xb
2k

♡♣♡♣♣♡ X11

♡♣♣♡♣♡ X10

♣♡♡♣♣♡ X01

♣♡♣♡♣♡ X00

On the left we depict the general start state of a protocol with helping sequence H, 
computing a function f : {0, 1}k → {0, 1}m w.r.t. deterministic input encoding ⟦·⟧, 
where {b1, . . . , b2k} := {0, 1}k. On the right, we have the start state of the six-card AND
protocol of Mizuki and Sone [MS09], cf. Example 6.1. To simplify notation, we write 
down only the symbol sequences1, not the full cards. Moreover, we write all sequences 
as strings. For example, in the state on the right, the first line can be read as follows: 
The current card sequence is (?/♡, ?/♣, ?/♡, ?/♣, ?/♣, ?/♡) with symbolic probability X11, 
i.e., the probability that this sequence is the actual sequence on the table is exactly the 
probability of (1, 1) being the input to the protocol. Similarly, in the general start state 
on the left, the first line can be read as: the sequence ⟦b1⟧ ‖H is the actual sequence 
with the probability of b1 being chosen as input.

1This is because we almost always use back alphabet {?} and keep cards essentially face-down due to 
Section 6.8, so no ambiguities will arise. This simplifies notation significantly.
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For a more complex state, let us look at the situation of the AND protocol after the 
shuffle of Example 6.1, which is as follows (also see the full graph in Figure 7.1 for 
context):

♡♣♡♣♣♡ 1/2X11

♣♡♣♡♡♣ 1/2X11

♡♣♣♡♣♡ 1/2X10 + 1/2X00

♣♡♣♡♣♡ 1/2X10 + 1/2X00

♣♡♡♣♣♡ 1/2X01

♡♣♣♡♡♣ 1/2X01

Here, we have introduced uncertainty by a shuffle operation which applies the identity 
permutation id or (1 2)(3 5)(4 6), each with probability 1/2. For example, ♡♣♡♣♣♡
(first line in the state) is on the table if the input was (1, 1) and id has been chosen 
in the shuffle, resulting in a remaining total probability of 1/2X11. On the other hand, 
♡♣♣♡♣♡ (third line in the state) can arise via input (1, 0) and choosing id, or by input 
sequence ♣♡♣♡♣♡ (if inputs were (0, 0)) on which (1 2)(3 5)(4 6) is applied, resulting 
in a symbolic probability of 1/2X10 + 1/2X00. We will later see more systematically how 
we can derive such states following a shuffle action.

Let us start with a formal definition of a state. For this, let R[Xb : b ∈ {0, 1}k]1
denote the homogeneous polynomials of degree 1 with variables Xb for b ∈ {0, 1}k, 
i.e., the polynomials from R[Xb : b ∈ {0, 1}k] (with coefficients in R and variables 
{Xb : b ∈ {0, 1}k}) such that their monomials all have degree 1. Note that this is an 
abelian group w.r.t. addition and includes the zero polynomial, denoted as 0 in the 
following. We say that a polynomial P ∈ R[Xb : b ∈ {0, 1}k]1 is non-negative, if all of 
its coefficients are non-negative, i.e., greater or equal to 0, and write P ≥ 0 for short.

Definition 7.1 (State). Let D be a deck and {0, 1}k be a set of inputs. A state µ
with deck D, variables from {0, 1}k and sequence length ℓ ≤ |D| is a map µ : SeqDℓ →
R[Xb : b ∈ {0, 1}k]1 such that

1.
∑

s∈SeqD
ℓ
µ(s) =

∑
b∈{0,1}k Xb (representing that µ can be seen as a probability dis-

tribution on card sequences, with coefficients of the convex combination summing 
to 1, which is formally given as 

∑
b∈{0,1}k Xb, cf. the discussion below),

2. for all s ∈ SeqDℓ , µ(s) is non-negative (as before, convex combinations require its 
coefficients to be non-negative), and

3. all s ∈ SeqDℓ with µ(s) ̸= 0 have the same visible sequence.

We say that a state µ contains a sequence of symbols s (or s is in µ for short) if µ(s) ̸= 0, 
and write supp(µ) (as in support) for the set of all such sequences. Let |µ| := | supp(µ)|. 
We write vis(µ) for the (unique) visible sequence of the sequences in µ. Moreover, we 
will often leave D and {0, 1}k implicit, if no ambiguities can arise.

As our aim was to use this formalism to express a (symbolic) probability distribution 
on sequences being the current actual sequence, we require the first two conditions in 
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the definition of a state. We call them convexity conditions. They allow us to interpret 
these polynomials as probabilities for the respective sequence to be the actual sequence 
at this time in the protocol, depending on the (symbolic) probabilities of the inputs b, 
given as variables Xb for b ∈ {0, 1}k.

Formally, we want that 
∑

b∈{0,1}k Xb = 1, i.e., that the sum of the probabilities of 
all input sequences is 1, but refrain from introducing the basic polynomial ring as a 
factor ring modulo 

∑
b∈{0,1}k Xb − 1 for ease of exposition. This lets us interpret the 

first part of the convexity condition as having the coefficients of a convex combination 
summing to 1. Importantly, the convexity conditions imply that the polynomials over 
the variables Xb for b ∈ {0, 1}k are of the form 

∑
b∈{0,1}k βbXb, for βb ∈ [0, 1] ⊆ R.

7.1. Constructing State Trees from Protocols
We now describe how to construct state trees from protocol descriptions. We will later 
argue how to identify states which are essentially equal, introducing backwards edges 
and cycles to the state diagrams for more compact, often finite graphs. This section is 
mainly taken from [KKW+17, Sect. 3.1] with adaptations and extensions. See Figure 7.1
as an illustration of the more general rules. In the following, v and v′ are always visible 
sequence traces of the prefix of a protocol run, with v′ being the trace that arise from v
by adding one visible sequence v+, i.e., v′ = v ‖ v+.

For each v, the state tree contains a state µv. In our model, each state is associated 
with a unique action that the protocol prescribes for this situation. We annotate the 
state (essentially its outgoing edges) with this action. If the action leads to an extension 
of v to v′ by appending the visible sequence v+, then µv′ is a child of its parent µv. A 
turn action, or a shuffle action on face-up cards or cards with distinct back symbols, 
may result in several children which are siblings of each other and the edge to each 
child is additionally annotated with the respective v+. We call a shuffle on cards with a 
non-trivial visible sequence that has multiple children a branching shuffle. If the action 
is a result action, then µv is a leaf  or a final state.

From the perspective of an observer of the protocol who does not know the input I
or the permutations chosen during shuffle actions, the actual sequence Sv lying on the 
table in a particular run when the state µv is reached, is unknown. We interpret Sv
as a random variable and annotate µv with the corresponding probabilities, i.e., with 
µv(s) := Pr[Sv = s |v] where s is any card sequence from SeqDℓ and v stands for the 
event that v is a prefix of the visible sequence trace of the complete protocol run. We 
can then rewrite this as:

µv(s) = Pr[Sv = s|v] =
∑

i∈{0,1}k
Pr[Sv = s, vali(I) = i|v]

=
∑

i∈{0,1}k
Pr[Sv = s| vali(I) = i, v] · Pr[vali(I) = i|v]

=
∑

i∈{0,1}k
Pr[Sv = s| vali(I) = i, v]⏞ ⏟⏟ ⏞

=:pv,i,s

·Pr[vali(I) = i]⏞ ⏟⏟ ⏞
=:Xi

=
∑

i∈{0,1}k
pv,i,sXi.
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♡♣♡♣♣♡ X11

♡♣♣♡♣♡ X10

♣♡♡♣♣♡ X01

♣♡♣♡♣♡ X00

♡♣♡♣♣♡ 1/2X11

♣♡♣♡♡♣ 1/2X11

♡♣♣♡♣♡ 1/2X10 + 1/2X00

♣♡♣♡♣♡ 1/2X10 + 1/2X00

♣♡♡♣♣♡ 1/2X01

♡♣♣♡♡♣ 1/2X01

(shuffle, ⟨(1 2)(3 5)(4 6)⟩)

♡♣♡♣♣♡ X11

♡♣♣♡♣♡ X10 +X00

♡♣♣♡♡♣ X01

♣♡♣♡♡♣ X11

♣♡♣♡♣♡ X10 +X00

♣♡♡♣♣♡ X01

(turn, {1, 2})
♡♣???? ♣♡????

(result, 3, 4)

✓

(result, 5, 6)

✓

Figure 7.1.: The six-card AND protocol of [MS09].

At the second line-break, we exploited the independence of visible sequence trace and 
input in secure protocols and introduced two abbreviations. Note that pv,i,s is constant, 
but Xi is a variable since we have not actually defined a specific probability distribution 
on the inputs (nor will we). We treat the result as a formal sum, making µv a map from 
sequences of symbols to polynomials, as in Definition 7.1.

Derivation Rules for States

Let P = (D, U,H,Q,A) be a secure protocol computing a Boolean function f : {0, 1}k →
{0, 1}m w.r.t. input encoding ⟦·⟧i and output encoding ⟦·⟧o. We now describe how the 
tree of all states can be computed for P inductively starting from the root.

Start state. First note that the start state is unique, which was, besides simplicity, 
why we required all sequences in U to be face-down and share the same visible sequence 
v0. The distribution of Sv0 is the input distribution, with the helping card sequences 
put to the right, i.e.,

µv0(s) =
∑

b,ri with s=⟦b;ri⟧i ‖H

Pr[Ri = ri] ·Xb. (7.1)

(Note that we assumed in the definition of encoding that the b is unique, but there 
may be several random values leading to the same sequence). Here, we already assume 
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1234 X00 +X01

1243 X10

2134 X11

1234 1/2(X00 +X01 +X10)
1243 1/2(X00 +X01 +X10)
2134 1/2X11

2143 1/2X11

(shuffle, {id, (3 4)})

s1 µv(s1)
...

...
sm µv(sm)

s′1
∑

π∈Π F(π) · µv(π
−1(s′1))

...
...

s′k
∑

π∈Π F(π) · µv(π
−1(s′k))

(shuffle,Π,F)

Figure 7.2.: A non-branching shuffle operation. The general rule is on the left, an 
example from a two-bit input protocol is given on the right.

that Ri is stochastically independent of the input value to be encoded2. If the input 
encoding is deterministic, then this simplifies to 

µv0(s) =

{︄
Xb, if s = ⟦b⟧i ‖H,
0, otherwise. 

(7.2)

This is also the state displayed on p. 61 (left), which we have seen at the beginning of 
this chapter. It is clear that this fulfills the definition of a state, as in Definition 7.1.

Shuffle action. Assume for a state µv the action (shuffle,Π,F) is prescribed. Let us 
first assume that before the shuffle the visible sequence is the trivial visible sequence 
(?, . . . , ?). Then no non-trivial information is revealed upon shuffling, and we obtain v′
by appending a trivial visible sequence to v. Then µv′ is the unique child of µv, fulfilling

µv′(s) = Pr[Sv′ = s |v′]

=
∑
π∈Π
F(π) · Pr[Sv = π−1(s)|v] =

∑
π∈Π
F(π) · µv(π−1(s)).

This just takes into account all sequences π−1(s) in µ from which s may have originated 
via some π as well as their corresponding probabilities. See Figure 7.2 for an example 
situation in a state tree. Note that perm actions are simply a special case, see Figure 7.3
for an example.

If the visible sequence before the shuffle is non-trivial, there are several child states. 
For this, let Πv+ be the subset of Π that leads to some visible sequence v+ with 
corresponding state µv′ . If F( · | v+) denotes the probability distribution on Πv+

conditioned on the fact that v+ is observed, we have that 

µv′(s) =
∑

π∈Πv+

F(π | v+) · µv(π−1(s)). (7.3)

2This is the precondition to security as in Definition 6.2 and constitutes the only interesting case for 
us, if we want our state diagrams to be a nice representation that allows for showing security by 
simple, local checks.

65



7. Diagrams for Secure Protocols

♡♣♡♣♣ X11

♡♣♣♡♣ X10

♣♡♡♣♣ X01

♣♡♣♡♣ X00

♡♣♣♣♡ X11

♡♣♣♡♣ X10

♣♡♣♣♡ X01

♣♡♣♡♣ X00

(perm, (3 5))

s1 µv(s1)
...

...
sk µv(sk)

π(s1) µv(π(s1))
...

...
π(sk) µv(π(sk))

(perm, π)

Figure 7.3.: A permutation operation. The general rule is on the left, an example 
from den Boers protocol [dB90] is given on the right. In the example, the helping card is 
sorted in between the two bits while at the same time inverting the order of the second 
bit, leading to a situation where the hearts are cyclically adjacent if and only if the 
input was (1, 1).

In other words, the probability for the sequence s in the new state µv′ is obtained 
by considering all sequences π−1(s) from which s may have originated through some 
π ∈ Πv+ and summing the probability of those sequences in µv, weighted with the 
probabilities that the corresponding π is chosen. An example of such a branching shuffle, 
is given in Figure 7.4. Note that as µv is assumed to be a state, also µv′ fulfills the 
definition, as (7.3) is a convex combination of several states as follows: Starting from 
µv, we look at all states µv(π−1(·)) for the different π ∈ Π and then use the coefficients 
from F to form a convex combination of these states. 

Turn action. Let µv be a state with a turn action with turn set T ⊆ {1, . . . , ℓ} that 
possibly results in the visible sequence v+, which appended to v, yields v′. The child µv′
of µv contains the sequences s whose symbol sequences coincide with a symbol sequence 
from a sequence in µv but with the cards at T having been turned via swap(·), and 
that are compatible with v+ at T , i.e., for which vis(s)[T ] = v+[T ] holds. Then, the 
probability to reach µv′ from µv is:

Pr[v′ |v] = Pr[Sv ∈ supp(µv′) |v] =
∑

s∈supp(µv′ )

Pr[Sv = s|v] =
∑

s∈supp(µv′ )

µv(s). (7.4)

Recall that the right hand side is a polynomial of the form 
∑

b∈{0,1}k abXb where Xb is 
a placeholder for the input probability Pr[vali(I) = b]. By security, input and visible 
sequence trace are independent, in particular no matter how the variables (Xb)b∈{0,1}k
are initialized, the polynomial Pr[v′ |v] evaluates to the same real number. Thus, all ab
are equal to a constant βv′ ∈ [0, 1] and using 

∑
b∈{0,1}k Xb = 1 we have:∑

s∈supp(µv′ )

µv(s) = βv′
∑

b∈{0,1}k
Xb = βv′ .
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♡♢♣♠ X1

♣♢♡♠ X0

?#?# = v0

♡♢♣♠ 1/2X1

♣♢♡♠ 1/2X0

♣♠♡♢ 1/2X1

♡♠♣♢ 1/2X0

♢♣♠♡ 1/2X1

♢♡♠♣ 1/2X0

♠♡♢♣ 1/2X1

♠♣♢♡ 1/2X0

(shuffle, ⟨(1 2 3 4)⟩)
Pr[?#?#]= 1/2 Pr[#?#?]= 1/2

Figure 7.4.: An example of a branching shuffle, due to differing backs. Here, the 
initial visible sequence v0 is displayed on top of the start state. Due to the alternating 
backs, we have partial permutation sets Π?#?# = {id, (1 2 3 4)2} and Π#?#? =
{(1 2 3 4), (1 2 3 4)3}.

s1 µ(s1)
...

...
sm µ(sm)

s1,1 1/λ1 · µ(s1,1)
...

...
s1,m1

1/λ1 · µ(s1,m1)

sn,1 1/λn · µ(sn,1)
...

...
sn,mn

1/λn · µ(sn,mn)

(turn, T )
Pr[v+1 ]=λ1 Pr[v+n ]=λn

. . .

Figure 7.5.: A turn operation. Here, v+1 , . . . , v+n , are the possible observations by 
turning the cards at positions in T . For each i ∈ {1, . . . , n} the si,1, . . . , si,mi are the 
sequences from s1, . . . , sm which are compatible with v+i . Note that in secure protocols, 
the probability of observing v+i is constant.

Moreover, for s ∈ supp(µv′) we have (using Bayes’ formula):

µv′(s) = Pr[Sv′ = s |v′] = Pr[Sv′ = s |v]
Pr[v′ |v]

=
Pr[Sv = s|v]

βv′
=
µv(s)

βv′
. (7.5)

Hence, (when reducing to symbol sequences,) µv′ is a restriction of µv to sequences 
compatible with v′, scaled by 1

βv′
. Therefore, µv′ fulfills the definition of a state. Note 

that the security of the protocol is important for this implication. For reference, see 
Figure 7.5. The randomized flip action can be defined analogously.

Capturing the observation we made for secure protocols, we define

T is turnable in µ :⇔ ∀s ∈ SeqD|T | : ∃β ∈ [0, 1] :
∑

s′ with s′[T ]=s

µ(s′) = β
∑

b∈{0,1}k
Xb. (7.6)
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Restart action. States in which a restart action happens have a single child. The 
subtree at this child is equal to the entire tree.

Result actions. Consider any leaf state µv with action (result, p1, p2, . . . , pr). The 
output O = (Sv)p1,...,pr is the projection of Sv to the components p1, . . . , pr (in this 
order). We can easily obtain from µv the probabilities Pr[O = o |v] for any card sequence 
o ∈ SeqDr . For protocols computing a function w.r.t. output encoding ⟦·⟧o we can also 
derive, for a fixed b, Pr[valo(O) = b|v]. By security as in Definition 6.2, the visible 
sequence trace v is irrelevant for the latter, which implies that we obtain the same 
polynomial Pr[valo(O) = b], regardless of which leaf state we examine. If we have full-
sequence security, the visible sequence trace v is irrelevant also for Pr[O = o |v], which 
implies that we again obtain the same polynomial Pr[O = o] for a fixed o, regardless of 
the leaf state. In case of a randomized output encoding we will derive a more formal 
rule to verify security in (7.7) of Section 7.5.

To construct a state tree via these rules, we started by formally specifying the start 
state and then, how subsequent states are derived from a given state when performing the 
prescribed action. These rules can also be seen as an inductive proof that our definition 
of a state is sound in secure protocols, as the probabilities are from R[Xb : b ∈ {0, 1}k]1
retaining the convexity conditions as claimed.

On an Interpretation of the States. If s is a sequence in µv and µv(s) the corre-
sponding polynomial, substituting 1 for the variable Xb and 0 for the other variables 
in µ(s), yields the probability that s is the current sequence, given the input b and 
any information observed so far. Accordingly, we can use our notions to analyze player 
knowledge in multiparty computations where an agent has partial information about 
the input.

Example. As an illustration of our method, let us walk through the states of the 
six-card AND protocol from above, see Figure 7.1 on page 64, as in [KWH15].

• In the start state, each input b ∈ {00, 01, 10, 11} is associated with a unique 
input sequence Γb ∈ U , which, by our encoding rule, are Γ11 = (?/♡, ?/♣, ?/♡, ?/♣), 
Γ10 = (?/♡, ?/♣, ?/♣, ?/♡), Γ01 = (?/♣, ?/♡, ?/♡, ?/♣) and Γ00 = (?/♣, ?/♡, ?/♣, ?/♡). 
The probability of Γb ‖ (?/♣, ?/♡) being the current card sequence is therefore 
exactly Xb, i.e., the probability that b is the input. The remaining 

(︁
6
3

)︁
− 4

sequences are mapped to zero and are omitted in the presentation.

• The shuffle introduces uncertainty. Consider for instance the case that the 
input was “10”. Then, before the shuffle, we must have had the sequence s =
(?/♡, ?/♣, ?/♡, ?/♣, ?/♣, ?/♡). It was either permuted by id or by π = (1 4)(2 5)(3 6), 
yielding either s itself or s′ = (?/♣, ?/♣, ?/♡, ?/♡, ?/♣, ?/♡), both with probability 1/2. 
This explains the coefficients of X10 in the polynomials for s and s′.

• The turn step can yield two possible visible sequences: ♡♣???? and ♣♡????. 
Crucially, the probability of observing ♣♡???? is the same for each possible 
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input, so no information about the actual sequence is leaked: If ♣♡???? would 
be observed slightly more frequently for, say, the input “01” than for the input 
“10”, then observing ♣♡???? would be weak evidence that the input was “01”. 
In the case at hand, however, the probability for the right branch is 1/2 for 
each input, as the sum of the polynomials of the sequences branching right is 
1/2(X11 +X10 +X01 +X11).
After the turn our knowledge has changed, for instance, if we have observed 
♡♣???? and know that the input was “11” then we know beyond doubt that the 
symbol sequence must then be ♡♣♡♣♣♡, explaining the coefficient 1 of X11.

• The output given by the result actions is correct: For all polynomials containing 
X11 with non-zero coefficient, the corresponding sequence has (?/♡, ?/♣) at the 
specified positions and for all polynomials containing one of the other variables 
with non-zero coefficient, the corresponding symbol sequence has (?/♣, ?/♡) there.

Note that “mixed” polynomials with non-zero coefficients for variables of both types 
(for output 1 and output 0) cannot occur in a final state of a protocol computing a 
deterministic function. If they occur at some other vertex µ in the tree, a restart 
would be necessary in the subtree starting from µ, as we cannot guarantee correctness 
otherwise.

For randomized functions, “mixed” polynomials may actually occur. Hence, let us 
give a definition of correctness which also includes randomized functions:

Definition 7.2 (Correctness). Let P = (D, U,H,Q,A) be a secure card-based protocol 
computing a function f : {0, 1}k → {0, 1}m w.r.t. output encoding ⟦·⟧o. As above, 
consider any leaf state µv with action (result, p1, p2, . . . , pr). The output O = (Sv)p1,...,pr
is the projection of Sv to the components p1, . . . , pr (in this order). We can then 
derive the probability of the output being x ∈ {0, 1}m given input i ∈ {0, 1}k in µv
as Fx(b) := Pr[valo(O) = x | vali(I) = i, v] by setting Xi = 1, and Xi′ = 0 for all i′ ̸= i
in the polynomial of symbolic probabilities for the output Pr[valo(O) = x |v]. If the 
protocol is correct, then this probability will equal the probability of f(i) = x in all leaf 
states.

If f is a deterministic function, this simplifies to: the card sequence at the result 
positions encodes value x ∈ {0, 1}m if for all Xi occurring in µv(s) for a sequence s it 
holds that f(i) = x.

7.2. Formally Defining State Diagrams
Having derived how states arise from other states via the available actions, we can 
now define what we mean by a state diagram of a secure card-based (Mizuki–Shizuya) 
protocol. This is captured in the following definition.

Definition 7.3. Let P = (D, U,H,Q,A) be a secure card-based protocol computing 
a function f : {0, 1}k → {0, 1}m. A state diagram of  P is a 5-tuple (G,µ0, λa, λv, λp), 
where
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• G is a connected, directed graph with vertex set V (G) and edge set E(G), where 
the vertices are annotated with states of deck D, variables from {0, 1}k and 
sequence length ℓ as defined above. (We leave this annotation map implicit and 
directly treat the states as vertices in the following.)

• µ0 ∈ V (G) is the start state of P , representing the situation at the beginning of a 
protocol run,

• λa : V (G)→ Actionℓ is a vertex labeling of G, specifying the action to be performed 
next after reaching this state (with the condition given below that the actions 
coincide with those specified by action function A of P). If t is the type of the 
assigned action, we also say that the state is a state with t(-action).

• λv : E(G)→ VisDℓ is an edge labeling of G, that annotates to each outgoing edge 
of a vertex µ a visible sequence that may result from doing λa(µ), to denote that 
if this visible sequence is observed in a protocol run, the corresponding edge has 
to be taken to reach the new state,

• λp : E(G)→ [0, 1] is an edge labeling of G, annotating to each edge the probability 
of it being taken during a protocol run. This will allow us to interpret the state 
diagram as a transition graph of a (homogeneous) Markov chain. We will give 
more details on this below.

Importantly, we require well-formedness, i.e.,

1. µ0, and states with an incoming edge from a state with restart, satisfy (7.1),

2. states with an incoming edge from a state with perm or shuffle obey (7.3),

3. states with an incoming edge from a state with turn obey the relation in (7.5),

4. all sequences of a state have the same visible sequence as the (unique) visible 
sequence assigned to all incoming edges via λv,

5. the probability assigned to each edge via λp is 1 if it is the only outgoing edge, 
and given as in (7.4), otherwise.

6. In all leaf nodes of the protocol for the positions given by the result action, we 
have correctness as given in Definition 7.2.

If the graph of a state diagram is a tree, we also call it a state tree.

As we have already seen several examples of state diagrams in the figures given above, 
we refer to Figure 7.6 (and later Figure 7.7) for an explanation how these (intuitive) 
drawings of state trees translate to our formal definition. Moreover, for conciseness, we 
may omit states and write multiple non-branching actions at a single edge. For example, 
when turning back cards revealed by a turn, nothing interesting happens, so that we 
usually turn them back again, without specifying the state again. Moreover, when all 
outgoing edges have the same probability, we may omit its specification.
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µ0 (shuffle, ⟨(1 2)(3 5)(4 6)⟩)

?????? 1

(turn, {1, 2})

♡♣????
1/2

♣♡????
1/2

(result, 3, 4) (result, 5, 6)

(shuffle, ⟨(1 2)(3 5)(4 6)⟩)

(turn, {1, 2})
Pr[♡♣????]= 1/2 Pr[♣♡????]= 1/2

(result, 3, 4)

✓

(result, 5, 6)

✓

Figure 7.6.: The state tree of the six-card AND protocol of [MS09] in two variants. 
On the left, we show the graph of the state tree with vertices depicted as small black 
squares, with action annotation λa to the right of the vertices, and visual sequences 
from λv and probabilities of taking the respective edge from λp on the left or right of 
the corresponding edges. On the right we propose a better-readable form of depicting 
the same graph by leaving out visible sequences and probabilities when they are trivial 
or 1, respectively. This leaves space to write the action annotation at the outgoing 
edge, which is more intuitive. Vertices with more than one outgoing edge are depicted 
by a short edge with the respective action, followed by a branching where edges are 
labeled with visible sequences v and their probabilities p, written in form Pr[v]=p. The 
result and restart actions are depicted by a short outgoing edge pointing to a circled 
checkmark or circular arrow, respectively. The topmost vertex is always the start state.

7.3. Identifying Recurring States

Using our construction in Section 7.1, it may well happen that one arrives at an infinite 
tree. This occurs when there is a positive probability of looping in the protocol, such as 
in Las Vegas protocols. As these occur quite often, it is useful to introduce backwards 
edges, which allows to draw all relevant protocols from the literature as a simple finite 
graph. For an example of a graph that stays infinite, we refer to Figure 7.8. (We draw 
it in a finite way by introducing a variable n that is increased by taking the backwards 
edge.)

We do this by identifying vertices of the tree at which the exact same (randomized) 
behavior is supposed to follow. For this, we first introduce a equivalence relation on 
finite visible sequence traces. Let v, ṽ be such visible sequence traces, we say that v
and ṽ are equivalent, or v ∼ ṽ, if the protocol run (prefix) with visible sequence trace v
ends in the same state from Q, as the run with ṽ, and the last visible sequence in both 
traces is the same. This will guarantee that the next action to be prescribed by the 
action function A in both situations is equal. (Note that this does not yet say anything 
about the steps afterwards, as the probabilities in the states can be different. This will 
be accounted for next.)

71



7. Diagrams for Secure Protocols

(perm, (2 3 4 5))

????? 1

(shuffle, {id, (1 4 2 5 3)})

????? 1

(turn, {1})

♡????
1/2

♣????
1/2

(restart)

????? 1

(result, 2, 3)

(perm, (2 3 4 5))

(shuffle, {id, (1 4 2 5 3)})

(turn, {1})
Pr[♡????]= 1/2 Pr[♣????]= 1/2

(restart)

⟲

(result, 2, 3)

✓

Figure 7.7.: The state tree of the five-card AND protocol of [CHL13], in two variants 
as in Figure 7.6, with the “raw” graph on the left, and the better-readable form on the 
right. This protocol uses all four types of actions and therefore serves as an extended 
example of state trees. The drawing uses the same conventions as Figure 7.6.

Now, we identify two states µv, µṽ if i) v ∼ ṽ, and ii) for all sequences s ∈ SeqDℓ it 
holds: µv(s) = µṽ(s), i.e., the state is equal (as a map)3. By abuse of notation, we will 
also write µv ∼ µṽ and say that µv is equivalent to µṽ in this case. For example, in 
Figure 7.7, we identify the state following the restart action with the start state µ0, and 
draw a corresponding backwards edge. 

When defining state diagrams in Definition 7.3, we took care to also account for 
graphs with cycles, hence one can verify that the resulting graphs by identifying states 
as described above are state diagrams again. This is because all the rules still hold 
when identifying equivalent states.

As a corollary to the preceding discussion and definitions, we summarize the content 
of the previous and this section in the following proposition:

Proposition 7.1. Every secure protocol P has a unique state diagram (with the 
equivalence relation applied) that can be obtained as described above. If the graph of the 
state diagram is finite, one can derive a description of a protocol from the diagram with 
the same computational behavior, i.e., for each input produces the same distribution of 
visible sequence traces and output sequences.

Proof. Uniqueness is immediate, as the derivation rules and the equivalence relation 
do not leave any choice. For the second statement, we want to derive a protocol 
P ′ = (D′, U ′,H ′, Q′, A′) with the same computational behavior. The deck D′, the set of 
input sequences U ′ and the helping sequences H ′ can be directly deduced from the start 
state and possibly the visible sequences at the edges of the diagram (to aid this, when 
the visible sequence uses a back alphabet with more than one element, we may write it 

3This second condition is arguably more important. It happens rarely that the states are equal as 
maps, but a different action is to be performed next. If this occurs, one could well unify these actions 
to the action that would reduce the overall expected running time of the protocol, as in randomized 
flip operations.
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♡♣♣♡♣♡ (1− 1/2n)X1

♣♡♣♡♣♡ (1− 1/2n)X0

♡♣♡♣♣♡ 1/2nX1

♣♡♡♣♣♡ 1/2nX0

n := 0

♡♣♣♡♣♡ (1− 1/2n)X1

♣♡♣♡♣♡ (1− 1/2n)X0

♡♣♡♣♣♡ 1/2nX1

♣♡♡♣♣♡ 1/2nX0

♡♣♣♡♣♡ (1− 1/2n)X1

♣♡♣♡♣♡ (1− 1/2n)X0

♡♣♡♣♣♡ 1/2nX1

♣♡♡♣♣♡ 1/2nX0

(rand, 1/2, 1/2)

0 1

(result, 1, 2)

✓

♡♣♣♡♣♡ 1/2(1− 1/2n)X1

♣♡♣♡♣♡ 1/2(1− 1/2n)X0

♡♣♡♣♣♡ 1/2n+1X1

♣♡♡♣♣♡ 1/2n+1X0

♡♣♣♡♡♣ 1/2(1− 1/2n)X1

♣♡♣♡♡♣ 1/2(1− 1/2n)X0

♡♣♡♣♡♣ 1/2n+1X1

♣♡♡♣♡♣ 1/2n+1X0

(shuffle, ⟨(5 6)⟩)

(3, 4)← AND((3, 4), (5, 6))
(destroys (5, 6), uses additional cards)
n := n+ 1

Figure 7.8.: The state diagram of a protocol computing the identity function x ↦ x in 
Las Vegas fashion. While this does not look like a particularly useful protocol, it serves 
as an example that state diagrams can be infinite. While our depiction of this diagram 
is finite, this is only because we introduced n as a variable in the state descriptions. 
As n increases during each run in this tree cycle, the states on the cycle are strictly 
distinct.

above the start state as in Figure 7.4). While there may be a choice in which cards to 
assign to the sequences in U ′ and to H ′, we assume that, starting from the right, all 
constant columns in the start state are assigned to H ′, as there might be little reason to 
use constant positions in the input encoding. The set Q′ consists of the vertices of the 
graph (after identification of equivalent states), with the inital state q′0 being µ0. The 
action function can be derived from the action labeling λa to the states in the diagram, 
and their visible sequence, and the states to which the state connected via outgoing 
edges. The q ∈ Q′ following a leaf state is set as the final state q = q′fin.

Hence, (finite) state diagrams present a useful alternative way to describe secure 
protocols, from which security and correctness can be more directly observed. Note 
that we do not claim that Q′ will equal to Q of the original protocol from which the 
state diagram was generated, as one can easily find counterexamples. For example, if Q
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♣♡(♣♡)n X0

♡♣(♣♡)n X1

♣♡(♣♡)n 1/2X0

♡♣(♡♣)n 1/2X0

♡♣(♣♡)n 1/2X1

♣♡(♡♣)n 1/2X1

(shuffle, ⟨(1 2)(3 4) · · · (2n+ 1 2n+ 2)⟩)

♡♣(♡♣)n X0

♡♣(♣♡)n X1

♣♡(♣♡)n X0

♣♡(♡♣)n X1

(turn, {1, 2})
♡♣(??)n ♣♡(??)n

(result, 4, 3, . . . , 2n+ 2, 2n+ 1)

✓

(result, 3, 4, . . . , 2n+ 2)

✓

Figure 7.9.: The state tree of the (2n+2)-card COPY protocol of [MS09]. It uses only 
a random bisection cut.

contains states that are never reached, the described process may result in smaller Q′. 
Also, as the states contain additional information of the different runs of a protocol, 
Q′ may be well larger. For this, consider the protocol that is given a long string of 
bits encoded as cards, and randomizes each of them by shuffling the two cards at the 
beginning of the sequence and then cyclically shifting by two, until it has randomized 
all bits. This may have a very concise description as a Mizuki–Shizuya protocol, but in 
each step, the state changes and hence needs to be represented by distinct q ∈ Q′ in the 
construction.

The claim that security is immediate by local checks at the branching of a turn and 
at the leaf states will be backed up more formally in the next section.

Figures 7.1, 7.9 and 7.10 depict state trees of AND and COPY protocols that are 
identified as card-minimal w.r.t. certain restrictions to running time behavior and used 
shuffles in Chapter 9.

Running Time in State Diagrams. Let us reinterpret our running time definitions of 
card-based protocols in terms of properties that one can observe when looking at the 
state diagram. We have that a protocol’s running time is finite, when its state diagram 
is a finite tree. A path in a state diagram p starts at the start state µ0 and proceeds 
along outgoing edges according to a maximal (and possibly infinite) visible sequence 
trace v. If v is finite, p ends in a leaf. The probability of p is Pr[v], which is a constant 
(independent of the distribution of inputs) by our discussion of security before. If the 
state diagram is neither finite nor acyclic, but the expected length of p is finite, we call 
the protocol Las Vegas.
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♣♡(♣♡)n−1♣ X0

♡♣(♣♡)n−1♣ X1

♣♡(♣♡)n−1♣ 1/2X0

♡♣(♡♣)n−1♣ 1/2X0

♡♣(♣♡)n−1♣ 1/2X1

♣♣(♡♣)n−1♡ 1/2X1

(shuffle, {id, (2n+ 1 . . . 1)})

♡♣(♡♣)n−1♣ X0

♡♣(♣♡)n−1♣ X1

♣(♡♣)n X0

♣(♣♡)n X1

(turn, {1})
♡(??)n ♣(??)n

(result, 2n+ 1, 2, . . . , 2n)

✓

♣♡(♣♡)1(♣♡)n−2♣ X0

♡♣(♣♡)1(♡♣)n−2♣ X1

(turn, {1})
(perm, (1 4)(2 3)(5 . . . 2n))

♣♡(♣♡)1(♣♡)n−2♣ 1/2X0

♡♣(♡♣)1(♣♡)n−2♣ 1/2X0

♡♣(♣♡)1(♡♣)n−2♣ 1/2X1

♣♣(♡♣)1(♡♣)n−2♡ 1/2X1

(shuffle, {id, (2n+ 1 4 3 2 1)})

♡♣(♡♣)1(♣♡)n−2♣ X0

♡♣(♣♡)1(♡♣)n−2♣ X1

♣(♡♣)n X0

♣(♣♡)n X1

(turn, {1})
♡(??)n ♣(??)n

(result, 2n+ 1, 2, . . . , 2n)

✓

(turn, {1})
(perm, (1 4)(2 3))

Figure 7.10.: A variant of the (2n + 1)-card COPY protocol of Nishimura et al. 
[NNH+18, Sect. 5], with less permuting from [KKW+17]. After the perm in the first 
♡-branch, the protocol resembles a 2-COPY protocol [NNH+15] on the first four and 
the last card. The parenthesis (·)1 are to emphasize this symmetry. The shuffle steps in 
this protocol are uniform, but non-closed. As they consist of the identity and exactly 
one odd-length cycle, they can be performed using an “unequal division shuffle”. A 
proposed implementation of these shuffles using sliding cover boxes or envelopes can be 
found in [NNH+18, Sect. 6].

7.4. A Locally-Verifiable Security Criterion

To check security in a state diagram, first note that shuffle actions never reveal new 
critical information: When shuffling with face-up cards, the shuffle may reveal infor-
mation about which permutation was used to shuffle, but this information is a fresh 
random variable independent of all previous information.

Considering turns or randomized flips, we already identified the condition before: 
A turn in state µv does not violate security if for each visible sequence v+ that may 
result from the turn, the probabilities of all s in µv compatible with v+ add up to a 
constant (a multiple of 

∑
b∈{0,1}k Xb), since this exactly means that the probability to 

observe a visible sequence does not depend on the inputs. As this was a precondition 
for the derivation rule of turns, being able to construct a diagram by the rules above is 
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a witness to V being independent of vali(I) in the protocol. In this sense, Figure 7.1 is 
an alternative proof for the security of the six-card AND protocol of [MS09], as AND is 
deterministic and the protocol uses deterministic input and output encodings.

In what follows, we will focus on the case of using a deterministic input encoding. 
The case of randomized input encodings will be considered in the next section. By 
checking turnability above, we already have that V is independent of (vali(I), valo(O)). 
Let us now verify that also (V,Ro) is independent of (vali(I), valo(O)). As randomness 
in the output encoding is only relevant at the end of a protocol run, we focus on the 
leaf states. We want, similarly as in turnability, that the probability of each choice of 
output randomness is constant, i.e., it does not depend on the Xb as before. We will 
make this precise.

For this purpose, let rdo be a function that maps a card sequence Γ to the set of 
choices for randomness that can bring about Γ w.r.t. (randomized) encoding ⟦·⟧o. If 
⟦·⟧o is not randomized, rdo(·) is set to ∅ for all function inputs. For a sequence not in 
the image of the encoding, the output will be an error symbol ⊥. Formally, if there 
is an b, r, such that Γ = ⟦b; r⟧o, we have r ∈ rdo(Γ). (Remember that our encoding is 
injective, so this b is unique for all such r.) Let R be a finite set containing all choices 
for randomness in ⟦·⟧o, and let

Rro := Pr[Ro = ro |v] =
∑

Γ with ro∈rdo(Γ)

Pr[Ro = ro, O = Γ |v]

be the probability that randomness ro is used for the output in leaf state µv. Then, we 
can make sense of the following definition:

T is outputable in µv :⇔ ∀ro ∈ R : ∃β ∈ [0, 1] : Rro = β
∑

b∈{0,1}k
Xb. (7.7)

Checking this in every leaf state, guarantees that the output randomness is independent 
of the inputs and outputs.

Examples. Let us reconsider the security of the five-card trick on the left of Figure 7.11. 
As their are no turns and only one leaf, it suffices to check that Ri for i ∈ Z/5Z is 
independent of the inputs. Closely observing the leaf state reveals that we even have a 
uniform distribution, as Ri = 1/5 for all i ∈ Z/5Z.

As a second example, consider the eight-card AND protocol for standard decks on the 
right of Figure 7.11. While it has a deterministic input encoding, we see from the added 
output sequences (the dashed “states” following the result action), that the output basis 
admits two choices, namely {?/5, ?/6} and {?/7, ?/8}. First note, that all turn actions are 
secure by the conditions above. Now, checking our outputability criterion, gives

R{5,6} = 1/2X0 + 1/2X1 = 1/2, and R{7,8} = 1/2X0 + 1/2X1 = 1/2,

for both leaf states, hence satisfying the criterion. In total, this shows that the protocol 
is secure.
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♡♣♡♣♣ X11

♡♣♣♡♣ X10

♣♡♡♣♣ X01

♣♡♣♡♣ X00

♡♣♣♣♡ X11

♡♣♣♡♣ X10

♣♡♣♣♡ X01

♣♡♣♡♣ X00

(perm, (3 5))

♡♡♣♣♣ 1/5X1

♣♡♡♣♣ 1/5X1

♣♣♡♡♣ 1/5X1

♣♣♣♡♡ 1/5X1

♡♣♣♣♡ 1/5X1

♡♣♡♣♣ 1/5X0

♣♡♣♡♣ 1/5X0

♣♣♡♣♡ 1/5X0

♡♣♣♡♣ 1/5X0

♣♡♣♣♡ 1/5X0

(shuffle, ⟨(1 2 3 4 5)⟩)

(result, 1, 2, 3, 4, 5)

✓

21 43 56 78 X11

21 34 56 78 X10

12 43 56 78 X01

12 34 56 78 X00

21 43 56 78 1/2X11

21 34 56 78 1/2X10

12 43 56 78 1/2X01

12 34 56 78 1/2X00

21 43 78 56 1/2X11

21 34 78 56 1/2X10

12 43 78 56 1/2X01

12 34 78 56 1/2X00

(shuffle, ⟨(5 7)(6 8)⟩)

21 43 56 78 1/4X11

21 34 56 78 1/4X10

12 43 56 78 1/4X01

12 34 56 78 1/4X00

21 43 78 56 1/4X11

21 34 78 56 1/4X10

12 43 78 56 1/4X01

12 34 78 56 1/4X00

21 34 65 78 1/4X11

21 43 65 78 1/4X10

12 34 65 78 1/4X01

12 43 65 78 1/4X00

21 34 87 56 1/4X11

21 43 87 56 1/4X10

12 34 87 56 1/4X01

12 43 87 56 1/4X00

(shuffle, ⟨(3 4)(5 6)⟩)

21 34 56 78 1/2X10

12 34 56 78 1/2X00

21 34 78 56 1/2X10

12 34 78 56 1/2X00

21 34 65 78 1/2X11

12 34 65 78 1/2X01

21 34 87 56 1/2X11

12 34 87 56 1/2X01

21 43 56 78 1/4X11

12 43 56 78 1/4X01

21 43 78 56 1/4X11

12 43 78 56 1/4X01

21 43 65 78 1/4X10

12 43 65 78 1/4X00

21 43 87 56 1/4X10

12 43 87 56 1/4X00

(turn, {3, 4})

??34???? ??43????

(perm, (3 4)(5 6))

12 34 87 56 1/4X01

21 34 87 56 1/4X11

12 34 65 78 1/4X01

21 34 65 78 1/4X11

12 34 78 56 1/4(X10 +X00)
21 34 78 56 1/4(X10 +X00)
12 34 56 78 1/4(X10 +X00)
21 34 56 78 1/4(X10 +X00)

12 34 78 65 1/4X11

21 34 78 65 1/4X01

12 34 56 87 1/4X11

21 34 56 87 1/4X01

(turn, {3, 4})
(shuffle, ⟨(1 2)(5 7)(6 8)⟩)

12 34 87 56 1/2X01

12 34 65 78 1/2X01

12 34 78 56 1/2(X10 +X00)
12 34 56 78 1/2(X10 +X00)
12 34 78 65 1/2X11

12 34 56 87 1/2X11

56 1/2X0

78 1/2X0

65 1/2X1

87 1/2X1

(result, 7, 8)

21 34 87 56 1/2X11

21 34 65 78 1/2X11

21 34 78 56 1/2(X10 +X00)
21 34 56 78 1/2(X10 +X00)
21 34 78 65 1/2X01

21 34 56 87 1/2X01

56 1/2X0

78 1/2X0

65 1/2X1

87 1/2X1

(result, 5, 6)

(turn, {1, 2})

12?????? 21??????

Figure 7.11.: On the left we give state tree of the five-card trick due to den Boer 
[dB90]. One can see that all choices for the randomness have the same probability 1/5, 
hence the security criterion for the leaf nodes is fulfilled. For conciseness, we specify 
the state information in the final state in two columns. On the right, we have the 
finite-runtime eight-card AND protocol for standard decks of Mizuki [M16b]. Note the 
randomized output encoding. For conciseness, we specify the state information in some 
states in multiple columns.
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ X00

(shuffle, ⟨(1 3)(2 4)⟩)

♡♣♡♣ 1/2X11

♡♡♣♣ 1/2X11

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X00

♣♣♡♡ 1/2X00

(shuffle, ⟨(2 3)⟩)

♡♡♣♣ X11

♣♡♡♣ X10 +X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ X10 +X01

♣♣♡♡ X00

(turn, {2})
?♡?? ?♣??

(turn, {2})
(result, 1, 2)

✓

(turn, {2})
(result, 2, 4)

✓

Figure 7.12.: The four-card AND protocol by Mizuki, Kumamoto, and Sone [MKS12] 
with non-standard (randomized) output encoding ⟦·⟧= that encodes as follows: ⟦1;♣⟧= =
(?/♣, ?/♣), ⟦1;♡⟧= = (?/♡, ?/♡), ⟦0;♣⟧= = ⟦0;♡⟧= = (?/♣, ?/♡).

7.5. The Case of Randomized Input Encodings
Recall that our definition of the start state in (7.1)

µv0(s) =
∑

b,ri with s=⟦b;ri⟧i ‖H

Pr[Ri = ri] ·Xb.

allowed for multiple sequences to be possible for one input b ∈ {0, 1}k. As for security 
we already require Ri ⊥ vali(I), i.e., Pr[Ri = ri | vali(I) = b] = Pr[Ri = ri], we do not 
introduce Ri conditioned on b. For the discussion that follows, it is useful to introduce 
the term Pr[Ri = ri] as an additional variable Rri := Pr[Ri = ri]. The security then 
should hold for any probability distribution on the input randomness, as long as it is 
independent of the inputs.

This section will give two examples of protocols with randomized input encoding and 
will shed some light on this case. Let us begin with an example that is given an input 
bit either in basis {?/♣, ?/♡} or in basis {?/♠, ?/♢} in encoding ⟦·⟧> assuming ♠ < ♢, and 
should output the same bit securely in fixed basis {?/♣, ?/♡}. It is given in Figure 7.13. 
Observe that the probabilities for the different branches in the turn action may depend 
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♣♡♣♡ R{♣,♡}X0

♡♣♣♡ R{♣,♡}X1

♠♢♣♡ R{♠,♢}X0

♢♠♣♡ R{♠,♢}X1

♣♡♣♡ 1/2R{♣,♡}X0

♡♣♣♡ 1/2R{♣,♡}X1

♠♢♣♡ 1/2R{♠,♢}X0

♢♠♣♡ 1/2R{♠,♢}X1

♡♣♡♣ 1/2R{♣,♡}X0

♣♡♡♣ 1/2R{♣,♡}X1

♢♠♡♣ 1/2R{♠,♢}X0

♠♢♡♣ 1/2R{♠,♢}X1

(shuffle, ⟨(1 2)(3 4)⟩)

♡♣♣♡ X1

♡♣♡♣ X0

♣♡♣♡ X0

♣♡♡♣ X1

♢♠♣♡ X1

♢♠♡♣ X0

♠♢♣♡ X0

♠♢♡♣ X1

(turn, {1, 2})Pr[♡♣??]= 1/2R{♣,♡}

Pr[♣♡??]= 1/2R{♣,♡} Pr[♢♠??]= 1/2R{♠,♢}

Pr[♠♢??]= 1/2R{♠,♢}

(result, 4, 3)

✓

(result, 3, 4)

✓

(result, 4, 3)

✓

(result, 3, 4)

✓

Figure 7.13.: A base convert protocol where the input bit is given either in basis 
{?/♣, ?/♡} or {?/♠, ?/♢} and converts it into a bit in fixed basis {?/♣, ?/♡}. In this process 
the input basis is leaked, as the cards are turned, which is allowed for secure protocols.

on Rri , as evidence on the used input randomness is allowed to be contained in V in 
secure protocols, that are not full-sequence secure.

As a second example, we want give an interpretation of a five-card Las Vegas AND
protocol in committed format due to Abe et al. [AHMS18], as a sequential composition 
of two protocols: First the protocol starts with the five-card trick, given on the left of 
Figure 7.11 as a state diagram. The output encoding is then ⟦·⟧♡♡ as in (6.1) and uses 
Z/5Z as randomness domain. The second part of the protocol then converts the output 
from this encoding to the standard encoding ⟦·⟧> in a Las Vegas fashion. It is given in 
Figure 7.14.

Note that this protocol suffix has additional preconditions on the distribution of Ri
(apart from it being independent of the input), in order to guarantee the security of 
the protocol. Here, R0 = R1 = R2, which holds for outputs directly coming from the 
five-card trick, as there we even have Ri = 1/5 for all i = 0, . . . , 4. If these preconditions 
were violated, there may be a way to establish them by an additional randomization. 
In our case, a random cut with permutation group Π = ⟨(1 2 3 4 5)⟩ would suffice.

On Full-Sequence Security
For full-sequence security, if the input encoding is not deterministic, we want that 
at any turn the probability of the respective visible sequences should additionally be 
independent of the Rri . If one wants to avoid handling two variables (X and R), it is 
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♡♡♣♣♣ R′X1

♣♡♡♣♣ R′X1

♣♣♡♡♣ R′X1

♣♣♣♡♡ R3X1

♡♣♣♣♡ R4X1

♡♣♡♣♣ R′X0

♣♡♣♡♣ R′X0

♣♣♡♣♡ R′X0

♡♣♣♡♣ R3X0

♣♡♣♣♡ R4X0

Require R′ := R0
!
= R1

!
= R2

♡♡♣♣♣ R′
/(R′ + R3 + R4)X1

♣♣♣♡♡ R3/(R′ + R3 + R4)X1

♡♣♣♣♡ R4/(R′ + R3 + R4)X1

♣♡♣♡♣ R′
/(R′ + R3 + R4)X0

♡♣♣♡♣ R3/(R′ + R3 + R4)X0

♣♡♣♣♡ R4/(R′ + R3 + R4)X0

(turn, {3})
(shuffle, ⟨(1 2 3 4 5)⟩)

Set R′ = R3 = R4 = 1/5

♣♡♡♣♣ 1/2X1

♣♣♡♡♣ 1/2X1

♡♣♡♣♣ 1/2X0

♣♣♡♣♡ 1/2X0

(turn, {3})
Pr[??♣??]=R′ +R3 +R4 Pr[??♡??]=2R′

♣♡♡♣♣ 1/4X1

♣♣♡♡♣ 1/2X1

♡♣♣♡♣ 1/4X1

♡♣♡♣♣ 1/4X0

♣♣♡♣♡ 1/4X0

♣♡♣♡♣ 1/4X0

♣♣♣♡♡ 1/4X0

(turn, {3})
(shuffle, ⟨(1 2)(3 4)⟩)

♣♡♡♣♣ X1

♣♡♣♡♣ X0

♡♣♣♡♣ X1

♡♣♡♣♣ X0

♣♣♡♡♣ X1

♣♣♡♣♡ 1/2X0

♣♣♣♡♡ 1/2X0

(turn, {1, 2})
Pr[♣♡???]= 1/4

Pr[♡♣???]= 1/4 Pr[♣♣???]= 1/2

(result, 3, 4)

✓

(result, 4, 3)

✓

(turn, {1, 2})
(perm, (2 4))
(shuffle, ⟨(1 2 3 4 5)⟩)
Set R′ = R3 = R4 = 1/5

Figure 7.14.: Protocol to convert the output encoding ⟦·⟧♡♡ of den Boer’s protocol 
(cf. Figure 7.11, left) to the standard encoding ⟦·⟧>. For security of the protocol, we 
require R0 = R1 = R2, which is the case if comes directly out of the five-card trick 
protocol. If one appends this protocol directly to den Boer, the total protocol is a 
slightly modified variant of the protocol by [AHMS18]. Note that the total protocol only 
uses random cuts and random bisection cuts.

better to use variables XΓ for Γ ∈ U instead of Xb and then ensure the above security 
conditions for states with with variables in this set. This will completely protect the 
input sequence from leaking information in the visible sequence trace. For the outputs, 
we refer to the discussion of result actions on page 68.

7.6. On the Choice of Cards for Input and Output

This section is mainly taken from [KSK19]. We essentially show that the choice of 
(deterministic) input bases (or output basis, but not necessarily both) is irrelevant for 
the functioning of the protocol. In rare cases, one has to append two operations to 
existing protocols to make them fully basis flexible. Throughout this section we use the 
standard encoding ⟦·⟧>.
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...

1324 1/2X0

2134 1/2X0

1342 1/2X1

2143 1/2X1

3123 1/2X0

4312 1/2X0

3124 1/2X1

4321 1/2X1

relabel : (1 3)(2 4)

3142 X0

3124 X1

4312 X0

4321 X1

(turn, {1, 2})
31?? 43??

(result, 4, 3)

✓

(result, 3, 4)

✓

...

1324 1/2X0

2134 1/2X0

1342 1/2X1

2143 1/2X1

1324 X0

1342 X1

2134 X0

2143 X1

(turn, {1, 2})

13?? 21??

(result, 3, 4)

✓

(result, 3, 4)

✓

s1 µ(s1)
...

...
sm µ(sm)

λ(s1) µ(s1)
...

...
λ(sm) µ(sm)

relabel : λ : Σ → Σ′

(result, τ(i), τ(j)),
with τ ∈ {id, (i j)}

✓

s1 µ(s1)
...

...
sm µ(sm)

(result, i, j)

✓

Figure 7.15.: The left side shows an example of the relabel action, swapping the card 
symbols of 1 and 3, and of 2 and 4, respectively. This action is for abbreviated writing 
only, it does not actually relabel the physical cards, which seems impossible without 
learning their symbols. Hence, the tree on the very left is virtually translated to one on 
its right. Note that the relabeling only affects the sequences, the observations at edges 
belonging to turn actions and may swap the order of the indices in result operations. On 
the right we have the formal rule for relabeling leaf nodes of one-bit output protocols. 
Let r1 = sk[i], r2 = sk[j] ∈ D be the output symbols (before relabeling) of some arbitrary 
sequence sk of µ. Then, τ = id, if r1 < r2 implies λ(r1) < λ(r2) (λ is monotone on r1, 
r2) and τ = (i j) otherwise.

In standard deck protocols, the protocol description usually specifies Alice’s cards 
to be of symbols 1, 2, and Bob’s to be of symbols 3, 4. To simplify later proofs and to 
demonstrate an interesting symmetry in card-based protocols, we show that this choice 
is irrelevant for the functioning of the protocol.

For this, we define a relabeling from deck alphabet Σ to a deck alphabet Σ′, i.e., a 
bijective function λ : Σ → Σ′. (In case of the decks being a subset of N, we may use 
usual permutation notation.) A relabeling of a sequence s = (s1, . . . , sn) is a relabeling 
of each of its symbols, i.e., λ(s) := (λ(s1), . . . , λ(sn)). A relabeling of a state is given 
by the relabeling of all its sequences, and a relabeling of a protocol/state (sub)tree is 
the relabeling of all its states as described by Figure 7.15.

We say that a leaf state µv has deterministic output basis {c1, c2}, if R{c1,c2} = 1
and Rx = 0 for all x ̸= {c1, c2}. Similarly, a protocol P has deterministic output bases
if all its leaf states have a deterministic output basis. (In secure protocols without 
full-sequence security these may differ.)

Lemma 7.1. If  P is a committed format protocol with deterministic output bases, one 
can relabel the cards without affecting the functioning.
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...

43 21 1/2X1

21 34 1/2X1

34 12 1/2X0

12 34 1/2X0

(result, 1, 2)

✓

...

43 21 1/2X1

21 34 1/2X1

34 12 1/2X0

12 34 1/2X0

43 12 1/4X1

43 21 1/4X1

21 34 1/4X1

21 43 1/4X1

34 12 1/4X0

34 21 1/4X0

12 34 1/4X0

12 43 1/4X0

(shuffle, ⟨(3 4)⟩), i.e. shuffle
arbitrary on remaining cards

43 12 X1

34 12 X0

43 21 X1

34 21 X0

21 34 X1

12 34 X0

21 43 X1

12 43 X0

(turn, {3, 4})

??12
??21 ??34

??43

(result, 1, 2)

✓

(result, 1, 2)

✓

(result, 1, 2)

✓

(result, 1, 2)

✓

Figure 7.16.: Example of making the basis deterministic, cf. Lemma 7.2. On the left 
you see a tree part with one-bit output and randomized basis, i.e., the output basis may 
be {?/1, ?/2} or {?/3, ?/4}, each with a probability of 1/2. The situation is similar as in 
Figure 7.11 on the right. We can make the output basis known by splitting up the state 
via an Sk-shuffle (here: k = 2) on the remaining cards (erasing their order), turning 
them and then doing result. By what is visible in the turn, one can derive the output 
basis.

Note that the deterministic output basis restriction is important, because if we have a 
randomized output encoding such as in Figure 7.16 on the left, a relabeling might affect 
the monotonicity of the encoding of only some of the possible output bases. In this case, 
we make use of the following lemma, which is illustrated by the mapping of Figure 7.16.

Lemma 7.2. Every secure protocol with one-bit output can be transformed into a 
protocol with deterministic output bases, by inserting one (Sk-)shuffle and one turn 
action before any result operation at a leaf state that does not have a deterministic 
output basis.

7.7. Conclusion

Apart from the impossibility for perfect copy of a single card in [MS14a], we are the first 
to give impossibility results for (committed-format) AND and COPY protocols in this 
thesis. This may be because of the sparsity of good ways to speak about card-based 
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protocols. We believe to have overcome this problem by introducing the state diagram 
formalism in this chapter.

The utility of the state diagram formalism is evident not only by its compact way of 
representing protocols, but most importantly by the fact that one can read it as a security 
and correctness proof for the represented protocol. In this thesis, we extended the 
version as published in [KWH15; KKW+17] to randomized input and output encodings 
and discussed security in the context of our strengthened formulation of the previous 
chapter.

Let us point out that state diagrams can also be interpreted as a transition graph 
of a homogeneous Markov chain, with the probabilities of the edges constituting the 
probability to switch to this state in the next step of the corresponding stochastic 
process. For this, we want the initial distribution to be concentrated on the start state 
and we can view the leaf states as absorbing states, i.e., as states that cannot be left 
again. Then, the expected running time of a protocol can also be seen as the stopping 
time of reaching an absorbing state. (States from which one cannot reach an absorbing 
state anymore will clearly lead to non-termination. If the protocol has at least one 
absorbing state which is reachable from the start state, we can repair the corresponding 
protocol by replacing the prescribed action at the state in question by a restart.)

Hence, we only recommend against using state diagrams in cases where one uses 
a lot of cards or have relatively long protocols which have a short natural-language 
description. (In these cases, drawing the diagram can be quite cumbersome.) Given, 
that state diagrams have found quite some adoption in the literature, and their good 
qualities, we will give (almost) all card-based protocols of the next chapter as a state 
diagram. We hope these will aid to understand “what is going on” during a protocol 
run.
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8. New Card-based Protocols
In this chapter, we present several new card-based protocols in committed format, which 
need less cards than the protocols known before, and which are card-minimal w.r.t. 
certain requirements to the running time behavior and shuffle restrictions, as will be 
shown in Chapter 9.

In Section 8.1, we present two protocols for AND using only four cards in the two-color 
deck setting. These are restart-free Las Vegas and include shuffles that are only uniform 
or only closed, but not uniform closed. Section 8.2 contains two AND protocols, similar 
to the previous protocols, but which use one additional card to achieve a finite running 
time behavior. We present a two-color deck protocol for any k-ary Boolean function 
using only 2k cards in Section 8.3, but which exhibits a large restarting probability 
and makes use of non-closed shuffles, hence it is a merely theoretical result. Section 8.4
covers the case of a standard deck, where we present a new four-card AND protocol 
which is restart-free Las Vegas and uses only random cuts (which are uniform closed). 
Protocols for exchanging the basis of an encoding are given in Section 8.5. Finally, 
Section 8.6 describes a sub-protocol which allows to formulate many protocols from 
the literature as one or very few invocations of this protocol. It generalizes an idea by 
[HSN+17] and allows to apply a permutation “stored” in a card sequence, to a set of 
cards, by a “coupled sorting” mechanism.

8.1. Two-Color Four-Card AND Protocols
This section is based on [KWH15; K18]. We present two secure protocols to compute 
AND on two bits in committed format and without restarts. An algorithmic description 
is given in Protocol 8.1 and a representation as a state diagram (cf. Chapter 7), from 
which correctness and privacy can be deduced, is given in Figure 8.1. Note that we use 
a “placeholder” for two shuffle steps, with parameters Π1,F1 and Π2,F2, respectively, 
which are later instantiated in (8.1) and (8.2). This is because both protocols have 
the same formal states in their state diagram, but differ only in the prescribed shuffles, 
which hence have the same effect on the state they are applied, but the first version is 
closed (but not uniform) and the second version is uniform (but not closed).

Note that the first (closed-shuffle) variant was constructed in [KWH15], and the 
second (uniform-shuffle) variant as a variation of the first was constructed later in [K18]. 
This second variant was concurrently and independently discovered in [RI19].

Observe that the state diagram contains a cycle, i.e., it is possible to return to a state 
that was encountered before. This implies that the protocol is only Las Vegas. However, 
on the cycle there are two turn operations each of which have a chance of 1/3 to yield a 
final state and therefore leave the cycle. The probability to return to a state on the 
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♣♡♡♣ 1/2X10 + 1/2X01

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♣♡ X00

(shuffle, ⟨(1 3)(2 4)⟩)

♡♡♣♣ 1/2X11

♡♣♡♣ 1/2X11

♣♡♡♣ 1/2X10 + 1/2X01

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X00

♣♣♡♡ 1/2X00

(shuffle, ⟨(2 3)⟩)

♡♡♣♣ X11

♣♡♡♣ X10 +X01

♣♡♣♡ X00

♡♡♣♣ X1

♣♡♡♣ 1/2X0

♣♡♣♡ 1/2X0

(turn, {2})
(shuffle, ⟨(3 4)⟩)

♡♡♣♣ 1/3X1

♣♣♡♡ 2/3X1

♣♡♡♣ 1/6X0

♡♣♣♡ 1/3X0

♣♡♣♡ 1/2X0

(shuffle,Π2,F2)

♡♡♣♣ X1

♡♣♣♡ X0

(result, 2, 4)

✓

♣♣♡♡ X1

♣♡♡♣ 1/4X0

♣♡♣♡ 3/4X0

(turn, {1})
Pr[♣???]= 2/3 Pr[♡???]= 1/3

♣♣♡♡ X1

♣♡♡♣ 1/2X0

♣♡♣♡ 1/2X0

(turn, {1})
(shuffle, ⟨(3 4)⟩)

♡♣♡♣ X11

♡♣♣♡ X10 +X01

♣♣♡♡ X00

♡♣♡♣ X1

♡♣♣♡ 1/2X0

♣♣♡♡ 1/2X0

(turn, {2})
(shuffle, ⟨(1 3)⟩)

♡♣♡♣ 1/3X1

♣♡♣♡ 2/3X1

♡♣♣♡ 1/6X0

♣♡♡♣ 1/3X0

♣♣♡♡ 1/2X0

(shuffle,Π1,F1)

♡♣♡♣ X1

♣♡♡♣ X0

(result, 1, 2)

✓

♣♡♣♡ X1

♡♣♣♡ 1/4X0

♣♣♡♡ 3/4X0

(turn, {4})
Pr[???♣]= 1/3 Pr[???♡]= 2/3

♣♡♣♡ X1

♡♣♣♡ 1/2X0

♣♣♡♡ 1/2X0

(turn, {4})
(shuffle, ⟨(1 3)⟩)

(turn, {2})

?♣?? ?♡??

(perm, (1 3 4 2))(perm, (1 2 4 3))

Figure 8.1.: The four-card Las Vegas AND protocol without restart operations from 
Protocol 8.1. The placeholders Πi, Fi are given in (8.1) and (8.2). We use X1 := X11

and X0 := X00 +X10 +X01.
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8.1. Two-Color Four-Card AND Protocols

(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if v = (?,♣, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (1 3)})

1 (shuffle,Π1,F1)
(turn, {4})
if v = (?, ?, ?,♣) then

(result, 1, 2)
else if v = (?, ?, ?,♡) then

(turn, {4}) // turn back
(shuffle, {id, (1 3)})
(perm, (1 3 4 2))
goto 2

else if v = (?,♡, ?, ?) then
(turn, {2}) // turn back
(shuffle, {id, (3 4)})

2 (shuffle,Π2,F2)
(turn, {1})
if v = (♡, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto 1

Protocol 8.1. Protocol to compute AND using four cards. Note that, because 
of the goto operations, no bound on the number of steps can be given. The 
placeholders Πi, Fi are given in (8.1) and (8.2).

cycle is therefore (2/3)2 = 4/9 and the probability to take the cycle k times is (4/9)k. The 
expected number of times the cycle is taken is therefore 

∑
k≥0(

4/9)k = (1− 4/9)−1 = 9/5. 
In particular, the expected running time of the protocol is bounded. We summarize our 
result in the following theorem.

Theorem 8.1. There is a secure restart-free Las Vegas protocol to compute AND on 
two bits in committed format using four cards in the two-color deck setting and using 
only closed shuffles.

Proof. Figure 8.1, is a correct and secure protocol for

Π1 := ⟨(1 2)(3 4)⟩, F1 : id ↦ 1/3, (1 2)(3 4) ↦ 2/3, (8.1)
Π2 := ⟨(1 3)(2 4)⟩, F2 : id ↦ 1/3, (1 3)(2 4) ↦ 2/3.

While these shuffles are only closed, all other shuffles are uniform closed.
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The complex shuffles used here, have been implemented with sliding cover boxes by 
Nishimura et al. [NHMS16]. As discussed, we also have a uniform-shuffle variant:

Theorem 8.2. There is a secure restart-free Las Vegas protocol for AND using four 
cards in the two-color deck setting and using only uniform shuffles.

Proof. Figure 8.1, is a correct and secure protocol for

Π1 := {id, (1 2)(3 4), (4 3 2 1)}, Π2 := {id, (1 3)(2 4), (1 3 2 4)}, (8.2)

and F1 and F2 being the uniform distributions on Π1, Π2, respectively. While these 
shuffles are only uniform, all other shuffles used in the protocol are uniform closed.

8.2. Finite-Runtime Two-Color Five-Card AND Protocols
This section is based on [KWH15; K18]. The two protocols presented here are very 
similar to the protocols of the previous section. Upon close observation of Figure 8.2, 
one discovers that for the most part – namely, for all steps except starting from the 
third state in the left (♣-)branch of the protocol – the only difference to the previous 
protocols is that the fifth card, with loss of generality a ♡, is put next to the cards as a 
helping card.

We make use of the fifth card just then to “break out” of the cycle of the four card 
protocols. This yields a protocol with finite running time and at most 13 steps in every 
execution. An algorithmic description is given in Protocol 8.2 and a representation as a 
state diagram is given in Figure 8.2. We summarize our result in the following theorem.

Theorem 8.3. There is a secure finite-runtime protocol to compute AND on two bits 
in committed format using five cards in the two-color deck setting.

Proof. Figure 8.2, is a correct and secure protocol for

Π1 := {id, (5 4 3 2 1)}, F1 : id ↦ 2/3, (5 4 3 2 1) ↦ 1/3 (8.3)
Π2 := ⟨(1 3)(2 4)⟩, F2 : id ↦ 1/3, (1 3)(2 4) ↦ 2/3.

While Π1 is neither closed nor uniform, Π2 is closed but non-uniform and all other 
shuffles used in the protocol are uniform closed.

The complex shuffles used here have been implemented with sliding cover boxes by 
Nishimura et al. [NHMS16].

As discussed before, a large part of the protocol is as in the four-card protocol, hence 
we can apply the same replacement of the shuffle to obtain a uniform shuffle in the 
right (♡-)branch of the protocol. What is more, we also propose a modification of 
the non-closed non-uniform shuffle in the left branch, to achieve a uniform probability 
distribution for the permutations in the shuffle. This is given in the following:

Theorem 8.4. There is a secure five-card finite-runtime protocol for AND using only 
uniform shuffles.
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♡♣♡♣♡ X11

♡♣♣♡♡ X10

♣♡♡♣♡ X01

♣♡♣♡♡ X00

♡♣♡♣♡ X11

♣♡♡♣♡ 1/2X10 + 1/2X01

♡♣♣♡♡ 1/2X10 + 1/2X01

♣♡♣♡♡ X00

(shuffle, ⟨(1 3)(2 4)⟩)

♡♡♣♣♡ 1/2X11

♡♣♡♣♡ 1/2X11

♣♡♡♣♡ 1/2X10 + 1/2X01

♡♣♣♡♡ 1/2X10 + 1/2X01

♣♡♣♡♡ 1/2X00

♣♣♡♡♡ 1/2X00

(shuffle, ⟨(2 3)⟩)

♡♡♣♣♡ X11

♣♡♡♣♡ X10 +X01

♣♡♣♡♡ X00

♡♡♣♣♡ X1

♣♡♡♣♡ 1/2X0

♣♡♣♡♡ 1/2X0

(turn, {2})
(shuffle, ⟨(3 4)⟩)

♡♡♣♣♡ 1/3X1

♣♣♡♡♡ 2/3X1

♣♡♡♣♡ 1/6X0

♡♣♣♡♡ 1/3X0

♣♡♣♡♡ 1/2X0

(shuffle,Π2,F2)

♡♡♣♣♡ X1

♡♣♣♡♡ X0

(result, 2, 4)

✓

♣♣♡♡♡ X1

♣♡♡♣♡ 1/4X0

♣♡♣♡♡ 3/4X0

(turn, {1})

Pr[♣????]= 2/3 Pr[♡????]= 1/3

♣♣♡♡♡ X1

♣♡♡♣♡ 1/2X0

♣♡♣♡♡ 1/2X0

(turn, {1})
(shuffle, ⟨(3 4)⟩)

♡♣♡♣♡ X11

♡♣♣♡♡ X10 +X01

♣♣♡♡♡ X00

♡♣♡♣♡ X1

♡♣♣♡♡ 1/2X0

♣♣♡♡♡ 1/2X0

(turn, {2})
(shuffle, ⟨(1 3)⟩)

♣♡♡♣♡ X1

♡♡♣♣♡ 1/2X0

♡♡♡♣♣ 1/2X0

(perm, (1 5 2 4))

♣♡♡♣♡ 2/3X1

♡♡♣♡♣ 1/3X1

♡♡♣♣♡ 1/2X0

♡♣♣♡♡ 1/6X0

♡♡♡♣♣ 1/3X0

(shuffle,Π1,F1)

♡♡♣♡♣ X1

♡♡♡♣♣ X0

(result, 4, 3)

✓

♣♡♡♣♡ X1

♡♡♣♣♡ 3/4X0

♡♣♣♡♡ 1/4X0

(result, 3, 1)

✓

(turn, {5})

Pr[????♣]= 1/3 Pr[????♡]= 2/3

(turn, {2})

?♣??? ?♡???

(perm, (1 2 4 3))

Figure 8.2.: The five-card finite-runtime AND protocol. Note that that fifth card 
allows to “break out” of the cycle of the previously seen four-card Las Vegas AND
protocol. The placeholders Πi, Fi are given in (8.3) and (8.4).
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(shuffle, {id, (1 3)(2 4)})
(shuffle, {id, (2 3)})
(turn, {2})
if v = (?,♣, ?, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (1 3)})

★ (perm, (1 5 2 4)) // sort in the fifth card
(shuffle,Π1,F1)
(turn, {5})
if v = (?, ?, ?, ?,♣) then

(result, 4, 3)
else if v = (?, ?, ?, ?,♡) then

(result, 3, 1)
else if v = (?,♡, ?, ?, ?) then

(turn, {2}) // turn back
(shuffle, {id, (3 4)})
(shuffle,Π2,F2)
(turn, {1})
if v = (♡, ?, ?, ?, ?) then

(result, 2, 4)
else if v = (♣, ?, ?, ?, ?) then

(turn, {1}) // turn back
(shuffle, {id, (3 4)})
(perm, (1 2 4 3))
goto ★

Protocol 8.2. A five-card finite-runtime AND protocol. It proceeds as in Pro-
tocol 8.1 (ignoring card 5) until reaching the line marked as 1, when instead of 
executing the line, an alternative path is taken using the fifth card. The placeholders 
Πi, Fi are given in (8.3) and (8.4).

Proof. Figure 8.2, is a correct and secure protocol for

Π1 := {id, (3 5), (5 4 3 2 1)}, Π2 := {id, (1 3)(2 4), (1 3 2 4)}, (8.4)

Π2 being the same as in (8.2), and F1 and F2 being the uniform distributions on Π1, 
Π2, respectively. While these shuffles are only uniform, all other shuffles used in the 
protocol are uniform closed.

For an interpretation note that added (3 5) in the shuffle takes 1/3 of the probability 
that has previously been assigned to id, but has the same effect as the latter, due to the 
structure of the state on which the shuffle is applied.

As in the previous section note that the first variant was constructed in [KWH15], 
and the second (uniform-shuffle) variant as a variation of the first was constructed later 
in [K18]. This second variant was concurrently and independently discovered in [RI19].
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8.3. A 2k-Card Protocol for any k-ary Boolean Function

This section is taken from [KWH15]. We present a protocol to compute a k-ary Boolean 
function with 2k cards and success probability 2−k in three steps: One shuffle, one turn 
and one result or restart action. The “hard work” is done in an “irregularly complex” 
shuffle operation, posing practical problems as discussed in Section 6.7.

Theorem 8.5. For any Boolean function f : {0, 1}k → {0, 1} there is a secure Las 
Vegas protocol in committed format using 2k cards. The expected number of  restart
actions in a run is 2k − 1.

Proof. Note first that all unary Boolean functions can easily be implemented: The 
identity and not-function is simple (just output the input or the inversed input) and for 
the constant functions we may shuffle the two cards (to obscure the input), then turn 
the cards over, arrange them to represent the constant and then return the positions of 
the corresponding cards, via result.

We now assume k ≥ 2. For each input b = (b1, b2, . . . , bk) ∈ {0, 1}k we define the 
permutation:

πb := (2 3)1−f(b) ∘ (1 2)b1(3 4)b2 · · · (2k − 1 2k)bk .

In other words, when applied to an input sequence, πb first swaps the i-th input bit for 
each i such that bi = 1. Afterwards, it swaps the second and third card if f(b) = 0.

We can now describe the steps of our protocol:

1. (shuffle, {πb : b ∈ {0, 1}k}), i.e., pick b ∈ {0, 1}k uniformly at random and permute 
the cards with πb.

2. (turn, {1, 4, 6, 8, . . . , 2k}), i.e., turn over the first card and all cards with even 
indices except 2.

3. If the turn revealed ♣ in position 1 and ♡ everywhere else, i.e., the visible sequence 
is (♣, ?, ?,♡, ?,♡, . . . , ?,♡), then perform (result, 2, 3). Otherwise, (restart).

For a deeper understanding of what is actually going on, we suggest contemplating on 
Figure 8.3 (which is, admittedly, somewhat intimidating), but correctness and security 
are surprisingly easy to show directly:

Correctness. Assume the input is b ∈ {0, 1}k and a result action is performed. Then, 
the visible sequence after the turn was (♣, ?, ?,♡, ?,♡, . . . , ?,♡). This means the 
permutation π done by the shuffle must have first transformed the input sequence to 
(♣,♡,♣,♡,♣,♡, . . . ,♣,♡) (before potentially flipping the cards in position 2 and 3). 
This can be interpreted as the sequence encoding only 0s, therefore π has flipped exactly 
the card pairs, where the input sequence had (♡,♣) encoding 1. This implies π = πb. 
From the definition of πb it is now clear that the output is (♡,♣) if f(b) = 1 and (♣,♡)
if f(b) = 0.
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♣♡ ♣♡ ♣♡ . . .♣♡ ♣♡ X00...00

♣♡ ♣♡ ♣♡ . . .♣♡ ♡♣ X00...01

♣♡ ♣♡ ♣♡ . . .♡♣ ♣♡ X00...10

...
...

♡♣ ♡♣ ♡♣ . . .♡♣ ♣♡ X11...10

♡♣ ♡♣ ♡♣ . . .♡♣ ♡♣ X11...11

♣♡ ♣♡ ♣♡ . . . ♣♡ ♣♡ 2−k
∑

f(b)=1 Xb

♣♣ ♡♡ ♣♡ . . . ♣♡ ♣♡ 2−k
∑

f(b)=0 Xb

♣♡ ♣♡ ♣♡ . . . ♣♡ ♡♣ 2−k
∑

f(b)=1 Xb⊕00...01

♣♣ ♡♡ ♣♡ . . . ♣♡ ♡♣ 2−k
∑

f(b)=0 Xb⊕00...01

...
...

♡♣ ♡♣ ♡♣ . . . ♡♣ ♣♡ 2−k
∑

f(b)=1 Xb⊕11...10

♡♡ ♣♣ ♡♣ . . . ♡♣ ♣♡ 2−k
∑

f(b)=0 Xb⊕11...10

♡♣ ♡♣ ♡♣ . . . ♡♣ ♡♣ 2−k
∑

f(b)=1 Xb⊕11...11

♡♡ ♣♣ ♡♣ . . . ♡♣ ♡♣ 2−k
∑

f(b)=0 Xb⊕11...11

(shuffle, {πb : b ∈ {0, 1}k})

♣♡ ♣♡ ♣♡ . . . ♣♡ ♣♡
∑

f(b)=1 Xb

♣♣ ♡♡ ♣♡ . . . ♣♡ ♣♡
∑

f(b)=0 Xb

♣♡ ♣♡ ♣♡ . . . ♣♡ ♡♣
∑

f(b)=1 Xb⊕00...01

♣♣ ♡♡ ♣♡ . . . ♣♡ ♡♣
∑

f(b)=0 Xb⊕00...01

. . .

♡♣ ♡♣ ♡♣ . . . ♡♣ ♣♡
∑

f(b)=1 Xb⊕11...10

♡♡ ♣♣ ♡♣ . . . ♡♣ ♣♡
∑

f(b)=0 Xb⊕11...10

♡♣ ♡♣ ♡♣ . . . ♡♣ ♡♣
∑

f(b)=1 Xb⊕11...11

♡♡ ♣♣ ♡♣ . . . ♡♣ ♡♣
∑

f(b)=0 Xb⊕11...11

(turn, {1, 4, 6, 8, . . . , 2k})

♣??♡?♡ . . . ?♡?♡

♣??♡?♡ . . . ?♡?♣ ♡??♣?♣ . . . ?♣?♡

♡??♣?♣ . . . ?♣?♣

(result, 2, 3)
✓

(restart)
⟲

(restart)
⟲

(restart)
⟲

Figure 8.3.: The 2k-card protocol for an arbitrary Boolean function f of Theorem 8.5. 
We use the notation b1 ⊕ b2 to denote the bitwise exclusive-or operation.

Security. Let v be a visible sequence after the turn step. Consider an input sequence 
Γb belonging to the input b ∈ {0, 1}k. The probability that Γb yields the visible sequence 
v in the turn is exactly 2−k since exactly one of the 2k permutations in the shuffle action 
swaps the appropriate set of pairs of positions. This means the probability to observe v
is 2−k – and thus independent of the input sequence.

Running Time. The probability to observe (♣, ?, ?,♡, . . . , ?,♡) in the turn step is 2−k, 
the probability to restart is therefore 1− 2−k. This yields a running time that is finite 
in expectation – of order O(2k).
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8.4. AND Protocols with a Standard Deck
This section is directly taken from [KSK19] with slight modifications, and contains a 
new AND protocol in the standard deck setting using only four cards. As it is similar 
in spirit to the five-card protocol by Niemi and Renvall [NR99], we want to start with 
a description of their protocol, to be later able to discuss the differences. We follow 
the interpretation of Niemi and Renvall’s protocol from [M16b]. The protocol uses five 
cards with distinguishable symbols, which we denote as 1 2 3 4 and 5 for simplicity. 
Let us quickly recall the standard encoding in this standard deck setting, cf. Section 6.4: 
⟦·⟧> encode by the order of two cards i j , i, j ∈ {1, . . . , 5}, via

i j =̂

{︄
1, if i > j,

0, otherwise.

Alice inputs her bit by putting the cards 1 2 face-down and in the respective order on 
the table (she puts 1 2 for input 0, and 2 1 for input 1), while Bob does the same 
but with the cards 3 4 . The protocol needs an additional helping card, 5 , which is 
put to the right of the players’ cards.

We start by swapping Alice’s second card with Bob’s first card in the card sequence 
(pile) on the table. This resulting card configuration has an interesting property, namely 
that the order of the cards 1 and 4 in this sequence already encodes the output of the 
protocol, i.e., it reads 4 1 if the output is 1, and 1 4 otherwise. Hence, by securely 
removing the cards 2 and 3 (to be explained below), one directly obtains the output. 
To see this, let us look at the different cases: 

Bits Input sequence After swap Removing 2 + 3
(0, 0) 5 1 2 3 4 5 1 3 2 4 5 1 x x 4

(0, 1) 5 1 2 4 3 5 1 4 2 3 5 1 4 x x

(1, 0) 5 2 1 3 4 5 2 3 1 4 5 x x 1 4

(1, 1) 5 2 1 4 3 5 2 4 1 3 5 x 4 1 x

We can remove the cards 2 and 3 while keeping the relative order of all cards in the 
sequence intact, by cutting the cards, i.e., rotating the sequence by a random offset, 
unknown to the players. We can then securely turn the first card and if it is 2 or 3 , 
remove it. Because of the cut, it is random which card is turned and, hence, it does not 
give anything away about the inputs. When both are removed, we get to a configuration 
where 5 is the first card by the same process with the two remaining cards encoding the 
AND result. A formal version of this protocol is described in Protocol 8.3 and Figure 8.4.

In this section, we show that one can do away with the helping card 5 , by presenting 
a protocol using only four cards.

Theorem 8.6. There is a four-card Las Vegas AND protocol with deck D = [1, 2, 3, 4]
using only random cuts.
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12 34 5 X00

12 43 5 X01

21 34 5 X10

21 43 5 X11

51324 1/5X00

51423 1/5X01

52314 1/5X10

52413 1/5X11

13245 1/5X00

14235 1/5X01

23145 1/5X10

24135 1/5X11

32451 1/5X00

42351 1/5X01

31452 1/5X10

41352 1/5X11

24513 1/5X00

23514 1/5X01

14523 1/5X10

13524 1/5X11

45132 1/5X00

35142 1/5X01

45231 1/5X10

35241 1/5X11

(perm, (1 2 4 5))
(shuffle, ⟨(1 2 3 4 5)⟩)

1 3245 X00

1 4235 X01

1 4523 X10

1 3524 X11

2 4513 X00

2 3514 X01

2 3145 X10

2 4135 X11

3 2451 X00

3 5142 X01

3 1452 X10

3 5241 X11

4 5132 X00

4 2351 X01

4 5231 X10

4 1352 X11

5 1324 X00

5 1423 X01

5 2314 X10

5 2413 X11

(turn, {1})

1????
2???? 3????

4????5????

(turn, {1})
(shuffle, ⟨(1 2 3 4 5)⟩)

(turn, {1})
(shuffle, ⟨(1 2 3 4 5)⟩)

2 4513 1/4X00

2 3514 1/4X01

2 3145 1/4X10

2 4135 1/4X11

2 3451 1/4X00

2 4351 1/4X01

2 5314 1/4X10

2 5413 1/4X11

2 1345 1/4X00

2 1435 1/4X01

2 4531 1/4X10

2 3541 1/4X11

2 5134 1/4X00

2 5143 1/4X01

2 1453 1/4X10

2 1354 1/4X11

(shuffle, ⟨(2 3 4 5)⟩)

21 345 X00

21 435 X01

21 453 X10

21 354 X11

23 451 X00

23 514 X01

23 145 X10

23 541 X11

24 513 X00

24 351 X01

24 531 X10

24 135 X11

25 134 X00

25 143 X01

25 314 X10

25 413 X11

(turn, {2})
?1???

?3??? ?4???
?5???

(turn, {2})
(shuffle, ⟨(2 3 4 5)⟩)

(turn, {2})
(shuffle, ⟨(2 3 4 5)⟩)

23 451 1/3X0

23 514 1/3X0

23 145 1/3X0

23 541 1/3X1

23 154 1/3X1

23 415 1/3X1

(shuffle, ⟨(3 4 5)⟩)

231 45 X0

231 54 X1

234 51 X0

234 15 X1

235 14 X0

235 41 X1

(turn, {3})

??1?? ??4?? ??5??

(turn, {3})
(shuffle, ⟨(3 4 5)⟩)

(result, 4, 5)

✓

3 2451 X00

3 5142 X01

3 1452 X10

3 5241 X11

3 1245 X00

3 2514 X01

3 2145 X10

3 1524 X11

3 4512 X00

3 1425 X01

3 4521 X10

3 2415 X11

3 5124 X00

3 4215 X01

3 5214 X10

3 4152 X11

(shuffle, ⟨(2 3 4 5)⟩)

31 245 X00

31 425 X01

31 452 X10

31 524 X11

32 451 X00

32 514 X01

32 145 X10

32 415 X11

34 512 X00

34 215 X01

34 521 X10

34 152 X11

35 124 X00

35 142 X01

35 214 X10

35 241 X11

(turn, {2})
?1???

?2??? ?4???
?5???

(turn, {2})
(shuffle, ⟨(2 3 4 5)⟩)

(turn, {2})
(shuffle, ⟨(2 3 4 5)⟩)

32 451 X0

32 514 X0

32 145 X0

32 415 X1

32 154 X1

32 541 X1

(shuffle, ⟨(3 4 5)⟩)

321 45 X0

321 54 X1

324 51 X0

324 15 X1

325 14 X0

325 41 X1

(turn, {3})

??1?? ??4?? ??5??

(turn, {3})
(shuffle, ⟨(3 4 5)⟩)

(result, 4, 5)

✓

Figure 8.4.: The five-card Las Vegas AND protocol of [NR99] with deck D = [1, 2, 3, 4, 5]
using only random cuts, cf. Protocol 8.3. Note that X0 := X00+X01+X10 and X1 := X11. 
The output is in basis {1, 4}.
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(perm, (1 2 4 5))
repeat

(shuffle, ⟨(1 2 3 4 5)⟩)
v := (turn, {1})

until v = 2 or v = 3
repeat

(shuffle, ⟨(2 3 4 5)⟩)
v := (turn, {2})

until v = 2 or v = 3
repeat

(shuffle, ⟨(3 4 5)⟩)
v := (turn, {3})

until v = 5
(result, 4, 5)
Protocol 8.3. Protocol to compute AND in committed format using five cards by 
Niemi and Renvall [NR99], with slight modifications. The first bit is given in basis 
{1, 2}, the second in basis {3, 4}. The output basis is {1, 4}. See also Figure 8.4 for 
the state diagram of the protocol.

Proof. See Figure 8.5 and Protocol 8.4 and observe that in the leaf states of the state 
diagram in Figure 8.5 the encoding is unique given the visible sequence trace.

To get a better understanding of why the protocol works and how it is related to the 
protocol of [NR99], let us consider exemplarily the case that the first card to be revealed 
is a 1 , the other cases are analogous. In this situation, let us look at the different cases, 
given in Table 8.1.

Table 8.1.: The different states of Protocol 8.4 after a 1 was revealed in the first turn 
step. The permutation to be applied in this case is swapping the last two cards. The 
analysis is similar in all other cases.

Bits Sequence After permutation Removing 3
(0, 0) 1 2 3 4 1 2 4 3 1 2 4 x

(0, 1) 1 2 4 3 1 2 3 4 1 2 x 4

(1, 0) 1 3 4 2 1 3 2 4 1 x 2 4

(1, 1) 1 4 3 2 1 4 2 3 1 4 2 x

Using the method as before, we can remove 3 by performing a random cut while 
leaving the relative order intact ( 1 here is assigned the role of the 5 in Niemi and 
Renvall’s protocol) and waiting until it appears when turning. Later we can remove 1
from the remaining cards, to get the output encoded using the cards 2 and 4 .
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1234 X00

1243 X01

2134 X10

2143 X11

1234 1/4X00

1243 1/4X01

2134 1/4X10

2143 1/4X11

4123 1/4X00

3124 1/4X01

4213 1/4X10

3214 1/4X11

3412 1/4X00

4312 1/4X01

3421 1/4X10

4321 1/4X11

2341 1/4X00

2431 1/4X01

1342 1/4X10

1432 1/4X11

(shuffle, ⟨(1 2 3 4)⟩)

1234 X00

1243 X01

1342 X10

1432 X11

2341 X00

2431 X01

2134 X10

2143 X11

2134 X00

2143 X01

2413 X10

2314 X11

(turn, {1})
(perm, (2 3 4))

3412 X00

3124 X01

3421 X10

3214 X11

3124 X00

3241 X01

3214 X10

3142 X11

(turn, {1})
(perm, (2 4 3))

4123 X00

4312 X01

4213 X10

4321 X11

1243 X00

1234 X01

1324 X10

1423 X11

(turn, {1})
(perm, (3 4))

4213 X00

4132 X01

4123 X10

4231 X11

(turn, {1})
(perm, (2 3))

(turn, {1})
1???

2??? 3???
4???

relabel : (1 2)(3 4) relabel : (1 2)(3 4)

1243 1/4X00

1234 1/4X01

1324 1/4X10

1423 1/4X11

3124 1/4X00

4123 1/4X01

4132 1/4X10

3142 1/4X11

4312 1/4X00

3412 1/4X01

2413 1/4X10

2314 1/4X11

2431 1/4X00

2341 1/4X01

3241 1/4X10

4231 1/4X11

(shuffle, ⟨(1 2 3 4)⟩)

2431 X00

2341 X01

2413 X10

2314 X11

4312 X00

4123 X01

4132 X10

4231 X11

3124 X00

3412 X01

3241 X10

3142 X11

(turn, {1})

1???

2??? 3??? 4???

(turn, {1})
(shuffle, ⟨(1 2 3 4)⟩)(turn, {1})

(shuffle, ⟨(1 2 3 4)⟩)

3124 1/3X0

3412 1/3X0

3241 1/3X0

3142 1/3X1

3214 1/3X1

3421 1/3X1

(shuffle, ⟨(2 3 4)⟩)

3124 X0

3142 X1

3241 X0

3214 X1

3412 X0

3421 X1

(turn, {2})

?1?? ?2?? ?4??

(result, 3, 4)

✓

(result, 4, 3)

✓

(result, 3, 4)

✓

4213 1/4X00

4132 1/4X01

4123 1/4X10

4231 1/4X11

3421 1/4X00

2413 1/4X01

3412 1/4X10

1423 1/4X11

1342 1/4X00

3241 1/4X01

2341 1/4X10

3142 1/4X11

2134 1/4X00

1324 1/4X01

1234 1/4X10

2314 1/4X11

(shuffle, ⟨(1 2 3 4)⟩)

2134 X00

2413 X01

2341 X10

2314 X11

1342 X00

1324 X01

1234 X10

1423 X11

3421 X00

3241 X01

3412 X10

3142 X11

(turn, {1})

1??? 2??? 3???

4???

(turn, {1})
(shuffle, ⟨(1 2 3 4)⟩)

(turn, {1})
(shuffle, ⟨(1 2 3 4)⟩)

2134 1/3X0

2413 1/3X0

2341 1/3X0

2314 1/3X1

2431 1/3X1

2143 1/3X1

(shuffle, ⟨(2 3 4)⟩)

2134 X0

2143 X1

2341 X0

2314 X1

2413 X0

2431 X1

(turn, {2})

?1?? ?3?? ?4??

(result, 3, 4)

✓

(result, 4, 3)

✓

(result, 3, 4)

✓

Figure 8.5.: Four-card Las Vegas AND protocol using random cuts, cf. Protocol 8.4. 
Here, X0 := X00 +X01 +X10 and X1 := X11. The relabel operations are not actual 
actions to be performed but help abbreviate the write-up of the protocol, see Section 7.6.
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A closer analysis of the situation after removing 3 shows that one can take a shortcut 
when one is not bound to the output being cards 2 4 (which is a futile goal for us 
anyway because in the other cases besides the first turn being 1 it is different anyway). 
The situation is as follows: The remaining three cards are either a cyclic rotation (cut) 
of the sequence 1  2  4 , if the output is 0, or a cyclic rotation of the sequence 1  4  2 , 
otherwise. A cut cannot rotate a sequence of the former type to become the other, 
or vice versa. After the cut we can then safely turn any card and, from the resulting 
symbol, deduce in which order the other cards have to be output to encode the result 
of the protocol.

(shuffle, ⟨(1 2 3 4)⟩)
v1 := (turn, {1})
if v1 = 1 then (perm, (3 4))
else if v1 = 2 then (perm, (2 3 4))
else if v1 = 3 then (perm, (2 4 3))
else if v1 = 4 then (perm, (2 3))

Let π := (1 3)(2 4)
repeat

(shuffle, ⟨(1 2 3 4)⟩)
v2 := (turn, {1})

until v2 = π(v1)

(shuffle, ⟨(2 3 4)⟩)
v3 := (turn, {2})
Let σ := (1 4)(2 3)
if v3 = σ(v2) then (result, 4, 3)
else (result, 3, 4)
Protocol 8.4. Protocol to compute AND in committed format using four cards. 
The first bit is given in basis {1, 2}, the second in basis {3, 4}. The output basis 
will then be {1, 2, 3, 4} \ {v2, v3}, where v2, v3 are the last two revealed symbols. 
See also Figure 8.5 for the state diagram of the protocol.

For an analysis of the number of shuffle steps in the protocol, observe that we have 
perform two shuffles until we reach the loop condition, which holds with probability 
1/4. After the loop, we have one additional shuffle step. Hence, the expected number of 
shuffles is 3 +

∑∞
n=1

(︁
1− 1

4

)︁n
= 6.

Comparison to [NR99]

As Niemi and Renvall [NR99] state, their running time in the number of shuffle steps is 
calculated as follows: Their protocol starts with a shuffle and repeats it with probability 
3/5. The second loop contains a shuffle with a repeating probability of 3/4. The shuffle 
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213 X1

123 X0

213 1/3X1

123 1/3X0

321 1/3X1

312 1/3X0

132 1/3X1

231 1/3X0

(shuffle, ⟨(1 2 3)⟩)

132 X1

123 X0

213 X1

231 X0

321 X1

312 X0

(turn, {1})

1?? 2?? 3??

(turn, {1})
(shuffle, ⟨(1 2 3)⟩)

(turn, {1})
(shuffle, ⟨(1 2 3)⟩)

(result, 3, 2)

✓

Figure 8.6.: A three-card Las Vegas basis convert protocol for deck D = [1, 2, 3] with 
uniform closed shuffles.

in the final loop is repeated with probability 2/3. In total this gives an expected running 
time of 3+

∑∞
n=1

(︁
3
5

)︁n
+
∑∞

n=1

(︁
3
4

)︁n
+
∑∞

n=1

(︁
2
3

)︁n
= 3+1.5+3+2 = 9.5. However, note 

that for a fair comparison to our protocol, we eliminate the last loop from their protocol, 
as its only function is to ensure that the output is in basis {1, 4}, which our protocol does 
not guarantee (it is not full-sequence secure). In this case, the modified Niemi–Renvall 
protocol has an expected number of 3 + 1.5 + 3 = 7.5 shuffle steps. Therefore, our 
four-card AND protocol needs one card less and outperforms the Niemi–Renvall protocol 
by an expected number of 1.5 shuffle operations.

8.5. Base Conversion Protocols for Overlapping Bases

In this section, we give two card-minimal protocols for converting a basis encoding in 
the case where the old and the new encoding share a card. The first protocol has an 
expected (finite) running time of three shuffle and turn operations. While it has not 
been explicitly discussed in the literature, it is in a way implicit in the protocol by 
Niemi and Renvall [NR99], as the authors aimed to get a fixed-in-advance output basis.

Theorem 8.7. There is a three-card Las Vegas base conversion protocol for overlapping 
bases with deck D = [1, 2, 3] and uniform closed shuffles.

Proof. See Figure 8.6 and Protocol 8.5.
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repeat
(shuffle, ⟨(1 2 3)⟩)
v := (turn, {1})

until v = 2
(result, 3, 2)
Protocol 8.5. Three-card Las Vegas basis conversion protocol as given in Figure 8.6
with D = [1, 2, 3], input basis {1, 2} and output basis {1, 3}.

Theorem 8.8. There is a five-card finite-runtime base conversion protocol for overlap-
ping bases with deck D = [1, 2, 3, 4, 5]. It only uses two random bisection cuts as shuffle 
operations.

Proof. This is applying the base conversion of [M16b] twice, cf. Protocol 8.6.

(shuffle, ⟨(1 2)(4 5)⟩)
v := (turn, {1})
if v = 2 then (perm, (1 2)(4 5))

(shuffle, ⟨(1 3)(4 5)⟩)
v := (turn, {4})
if v = 4 then (result, 1, 3)
else (result, 3, 1)
Protocol 8.6. Five-card finite-runtime base conversion protocol with overlapping 
bases with D = [1, 2, 3, 4, 5], input basis {1, 2} and output basis {1, 3}.

8.6. The Coupled Sorting Sub-Protocol

This section is taken from [KW18], with minor modifications. Here, we show that a 
large subset of the protocols proposed in this thesis and from the literature, can be 
regarded as a sequence of sub-protocols with basically the same functionality, which 
we capture under the name “sort protocol”. We believe that this observation is of 
independent interest. We also show that, under weak assumptions, protocols obtained 
as compositions of sort-protocols are secure. This elegantly re-proves the security of 
existing protocols and greatly simplifies the security proofs of our own protocols.

We use the term “coupled” to indicate that the same permutation is applied to 
multiple card subsequences by forming piles (e.g., to be placed in envelopes) and then 
permuting them, cf. Figure 8.8.
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.7.: Effect of the permutation (1 2 3) ↑ ((1, 2, 3, 4), (5, 6, 7, 8), (12, 11, 10, 9))
when applied to a sequence of cards. The idea is to permute the three card sequences 
in positions (1, 2, 3, 4), (5, 6, 7, 8) and (12, 11, 10, 9) cyclically (as in (1 2 3)), taking the 
groups of four cards “as a whole”, and rearranging them while maintaining the order 
within the group. We reversed the third sequence to illustrate this possibility.

Notation

Let π ∈ Sn, A = (a1, . . . , an) a sequence of distinct natural numbers and B a sequence 
of length n. We define the lift π ↑ A of π to A via

(π ↑ A)(m) :=

{︄
aπ(i), if m = ai for some i,
m, otherwise.

For instance, the permutation π = (1 3)(2 4) ∈ S4 lifted to the sequence A = (5, 2, 7, 8)
yields the permutation π ↑ A = (5 7)(2 8). We define the lift of a permutation to a 
sequence of same-length sequences B = ((b11, . . . , b

k
1), . . . , (b

1
n, . . . , b

k
n)) as:

π ↑ B := (π ↑ (b11, . . . , b1n)) ∘ · · · ∘ (π ↑ (bk1, . . . , bkn)).

Note that for each i ∈ {1, . . . , k}, the (bi1, . . . , bin) are again assumed to be distinct. 
We permit that the bji are sequences again. In this sense this definition is recursive. 
Figure 8.7 illustrates the simple intuition behind these more complex lifts.

We naturally extend this definition to permutation sets Π ⊆ Sn and, for convenience, 
a lift to two sequences A,B as:

Π ↑ A := {π ↑ A : π ∈ Π}, Π ↑ A,B := {(π ↑ A) ∘ (π ↑ B) : π ∈ Π}.

The Family of Sort (Sub-)Protocols

For each combination of a group of permutations Π ⊆ Sn, a sequence of (card) positions 
A = (a1, . . . , an) and another sequence B = (b1, . . . , bn), we will define a protocol 
sortΠA ↑ B. Note that Π, A and B are a public part of the protocol specification, not 
inputs. To describe the intended behavior of the protocol, assume it is executed on 
a sequence Γ of cards. Let A := Γ[A] := (Γ[a1], . . . ,Γ[an]) be the sequence of cards in 
positions A, and B := Γ[B] the sequence of cards in positions B. We assume that these 
card (symbol) sequences A and B are secret.
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Let πA ∈ Π be the permutation that sorts A, i.e., πA(A) is the lexicographical 
minimum of {π(A) | π ∈ Π} w.r.t. a given order on the deck symbols1. The over-
all effect of sortΠA ↑ B should be that πA is applied to both A and B, yielding 
a sequence Γ′ with Γ′[A] = πA(A), Γ′[B] = πA(B) and Γ′ equal to Γ everywhere 
else. We permit B, and correspondingly B, to be a sequence of k-element sequences 
B = ((b11 . . . , b

k
1), . . . , (b

1
n, . . . , b

k
n)) for k ∈ N, in which case applying πA to B means 

applying πA to each of the k sequences B1 = Γ[(b11, . . . , b
1
n)], …, Bk = Γ[(bk1, . . . , b

k
n)].

Implementation of Sort Protocols

An example for a practical implementation is given in Figure 8.8 and a formal imple-
mentation in Protocol 8.7. The first step applies a randomly chosen permutation τ ∈ Π
to A and B. Then, the cards in positions A are turned over, revealing τ(A) where A is 
the sequence of cards that was previously in positions A.

This allows us to recognize which permutation πτ(A) would sort τ(A) and apply it 
to the sequences in positions A and B. Clearly, the overall effect is that A and B have 
both been permuted by the same permutation πτ(A) ∘ τ . Moreover this permutation 
sorted the cards in positions A as desired.

(shuffle,Π ↑ A,B) // chooses τ ∈ Π randomly, obliviously applies 
τ ↑ A,B

(turn, A) // reveals τ(A)
let πτ(A) ∈ Π be the permutation that sorts τ(A)
(perm, (πτ(A) ↑ A) ∘ (πτ(A) ↑ B))

Protocol 8.7. sortΠA ↑ B.

If we only want to reset the sequence in A to a sorted one, i.e., without applying it to 
cards at positions B (as in Protocols 11.3 and 11.4), we write sortΠA.

Definition 8.1. Let supp(A) := {Γ[A] : Γ is possible when reaching sortΠA ↑ B} be 
the set of possibilities for A when the surrounding protocol reaches the occurrence of 
the sort sub-protocol.

We say an occurrence of a sort sub-protocol sortΠA ↑ B is valid in a surrounding 
protocol if supp(A) is contained in an orbit O of the group action of Π on sequences, 
and |O| = |Π|.

The rationale behind this definition is that if supp(A) is subset of O w.r.t. Π, then 
shuffling A with Π destroys all information that is held in the sequence A prior to 
turning it. Thus, no information is leaked. The condition |O| = |Π| ensures that the 
permutation πA ∈ Π that sorts A is uniquely defined.2

1We use the order from N on cards with natural numbers, and ♣ < ♡.
2We could drop this condition without affecting security. The effect of sort would be that among all 
permutations that sort A, one is chosen uniformly at random and applied to the cards in A and B.
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Random Shuffle

4

1

3

2

1

3

2

4

1 2 3 4

A = (3, 1, 4, 2) B = ((♡,♣), (♣,♣), (♣,♣), (♡,♡))

πA(B) = ((♣,♣), (♡,♡), (♡,♣), (♣,♣))πA(A) is sorted

arrange
in piles

shuffle piles
with random τ ∈ S4,

here τ = (1 2 3)

turn red cards,
reveals τ(A)

sort piles w.r.t.
turned cards

split piles

Figure 8.8.: Application of sortS4 A ↑ B where A denotes the four positions of the 
red cards and B the four pairs of positions of the blue cards, in canonical ordering. 
Since the current sequence is A = (3, 1, 4, 2), the permutation π(3,1,4,2) = {1 ↦ 3, 2 ↦
1, 3 ↦ 4, 4 ↦ 2} is applied to A and B, leaving the red cards sorted and the pairs of 
blue cards permuted by π(3,1,4,2) as shown. Note that the revealed sequence (4, 3, 1, 2) is 
independent of the input sequences and the output sequence. (The different back colors 
are for illustration and to avoid errors in handling the cards, but are not necessary in 
theory.)
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Note that this slightly involved criterion is necessary to ensure security in the case 
that the permutation is chosen at random from a proper subset of Sn. An important 
example for this is a random cut, which we later use to apply a rotation encoded in a 
sequence. Assume for instance Π = ⟨(1 2 3)⟩ and π ∈ Π uniformly random. Moreover, 
let X be the six-element set of permutations of (♡,♣,♠), and s ∈ X be arbitrary. 
Revealing π(s) to be, say, π(s) = (♣,♡,♠) reveals, e.g., that s is not (♡,♣,♠). The 
reason is that Π has two orbits when acting on sequences of length 3 with symbols 
♡,♣,♠ and we learn in which orbit we have been, excluding all sequences of the other 
orbit. That this criterion is also suitable for achieving security is shown by the following 
lemma.

Lemma 8.1. If an occurrence of  sortΠA ↑ B is valid in a surrounding protocol, then 
the sequence revealed in the sub-protocol’s turn step is independent of the sub-protocol’s 
input- and output-sequences Γ and Γ′.

Proof. By definition, supp(A) is a subset of an orbit O. Whatever the distribution of A
is, if π ∈ Π is chosen uniformly at random, then the sequence A′ = π(A) revealed in 
the turn step is uniformly distributed on O. It is thus independent of Γ. Since Γ′ is a 
function of Γ, we conclude that A′ is independent of (Γ,Γ′).

Corollary 8.1. If a protocol P contains no turn operations outside of valid instances 
of sort sub-protocols, then P is secure.

Encoding Permutations

A sequence (s1, . . . , sn) ∈ {1, . . . , n}n of card symbols encodes a permutation π if 
si = π(i) for 1 ≤ i ≤ n. Let us denote D5 := [1, 2, 3, 4, 5] and D2 := [♣,♡], and give a 
short example.

Example 8.1. The 5-cycle permutation π = (1 2 3 4 5) is represented via D5 by 
Γπ = (2, 3, 4, 5, 1). The (self-inverse) transposition τ = (1 2) is represented via D2 as 
Γτ = (♡,♣).

Useful Specializations

Two sub-classes of sort protocols will be particularly useful. The first will be useful, e.g., 
to apply an encoded permutation to another sequence of cards, the second to rotate a 
sequence by a specified offset.

Apply a permutation encoded in A to the sequence in B. Assume that in a surrounding 
protocol A = Γ[A] is known to always be a permutation of a fixed set M of n
distinct cards, say of M = {1, 2, . . . , n}. Then sortSn A ↑ B is valid at this point 
as supp(A) is a subset of all permutations of M , which is an orbit w.r.t. Π = Sn. 
The effect is that the permutation encoded in A is applied to Γ[B]. Whenever 
Π = Sn, we omit Π as an index of sortΠA ↑ B.
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Apply a rotation encoded in A to the sequence in B. Assume that in a surrounding pro-
tocol A = Γ[A] is known to always be a permutation of a multiset M with n− 1
copies of one symbol and one copy of another symbol, say M = [(n−1) ·♡,♣]. Let 
♣ < ♡ by convention. Then for Π = ⟨(1 2 . . . n)⟩, an occurrence of sortΠA ↑ B is 
clearly valid at this point, as

supp(A) ⊆ {(♣,♡, . . . ,♡), (♡,♣,♡, . . . ,♡), . . . , (♡, . . . ,♡,♣)}

and the latter is an orbit w.r.t. Π. The effect is that the rotation encoded in A is 
applied to Γ[B]. In this case we also write rotA ↑ B for sortΠA ↑ B.

Note that for n = 2, the two cases are the same.

Non-Destructive Variant sort∗

We define a variation sort∗ of sort that differs only in so far as it should make no net 
change to the cards in positions A. For this, a sequence of helping cards is assumed to 
be available in (otherwise unused) positions H = (h1, . . . , hn). We implement sort∗ in 
Protocol 8.8 by two applications of sort, where the latter restores A from the helping 
“register”.

sortΠ (a1, . . . , an) ↑ ((b1, h1), . . . , (bn, hn))
sortΠ (h1, . . . , hn) ↑ (a1, . . . , an)

Protocol 8.8. sort∗Π(a1, . . . , an) ↑ (b1, . . . , bn):

We say an application of sort∗ is valid whenever an application of sort would be 
valid and H := Γ[H] = (1, . . . , n) is guaranteed, i.e., H contains cards with numbers in 
ascending order.

It is easy to see that under these conditions, if π is applied to the cards in positions 
A and H in the first sorting step, then π−1 is applied to the cards in positions A and 
H in the second sorting step, as this is the unique permutation that sorts the cards in 
positions H. Thus, one complete valid application of sort∗ makes no net changes to A
and H. It is also easy to check that both applications of sort are valid in the original 
sense, therefore Lemma 8.1 and Corollary 8.1 extend naturally to sort∗. We use rot∗ for 
the variant using cyclic rotations.

Stating Classical Protocols in Terms of sort

The standard AND, OR, XOR and COPY protocols due to Mizuki and Sone [MS09] can 
all be stated as single application of our sort sub-protocol as shown in Protocols 8.9
to 8.12 in Figure 8.9. We also provide a permutation application protocol that takes the 
encoding of a permutation and a sequence as input and outputs the permuted sequence. 
This is in essence the permutation division protocol by Hashimoto et al. [HSN+17] (the 
only change being that we encode the inverse permutation). 
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Input: bits (x, y, 0) encoded in ((1, 2), (3, 4), (5, 6))
Output: encoding of x ∧ y
sort (1, 2) ↑ ((3, 4), (5, 6))
(result, 5, 6)

Protocol 8.9. AND.
Input: bits (x, y, 1) encoded in ((1, 2), (3, 4), (5, 6))
Output: encoding of x ∨ y
sort (1, 2) ↑ ((3, 4), (5, 6))
(result, 3, 4)

Protocol 8.10. OR.
Input: bits (x, y) encoded in ((1, 2), (3, 4))
Output: encoding of x⊕ y
sort (1, 2) ↑ (3, 4)
(result, 3, 4)

Protocol 8.11. XOR.
Input: bits (x, 0, . . . , 0) encoded in ((1, 2), . . . , (2n+ 1, 2n+ 2))
Output: n card pairs, all encoding x
sort (1, 2) ↑ ((3, 5, . . . , 2n+ 1), (4, 6, . . . , 2n+ 2))
(result, 3, 4, . . . , 2n+ 1, 2n+ 2)

Protocol 8.12. n-COPY.
Input: permutation π encoded in (1, . . . , n) and some sequence A in (n+ 1, . . . , 2n)
Output: π(A)
sort (1, . . . , n) ↑ (n+ 1, . . . , 2n)
(result, n+ 1, . . . , 2n)

Protocol 8.13. APPLY.

Figure 8.9.: The classical protocols AND, OR, XOR and COPY as well as a permutation 
application protocol, all stated as sort protocols.

8.7. Conclusion

All new protocols in this chapter, except the first protocol in Section 8.2 appear in 
Tables 17.1 to 17.3 which give an overview of card-minimal protocols w.r.t. different 
requirements, decks and functionalities. Hence, they can be seen as optimal in some 
precise sense. Constructing these protocols can in part also be seen as an exploration of 
the strength of the computational model of [MS14a] and shuffle-restrictions thereof. For 
example, we see the protocol computing k-ary Boolean functions as merely a touch-stone 
of the computational model, as we feel that the protocol shows that non-closed shuffles 
together with restarts, are unplausibly powerful.

As an interesting further direction, one might re-consider the finite running time 
case, both for two-color and standard decks. The two-color deck protocols use the fifth 
card only in a certain branch of the protocol, and one might be inclined to search for 
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protocols that employ this card throughout the protocol to, e.g., achieve a simpler 
or faster version. Moreover, in the standard deck case, the best protocol for AND in 
finite-runtime uses eight cards. We are keen to know whether there is a protocol using 
less cards in this setting.

We introduced sort protocols as an interesting building block – also largely simplifying 
security proofs – which we believe to be of independent interest, as many protocols 
from the literature can be restated in these terms. It would be interesting to find more 
protocols which can be restated in this way. In Section 12.10, we will see additional 
protocols of another type, namely those where the input of a player is not given by a 
commitment via two face-down cards, but by a permutation that is done to the cards 
by the player, hence requiring input awareness. (Using sort protocols, these could be 
transformed to protocols without input awareness, by encoding the permutation to be 
done for the respective input with cards and then using a sort protocol to apply them. 
As we will see, this is only “committed format”, if we encode a transposition.)
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In this chapter, we give proofs for several lower bounds on the number of cards for 
protocols computing AND and COPY. This is an important ingredient for identifying 
the best protocols for secure multiparty computation with cards.

For this, we consider weaker forms of security, as they are easier to work with. If 
even for these security notions we can show that no protocol exists, than this holds also 
for the stronger security notion. As our proofs work by induction on state diagrams, we 
introduce a reduced variant of state diagrams that fit this weaker security, and reduces 
the state space to a finite (but large) set.

9.1. Possibilistic Security and Reduced States
This section is from [KKW+17], with some adaptations. When trying to prove that no 
secure protocol with certain properties exists, the space of possible states can seem vast. 
We therefore opt to show stronger results, namely the non-existence of protocols with 
the weakened requirement of possibilistic security, defined next. This allows to consider 
a projection of the state space which is finite in size.

Definition 9.1. A protocol P = (D, U,H,Q,A) computing a function f : {0, 1}k →
{0, 1}m has possibilistic input security (possibilistic output security) if for uniformly1

random input I ∈ U and any visible sequence trace v with Pr[v] > 0 as well as any input 
i ∈ {0, 1}k (any output o ∈ {0, 1}m in the image of f) we have Pr[v | vali(I) = i] > 0
(Pr[v |f(vali(I)) = o] > 0).

In other words, from observing a visible sequence trace it is never possible to exclude 
an input (or output) with certainty. Clearly, security implies possibilistic input and 
output security.

Reduced State Diagrams

To decide whether a protocol has possibilistic output security, it suffices to consider 
projections of states in the following sense.

We define reduced states, where states are not annotated by their symbolic probabili-
ties, but by the result that is specified by their inputs. This is to simplify impossibility 
results, as reducing information allows us to make sense of which types of states are 
reachable without caring about the exact probabilities, and it actually makes the search 
space of (reachable) states finite. Any such reduced diagram captures only the weak 

1Actually, the distribution does not matter, as long as Pr[vali(I) = i] > 0 for all i ∈ {0, 1}k.
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form of possibilistic security as defined above, where each output (reachable in principle) 
needs to be still possible. Showing that a protocol is impossible even in this weak setting 
implies its general impossibility. This is the general strategy which we pursue for our 
impossibility proofs.

Definition 9.2. Let P = (D, U,H,Q,A) be a protocol computing a Boolean function 
f : {0, 1}k → {0, 1}m w.r.t. input valuation vali and output valuation valo. If µ is a state 
in the state diagram, then the reduced state µ̂ has the same sequences as µ with simpler 
annotations. Assume µ(s) is a polynomial with positive coefficients for the variables 
Xb1 , . . . , Xbi (i ≥ 1). Then we set µ̂(s) := o ∈ {0, 1}m if o = f(b1) = f(b2) = . . . = f(bi). 
If not all bi evaluate to the same output under f , set µ̂(s) = ⊥. Accordingly, sequences 
in µ̂ are called o-sequences or ⊥-sequences. We also say they are of type o or of type ⊥, 
respectively. For COPY protocols, we call 1m- and 0m-sequences just 1- and 0-sequences, 
respectively.

Note that if a state µ has children µ1, . . . , µi in the state diagram, then the reduced 
states µ̂1, . . . , µ̂i can be computed from the reduced state µ̂. In particular, it makes 
sense to define reduced state diagrams as projections of state diagrams and aim to 
prove the non-existence of certain state diagrams by proving the non-existence of the 
corresponding reduced state diagrams.

9.2. Important Properties of (Reduced) States
For most of our arguments, reduced states offer a sufficient granularity of detail and 
the following observations and definitions for reduced states will prove useful. Clearly, 
they also apply to the richer, non-reduced states which we will require for more subtle 
arguments in Sections 9.7, 9.10 and 9.11.

Protocols computing a function f that have a ⊥-sequence in a reduced state cannot 
be restart-free, and hence also not finite-runtime: once the ⊥-sequence is actually on 
the table, it does not contain sufficient information to deduce the unique correct output, 
making a restart necessary. The protocol might then repeat the unfortunate path of 
execution an arbitrary number of times.

We call two (reduced) states similar, if one is just a permuted version of the other, i.e., 
interpreting a state as a matrix of symbols with annotated rows, there is a permutation 
on the columns mapping one state to the other.

In restart-free committed-format protocols with two outputs (say 1 and 0) any reduced 
state µ̂ is composed of some number i of 0-sequences and some number j of 1-sequences 
with |µ̂| = i+ j. We call µ and µ̂ an i/j-state. They are final if they admit a correct 
output action (result, p1, q1 . . . , pm, qm), i.e., they do not contain a ⊥-sequence and for 
all outputs r ∈ {0, 1}m in the image of f , there is at least one r-sequence and for 
all r-sequences s it holds that val>(s[pi], s[qi]) = r[i] for 1 ≤ i ≤ m, i.e., the cards at 
the respective indices encode the value of the respective bit. For two-color decks, this 
translates to having a card with symbol ♡ at position pi if r[i] = 1, or with symbol ♣
otherwise, and the respective other symbol at position qi.
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Turnable Positions. Recall the definition of a turnable position T = {i} for a state µ
from (7.6). For a reduced state µ̂ this simplifies to: For each symbol c ∈ Σ occurring in 
column i, among the sequences s with symb(s[i]) = c, there is an r-sequence for each 
r ∈ {0, 1}m in the image of the function computed by the protocol, and/or a ⊥-sequence. 
This essentially means that all outputs are still possible, hence captures what we mean 
by possibilistic (output) security. If some position in a (reduced) state is turnable, we 
call the state turnable, otherwise unturnable.

Some General Properties. We bundle a few simple properties about i/j-states (taken 
from [KWH15]) in the following lemma:

Lemma 9.1. Given a secure protocol computing a non-constant Boolean function with 
deck D, consisting of  n ♡s and m ♣s where n,m ≥ 1, the following holds.

1. In a state of type i/j, we have i, j ≥ 1, otherwise players could derive the the 
result, contradicting the committed format property.

2. If a turn in a state µ of type i/j can result in two different successor states µ1
and µ2 of type i1/j1 and i2/j2, respectively, then i = i1 + i2 and j = j1 + j2. In 
particular, i ≥ 2 and j ≥ 2.

3. In a state of type i/j resulting from a turn that revealed a ♡ or ♣ we have
i+ j ≤

(︁
n+m−1
n−1

)︁
or i+ j ≤

(︁
n+m−1
m−1

)︁
, respectively.

4. Let µ be a state of type i/j and µ′ a state of type i′/j′ resulting from µ via a 
shuffle operation. Then we have i′ ≥ i, j′ ≥ j.

5. If  µ is a final state of type i/j, then i, j ≤
(︁
n+m−2
n−1

)︁
.

6. Two sequences differ in an even number of positions, i.e., have even distance.

7. Given an sequence s ∈ SeqD, there are(︃
n
d
2

)︃(︃
m
d
2

)︃
sequences of (even) distance d to s.

8. Any two sequences have distance at most min {2m, 2n}.

9. After a single-card turn revealing ♡ or ♣, any two sequences of the state have 
distance at most 2n− 2 or 2m− 2, respectively.

9.3. Finite-Runtime AND Requires Five Cards
This section is from [KWH15], with some adaptations. There are secure protocols with 
four cards computing AND in committed format using either the restart operation 
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(see Section 8.3) or running in cycles for a number of iterations that is finite only in 
expectation (see Section 8.1). However, it would be nice to have a protocol that is 
finite-runtime, i.e., is guaranteed to terminate after a finite number of steps. In the 
following we show that this is impossible.

To this end, we distinguish several different types of (reduced) states and later analyze 
which state transitions are possible. With our observations from the previous section 
we are ready to directly state our result in the following theorem:

Theorem 9.1. There is no secure finite-runtime four-card AND protocol in committed 
format with deck D = [♡,♡,♣,♣].

Proof. Let P be a secure protocol computing AND with four cards in committed format.
We will define a set of good states, denoted by G, that contain all final states but not 

the starting state and show that any operation on a non-good state will produce at 
least one non-good state as a successor. From this it is then clear by induction that P
is not finite-runtime.

A state µ is good iff it fulfills one of the following properties:

• µ is a 1/1-state,

• µ is a 2/2-state,

• µ is a 1/2- or 2/1-state containing two sequences of distance 4.

We first observe which state types i/j can occur with our deck: Since there are 6 =
(︁
4
2

)︁
sequences in total, we need i+ j ≤ 6. By Lemma 9.1, item 1, states with i = 0 or j = 0
cannot occur.

Final States are Good. From item 5 in Lemma 9.1 we know that final states fulfill 
i, j ≤ 2 so the only candidate for final states are 1/1, 2/2, 1/2 and 2/1. We need 
to show that they are good which is true by definition for 1/1 and 2/2. Consider a 
final 1/2-state (the argument for the 2/1-state is symmetric). Its 0-sequence differs 
from both 1-sequences in the two positions used for the output. Since the two 1-
sequences are distinct, at least one of them must differ from the 0-sequence in another 
position, meaning they must have distance at least 3 and therefore distance 4 (item 6
in Lemma 9.1).

Therefore, all final states are good, but the start state, which is a 3/1-state, is 
non-good. Consider an action act ∈ Action4 that acts on a non-good state. We show 
that act has a non-good successor state by considering all cases for the type of act:

Non-trivial Single-card Turns. Let µ be a non-good state of type i/j, and µ♡ and 
µ♣ the two possible states after a turn of a single card. From item 2 in Lemma 9.1, 
we know that µ has to be of type i/j, with i, j ≥ 2, excluding the case of 2/2, as µ is 
non-good. This leaves the following possible types for µ: 2/3, 3/3, 2/4 where we assume 
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without loss of generality that i ≤ j. The turn partitions the sequences onto the two 
branches in one of the following ways:

2/3

1/1 1/2

3/3

1/1 2/2

3/3

1/2 2/1

2/4

1/2 1/2

2/4

1/3 1/1

From item 3 in Lemma 9.1, we know that a state resulting directly from a turn 
contains at most 3 sequences, thereby ruling out turn-transitions that lead to a 2/2- 
or 1/3-state. Moreover, any 2/1- or 1/2-state occurring after a turn has the property 
that all sequences have pairwise distance 2 by item 9 in Lemma 9.1. By definition, such 
2/1-states are non-good. Note that a turn action on a 2/3-state – while producing a 
good and even final 1/1-state – produces a non-good 1/2-state on the other branch.2

Non-branching Shuffles. Now consider a shuffle that produces a unique subsequent 
state µ′ of type i′/j′. We want to show that µ′ is non-good. Using item 4 in Lemma 9.1
and the fact that a good µ′ would require i′, j′ ≤ 2, we only need to consider the case 
that µ is a non-good state with i, j ≤ 2, i.e., µ is of type 1/2 or 2/1 with pairwise 
distance 2 – without loss of generality of type 1/2 and with a 0-sequence s0 and two 
1-sequences s1 and s′1. We argue that without loss of generality µ is of the form

s0: ♡♡♣♣
s1: ♡♣♡♣
s′1: ♡♣♣♡

This is because

• µ contains a constant column: Let k and l be the positions where s0 differs from s1, 
and m, n the positions where s0 differs from s′1. If {k, l} and {m,n} are disjoint, 
then s1 and s′1 have distance 4 – a contradiction. Otherwise {k, l,m, n} has size 
at most 3 so there is one position where all sequences agree.

• The constant column can be assumed to be in position 1 and to contain ♡s. 
This completely determines the sequences occurring in µ. Our choice to pick the 
0-sequence is arbitrary, but inconsequential.

If all permutations in the shuffle map 1 to the same i ∈ {1, 2, 3, 4}, then µ′ will have a 
constant column in position i. Then µ′ is still of type 1/2 with sequences of pairwise 
distance 2, so non-good. If there are two permutations in the shuffle that map 1 to 
different positions i ̸= j, then µ′ will contain all three sequences with ♡ in position i
and all three sequences with ♡ in position j. There is only one sequence with ♡ in both 
positions. So µ′ contains at least 3 + 3− 1 = 5 sequences and is therefore non-good.

2Moreover, this is the only way to produce a good state from a non-good state via a turn action. We 
make use of such a turn in our four-card protocol in Section 8.1, which did not require finite-runtime. 
(In contrast to our protocol in Section 8.3 this allows us to avoid restart actions.)
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Other Actions. The hard work is done, but for completeness, we need to consider the 
remaining actions as well:

Restart. This action is not allowed in our finite-runtime setting.

Result. Since non-good states are non-final this action cannot be applied.

Permutation. This is just a special case of a non-branching shuffle.

Trivial turn. If act is a turn operation that can only result in a single visible sequence 
(the turn is trivial), then the outcome of the turn was known in advance and the 
state does not change.

Multi-card turn. If act turns more than one card, then act can be decomposed into 
single-card turn actions, turning the cards one after the other. We already know 
that a single-card turn from a non-good state yields a non-good subsequent state, 
so following a “trail” of non-good states shows act produces a non-good state as 
well.

Randomized flip. If act is a randomized flip then consider any turn set T that act might 
be picked. We already know that turning T yields a non-good subsequent state 
and this is also a subsequent state of act.

Branching shuffle. If act is a shuffle that produces several subsequent states (this 
requires shuffling with a face-up card or with cards with more than one back 
symbol), then restricting the set of allowed permutations to those corresponding 
to one of the visible sequences yields an ordinary shuffle that therefore yields a 
single subsequent non-good state. This state is also a subsequent state of act.

This concludes the proof.

9.4. Protocols for n-COPY Require 2n Cards

In this section, we prove that any protocol that produces n copies of a commitment 
needs at least 2n+ 1 cards, showing that we cannot improve w.r.t. to the number of 
cards on the protocol in [NNH+18], cf. Figure 7.10. The results in this section are 
mainly due to co-authors Miyahara, Hayashi, Mizuki and Sone of [KKW+17], with some 
made changes and simplifications to the proof and exposition. We start with a lemma.

Lemma 9.2. Let P be a secure protocol computing a function f . Assume that a reduced 
state µ of  P is transformed to a non-similar state µ′ by an action. Then,

1. the action cannot be of type perm.

2. if the action is a turn, µ′ has a sibling state.

3. if it is a shuffle, either |µ| = |µ′| and µ′ has a ⊥-sequence, or |µ| < |µ′|.

Proof. 1. A permutation can only produce similar states by definition.
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2. As µ′ and µ are not similar, µ′ contains a proper subset of the sequences of µ. 
The sequences which were removed from µ′ are not compatible with the visible 
sequence annotation to µ′ and hence it needs to have a sibling state.

3. Clearly, a (shuffle,Π,F) action cannot reduce the number of sequences. Assume 
that |µ| = |µ′| and µ′ contains no ⊥-sequences. Let s1, s2, . . . , si be the sequences 
in µ. For any π ∈ Π, µ′ includes all sequences π(s1), π(s2), . . . , π(si). Because 
|µ| = |µ′|, µ′ cannot have any other sequences. Thus, µ and µ′ are similar via π, 
a contradiction.

Our impossibility proof first assumes the existence of a 2n-card COPY protocol which is 
minimal in the sense that it admits the shortest run, i.e., there is no protocol with the 
same functionality where there is a leaf state that is less deep.3 We call it run-minimal. 
We then derive a contradiction by showing that the leaf state of the shortest run cannot 
be reached by one of the admissible actions.

Theorem 9.2. There is no (possibilistically) secure 2n-card n-COPY protocol.

Proof. Suppose for a contradiction that there are 2n-card n-COPY protocols, and let 
P = (D,H, U,Q,A) be a run-minimal one. Let µ′ be a leaf state of the state diagram 
of P of minimum depth. As µ′ is final, it is similar to the state

(♣♡)n 0

(♡♣)n 1,

meaning µ′ contains exactly two sequences and the distance between them is 2n. Let µ
be the parent state of µ′. Note that µ and µ′ are not similar, as otherwise the shortest 
run would obviously not be minimal, as we could remove µ′ from the diagram. Hence, 
by Lemma 9.2 we only need to consider the following actions:

• (turn, T ): Sequences in µ′ coincide at positions in the (non-empty) turn set T . 
But then µ′ would not contain two sequences of distance 2n, a contradiction.

• (shuffle,Π,F): The only way for µ to have only one sequence is if it is a ⊥-sequence. 
Note that from that situation a shuffle cannot produce any 0- or 1-sequences 
and hence cannot end in µ′. Therefore, assume |µ| ≥ 2. Then, by item 3 of 
Lemma 9.2 there are two possibilities. If |µ′| = |µ| we would have introduced a 
⊥-sequence, which is not present in µ′. Therefore, we have |µ′| > |µ| ≥ 2, which 
is a contradiction to |µ′| = 2.

• (restart): µ′ would be the start state, where there are exactly two sequences of 
distance 2, contrary to the distance of 2n, with n > 1.

By Theorem 9.2 and the existing (2n+ 1)-card COPY protocol [NNH+18], 2n+ 1 is the 
necessary and sufficient number of cards for making n copied commitments. In the next 
section, we restrict our attention to finite-runtime protocols.

3This is to avoid intricacies with definitions such as: “we cannot delete a leaf while retaining function-
ality” (used in Section 9.5) for infinite trees.
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9.5. Finite-Runtime n-COPY Requires 2n+2 Cards

In Section 9.4, we showed that 2n+ 1 cards are minimal for COPY computations. Note 
that the existing (2n+ 1)-card COPY protocol [NNH+18] has a running time that is 
finite only in expectation. In this section, we show that if we are restricted to a finite 
running time, there cannot be a protocol using only 2n+ 1 cards. For this, we look at 
the finite state tree of an assumed minimal protocol and consider a leaf state with a 
position of largest depth in the tree (i.e., there is no leaf state which is even deeper). By 
contradiction, we show that no such leaf state can exist, as it would have a sibling which 
is not yet a leaf state. The results in this section are mainly due to co-authors Miyahara, 
Hayashi, Mizuki and Sone of [KKW+17], with some made changes and simplifications 
to the proof and exposition.

Theorem 9.3. There is no (possibilistically) secure (2n+1)-card finite-runtime n-COPY
protocol.

Proof. Suppose for a contradiction that there exist (2n+1)-card finite-runtime n-COPY
protocols and let P = (D, U,H,Q,A) be a minimal one, in the sense that we cannot 
remove a leaf while retaining functionality. The deck D includes at least n ♣s and n ♡s, 
and let remaining card be of symbol ♣ or of third color, say ♢. Because of the finite 
running time, the height of the state tree of P is finite, and hence, there must be a 
deepest leaf state, i.e., a leaf state with no other leaf state being on a level below it. We 
call it µ′. As it is a final state, it needs to look like this, up to reordering:

♣(♣♡)n 0 ♢(♣♡)n 0

♣(♡♣)n 1, or ♢(♡♣)n 1.

The distance between the two sequences is 2n, and one column is constant. Let µ be 
the parent state of µ′. Similarly to the proof of Theorem 9.2, perm and shuffle cannot 
have transformed µ to µ′. Hence, from the form of µ′ the action must be (turn, {1}). By 
the minimality of P, µ and µ′ are not similar. Therefore, item 2 of Lemma 9.2 implies 
that there is a sibling state µ′′ of µ′. This sibling state has a constant ♡-column (or 
possibly a ♣-column, if we have a ♢) in the first position, as it is the only way for the 
visible sequences of the turn to differ. In this case, we cannot construct two sequences 
whose distance is 2n with the remaining n− 1 ♡s and n+ 1 ♣s (or n ♣s and a ♢) in 
µ′′. Therefore, µ′′ cannot be a leaf state of P , and there would be a deeper leaf than µ′, 
contrary to our assumption.

9.6. Prerequisites for Restricted Shuffle Lower Bounds

This section is mainly taken from [KKW+17; K18] and contains important insights 
for lower bound proofs when considering protocols that use only uniform or closed or 
uniform closed shuffles.
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♡ ♡ ♡ ♣ ♣ 1
♡ ♡ ♣ ♡ ♣ 2
♡ ♡ ♣ ♣ ♡ 3
♣ ♣ ♡ ♡ ♡ 4
♡ ♣ ♣ ♡ ♡ 5♣ ♡ ♣ ♡ ♡
♡ ♣ ♡ ♣ ♡ 6♣ ♡ ♡ ♣ ♡
♡ ♣ ♡ ♡ ♣ 7♣ ♡ ♡ ♡ ♣

(a) orbits of ⟨(1 2)⟩

♡ ♡ ♣ ♣ ♡ 1
♡ ♡ ♣ ♡ ♣ 2♡ ♡ ♡ ♣ ♣
♣ ♣ ♡ ♡ ♡ 3
♡ ♣ ♡ ♣ ♡ 4♣ ♡ ♣ ♡ ♡
♡ ♣ ♣ ♡ ♡ 5♣ ♡ ♡ ♣ ♡
♡ ♣ ♡ ♡ ♣ 6♣ ♡ ♡ ♡ ♣

(b) orbits of ⟨(1 2)(3 4)⟩

♣ ♣ ♡ ♡ ♡

1
♡ ♣ ♣ ♡ ♡
♡ ♡ ♣ ♣ ♡
♡ ♡ ♡ ♣ ♣
♣ ♡ ♡ ♡ ♣
♣ ♡ ♣ ♡ ♡

2
♡ ♣ ♡ ♣ ♡
♡ ♡ ♣ ♡ ♣
♣ ♡ ♡ ♣ ♡
♡ ♣ ♡ ♡ ♣

(c) orbits of ⟨(1 2 3 4 5)⟩

♡ ♡ ♡ ♣ ♣ 1
♣ ♡ ♡ ♣ ♡

2♡ ♣ ♡ ♣ ♡
♡ ♡ ♣ ♣ ♡
♣ ♡ ♡ ♡ ♣

3♡ ♣ ♡ ♡ ♣
♡ ♡ ♣ ♡ ♣
♣ ♣ ♡ ♡ ♡

4♣ ♡ ♣ ♡ ♡
♡ ♣ ♣ ♡ ♡

(d) orbits of ⟨(1 2 3)⟩

♣ ♡ ♡ ♡ ♣

1♡ ♣ ♡ ♡ ♣
♡ ♡ ♣ ♡ ♣
♡ ♡ ♡ ♣ ♣
♣ ♣ ♡ ♡ ♡

2♡ ♣ ♣ ♡ ♡
♡ ♡ ♣ ♣ ♡
♣ ♡ ♡ ♣ ♡
♣ ♡ ♣ ♡ ♡ 3♡ ♣ ♡ ♣ ♡

(e) orbits of ⟨(1 2 3 4)⟩

♡ ♡ ♡ ♣ ♣ 1
♣ ♣ ♡ ♡ ♡ 2♡ ♣ ♣ ♡ ♡
♣ ♡ ♣ ♡ ♡
♡ ♡ ♣ ♣ ♡

3

♣ ♡ ♡ ♡ ♣
♡ ♣ ♡ ♣ ♡
♡ ♡ ♣ ♡ ♣
♣ ♡ ♡ ♣ ♡
♡ ♣ ♡ ♡ ♣

(f) orbits of ⟨(1 2 3)(4 5)⟩

Figure 9.1.: Orbits of different closed (cyclic) shuffle operations on the card sequences.

Properties of (Uniform) Closed Shuffles
For our proof we will need the orbit partitions of closed shuffles on sequences of five 
cards with three ♡ and two ♣. A display of all relevant orbit partitions can be seen in 
Figure 9.1. Before we proceed with the main theorem in Section 9.7, it is beneficial to 
state some observations about orbit partitions and closed shuffles.

Lemma 9.3. Assume we shuffle a state µ into a state µ′ using a closed permutation 
set Π. If there is π ∈ Π with π(i) = j, then in µ′ the columns i and j contain the same 
multiset of symbols.

Proof. Assume column i has k ♣s in µ′. Because Π is closed, shuffling again with Π
yields µ′ again. In particular if s′ is contained in µ′, then so is π(s′). Since π is a 
bijection on the set of all sequences, the sequences with a ♣ in position i are mapped to 
distinct sequences with a ♣ in position j. In particular column j contains at least as 
many ♣s as column i in µ′. Since the same argument works for all other symbols and 
the total number of sequences did not increase, the numbers of ♣ (and other symbols) 
in column i and j coincides. Since ♣ was arbitrary, the claim follows.
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Observe that Lemma 9.3 is false, if Π is not closed. Take for instance an action (perm, π)
for π ̸= id. It is a non-closed shuffle clearly lacking this property.

Lemma 9.4 (Shuffling and Orbit Partitions). Let µ be transformed into µ′ via some 
shuffle with closed permutation set Π. Let O be an orbit of  Π.

1. If  µ ∩O = ∅, then4 µ′ ∩O = ∅

2. If  µ ∩ O contains a sequence of type r and no other sequences of type r′ ̸= r, 
then µ′ ∩O = O contains only r-sequences.

3. Otherwise, µ′ ∩O = O contains only ⊥-sequences.

Proof. Note that for any pair s1, s2 of sequences, there is some π ∈ Π with π(s1) = s2
precisely if they are in the same orbit of Π. Thus when shuffling with Π, the type 
µ(s1) directly “infects” precisely the entire orbit of s1. With ⊥ indicating several types 
jumbled together, the three cases are easily checked.

For the more restricted case of uniform closed shuffles, let us state the following simple 
but interesting observation: all sequences in an orbit have the same symbolic probability 
after the shuffle.

Lemma 9.5. Let act = (shuffle,Π) be a uniform closed shuffle and µ a state. Let µ′
be the state arising from µ through act and s′1 and s′2 two sequences of symbols in µ′. 
If  s′1 = π(s′2) for π ∈ Π, then µ′(s′1) = µ′(s′2), i.e., the sequences have the same 
probability.

For an analysis of a “backwards shuffle” (from [K18], to be introduced in Section 9.9), 
we make use of the state partitions as defined next. A partition P (µ) of a state µ arises 
by putting all sequences of the state into the same set, which evaluate to the same 
symbolic probability. (More formally, it arises from the equivalence relation of having 
the same µ(·) value). Moreover, a type partition T (µ) of µ is defined similarly, putting 
all sequences of the same type (i.e., the associated output value or a ⊥-symbol) into a 
set.

To state our criterion in a formal way, we define the (natural) ordering on partitions 
as follows: Given two partitions P, P ′ on some set M , we say that P is finer than P ′, 
or equivalently, that P ′ is coarser than P , if every set in P is subset of a set in P ′. It 
holds that for any state µ, its partition P (µ) is finer than its type partition T (µ). This 
can, e.g., be seen in Example 9.1, as {♡♡♣♣,♡♣♡♣} is contained in both sets, and 
both {♣♡♡♣,♡♣♣♡} and {♣♡♣♡,♣♣♡♡} are subsets of the larger four-element set 
of T (µ). Using these, let us give a rephrasing of relevant results from just before, using 
our new vocabulary.

Lemma 9.6. Let µ be transformed into µ′ via some shuffle with permutation group Π. 
Then the orbit partition of  Π is (non-strictly) finer than the type partition T (µ′) of  µ′. 
Moreover, if the shuffle is uniform, the orbit partition of  Π is (non-strictly) finer than 
the partition P (µ′) of  µ′.

4We slightly abuse notation here, using µ for the set of sequences contained in µ.
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♡♡♣♣ 1/2X11

♡♣♡♣ 1/2X11

♣♡♡♣ 1/2X10 + 1/2X01

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X00

♣♣♡♡ 1/2X00

♡♡♣♣ 11
♡♣♡♣ 11
♣♡♡♣ 01
♡♣♣♡ 01
♣♡♣♡ 02
♣♣♡♡ 02

♡♡♣♣ 1
♡♣♡♣ 1
♣♡♡♣ 0
♡♣♣♡ 0
♣♡♣♡ 0
♣♣♡♡ 0

Figure 9.2.: A state from Figure 8.1 given in three forms. Left: the full (non-reduced) 
form, middle: its semi-reduced form, where the four 0-sequences are divided into two 
parts because they are assigned distinct symbolic probabilities, and right: its reduced 
form, which no longer carries the information about these distinct probabilities. The 
state is turnable at the second position.

Proof. Let µ be transformed into µ′ via some shuffle with permutation group Π. Assume 
to the contrary, that there are two sequences in the same orbit of Π, but with distinct 
type, where type includes ∅ (if the sequence is not contained in the state) and ⊥. This is 
a contradiction to Lemma 9.4. In the same way, if the shuffle is uniform, there cannot be 
two sequences in the same orbit of Π with distinct probabilities due to Lemma 9.5.

The case that it is strictly finer occurs, if the sequences of two distinct orbits of the 
shuffle subgroup happen to have the same symbolic probability or type, respectively, 
after the shuffle.

Semi-reduced States
In this section from [K18], we introduce a new representation, which is an intermediate 
between states and reduced states, but captures the distinctness of sequence probabilities 
that is not contained in (fully) reduced states. We make use of this additional information 
in impossibility proofs for protocols which are restricted to uniform closed shuffles. As 
an intermediary step, we use partitions of a state as just defined. We refer the reader to 
Figure 9.2 for an example and illustration of what our definitions in this section aim at.

Example 9.1. The state of Figure 9.2 (left), let us call it µ, has a partition

P (µ) = {{♡♡♣♣,♡♣♡♣}, {♣♡♡♣,♡♣♣♡}, {♣♡♣♡,♣♣♡♡}}

(which is also encoded in its semi-reduced representation as exactly the sequences with 
the same annotation end up in a common set of the partition), and a type partition

T (µ) = {{♡♡♣♣,♡♣♡♣}, {♣♡♡♣,♡♣♣♡,♣♡♣♡,♣♣♡♡}}.

We aim to represent the partition P (µ) of a state in its semi-reduced form. For this, 
we introduce as many copies of types as there are partitions with sequences of this type, 
and add a subscript from N to distinguish these, cf. Figure 9.2 (middle). (If there is 
only one partition of a type, we nevertheless give it the subscript 1). The order of these 
subscripts will be irrelevant for our purposes.
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This semi-reduced form of a state can be generated by appropriately projecting the 
sequence probabilities to these indexed type symbols.

Turn-Split Representation of a (Semi-)Reduced State
For turnable states, we would like to introduce an additional, compressed method to 
depict the state, where we are only interested in the partitioning of the state and how 
it behaves relative to the split of the state due to the turn. For this, let us regard 
empty sequences (sequences not in the state, i.e., with probability 0) as a sequence of 
type ∅. We sort the state according to a column i (usually a turnable column) and 
assume that the deck is chosen over an alphabet c1, . . . , cm, which carries some ordering 
c1 ≤ · · · ≤ cm. The ordering inside the blobs for each ck is irrelevant, and we may only 
assume an ordering by type.

For this, we will use the following turn-split representation w.r.t. a position k of a 
state:

c1

|
t1,1 · · · t1,n1

· · ·
| · · · · · · · · ·

cm

|
tm,1 · · · tm,nm|

where t1,1, . . . , t1,n1 , . . . , tm,1, . . . , tm,nm are (indexed) types of corresponding sequences. 
The indicated ordering means: if the state is turnable at position k, ti,j belongs to the 
ci-branch of a turn at position k, for all 1 ≤ j ≤ ni.

As an example, let us depict the state from Figure 9.2 (left) via this split-state 
representation w.r.t. the turnable column 2:

♣

|
11 01 02

♡

|
11 01 02 |

We will make more heavy use of this representation in the next subsection and in 
Section 9.10.

Enriching Turn-Split Representations with Orbit Partitions
As we saw in Lemma 9.6, a necessary criterion to show that we can reach a state µ′ via 
a uniform closed shuffle, is to show that it is compatible with an orbit partition, i.e., 
that there is a Π with an orbit partition that is finer than the partition of µ′. Hence, we 
would like to depict a possible orbit partition in a simple way that makes it is obvious 
that it is finer than the partition of the state.

We do this via connecting horizontal brackets between the sequences representing the 
orbit decomposition of an admissible shuffle. Here, all connected sequences are meant 
to be in the same orbit. A single line drawn downward will mean that the sequence is 
in an orbit of size 1.

We use our previous example of Figure 9.2 in a turn-split representation w.r.t. the 
turnable position 2. We depict two possible orbit decompositions (on the left with three 
sets of size two, on the right with one orbit split into two, which are represented by single 
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lines pointing downwards). It shows that the state is generateable by a shuffle with such 
an orbit decomposition, as it is not coarser than the partition of the state (specified by 
the indices).5 (It would then be left to show that such an orbit decomposition is in fact 
possible. For example, we will see later in Lemma 9.9, that the left decomposition is 
impossible.)

♣

|
11 01 02

♡

|
11 01 02 |

♣

|
11 01 02

♡

|
11 01 02 |

The example abstracts from many details and from the form of Π, but if one can already 
show (and we do so in Section 9.10) that there is no orbit partition as fine as the 
state partition, then direct reachability of such a state via a closed uniform shuffle is 
impossible.

9.7. Restart-Free Uniform Closed AND Requires Five Cards
As discussed on Chapter 5, if we are willing to discard the finite running time requirement, 
there is an intermediate property, namely restart-freeness. This section, taken from 
[KKW+17], focuses on restart-free AND protocols. Our proof is similar to the setting of 
Theorem 9.1 in that we start from a (slightly enlarged) set of good states, but instead of 
showing that there is an infinite path of non-good states, we show the stronger property 
that no path contains a good state.

Note that for protocols with only closed, but possibly non-uniform shuffles, the 
four-card AND protocol of Section 8.1 already provides a card-minimal solution. For 
protocols which are additionally restricted to uniform and closed shuffles, we show in the 
following that five cards are necessary to compute AND in committed format without 
restarts.

The following argument speaks about non-reduced states. We still use the terminology 
for reduced states, but the precise notion of turnability from Eq. (7.6).

Theorem 9.4. There is no secure restart-free Las Vegas four-card AND protocol with 
deck D = [♡,♡,♣,♣] in committed format if shuffling is restricted to uniform closed 
shuffles.

Proof. The proof is similar to the proof of Theorem 9.1. Let P be a secure protocol 
computing AND with four cards using only uniform closed shuffles and no restart actions. 
We define a set G of good states that contains all final states but not the start state. We 
then show that we cannot get into the set of good states from a non-good state with a 
turn or a uniform closed shuffle that does not create ⊥-sequences. A state is good if it is

• a state of type 1/1 or 2/2,

• a state of type 1/2 or 2/1 without a constant column,
5Note that there are also orbit compositions of sizes 1, 1, 4, sizes 3, 3, sizes 2, 4 and size 6, which are 
however incompatible as they are coarser than the partition of the state and hence are not displayed
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Figure 9.3.: 

♡ ♡ ♣ ♣
♡ ♣ ♡ ♣
♣ ♡ ♡ ♣
♡ ♣ ♣ ♡
♣ ♡ ♣ ♡
♣ ♣ ♡ ♡

(a) All sequences with four cards.  

♡ ♣ ♡ ♣ 1
♡ ♣ ♣ ♡ 1
♣ ♡ ♡ ♣ 0
♣ ♡ ♣ ♡ 0

(b) A sequence-maximal final state with 
four cards w.r.t. (result, 1, 2).

• a turnable state of type 2/3 or 3/2.

All other states are bad. The main difference to Theorem 9.1 is that we need to consider 
states where turning yields at least one good state instead of only the ones that yield 
only good states. In particular, the additional good states are the turnable 2/3- and 
3/2-states.

Note that as our deck is [♡,♡,♣,♣], we can form at most 6 sequences shown in 
Figure 9.4a. The start state is bad because it is of type 3/1. The final states are among 
the good states because they are of type i/j with i, j ≤ 2. If they are of type 2/1 or 
1/2 they do not have a constant column as one can easily see when looking at the 
sequence-maximal final state for four cards (Figure 9.4b).

Turns. Only states of type i/j with i, j ≥ 2 are turnable. The only bad states that fit 
this criterion are of type 3/3 or 4/2 (2/4). The maximum state with a constant column 
has three sequences, therefore these states can only be turned into two states both of 
which are of types 1/2 or 2/1 with a constant column.

Shuffles. We cannot shuffle a bad state µ into a good state µ′ of type i/j where 
both i, j ≤ 2. Assume we could. This would require µ to be a bad 1/2-state, thus µ
has a constant column and three sequences. Any shuffle that adds sequences involves 
the constant column. Any other column of µ contains the symbol of the constant 
column only once, hence, by Lemma 9.3 it must contain it at least three times after the 
column has been shuffled with the constant column. This adds at least two sequences, 
contradicting our assumption on the type of µ′. Therefore we only need to look at 
shuffles that yield a turnable 2/3 or 3/2-state.

Assume that an action (shuffle,Π) transforms a bad µ into a turnable 3/2 state 
µ′. Without loss of generality, we assume position 1 is turnable in µ′ and the se-
quence not contained in µ′ is s = ♡♡♣♣.6 By Lemma 9.4, {s} is an orbit of Π
of size 1, i.e., s is invariant under Π. In particular, Π is a non-trivial subgroup of 
{id, (1 2), (3 4), (1 2)(3 4)} ⊆ S4.

If we had (3 4) ∈ Π, then the only two sequences of µ′ with ♡ in position 1, namely 
♡♣♡♣ and ♡♣♣♡, would share an orbit of Π, and therefore have the same type in µ′, 

6If this is not the case we can apply a permutation such that the constant sequence either is ♡♡♣♣
or ♣♣♡♡ and use the symmetry of exchanging (relabeling) ♡ and ♣.
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contradicting turnability of the first column of µ′. Thus, either (1 2) or (1 2)(3 4) is in 
Π (but not both). Assume (1 2) ∈ Π, the other case is analogous. By Lemma 9.5, it 
holds that

µ′(♡♣♡♣) = µ′(♣♡♡♣) and µ′(♡♣♣♡) = µ′(♣♡♣♡), (∗)

because these each share an orbit. As position 1 of µ′ is turnable, we know that

µ′(♡♣♡♣) + µ′(♡♣♣♡) = p ∈ (0, 1), and
µ′(♣♣♡♡) + µ′(♣♡♡♣) + µ′(♣♡♣♡) = q ∈ (0, 1),

i.e., constant. Using this and (∗), we obtain µ′(♣♣♡♡) = q− p, which is constant. It is 
non-zero, so each of the monomials X00, X01, X10, X11 occurs with a positive coefficient, 
meaning ♣♣♡♡ is a ⊥-sequence of µ′ – a contradiction.

9.8. Finite-Runtime Closed AND Requires Six Cards
In this section, we prove that AND protocols which are restricted to closed shuffle 
operations, require six cards. The section is from [KKW+17]. The proof uses a similar 
technique as in Section 9.3. While in the latter there was a set of good states including 
the final states which you never enter with all branches of a branching point in the 
protocol, here we found that it was easier to start the other way round, namely to define 
a set of bad states, about which we prove that starting from these there is always a 
path in the tree which will enter a bad state again and this path does not contain any 
final states. Here the situation is more complex as there are many more possible states 
and we needed to derive new tools (orbit partitions) to make use of the structure of the 
restricted permutation sets. For this we will make heavy use of Lemmas 9.3 and 9.4, 
because they enable us to exploit the rich structure of closed shuffles. Let us begin by 
stating our theorem.

Theorem 9.5. Let P be a (possibilistically) secure protocol computing AND in committed 
format using only closed shuffles with five cards of two symbols.7 Then P is not finite-
runtime.

Proof Outline. We define a set of bad states, such that the start state is one of them. 
We then show that in any protocol from each bad state there is a path into another bad 
state. In particular, none of the bad states and none of the states on the paths between 
them are final. This implies that there is an infinite path starting from the start state 
precluding a finite running time.

Without loss of generality, the protocols we consider have the following properties, 
since each protocol that does not have some of these properties can be transformed into 
an equivalent protocol that does.

7Whether a five-card protocol is possible using a deck of three colors, i.e., D = [♡,♡,♣,♣,♢], is an 
interesting open question.
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• P does not use operations that transform a (reduced) state into any similar 
state. These operations are clearly not necessary, when arguing about possibilistic 
security, which is sufficient in our case.

• P does not use shuffle operations while cards are lying face up. These are 
unnecessary by Corollary 6.1 and Lemma 6.2.

• each shuffle set Π is a cyclic subgroup of S5. This is because each subgroup Π of 
S5 can be written as the product Π =

∏︁
π∈Π⟨π⟩, implying that doing the cyclic 

shuffles ⟨π⟩ one after the other gives the same set of permutations that can happen 
in total as in Π itself.

• The deck is D = [♡,♡,♡,♣,♣]. We need two ♣ and two ♡ for the inputs. Our 
arguments work regardless of whether the fifth card is ♣ or ♡.

Definition of Bad States. Any state µ with one of the following properties is bad:

B4∗: µ has four sequences of the same type. In particular, this includes all states with 
seven or more sequences,

B3♣: µ has a constant ♣-column and three or more sequences,

B5♡: µ has a constant ♡-column and five or more sequences,

B3♡♡: µ has two constant ♡-columns and three sequences,

B♡3/1: µ has a constant ♡-column and is of type 3/1 or 1/3.

To see that states of these types are all non-final, first note that any final state is, up 
to reordering, a (not necessarily proper) subset of the sequences of the following state 
including at least one 0-sequence and at least one 1-sequence. Hence, we will call it the 
maximal final state:

♡♣ ♣♡♡ 1
♡♣ ♡♣♡ 1
♡♣ ♡♡♣ 1
♣♡ ♣♡♡ 0
♣♡ ♡♣♡ 0
♣♡ ♡♡♣ 0

The bad states do not “fit” into this state, since

B4∗: the maximal final state has only three sequences of each type.

B3♣: the only two columns in the maximal final state with three ♣ are the first two. 
But a restriction to the sequences with ♣ in the first (or second) position contains 
0-sequences (1-sequences) only.

B5♡: all columns of the maximal final state contain at most four ♡.
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B3♡♡: no two columns in the maximal final state have three ♡ in the same positions.

B♡3/1: any admissible restriction of the maximal final state with four sequences and a 
constant ♡-column is of type 2/2.

The start state is bad as required as it falls into category B♡3/1. We begin by making a 
few observations that greatly simplify the proof.

Claim 9.1 (Restriction to Simple Shuffles). We need to only consider the three shuffle 
sets ⟨(1 2)⟩, ⟨(1 2 3)⟩ and ⟨(1 2)(3 4)⟩ in the main proof.

Proof. As discussed before, we only consider cyclic shuffles, i.e., shuffles of the form 
Π = ⟨π⟩ for π ∈ S5. Unless π = id, the cycle decomposition of π can have either one 
cycle of length 2, 3, 4 or 5 or two cycles of length 2 or one cycle of length 2 and one cycle 
of length 3. We treat states that are equal up to similarity (reordering) as equivalent; it 
therefore suffices to consider one shuffle of each type. Among them, ⟨(1 2)(3 4 5)⟩ can 
be decomposed8 as ⟨(1 2)⟩ ∘ ⟨(3 4 5)⟩ and we handle those factors anyway. In the cases 
⟨(1 2 3 4 5)⟩ and ⟨(1 2 3 4)⟩ there is no choice of two orbits such that both contain less 
than four sequences, so any shuffle that does not produce ⊥-sequences will produce at 
least four sequences of the same type, yielding a bad state of type B4∗.

Claim 9.2 (Criteria for Dead Columns). The following criteria for columns ensure 
that if the next turn in the protocol occurs in this column, then we are either already bad 
or this turn entails a bad successor state. We say the column is dead.9 In particular, if 
all columns are dead, we know that after the next turn, we get a bad state.

D3♣: The column contains 3 ♣.

D5♡: The column contains 5 ♡.

D2∗♣: The column contains 2 ♣ belonging to sequences of the same type.

D3∗♡: The column contains 3 ♡ belonging to sequences of the same type.

Proof. • If a column contains three or more ♣, turning this column yields a bad 
state with a constant ♣-column and three or more sequences.

• If a column contains five or more ♡, turning this column yields a bad state with a 
constant ♡-column and five or more sequences.

• if a column contains two ♣ belonging to sequences of the same type, an additional 
sequence of the other type with ♣ must be added in this position to make it 
turnable. This leads to a column with three ♣, and turning there yields a B3♣.

8The cycles have co-prime length, as opposed to the case ⟨(1 2)(3 4)⟩, which we handle explicitly in 
the proof of the theorem.

9If the column is unturnable then any method (not involving a turn) to make it turnable first before 
turning it in this column, will retain/ensure this deadness property.
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• If three sequences of the same type all have ♡ in a column, there needs to be 
an additional sequence of this type with ♣ in this column to make it turnable. 
Adding such a sequence yields a bad state of type B4∗.

Claim 9.3 (Death is Contagious). Consider a dead column with index i in a state µ
and a closed shuffle act with permutation set Π such that π(i) = j for a π ∈ Π. Then 
the column with index j is dead as well after applying act to µ.

Proof. • By Lemma 9.3, the number of ♣ must be the same in columns i and j
after the shuffle. Therefore D3♣ spreads.

• This case is completely analogous to the previous, with D5♡ instead of D3♣.

• By Lemma 9.3 column j must have at least two ♣ in the same type of sequences 
after the shuffle.

• For any shuffle that does not create ⊥-sequences, by Lemma 9.3 there must be 
three sequences of the same type that have ♡ in column j. Therefore j is dead 
after the shuffle.

Proof of Theorem 9.5. We show that from each bad state there is a path into another 
bad state by case analysis.

States with four sequences of the same type. Any non-trivial shuffle not producing ⊥-
sequences retains the four sequences of the same type.

Assume w.l.o.g. that there are four 0-sequences and consider turn operations. This 
requires at least two 1-sequences. If there are two sequences of type 1, we have six 
sequences in total. Turning either yields two states of at least three sequences, in 
particular one with constant ♣, a B3♣, or a 3/1 state with constant ♡, a B♡3/1. If 
there are more that two 1-sequences, there are at least seven sequences in total. A 
turn yields two successor states – one with a constant ♡-column and k sequences, 
and one with a constant ♣-column with m sequences and k +m ≥ 7. So we have 
k ≥ 5 (B5♡) or m ≥ 3 (B3♣).

States with a constant ♣-column and four sequences. Up to reordering, the state looks 
like

♣ ♣ ♡ ♡ ♡
♣ ♡ ♣ ♡ ♡
♣ ♡ ♡ ♣ ♡
♣ ♡ ♡ ♡ ♣

This state admits no non-trivial turn operation. Any shuffle operation that does 
not involve the first column produces a similar state. Since any column other than 
the first contains three ♡, any other shuffle produces three additional ♡ in the 
first column by Lemma 9.3, resulting in a state of type B4∗.
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States with a constant ♣-column and three sequences. Without loss of generality, these 
states are of type 2/1. They are non-turnable. Shuffles that do not involve the 
constant column will retain the property of being constant ♣ in that column and 
three or more sequences. Hence, in the following we consider shuffles involving 
the constant column.

To keep the proof simple, an important tool are the orbit partitions of each of 
the three equivalence classes of shuffles, as in Figure 9.1. We try to place the 
sequences into the orbits, such that completing these does not yield a bad state. 
W.l.o.g. we choose sequences, such that the constant ♣-column is the first column.

Case 1: (1 2). The orbit partition looks as in Figure 9.1a. The first three orbits 
contain no ♣ there and are out. No orbits contain two ♣ in the first column, 
so both 0-sequences must be placed in distinct orbits. If both orbits are of 
size 2, shuffling yields four 0-sequences giving a B4∗-state. Otherwise, one of 
the 0-sequences is ♣♣♡♡♡. The other 0-sequence and the 1-sequence must 
be placed into orbits of size 2. All of them have ♣ only in one column out of 
the columns 3, 4, 5, and ♣♣♡♡♡ has ♣ in none of them, so for all choices 
we end up in a B5♡-state.

Case 2: (1 2)(3 4). Similarly to before, we need to choose one 0-sequence as 
♣♣♡♡♡ and need to place the remaining two sequences into the last three 
orbits of Figure 9.1b. Choosing orbit 4 and 5 yields a B5♡-state.

If we choose orbits 4 (or 5) and 6 then the first two columns are dead 
(D3♣) and the fifth column is dead as well (D2∗♣). If we choose the second 
0-sequence within orbit 6, then columns 3 and 4 are dead (D3∗♡).

If we choose the 0-sequence within orbit 4 (or 5) and the 1-sequence within 
orbit 6, there are two living non-turnable columns. Any shuffle that contains 
only columns 3 and 4 in one cycle does not produce a 1-sequence with ♣ in 
those columns, so they remain non-turnable. Any shuffle that makes column 
3 or 4 turnable by shuffling them with at least one of the dead columns kills 
the column in the process.

Case 3: (1 2 3). If we place the three sequences in the pairwise distinct orbits of 
Figure 9.1d, we end up with nine sequences after the shuffle. Otherwise, the 
two 0-sequences share the bottommost orbit and the 1-sequence must be in 
the second or third orbit, and we get a B5♡-state.

States with a constant ♡-column and five or more sequences. W.l.o.g. the first column 
is constant ♡. Consider a turn operation on column i ̸= 1. Column i has either 
three ♡ and turning therefore leads to a B3♡♡-state, or column i has three ♣ and 
turning leads to a B3♣-state.

Any shuffle not involving the first column keeps it constant ♡, and therefore bad. 
Consider any shuffle involving the first column, say π is a possible permutation 
in the permutation set of the shuffle with π(i) = 1. Column i contains at least 
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two ♣ and by Lemma 9.3 shuffling yields two new sequences with ♣ in position 1, 
giving seven or more sequences – a B4∗-state.

States with two constant ♡-columns and three sequences. No turn operation is possible 
as the state is of type 1/2 or 2/1. Shuffles involving none of the constant columns 
keep them constant. Shuffles involving only one of them, produce a state with 
two ♣ in that column, so five sequences in total, where the other ♡-column stays 
constant. This is a B5♡-state.
For the interesting case of shuffles involving both constant ♡-columns, we again 
try to place the sequences into the orbits of the different types of shuffles such 
that completing these orbits does not yield two or more additional 0-sequences, 
as this would lead to a 4/2 state or to seven or more sequences.

Case 1: (1 2). As both constant columns have to be involved in the shuffle, they 
have to be in positions 1 and 2. This leaves the state constant.

Case 2: (1 2)(3 4). If the constant ♡-columns are both in the same cycle, we do 
not get additional sequences. Otherwise, say they are in positions 2 and 3, 
the only three sequences are ♡♡♡♣♣ from orbit 2, ♣♡♡♣♡ from orbit 5, 
and ♣♡♡♡♣ from orbit 6, and shuffling results in a B4∗-state.

Case 3: (1 2 3). W.l.o.g. the constant columns are 1 and 2. The sequences with ♡
in those positions are all in distinct orbits with a combined size of 7, which 
is a B4∗-state.

3/1-states with a constant ♡-column. This state is not turnable as it has only one 1-
sequence. A non-trivial shuffle not involving the constant column yields a state 
with five or more sequences and a constant ♡-column. For shuffles involving the 
constant column we try to place the sequences into the orbits of the different 
classes of shuffles such that completing these orbits does not yield any additional 
0-sequences.

Case 1: (1 2). We have to involve the constant ♡-column, which is w.l.o.g. in 
position 1. The only orbits with constant ♡ are 1, 2 and 3. To not produce 
additional 0-sequences, those need to be the ones occupied by the 0-sequences. 
We need to place the 1-sequence in orbits 5, 6 or 7, and choose w.l.o.g. 5. 
Then, the first two columns are dead via D3∗♡. The third column is dead 
via D3♣. Columns 4 and 5 are dead via D2∗♣.

Case 2: (1 2)(3 4). Regardless, the first two columns are dead via D3∗♡ and the 
other columns are dead via D2∗♣

Case 3: (1 2 3). The constant ♡-column is w.l.o.g. the first. No orbit contains 
three ♡ in column 1, so the 0-sequences are spread over at least two orbits. 
Any choice of two orbits contains four or more sequences, so we have four 
sequences of the same type after the shuffle.

This concludes the proof.
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9.9. A Backwards Calculus for Card-based Protocols
In this section, taken from [K18], we want to develop our proof technique further, by 
defining a systematic way to determine all states that can reach the final states (or 
a specified state set) of a protocol by an allowed set of actions. This happens by an 
iterative process, which, upon termination, lets you check for impossibility, by showing 
that the start state is not contained in the set. In this case we know that the final state 
is not reachable from the start state, showing impossibility of a protocol for the allowed 
actions.

We define the following set of operations
• shuf−1

∗ (G) for a set of states G and ∗ ∈ {∅,u, c,uc} which we omit if ∗ = ∅. This 
is the set of states that are transformed into a state in G by a shuffle that is i)
general if ∗ = ∅, ii) closed if ∗ = c, iii) uniform if ∗ = u and iv) uniform closed if 
∗ = uc. The trivial shuffle is allowed, i.e., G is a subset of this set.

• turn−1
★ (G) for a set of states G and ★ ∈ {∅, r, f} which we omit if ★ = ∅. This is the 

set of states from G or states that have a turnable position i such that
– if  ★ = ∅: a state from G is on one of the branches of a turn at i (as immediate 

child).
– if  ★ = r: a state from G is on one of the branches of a turn at i (as immediate 

child) and all other branches are ⊥-free, i.e., the other children states do not 
contain a sequence of type ⊥.

– if  ★ = f: all immediate successor states from a turn at i are in G.
Using this, we can follow a high-level strategy for proving lower bounds on the number of 
cards for general functionalities. For this, let G be the set of final states of the respective 
protocol and note that they do not include any states that contain a ⊥-sequence. Let 
∗ ∈ {∅,u, c,uc} and ★ ∈ {∅, r, f}. Define by cl★,∗(G) the closure of turn−1

★ (·) and shuf−1
∗ (·)

operations on G. If the start state is not contained in cl★,∗(G), then no protocol exists 
for the running time/shuffle restrictions ★ and ∗, as specified above.

Note that we can define this backwards calculus for both detail levels of state trees, 
namely for (semi-)reduced states and for normal states. However, in this work we 
only need it for (semi-)reduced states, and assume this to be the case throughout the 
document. If the start state is found in the set derived from the calculus, one may 
take a closer look and see at which state and by which order of operations it has been 
added, possibly leading to a protocol, if one switches to the non-reduced version of the 
calculus. If the process constitutes a search for finite-runtime protocols, the protocol 
can be directly derived from the steps. Otherwise, we can at least guarantee a restarting 
Las Vegas protocol, as we can recover at least one protocol path leading to a final state. 
All branches which leave this path could be replaced with a restart operation, giving a 
complete protocol.
Remark 9.1. The closures are well-defined, i.e., they do not depend on the order 
of turn and shuffle backwards steps. Moreover, shuf−1

∗ (·), turn−1
★ (·) and cl★,∗(·) are 

inclusion-monotone functions.
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In impossibility proofs we can use the monotonicity to deliberately enlarge the sets of 
states, as long as the impossibility still holds. This helps to simplify the proofs.

In the following we derive two lemmas which make calculating turn−1
★ (·) and shuf−1

∗ (·)
easier. They are based on the simple fact that states that are not reachable by a turn 
or shuffle operation need not be considered when determining the respective backwards 
calculus state sets.

Lemma 9.7. Let G be a set of states, and let cc(G) be the subset of  G with states that 
have a constant column. Then, turn−1

★ (G) = G ∪ turn−1
★ (cc(G)) for ★ ∈ {∅, r, f}.

Proof. Monotony of turn−1
★ (·), cc(G) ⊆ G, and G ⊆ turn−1

★ (G) directly implies G ∪
turn−1

★ (cc(G)) ⊆ turn−1
★ (G). For the other direction, observe that any state µ in turn−1

★ (G)
(not already in G) arises from a state µ′ ∈ G which is at one of the branches when 
turning a position in µ, by definition. For this we need to have µ′ ∈ cc(G).

We derive a similar statement for reverse shuffle steps, which will be useful in the 
proof of Theorem 9.6. In the following, a state is generateable via uniform closed shuffles, 
if it has a partition that is non-strictly coarser than that of a permissible orbit partition 
of a subgroup Π, and generateable via closed shuffles, if it has a type partition that is 
non-strictly coarser than that of a permissible orbit partition of a subgroup Π.

Lemma 9.8. Let G be a set of states, and let genc(G) and genuc(G) be the subset of  G
that contains all states that are generateable via a closed and uniform closed shuffles, 
respectively. Then,

shuf−1
∗ (G) = G ∪ shuf−1

∗ (gen∗(G)), for ∗ ∈ {c,uc}.

Proof. For G ∪ shuf−1
∗ (gen∗(G)) ⊆ shuf−1

∗ (G) we use that shuf−1
∗ (·) is (inclusion-)mono-

tone, gen∗(G) ⊆ G, and G ∈ shuf−1
∗ (G). The other direction follows, as any state µ in 

shuf−1
∗ (G) must either be in G, or it arises from a state µ′ ∈ G such that there is a 

shuffle of type ∗ that produces µ′ from µ. Let Π be the permutation group of such a 
shuffle. We obtain generateablility of µ′ via a shuffle of type ∗ with group Π directly 
from Lemma 9.6.

9.10. General Uniform Closed AND Requires Five Cards
In this section, due to [K18], we generalize the impossibility result regarding four-
card AND protocols restricted to uniform closed shuffles of Theorem 9.4 to restarting 
protocols. This, together with the impossibility result of Section 9.11 and the four-card 
restart-free AND protocol using only uniform (non-closed) shuffles, shows that restarts 
are unnecessary for realizing AND and COPY with a minimal number of cards. This 
shows that allowing restarts is relatively powerless, except possibly for protocols that 
directly compute more complex Boolean functions.

The proof demonstrates the developed backwards calculus and how to deal with 
⊥-sequences in impossibility arguments. Before we start, let us note some general facts 
about orbit partitions on the four-card deck:
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Lemma 9.9. Let D = [♡,♡,♣,♣] be a deck of cards, X the set of all (symbol) sequences 
on D and Π a non-trivial subgroup of  S4. Then,

1. the size of the stabilizer on an s ∈ X is at most 4. 

2. if there is an orbit of size 1, then there are exactly two orbits of size 1. In this 
case, the corresponding sequences have distance 4. 

3. any orbit partition of  X via Π has set sizes i) (1, 1, 2, 2), ii) (1, 1, 4), iii) (3, 3), 
iv) (4, 2) or v) (6). Note that i) corresponds to a partition of maximal fineness. 
(In total, this upper-bounds the number of orbits to 4.) 

Proof. 1. Let us first show that |Stabs(S4)| = 4, the statement then follows from 
Stabs(Π) ⊆ Stabs(S4). For this, note that for any sequence on D there are exactly 
four permutations that leave the sequence fixed, namely id, the swap of the two 
♡, the swap of the two ♣, and the combination of both.

2. For this, assume there is an orbit of size 1, inhabited by a sequence s ∈ X. This 
implies that Π is a subset of the stabilizer Stabs(S4) of s. Determine the unique 
sequence s of maximum distance 4 by exchanging ♡ and ♣, and note that it has 
the same stabilizer, i.e., Stabs(S4) = Stabs(S4). We can infer that s also has an 
orbit of size 1.
By this argument, we can deduce that the number of orbits of size 1 is even. Assume 
there are two distinct sequences s1, s2, such that s2 ̸= s1. Hence, s1, s2, s1, s2 are 
four distinct sequences and s1, s2 have distance 2. Now observe that the stabilizers 
of s1 and s2 have trivial intersection, i.e., Stabs1(S4)∩Stabs2(S4) = {id}. As 
above, note that Π is a subset of both stabilizers, leading to Π ⊆ {id}, which 
contradicts the assumption that Π was non-trivial. This restricts the number of 
orbits of size 1 to 2.

3. For the third statement, observe that because of item 2, it remains to exclude the 
case (2, 2, 2) and to show that all five orbit set sizes are attainable by giving an 
example. Let us assume for a contradiction that the orbit partition has set sizes 
(2, 2, 2). Then, it holds for all s ∈ X and all π ∈ Π that π2(s) ∈ {s, π(s)} and 
hence π2(s) = s. This means that in the cycle decomposition of any π ∈ Π, there 
cannot be cycles of length 3 or larger, and hence any π ∈ Π has at most order 2. 
Then, Π is a subset of ⟨(1 2), (3 4)⟩ (up to joint conjugation of the generators) of 
size 2 or 4. Thus, {♡♡♣♣} is an orbit of size 1, a contradiction.
To see that the other orbit decompositions are in fact possible, consider the 
following examples (any joint conjugation of the generators will do as well):

i) ⟨(1 2)⟩ and ⟨(1 2)(3 4)⟩ has set sizes (1, 1, 2, 2).
ii) ⟨(1 2), (3 4)⟩ has set sizes (1, 1, 4).
iii) ⟨(1 2 3)⟩ has set sizes (3, 3).
iv) ⟨(1 2 3 4)⟩ has set sizes (2, 4).
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v) S4 has set sizes (6).

Using this, and the techniques from Section 9.9 we can now prove the following:

Theorem 9.6. There is no secure (restarting) four-card AND protocol with deck
D = [♣,♣,♡,♡] in committed format if shuffling is restricted to uniform closed shuffles.

Proof. As before, we start by iteratively expanding the set of good states, starting 
from the final states, and in each step adding all the states that are able to reach the 
good-states-so-far by a shuffle or turn, to the set. We show that this process terminates, 
and the resulting set does not include the start state, showing that no final state is 
reachable at all.

Note that, contrary to the proof of Theorem 9.4, we again need to take ⊥-sequences 
into account, which complicates the proof quite a bit. Moreover, it is important to 
make some use of both the uniformity and the closedness of the shuffles, hence to look 
at the more concrete probabilities of the states, as there are four-card protocols in the 
closed-shuffle setting (Theorem 8.1), and in the uniform-shuffle setting (Theorem 8.2). 
We want to avoid working with very concrete probabilities, for reasons of simplicity, 
hence we make only use of the type-annotated partition of the states, which already 
carries a lot of information, as introduced in the form the semi-reduced variants of 
states in Section 9.6.

Moreover, for ⊥-sequences we may distinguish two versions, namely those, which are 
assigned a constant probability, by ⊥c, and those which are assigned a non-constant 
(but result-mixed) probability, by ⊥nc. For example, 1/3(X00 + X01 + X10 + X11) is 
of type ⊥c, where as 1/3X00 + 2/3X11 would be of type ⊥nc. We write ⊥ if we do not 
differentiate the types.

As before, our deck is [♡,♡,♣,♣], and we can form at most six sequences shown in 
Figure 9.6a.

Figure 9.5.: 

♡ ♡ ♣ ♣
♡ ♣ ♡ ♣
♣ ♡ ♡ ♣
♡ ♣ ♣ ♡
♣ ♡ ♣ ♡
♣ ♣ ♡ ♡

(a) All sequences with four cards.  

♡ ♣ ♡ ♣ 1
♡ ♣ ♣ ♡ 1
♣ ♡ ♡ ♣ 0
♣ ♡ ♣ ♡ 0

(b) A reduced, sequence-maximal final 
state with four cards, where the first two 
positions encode the result.

Final and Prefinal States
The state of Figure 9.6b is (up to similarity) the largest final state. Up to similarity, 
we obtain all final states by choosing a subset of the sequences of this state with the 
restriction of having at least one 1- and one 0-sequence. The set of final states is denoted 
by G0. It is easy to see that the start state is not already final.
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As G0 does not contain any states with a ⊥-sequence, but each state has at least one 
1- and one 0-sequence, any state which shuffles into G0 contains a subset of the sequences 
of a state in G0, with the same restriction of having at least one 1- and one 0-sequence, 
as we cannot create 0-/1-sequences by a shuffle out of nothing. Hence, shuf−1(G0) = G0.

Therefore, the prefinal states are the non-final states that reach the set of final states 
by a turn. W.l.o.g. they look as follows:

♡ ♣ ♣ ♡ 1
♣ ♡ ♣ ♡ 0
♣ ♡ ♡ ♣ ?
♡ ♣ ♡ ♣ ?
♣ ♣ ♡ ♡ ?

where the sequences marked by ? can be any of 1, 0,⊥ or empty, as long as there is at 
least one of the sequences present (otherwise, it would already be a final state). These 
need to be turnable at the third or fourth column, of course. This general form of 
the state is as described because the only final states with a constant column are the 
states with exactly one 1-sequence and one 0-sequence (above the rule), and they can 
be combined with any state with a constant position (of the other symbol) at the same 
index, leading to at least one and at most three additional sequences (below the rule).

Note that the start state is not a prefinal state. For this you would need to choose 
two of the sequences below the rule to be 0 and the other absent. But then the state is 
no longer turnable, because for this, there would need to be at least one additional 1- 
or ⊥-sequence below the rule. For notation, set G1 := turn−1(G0).

Second Enlargement, by reverse-turn

We enlarge the set of good states (G1) by the states that can reach them with a turn 
operation. Denote these by G2 := turn−1(G1). These look as follows:

♡ ♣ ♣ ♡ 1
♣ ♡ ♣ ♡ 0
♣ ♣ ♡ ♡ ⊥c

♡ ♣ ♡ ♣ ?
♣ ♡ ♡ ♣ ?
♡ ♡ ♣ ♣ ?

Here again the sequences marked by ? can be any of 1, 0, ⊥ or empty, as long as there 
is at least one of the sequences present (otherwise, it would already be a prefinal state). 
These need to be turnable at the fourth column, of course. (The first three sequences 
constitute a state with a constant column from G1 \ G0, turnable at the third position, 
if looked at in isolation.) As the newly-added states have a ⊥-sequence, they cannot be 
the start state. Moreover, note that an additional reverse-turn on G2 is futile, as states 
from G2 \ G1 all have at least four sequences, and hence no constant column.
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Third Enlargement, by reverse-shuffle
The difficult part is to consider the states which will lead to any of the currently-good 
states (G2) via a uniform closed shuffle. Denote them by G3 := shuf−1

uc (G2). As id
is present in any shuffle, these states are subsets of their resulting states, with the 
additional possibility of splitting two (or more) ⊥-sequences into a 1- and a 0-sequence 
(and possibly more 1-, 0-, or ⊥-sequences) beforehand. (As in the forward-process two 
sequences of different types can mix into a ⊥-sequence.)

As we saw before, the final states cannot be reached by a shuffle. Hence, by Lemma 9.8, 
we only need to consider the generateable states from G2 \ G0. By Lemma 9.9, the orbit 
sizes of a finest partition that can be generated are 1, 1, 2, 2 and there are at most 2
orbits of size 1. Moreover, note that generateable states from G2 \ G0 have at least four 
sequences.10

We will use the turn-split representation of a state, as introduced in Section 9.6:

♣

|
t♣,1 t♣,2 t♣,3

♡

|
t♡,1 t♡,2 t♡,3

|

where t♣,1, . . . , t♣,3, and t♡,1, . . . , t♡,3 are types of sequences denoted by s♣,1, . . . , s♣,3, 
and s♡,1, . . . , s♡,3, the first three belonging to the ♣-branch of a possible turn (the 
state was assumed to be turnable), and the last three at the ♡-branch of a turn. The 
connecting brackets between the sequences (from which we abstract by this drawing) 
represent a possible orbit decomposition of a shuffle, namely connected sequences are 
in the same orbit. A single line drawn downward will mean that the sequence is in an 
orbit of size 1. By Lemma 9.9, we know that we cannot have both sequences in an orbit 
of size 1 on the same side of the turn, as they would not have distance 4 then.

We think it is instructive to take a closer look at the possible generateable states 
from G2 \ G0. Note that all of these are turnable. Let us do a case distinction on the 
number of sequences in a state and start with the minimum of four sequences. Using 
our abstract notation observe that we are in one of the following situations:

♣

|
11 01 ∅

♡

|
11 01 ∅ |

♣

|
11 01 ∅

♡

|
11⊥nc

1 ∅ |

(The dashed lines on the left indicate that we can arbitrarily choose one of the orbits into 
two, as by Lemma 9.9 having exactly three orbits of size 2 is impossible in our setting). 
This is because turnability requires µ(s♣,1) +µ(s♣,2) = p and µ(s♡,1) +µ(s♡,2) = 1− p, 
for p ∈ [0, 1], where s♣,1, s♣,2 are sequences in one part of the turn branch, and s♡,1, s♡,2

in the other. Moreover, we can only choose one of the two orbit combinations (where on 
the right the 0 was w.l.o.g. be chosen to be in the orbit with only one element). Hence, 
10If it would have only three sequences, then states that reach such a state via a non-trivial shuffle 

need to have at least one sequence less. But if it has exactly two sequences (one 1-sequence, one 
0-sequence), it is already final.
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the orbit partition implies that µ(s♣,1) = µ(s♡,1), or µ(s♣,2) = µ(s♡,2), let us assume 
w.l.o.g. the first. Then we can deduce that if p = 1/2, we are in the situation to the 
left, and if p < 1/2 in the situation to the right.

In the case of five sequences, the only turnable and generateable states look as follows:

♣

|
11 01 ⊥c

1

♡

|
11 01 ∅ |

This is, similarly to the proof in Section 9.7, because we have to choose the single empty 
sequence to be in an orbit of size one, forcing the pairs of 1- and 0-sequences each 
into an orbit of size two. By turnability we have that µ(s♣,1) + µ(s♣,2) + µ(s♣,3) = p
and µ(s♡,1) + µ(s♡,2) = 1 − p for some p ∈ [0, 1]. The orbit decomposition implies 
µ(s♣,1) = µ(s♡,1) and µ(s♣,2) = µ(s♡,2) which, if plugged into the second equation 
implies that µ(s♣,3) is a constant, because µ(s♣,1) + µ(s♣,2) = 1 − p and µ(s♣,1) +
µ(s♣,2) + µ(s♣,3) = 1− p+ µ(s♣,3) = p⇔ µ(s♣,3) = 2p− 1.

For states with six sequences, we are in one of the following configurations:

♣

|
11 01 ⊥c

1

♡

|
11 01 ⊥c

1|

♣

|
11 01 ⊥c

1

♡

|
11 01 ⊥c

2|

♣

|
11 01 ⊥c

1

♡

|
11⊥nc

1 ⊥c
1|

Note that a resulting state needs a ⊥c-sequence, and if a state has two or three 0-
sequences and only one 1-sequence, it cannot result in a state with sequences of the 
types ⊥, 1 and 0 by a uniform closed shuffle. This is because for ⊥ you need at least one 
1- and one 0-sequence which are mixed together, and one additional 1- and 0-sequence in 
different orbits which are not mixed together, so that you need at least two 1-sequences.

By the claim, it follows that the start state – which has three 0-sequences and one 
1-sequence – would only be added to the set, if it shuffles into a good state without 
a ⊥-sequence. For this to happen, the start state has to be a proper subset of the 
resulting state (cf. Lemma 9.2). Given that we are in one of the scenarios as argued 
above, this cannot happen, as none of the states has three 0-sequences.

A Fourth Enlargement is Futile
Now let us observe that a reverse-turn does not lead to any new states. For this, note 
that we need to only consider states that have been added in the last enlargement. For 
a reverse-turn, we can only reach those which have a constant column, and hence have 
at most three sequences. Note that by the same argument as before, states with two 
0-sequences and one 1-sequence or the other way round, with a constant column have 
not been added in the last step, as the only ⊥-free configuration of the above list cannot 
have a constant column. (We did not add any new states with a constant column to 
G2.) Hence G3 = turn−1(G3).

We want to show G3 = shuf−1
uc (G3). For this note that no arising state has more than 

two sequences of the same type (except for the three ⊥-sequences that may arise in 
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states with 6 sequences). The additional power of successive shuf−1
uc (·)-steps comes only 

into play, if there are more than two sequences of the same type, as we are only possibly 
restricted by the shuffle when taking a subset of the sequences.

9.11. Closed n-COPY Requires 2n+2 Cards
This section is taken from [K18]. We apply the techniques from Section 9.9 to show a 
strong impossibility result for closed-shuffle COPY protocols with 2n+ 1 cards, where 
n ≥ 2. This implies that in this setting, the protocol of [MS09] using 2n + 2 cards is 
optimal.

Theorem 9.7. There is no (possibilistically) secure (2n + 1)-card n-COPY protocol 
using only closed shuffles and two colors.

Proof. We proceed by using the backwards calculus technique as developed in Section 9.9, 
i.e., we would like to show that the start state is not contained in the closure clc(G0), 
where G0 is the set of final states in (2n + 1)-card n-COPY protocols. For this, we 
apply turn−1(·) and shuf−1

c (·) operations to the growing set of states, starting from G0, 
until this process becomes stationary. Our analysis will show that this already happens 
after one reverse turn and one reverse shuffle step. We assume w.l.o.g. that the helping 
card is ♡, yielding the deck D = [(n + 1) · ♡, n · ♣]. Let G0 be the set of final states 
for n-COPY and note that these look in reduced form (up to similarity of states) like 
this:

♡(♣♡)n 0
♡(♡♣)n 1.

The start state of an n-COPY protocol on deck D looks w.l.o.g. (up to similarity of 
states) as follows:

♣♡(♡♣)n−1♡ 0
♡♣(♡♣)n−1♡ 1

As in Theorem 9.2, we know that final states are not reachable by a shuffle, because 
there is only one 0-sequence and only one 1-sequence, and we cannot take any proper 
subset of these. Hence, let us look at the set G1 := turn−1(G0), i.e., the states that are 
turnable and have a state from G0 at one of its branches.

The newly added states, i.e., the states from G1 \G0, look (up to similarity) as follows:

f ′0 : ♡(♣♡)n 0
f ′1 : ♡(♡♣)n 1
♣. . . . . . ?
... ?
♣. . . . . . ?,

where ? can be of type 0, 1, ⊥, and we have at least one sequence starting with ♣
(if it is a ⊥-sequence; otherwise we have at least one 0- and one 1-sequence, due to 
turnability). Let us call them prefinal. As they have at least three sequences, the start 
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state is not among the prefinal states. Because they do not have a constant column, 
a new reverse turn does not yield any additional states, i.e., G1 = turn−1(G1). Let us 
denote the 0-sequence in the first row by f ′0, and the 1-sequence in the second row by 
f ′1.

For the main step of the proof, let G2 := shuf−1
c (G1) = shuf−1

c (G1 \ G0). These are 
the states that reach a prefinal state via a closed shuffle. Note that if f ′0 and f ′1 is the 
only 0- and 1-sequence, respectively (in a state µ′ ∈ G1), all other sequences need to be 
of type ⊥ and any subset of the state (i.e., a µ ∈ G2, as in a reverse shuffle) needs to 
contain at least f ′0, f ′1. These states are again prefinal or final.

Hence, we assume w.l.o.g. that there are at least two 0-sequences (i.e., the type 
partition of type 0 has more than one sequence), and assume that the shuffle step 
creates one of these. More formally, let Π be the shuffle subgroup from a state µ ∈ G2
to a prefinal state µ′ ∈ G1 \ G0 as specified above, such that µ′ contains at least one 
additional 0-sequence, which we can also w.l.o.g. assume to be f ′0. Let f0 ∈ µ, such that 
there is a π̃ ∈ Π with π̃(f0) = f ′0, and let us consider the state µ̃ := π̃(µ) that is similar 
to µ but contains f ′0. Due to the closedness of the shuffle, it is retained that µ̃ shuffles 
to µ′ via Π.

We can deduce that µ̃ looks as follows:

♡(♣♡)n 0
♣ . . . . . . ?
... ?
♣ . . . . . . ?,

where none of the other rows contains a ♡ in the first position. Assume the contrary, 
namely that there is a sequence s ̸= f ′0, with a ♡ in the first position. If it would be of 
type 0 or ⊥, then this does not shuffle into µ′, as id ∈ Π and there is no other 0-sequence 
in µ′. Otherwise, an s of type 1 would mean that either µ̃ is identical to µ′ (in the case 
that s = f ′1), or similarly to before this does not shuffle into µ′ via Π. Hence, the form 
is as specified above.

Note that another reverse shuffle does not yield any new states. This is because the 
states we described did not assume anything about the concrete orbit partition, and 
taking another subset of the sequences does not help.

Hence, it remains to show that we cannot reach the states in G2 \ G1 via a turn, i.e., 
that G2 = turn−1(G2). We proceed by showing that the newly added states from G2 \ G1
do not have a constant column. For this, let us assume the contrary, namely there is a 
constant column, at position p ̸= 1. Let us distinguish two cases by the parity of p:

Case 1: p = 2m+2 is even. In this case we get a constant ♣ column, and the state 
µ̃ looks like this (with at least two sequences in total):

f ′0 : ♡(♣♡)m♣♡(♣♡)n−m−1 0
f1 : ♣. . . . . . ♣. . . . . . . . . . . . 1

... ?
♣. . . . . . ♣. . . . . . . . . . . . ?
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Let f1 ∈ µ̃ be a sequence that is mapped to f ′1 = ♡(♡♣)n ∈ µ′ by some π ∈ Π. As 
indicated, because of the constant column, f1 has at least two ♣s which are in positions, 
where there is a ♡ in f ′1, namely positions 1 and p. Let us look at π−1, which is also in 
Π due to the closedness of the shuffle, and which maps f ′1 to f1.

For the general proof idea, we show that π−1 needs to have certain features which 
imply that it maps the 0-sequence f ′0 to a sequence of type 0 with a ♡ at positions 1
and p, leading to the contradiction, as the only 0-sequence with a ♡ in the first position 
has to be f ′0, which has a ♣ at even positions.

For this, note that to get ♣s into positions 1 and p via π−1, there need to be odd 
positions u, v ̸= 1, (which contain ♣ in f ′1 = ♡(♡♣)n,) such that π−1(u) = p, and 
π−1(v) = 1. Let us look at the sequence s′ = π−1(f ′0). f ′0 has a ♡ at all the odd 
positions, hence, s′ does have a ♡ in positions 1 and p, leading to the contradiction as 
discussed above.

Case 2: p = 2m+3 is odd. In this case we get a constant ♡-column, and the state 
looks like this:

f ′0 : ♡(♣♡)m♣♡(♣♡)n−m−1 0
f1 : ♣. . . . . . .. ♡. . . . . . . . . . . . 1

... ?
♣. . . . . . .. ♡. . . . . . . . . . . . ?

Our argumentation is similar to above, but slightly more involved, as f ′0 has a ♡
also in the first position. As before let f1 ∈ µ̃ be a sequence that is mapped to 
f ′1 = ♡(♡♣)n ∈ µ′ by some π ∈ Π. Here, f1 has a ♣ at the first position which needs 
to be a ♡ in f ′1, and a ♡ at the odd position p, which should become a ♣ through π. 
Again, π−1 ∈ Π and maps f ′1 to f1.

To fulfill this, we need a position u which is even or 1, such that π−1(u) = p, and an 
odd position v ̸= 1, such that π−1(v) = 1. Here again, let us analyze s′ = π−1(f ′0). s′
is a 0-sequence with a ♡ in the first position. If u would be even, then s′ has a ♣ in 
position p, already leading to the same contradiction as above. Hence, u = 1. Then, for 
prefinality of µ′, s′ = f ′0 (otherwise, we would have two 0-sequences, starting with ♡), 
and π, π−1 ∈ Stabf ′

0
(S2n+1).

In this case, we can deduce that f1 = ♣(♡♣)m♡♡(♡♣)n−m−1, i.e., that the state µ̃
looks more closely as follows:

f ′0 : ♡(♣♡)m♣♡(♣♡)n−m−1 0
f1 : ♣(♡♣)m♡♡(♡♣)n−m−1 1
♣. . . . . . .. ♡. . . . . . . . . . . . ?
... ?
♣. . . . . . .. ♡. . . . . . . . . . . . ?

where we have at least three sequences, as otherwise we would have a final state.
By Lemma 9.3, because π−1(1) = p as described above, after shuffling with Π, we 

obtain the same number of ♡, and ♣ in columns 1 and p in the resulting prefinal state 
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µ′. Because the prefinal state has exactly 2 ♡s in the first column, the same holds for 
column p in the prefinal states reachable from µ̃ via Π. The same has to hold for µ̃, i.e., 
in column p only two ♡ are allowed. (To see this, note that Π contains id and, hence, 
the sequences in µ̃ form a subset of the sequences of µ′). But by assumption this is 
the constant column which may only contain ♡s. Hence, there would be at most two 
sequences in µ̃. As discussed before, this would then be already final.

As the start state has a constant column, contrary to the states in G2 \ G0, it is 
not contained in the closure clc(G0). Hence, no final state is reachable from the start 
state.

9.12. Lower Bounds for Protocols using a Standard Deck

In this section we give our impossibility results concerning standard decks. This section 
is taken from [KSK19].

Theorem 9.8. There is no four-card finite-runtime base conversion protocol for over-
lapping bases with deck D = [1, 2, 3, 4].

Proof. We proceed by using the backwards calculus technique from Section 9.9. That 
is, we show that if we start with the set of (highly-structured) final states G0 of base 
conversion protocols and enlarge this set iteratively by states which reach the given 
states by a shuffle or a turn operation, we obtain the closure clf(G0). If we consider only 
reduced states, the set of possible states is finite, so applying turn−1

f (·) and shuf−1(·)
operations to the growing set of states, starting from G0, will become stationary. Then, 
it remains to show that the start state is not contained in the closure.

We assume w.l.o.g. that the input basis is {1, 2} with helping cards 3 and 4, and that 
the output basis is {o1 < o2} such that |{1, 2} ∩ {o1, o2}| = 1. For simplicity, we want 
the output basis to be {1, 3} and argue later why this choice was inconsequential for 
the proof statement. Hence, the final state is any choice of at least one 1-sequence and 
one 0-sequence of the state on the left:

13 24 0
13 42 0
31 24 1
31 42 1

12 34 0
21 34 1

The state on the right is the start state of a base conversion protocol. Both states are 
considered up to similarity.

We have that shuf−1(G0) = G0, i.e., shuffling steps do not help in the last step of 
an output-possibilistically secure protocol, because any subset of a final state which 
contains at least one 1-sequence and one 0-sequence (required as 1-/0-sequences cannot 
be generated out of thin air by a shuffle), is already final. Hence, we consider G1 :=
turn−1

f (G0), i.e., the states turnable at a position i, where all immediate child nodes 
when turning at i are in G0. W.l.o.g. we assume the turn to be at position 4.
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By Lemma 9.7, we use that G1 = turn−1
f (G0) = G0 ∪ turn−1

f (cc(G0)), where cc(G0) is 
the subset of G0 with states that have a constant column. These states look as follows:

13 24 0
31 24 1

13 42 0
31 42 1

However, we aim to enlarge this set (which we can do because this only makes our claim 
stronger due to monotonicity of the backwards operations) by the following two states

24 13 0
42 13 1

24 31 0
42 31 1

because they would be reachable anyway via a disjoint basis conversion due to [M16b, 
Sect. 3.2].

The states from G1 \ G0 look as follows:

. . . a 0

. . . a 1

. . . b 0

. . . b 1

. . . c 0

. . . c 1

. . . d 0

. . . d 1

where at least two of the blocks are present, and a, b, c, d ∈ D are pairwise distinct. 
Note that the start state cannot be of this form, as it contains only two sequences. 
To show that another backwards turn step does not enlarge the set by showing that 
cc(G1) = cc(G0). For this, note that the states from cc(G0) have two constant columns, 
but with the specific pairing that if one is 1, the other is 3 and vice versa, or if one is 2, 
the other is 4 and vice versa. Hence, having another constant column in the state from 
G1 \ G0 above, say at position 3, would need the same symbol (given by the pairing) in 
the fourth column. Hence, it can only have two sequences, i.e., it is already in G0. This 
shows that turn−1

f (G1) = G1.
Now, for the main step of the proof, set G2 := shuf−1(G1) and G3 := turn−1

f (G2). 
Note that because the shuffling is unrestricted, applying another backwards shuffle 
to G2 cannot give a larger set, as we can always combine two shuffles into one. The 
remaining proof will show that G3 = G2 in which case no further enlargement is possible. 
Afterwards, showing that the start state is not contained in G2 finishes the proof.
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As states from G2 are subsets of states from G1, the general form of cc(G2) looks as 
on the left:

. . . da 0

. . . da 1

. . . db ?

. . . dc ?

. . . da 0

. . . da 1

. . . db ?
(. . . ab ?)
. . . dc ?
(. . . ac ?)
(. . . xd ?)
(. . . yd ?)

where ? can be either 0 or 1 and x, y are either both a, or one is b and the other c. To 
see this, observe that it is a subset of the state on the right where we leave out at least 
all sequences which would interfere with our wish to have a constant column in this 
position (put in parenthesis in the state on the right).

Our aim is to show that these states are more specifically the states of cc(G0) again, 
i.e., it is impossible to reach any state of form in G1 via a shuffle from these states. Due 
to the complexity of the situation, we do a case distinction on the number of sequences 
of the state µ ∈ cc(G2).

Let us consider only the first case, the other cases are analogous. Let µ contain two 
sequences. If they would be both from the first block, the state would trivially be in 
cc(G0). This leaves us with two choices, either to include a sequence ending with da or 
to exclude it. For concreteness, we choose w.l.o.g. a = 2, d = 4, b = 1 and c = 3.

In this case it looks like this:

1342 0
3142 1

2341 1
4321 0

(. . . 43 ?)
(. . . 23 ?)
(. . . x4 ?)
(. . . y4 ?)

1342 0
2341 1

id

(1 4 3)

(1 4 2)

id

Reaching this state on the left by a shuffle should contain at least {id, (1 4 3), (1 4 2)}. 
But applying (1 4 2) to the first sequence 1342 gives sequence 3241, which is not 
contained on the left side (it has a 1 in the end, but is not in the second block), leading 
to a contradiction. The other cases are similar.

Theorem 9.9. There is no four-card finite-runtime AND protocol with deck D =
[1, 2, 3, 4] with fixed-in-advance output basis.

Proof. If the output basis is not given using only Alice’s or only Bob’s cards, this follows 
from Theorem 9.8, because if there would be such an AND protocol, by fixing the second 

139



9. Minimal Decks for Secure Computation

bit to 1 one could easily generate a base convert protocol, which is impossible. In the 
remaining case, e.g., of the output basis being Alice’s cards, say 1, 2, this would not 
be a base convert, as the bit remains unchanged. In this case, a close analysis of the 
proof of Theorem 9.8 above yields that the theorem also holds in this case. We omit 
the details.

9.13. Conclusion
Let us conclude, using a merge of conclusions from [KWH15; KKW+17; KSK19; K18]. 
To summarize our results, we have extensively considered the question on tight lower 
bounds on the number of cards for AND protocols, which has been open for several years. 
Moreover, we extended the analysis on the necessary and sufficient number of cards 
in card-based protocols computing an AND in committed format to certain plausible 
restrictions on the operations that can be performed during a protocol run. These are 
restrictions to certain forms of shuffling, namely closed and/or uniform shuffles and 
whether running in loops or restarting is allowed. This focus allows to get a clearer view 
on how many cards are necessary in protocols with favorable properties, such as finite 
running time or easy-to-do/actively secure shuffling. It is for example useful to now 
be aware that a search for five-card finite-runtime protocols using only closed shuffles 
will be fruitless – and thereby identifying the six-card protocol by [MS09] as optimal 
w.r.t. closed-shuffle protocols. In the process, we highlight interesting properties from 
which the orbit partitions are the most useful. Furthermore, we extended the four-card 
impossibility result of [KWH15] to the case of uniform closed shuffles for restart-free 
Las Vegas protocols.

For bit copy, we proved that the (2n + 1)-card COPY protocol of [NNH+18] is 
card-minimal, and the (2n + 2)-card COPY protocol of [MS09] is card-minimal w.r.t. 
finite-runtime protocols or closed-shuffle protocols. Figure 9.7 summarizes our results 
and surveys current bounds on the number of cards for all combinations of restrictions.

Hence, for the two central building blocks in composite card-based protocols, AND
and COPY, we complete the picture on the necessary number of cards in committed 
format protocols with respect to all combinations of practicality requirements, in the 
two-color deck setting. With this work, all bounds are tight, as shown in Figure 9.7 and 
Table 17.1. Hence, this work provides a reference, showing the best protocol for a used 
setting, and one can compare whether to trade fewer cards with different characteristics 
of the running time or shuffles.

For the four-card standard deck setting, we showed that there is no finite-runtime 
AND protocol, if the output basis is fixed in advance, regardless of the shuffle operations 
used. Finally, we showed tight lower bounds on base conversions for single bits.

Open Problems
An interesting remaining open problem is whether a helping card of an additional 
color, say ♢, may circumvent some of the impossibility results. More specifically, we 
would be keen to know whether there is a five-card AND protocol with (uniform) closed 
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f, u, c:
x = 6

f, c:
x = 6

f, u:
x = 5

u, c:
x = 5f: x = 5

c: x = 4 u: x = 4

∅: x = 4

r: x = 4

r, c:
x = 4

r, u:
x = 4

r, u, c:
x = 5

(a) AND protocols

f, u, c:
x = 2n + 2

f, c:
x = 2n + 2

f, u:
x = 2n + 2

u, c:
x=2n + 2

f:
x = 2n + 2

c:
x=2n + 2

u:
x = 2n + 1

∅:
x = 2n + 1

r:
x = 2n + 1

r, c:
x=2n + 2

r, u:
x = 2n + 1

r, u, c: 
x=2n + 2

(b) COPY protocols

Figure 9.7.: The number of cards necessary and sufficient for committed format 
protocols for AND and COPY, given as a Hasse diagram. The nodes/corners specify the 
different requirement combinations: f is finite-runtime, r is restart-free LV, c and u are 
restrictions to closed and uniform shuffles, respectively. A line between two nodes in the 
lattice specifies that the configuration given by the node above has more restrictions 
(requiring at least as many cards).

shuffles and finite running time on deck D = [♣,♣,♡,♡,♢], and whether there is a 
(2n+ 1)-card n-COPY protocol with a helping card of a third color using only closed 
shuffles. This is not clear, as the number of possible sequences in a state (and hence the 
number of possible states) grows immensely with an additional color, but we are also 
more restricted in turning as we learn more information by observing a symbol. (Note 
that in contrast to the standard deck setting, where we have more colors on principle, 
here, we want that the output- and input bases still use only ♣,♡.)
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10. Formal Verification of Run-Minimality

This chapter is taken from [KSK19] on applying formal verification to the area of 
card-based cryptography.

Prior to this thesis, the literature offers only three protocols and no proofs for non-
trivial lower bounds on the number of cards in the case of a standard deck. As such 
complex proofs (handling very large combinatorial state spaces) tend to be involved and 
error-prone, we propose using formal verification for finding protocols and proving lower 
bounds. In this chapter, we employ the technique of software bounded model checking 
(SBMC), which reduces the problem to a bounded state space. This state space is then 
automatically searched exhaustively using a SAT solver as a backend.

We provide a general translation of proofs for lower bounds to a bounded model 
checking framework for automatically finding card- and length-minimal protocols and 
to give additional confidence in lower bounds. We apply this to validate our method 
and, as an example, confirm our new AND protocol from Protocol 8.4 to have a shortest 
run for protocols using this number of cards.

Related Work on Formal Methods. To the best of our knowledge, this is the first work 
which applies formal methods to the field of card-based cryptography. However, a wide 
range of research has been done using formal methods in the more general field of secure 
two-party and multiparty computations. In general, this can be clustered into either 
analyzing security protocols given as high-level, abstract (and usually idealized) models, 
or program-based approaches targeting real(istic) protocol (software) implementations. 
Avalle, Pironti, and Sisto [APS14] further structures this into the two main approaches 
of automated model extraction and automated code generation. We refer the interested 
reader to overviews as given by Blanchet [B12] or Avalle, Pironti, and Sisto [APS14], and 
only go into a few selected works for which we identified closer links to our approach, 
e.g., using software bounded model checking (SBMC), SAT solvers on real(istic) protocol 
implementations, or relating in the analyzed security model. Standard cryptographic 
assumptions using lower-level computational models are – albeit more realistic – usually 
harder to formalize and automate. One notable line of research is CBMC-GC [FHK+14] 
which builds on top of the tool CBMC [CKL04]. It uses SBMC in a compiler framework 
translating secure computations of ANSI C programs into an optimized Boolean circuit, 
which can subsequently be implemented securely utilizing the garbled circuit approach.

Another similar setting to ours is analyzed in [RSH19], where also an “honest-but-
curious” attacker model is assumed. Therein, a domain-specific language is built on 
top of the F★ language, a full-featured, verification-oriented, effectful programming 
language [SHK+16]. This language is then used to implement MPC programs with 
enabled formal verification provided by the semantics of the language.
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10.1. Automatic Formal Verification Using SBMC

In the following, we introduce an automatic technique from formal program verification, 
namely software bounded model checking (SBMC), to the field of card-based cryp-
tography. Let us start by describing the general technique of using bounded model 
checking to check for software properties, before we explain how we apply it to search 
for cryptographically secure card-based protocols. In a nutshell, we translate the task to 
a reachability problem in software programs (which will later-on be a program encoding 
operations on an abstract state tree as described above), which the SBMC tool encodes 
into an instance of the SAT problem.

We assume we are given an imperatively defined function f in the form of an imperative 
program (for example, written in the C language), that uses some parameter values 
taken among a set of possible start values I. An entry i ∈ I is a list of values, one value 
for each such parameter: it gives a value to everything that a run of f depends on, such 
as its input variables, or anything that is considered non-deterministic (i.e., of arbitrary, 
but fixed, value for any concrete evaluation of f) from the point of view of f . For 
this reason, those parameters are qualified as “non-deterministic”, to distinguish them 
from normal parameters used in a programming language to pass information around. 
Moreover, some values can be “derived”, thus, computed in f from the non-deterministic 
parameter values, or declared as constants in f , and both values of non-deterministic 
parameters or derived values can then be used as normal parameters in the program. 
We are also given a software property to be checked about f , in the form Cant ⇒ Ccons, 
where ant and cons stand for antecedent and consequence respectively. Both Cant

and Ccons are sets of Boolean statements. A Boolean statement is a statement of f
that evaluates to a Boolean value, for example, a simple statement checking that some 
computed intermediate value is positive. An entry i is said to satisfy a set of Boolean 
statements if and only if all Boolean statements in the set evaluate to true during the 
execution of f using the non-deterministic parameter values i, and is said to fail the 
set of Boolean statements otherwise. The property Cant ⇒ Ccons requires that for all 
possible entries i ∈ I, if  i satisfies Cant, then i satisfies Ccons. As an example, assume f
computes, given i, two intermediate integer values v1 and v2, and then returns a third 
value v3. The property to be checked could, e.g., be: if  v1 is negative, then v2 is positive 
and v3 is odd. A solver that is asked to check a software property Cant ⇒ Ccons thus 
exhaustively searches for an entry i that satisfies Cant but fails Ccons. The property is 
valid if and only if there does not exist any such entry i, i.e., it is impossible to find 
such an entry.

SBMC is a fully-automatic static program analysis technique used to verify whether 
such a software property is valid, given a function and a property to be checked. It 
covers all possible inputs within a specified bound. It is static in the sense that programs 
are analyzed without executing them on concrete values or considering any side channels. 
Instead, programs are symbolically executed and exhaustively checked for errors up to 
a certain bound, restricting the number of loop iterations to limit runs through the 
program to a bounded length. This is done by unrolling the control flow graph of the 
program and translating it into a formula in a decidable logic that is satisfiable if and 

144



10.2. Automatic Formal Verification for Card-based Protocols

only if a program run exists which satisfies Cant and fails Ccons. The variables in the 
formula are the non-deterministic parameters of f , and their possible values are taken 
from I.

This reduces the problem to a decidable satisfiability problem. Modern SAT-solving 
technology can then be used to verify whether such a program run exists, in which 
case an erroneous input has been found, and the run is presented to the user. If the 
solver cannot find such a program run, it may be either because the property is valid, or 
because it is invalid only for some run which exceeds the bound. In some cases, SBMC 
is also able to infer statically which bound is sufficient to bring a definitive conclusion.

10.2. Automatic Formal Verification for Card-based Protocols

Our approach employs a standardized program representation of the state trees intro-
duced in Chapter 7. This allows a general programmatic encoding of both shuffle and 
turn operations, as well as of the logical function to be computed securely.

The input state is trivially derived from the specified numbers of cards as the size 
and order of the players’ commitments is fixed and the (without loss of generality) con-
secutively ordered card sequence of (distinguishable) helping cards is simply prepended 
to the input card sequence, annotated with their respective input probabilities. Any 
input state thus consists of exactly four distinguishable card sequences. Based on this 
input state, the program performs a loop, which successively performs turn or shuffle 
operations based on the input state and computes the resulting states from which it 
continues performing turn or shuffle operations. The loop ends when the specified bound 
(representing the length of the protocol to be found) is reached, checks whether the 
final state is indeed a valid computation of the secure function, and (if and only if the 
check is successful) the found protocol is then presented to the user.

However, this task involves multiple computational complexities, most notably both 
the number of (possibly) reachable states, and the choice of the next operation, i.e., 
either choosing the card(s) to be turned or which shuffle to perform. We partially 
overcome the first computational complexity by not considering Las Vegas protocols 
as this relieves us from checking every reachable sequence of states to be finite. In 
fact, we compute all reachable states after every protocol operation, but only check 
each of them to be valid, and then proceed our operations on only one of them, which 
is non-deterministically chosen among them. The second computational complexity 
consists in first non-deterministically choosing whether to shuffle or to turn, and then to 
perform the respective operation. The turn operation is less interesting as it is mostly 
the obvious implementation for updating the computed state and its probabilities using 
mostly standard imperative program operations, except that the turn observations 
are again non-deterministically chosen, hence making the SBMC tool consider any of 
them to be possible. The more interesting operation is the shuffle operation, as it must 
randomly draw a set of permutations on which the thereby reachable states are computed. 
We implement this by non-deterministically choosing a set of permutations from a 
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precomputed set of all generally possible permutations. Both, the amount1 and the 
choices of the respective permutations, are chosen non-deterministically. Moreover, we 
restrict our experiments to only closed shuffles and proceed by restricting the computed 
set of permutations to be either closed or of size one (i.e., a simple permutation).

Finally, after iterating the afore-mentioned loop for the specified bound number with 
the described operations and restricting that the final state indeed computes the secure 
function, we specify the software property Ccons to be checked simply as the Boolean 
value false. This trivially unsatisfiable property implies that the verification task 
always fails once there exist input and non-deterministic parameters such that the 
respective program run reaches the statement in the program which checks this property. 
The SBMC tool exhaustively searches for a run of the specified length through the 
program which leads from the starting state to a correct and secure state which satisfies 
the given security notion, i.e., reaches the above-metioned statement. Hence, if there 
exists any protocol of the specified length which computes the secure function and for 
which the specified operations and valid intermediate states (representing state trees) 
exist, such a protocol is presented by our method. If no such protocol can be found, we 
know there is no card-based protocol of the specified length satisfying all our restrictions 
on permitted turn and shuffle operations, as well as intermediate and final states. This 
means there exists no model for the SAT formula which encodes the set of all permitted 
program runs given our specified requirements.

Hence, assuming our translation of state trees and respective protocol operations into 
a simple imperative program are correct, this method can then be used in an iterative 
manner to strengthen the bounds from the literature. Note that this is largely based on 
the so-called “small-scope hypothesis”, i.e., a large number of bugs are already exposed 
for small program runs. We apply this hypothesis to the setting of card-based security 
protocols as all protocols in the literature only use a small number of turn and shuffle 
operations and the length of any found protocol is below ten operations.

This approach can be generalized to search for card-based protocols using a pre-defined 
number of actions and adhering to a given formal security notion. We have written a 
general program2 to search for such situations parameterized in the desired restrictions 
on actions and security notions. Note that, in order to cope with the still considerable 
state space size, we use the refined security notion of output-possibilistic security.

10.3. An Illustration of Our Verification Methodology

In the following, we exemplify our translation of card-based cryptographic protocols using 
standard decks to the specific bounded model checker CBMC, which takes programs in 
the C language, and consider the case of computing a secure AND function. For our 

1In order to keep the execution times still manageable for our experiments, we bound this amount by 
the (arguably quite reasonable) number 8.

2The source code is available under https://github.com/mi-ki/cardCryptoVerification.
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1 struct sequence {
2 uint val[numberOfCards];
3 struct fractions probs;
4 };

Listing 1: C struct holding the state trees.

experiments, we used CBMC 5.11 [CKL04] with the built-in solver based on the SAT-
solver MiniSat 2.2.0 [ES04]. All experiments are performed on an AMD Opteron(tm) 2431 
CPU at 2.40 GHz with 6 cores and 32 GB of RAM.

We translate state trees in the C language using a simple encoding into a bounded 
C program with only static structures and no pointers, e.g., we employ C structs 
(see Listing 1) holding an array of card sequences for the sequence s, attached with 
their respective values for each probability (for the probabilistic security notion) or 
dependency (for output-possibilistic security) Xi occurring in µ(s), which is simply 
encoded by another C struct fractions:

The sequences are constructed using non-deterministic values restricted by respective 
software conditions to enforce a lexicographic ordering. Moreover, we assign the 
starting values in µ(s) with fixed (i.e., deterministic) values based on the constructed 
sequences. Subsequently, an array of (consecutively) reachable states is constructed 
non-deterministically using simple implementations of the turn and the shuffle operation. 
We subsequently repeatedly (after each turn/shuffle operation) check whether all possible 
resulting (non-deterministic) states correctly and securely compute the specified function, 
e.g., in our case a secure AND.

An example shuffle operation is shown in Listing 2 for the case of output-possibilistic 
security. Herein, the keyword __CPROVER_assume is used by the bounded model checker 
to restrict all program runs passing this statement to satisfy the specified (Boolean) 
condition. By assigning values using the special function nondet_uint(), we assign a 
non-deterministic non-negative integer number, which is restricted to values greater 
than zero and at most of value NUM_POSS_SEQ (which is a variable computed by the 
pre-processor and is the maximum number of sequences possible with the given deck) in 
the following program statement. In the shown example, the non-determinism is used to 
construct a set of permitted permutation sets (to be used by the shuffle operation), which 
makes the SBMC tool inspect the following program code for all possible assignments 
of this value. If necessary, this may result in a fully exhaustive search, however, the 
prover is often able to restrict the domain based on further program statements and 
dependencies seen in the rest of the program.

A similar trick is used when computing the concrete permutations using the non-
deterministic value of permIndex in order to check all possible permutations which 
possibly move the values, but preserve all existing numbers in the sequence itself. This is 
done using the int-array takenPermutations, which is first initialized to zero and, when 
choosing a concrete permutation, assumed to be zero at position permIndex, however 
set to the number one right afterwards (such that it is not permitted to be chosen 
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1 uint permSetSize = nondet_uint();
2 __CPROVER_assume (0 < permSetSize);
3 __CPROVER_assume (permSetSize <= NUM_POSS_SEQ);
4 uint permutationSet[permSetSize][numberOfCards];
5 uint takenPermutations[NUM_POSS_SEQ] = { 0 };
6

7 for (uint i = 0; i < permSetSize; i++) {
8 uint permIndex = nondet_uint();
9 __CPROVER_assume (permIndex < NUM_POSS_SEQ);

10 __CPROVER_assume (!takenPermutations[permIndex]);
11

12 takenPermutations[permIndex] = 1;
13 for (uint j = 0; j < numberOfCards; j++) {
14 permutationSet[i][j] =
15 startState.seq[permIndex][j] - 1;
16 }
17 }
18 struct state result =
19 doShuffle(startState, permutationSet, permSetSize);
20 __CPROVER_assume (isBottomFree(result));

Listing 2: Simplified shuffle operation for CBMC.

again). In the subsequent inner loop, the permutations are assigned choosing the 
according cards from the sequences in the start state using the non-deterministic value 
permIndex. Finally, the shuffle is applied, resulting in the state variable result, which 
is then checked using a further method isBottomFree to not contain any sequences with 
impermissible values for Xi, which would result in incorrect computations of the AND
function.

We applied our approach to the computation of a secure AND protocol using four 
cards in order to, firstly, substantiate our proof that no protocol of a length below six can 
be found, and, secondly, automatically find a permitted protocol using six operations.

Using our approach, we were able to show that no four-card protocol exists using 
five operations within 57 hours and constructed an output-possibilistic protocol using 
six operations within 31 hours, on the above-mentioned platform. The constructed 
formulas contain between 150 and 180 million SAT clauses.

10.4. Conclusion
In this chapter, we proposed a new method to search card-based protocols for any 
secure computation, by giving a general formal translation applicable to be used by the 
formal technique of software bounded model checking (SBMC). This method allows us 
to find new protocols automatically, and prove lower bounds on required shuffle and 
turn operations for any protocol, and provide an example for the computation of a 
minimal AND protocol.
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Open Problems
We want to point out some open problems that could be approached based on the 
findings in this work:

1. For finite-runtime protocols, there exist no proven tight lower bounds on the 
required number of cards (between five and eight cards) in the standard deck 
setting. We recommend more research applying computer-aided formal methods 
at this point, as the state space for five or more cards is very large.

2. It would certainly be interesting to identify and exploit additional symmetries in 
the state space. For example, it would be interesting whether there is a normal 
form that is unique for every state and into which any state can be brought via 
perm and relabel operations in polynomial time.

3. The two most common settings in card-based cryptography are the standard 
deck setting with only distinguishable cards and the two-color decks using ♣
and ♡. However, it may be possible that by mixing these settings (e.g., only 
distinguishable cards with one pair of identical cards), we might find more efficient 
protocols (especially in the finite running time setting). For such a mixed setting, 
[SM19] provide nice results to build upon in further research.
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This chapter is directly based on [KW18], with some adaptations. Recall that Secure 
Multiparty Computation (MPC) allows multiple players to jointly compute a function, 
without giving away anything about their inputs, except what can be deduced from 
the output. An important special case is when the function to be evaluated constitutes 
an input itself and should remain hidden, called Private Function Evaluation (PFE). 
This has been considered in the standard cryptographic setting e.g., using universal 
circuits [V76] in [MS13; LMS16; BBKL17; GKS17]. The aim of this chapter is to obtain 
conceptually simple protocols for PFE, and also obfuscation with a deck of cards.

Motivation

Card-based protocols are often used in educational and recreational settings. For an 
illustration of PFE, we stretch the usual motivation for card-based AND protocols a bit, 
namely the dating problem where players want to find out whether there is mutual love.

We assume a predefined set of binary attributes A such as A = {LikesCats, HasPhD, 
IsGeeky, . . . }. Alice implicitly specifies (by providing a circuit or program) which 
combinations P ⊆ 2A of attributes she likes and Bob specifies which attributes B ⊆ A
he has. The task is to determine whether Bob’s secret attributes satisfy Alice’s secret 
preferences, i.e., whether B ∈ P . Here, we want to ensure that both Alice’s and Bob’s 
input remains hidden, i.e., nothing about the input is revealed, except what can be 
deduced from the output of the protocol.

In the same vein, PFE is useful for the game Skipjack [D15]1, where a game master 
invents a rule and the other players take turns querying whether a chosen code words 
satisfies the rule or not – in order to deduce/guess the rule in this process. Applying 
our PFE protocol would allow to prevent the game master from cheating by changing 
the rule mid-game, or even to play the game in absence of a game master, assuming an 
encoding of a rule is available or can be obtained at random. (Moreover, as PFE even 
hides the code words that the player is testing, we can derive a competitive multi-player 
mode where questions of other players do not help the others.) Besides these, there is 
also a purely theoretical motivation of constructing protocols for PFE and obfuscation.

Look and Feel of Our Protocols

Imagine a room with a table, where Alice puts an encoding of a function f in a sequence 
on the table, each bit of the description as two face-down cards encoding 0 via ♣♡ and 

1a follow-up on a game by Abbott [A] from 1956. Skipjack was given as a present to all participants of 
ASIACRYPT 2015
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1 via ♡♣. Next to Alice’s cards, Bob will put his input x as a bit string using the same 
encoding. We then proceed according to a protocol that may prescribe to shuffle or 
turn over cards (the observed symbols may affect the future course of the protocol), as 
before. The protocol terminates with output f(x) encoded as face-down cards. The 
output can then be revealed to the players or used obliviously in further computations.

On Interaction in Card-based Protocols

We point out that card-based cryptography can be assumed secure in a rather non-
interactive physical model: it suffices to have one protocol executer, who is under 
surveillance by the other players. For example, when the protocol description specifies 
that a certain shuffle is to be performed, this step can be implemented by this one 
player, the executer, who uses envelopes (or helping cards) and completely random 
shuffles or uniform random cuts in a manner that ensures that not even he himself can 
keep track of the concrete permutation done to the cards. We could also use shuffling 
machines, such as the turntable in [V14].

Note that in this surveillance model where players watch that the protocol is done 
correctly, many protocols can be argued secure with almost no interaction. For example, 
[GNPR07, Protocol 3] is a nice physical zero-knowledge proof system for proving that 
there is a solution to a Sudoku puzzle, where the verifier chooses one of three cards in 
each cells of the Sudoku to be assigned to piles for rows, columns and subgrids to be 
able to later verify that all numbers are present. In our model, we can plausibly argue 
that the randomness chosen by the verifier can also be directly generated by the prover 
himself on an additional deck of helping cards. If he is watched to perform the shuffle 
in a way that generates high entropy not under his control, he can use this generated 
randomness to assign the cards to the piles. This is actually a general observation 
regarding protocols using public coins, where this shuffling produces an output that can 
be interpreted to be like the Random Oracle output in the Fiat–Shamir heuristic. The 
possibility of secure shuffling in this way is a common assumption that people make 
when playing card games with others. This is similar to public observation protocols 
due to Fisch, Freund, and Naor [FFN14].

Using the PFE protocols introduced in this chapter, this immediately leads to a 
direct way to obtain cryptographic obfuscation in this card-based surveillance model: 
Assuming that the encoded protocol is lying on the table using cards, the executer can 
add cards encoding the inputs and then execute a universal protocol, such as the ones 
proposed in this chapter, with the only interaction being guards that watch out for 
publicly observable deviations from the protocol. However, note that because of the 
very different setting, there are no implications for the usual non-physical cryptographic 
world, where general (virtual black-box) obfuscation is impossible, cf. [BGI+01].

Universal Protocols and Their Qualities

We implement four different universal card-based protocols with varying degrees of 
abstraction, based on branching programs, circuits, Turing machines and RAM machines. 
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Our primary focus is on simplicity and elegance of the protocols, but we also consider 
efficiency in terms of running time and required cards.

The benefit of providing several solutions is that, depending on the nature of the 
task, a certain computational model may be particularly suitable. For example, in the 
generalized dating game described above, using universal circuits is a natural option, 
while a rule in Skipjack might most naturally be described as a program using loops 
and thus benefit from the possibilities available in Turing machines and RAM machines. 
For didactic settings, all options are interesting in itself, as they demonstrate the 
computational models and the implemented privacy properties in a palpable way.

Contribution

In this chapter, we

• show how to encode and execute circuits, Turing machines, RAM machines and 
branching programs with cards and specify protocols for executing these on hidden 
inputs so that nothing about the machine description (except the length, etc.) or 
the inputs is leaked. We achieve this by using envelopes and only very natural 
shuffle operations, namely random cuts and Sn-shuffles (i.e., ordinary shuffling, 
where all card reorderings are equally likely).

• we thereby obtain what may be called cryptographic obfuscation in a card-based 
setting, given the weakly interactive nature of card-based cryptography in the 
“surveillance model” (see above).

Related Work

Regarding our branching program construction, let us mention that there are several 
card-based protocols to randomly generate a permutation with specific, prescribed 
properties. For example, the secret santa game asks for random permutations on the 
player indices (encoding who gives a present to whom) that are fixed-point free to ensure 
that nobody receives their own present, and has been implemented with cards in [CK94; 
ICM15]. Moreover, they also give protocols for generating permutations with cycles 
of a certain minimal length. Moreover, Hashimoto et al. [HSN+17] give a protocol for 
generating permutations with a prespecified cycle structure, and show how to obliviously 
execute the inverse of a permutation encoded with cards on another card sequence, 
which is a special case of our sorting operations.

Note that cryptographic obfuscation has been performed in other models. For example, 
Goyal et al. [GIS+10] make use of tamper-proof hardware tokens (such as smart cards) 
introduced by Katz [K07]. Moreover, [MN10a] allows to execute many cryptographic 
primitives (albeit not obfuscation) using scratch-off cards. They have a slightly weaker 
setting, as they do not gather players around a table, but use sealed (tamper-evident) 
envelopes that are sent between the players via mail.
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11. Private Function Evaluation with Cards

Crépeau and Kilian [CK94] also discuss playing games against a card-encoded (proba-
bilistic) circuit opponent. However, they do not aim to hide this circuit to the player as 
it is given by the player himself.

Preliminaries: Boolean Circuits
A Boolean circuit with k input variables v1, . . . , vk is a directed acyclic graph C = (V,E). 
The nodes are called gates and are labeled with ∨, ∧, ¬, an input variable, or one of the 
constants 1 or 0. In the cases of ∨, ∧, ¬, the in-degree must be 2, 2 or 1, respectively, 
otherwise it is 0. The output node is the unique node with out-degree 0. The depth of 
C is the maximum number of ∧ and ∨ gates on a path in C.

The value C(v⃗) ∈ {0, 1} that a circuit outputs on input v⃗ = (v1, . . . , vk) ∈ {0, 1}k is 
defined in the natural way. Here, it is convenient to transform all ∨-gates into ∧-gates 
using de Morgan’s rule (x ∨ y) = ¬(¬x ∧ ¬y). Note that this transformation does not 
affect the depth of the circuit.

11.1. Securely Evaluating a Universal Circuit
Let us start with the most direct case, namely implementing PFE using universal 
circuits, first constructed by Valiant [V76]. We do not want to go into the details of 
the construction and just import facts about the general structure of the circuit and 
how it is used. In our examples, Alice provides her private function, here as a circuit C, 
and Bob his private input to the function, and it should hold that neither party learns 
anything about the other’s respective secrets. The universal circuit Un for circuits of 
size n takes as input an encoding ⟨C⟩ of C, where C has size n, and an input I ∈ {0, 1}k
of length k. We assume C to have fan-out and fan-in at most 2, i.e., each gate has at 
most two inputs and at most two outputs.

In the constructions by Valiant, Un is described via an directed acyclic graph with 
O(n logn) vertices, where each vertex represents a logic gate taking values on its 
incoming edges as well as certain “configuration” (or programming) bits as input and 
computes outputs emitted to its outgoing edges. More concretely, Un contains the 
following types of nodes:

• n universal gates with in- and out-degree exactly two and four configuration bits 
c1, . . . , c4 that compute

ug(c1, c2, c3, c4, x, y) = c1x̄ȳ + c2x̄y + c3xȳ + c4xy

where c1, . . . , c4 determine the Boolean operation performed at this gate, e.g., 
AND corresponds to (c1, . . . , c4) = (0, 0, 0, 1).

• O(n logn) X-switches with a configuration bit c and in- and out-degree two, that 
compute

x(c, a0, a1) = (ac, a1−c),

where ac is forwarded on one outgoing edge and a1−c on the other.
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11.1. Securely Evaluating a Universal Circuit

• O(n) Y-switches computing

y(c, a0, a1) = ac,

where Alice’s configuration bit c decides which of the two inputs is forwarded as 
the output.

• O(n) forks (or “λ-switches”) where the signal on one wire is forwarded to both 
outgoing wires, i.e., λ(a) = (a, a).

• k input nodes with out-degree 1 and in-degree 0, and one output node with 
in-degree 1 and out-degree 0 with their natural interpretation.

The universal gates correspond to the gates of Alice’s circuit with the configuration 
bits determining what kind of gate it is, and the configuration of X and Y -switches 
ensures that the intermediate results are routed correctly to the relevant gates. For 
us, it suffices that there is an (efficient) way to obtain ⟨C⟩ from C, which Alice applies 
beforehand. Valiant [V76] describes such a general mapping from circuits C to a string 
of O(n logn) configuration bits for Un, such that Un configured with ⟨C⟩ (in canonical 
order) implements C.

We describe in Protocol 11.1 and Theorem 11.1 how, given Un, encodings of ⟨C⟩ and 
Bob’s input I in sequences of cards, we can compute C(I) securely.

Theorem 11.1. For any k, n ≥ 0 there exists a secure card-based protocol P with the 
following properties:

1. The input sequences are all sequences (V, P ) where
• V encodes the values of  k Boolean variables (v1, . . . , vk) ∈ {0, 1}k using the 

deck k · [♣,♡].
• P encodes a circuit C of size n, via m = O(n logn) programming bits, i.e., 

via deck m · [♣,♡].

2. The output is two cards encoding C(v1, . . . , vk).

3. In addition to the input cards, we use the helping deck (h + 1) · [♣,♡], where
h = O(n) is the number of forks in Un. (The additional pair is used for the sort∗
command.)

Proof. P is given as Protocol 11.1. All nodes of Un are considered in some topological 
order s1, . . . , sN , allowing us to compute the bits “flowing” along each edge of Un in a 
systematic way. The message at an edge e is stored in positions Ve = (Ve[0], Ve[1]). Note 
that the bit on each edge is only used in one subsequent computation: After processing 
si, only the bits on the edges crossing the cut ({s1, . . . , si}, {si+1, . . . , sN}) are needed 
in future computations. When processing si+1 we may therefore, when storing the bits 
for the outgoing edges of si+1, reuse the now freed up cards that stored the bits on the 
incoming edges of si+1. In Protocol 11.1 this is reflected by identifying Ve and Ve′ for 
some pairs (e, e′) of edges. We only need a new pair of cards in the case of a fork.

To verify correctness, let us interpret the main sort commands in the protocol.
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11. Private Function Evaluation with Cards

1. In the X-switch case, sortCv ↑ (Ve, Vf ) swaps the positions encoding the incoming 
input values at edges e and f , if the configuration bit of the X-switch equals 1
and leaves them unchanged, if it equals 0. This is exactly what we wanted.

2. In the Y -switch case, the command is exactly the same, with the difference that 
afterwards only the output bit that ends up in the first position (Ve) is used 
afterwards.

3. In the fork case, we (non-destructively, i.e., with restoring) copy the bit to another 
position, used as an additional output wire value.

4. The universal gate case is the most interesting. Recall that we want to evaluate 
ug(c1, c2, c3, c4, x, y) = c1x̄ȳ + c2x̄y + c3xȳ + c4xy. For this, first observe that 
exactly one of the terms x̄ȳ, x̄y, xȳ, xy equals one. Essentially, the values of x
and y select which configuration bit constitutes the output. If x = 0 then only c1
and c2 are relevant. If x = 1 only c3 and c4 are. So in the first sorting step we 
obliviously swap (C1, C2) for (C3, C4) if x = 1 and leave things as is, if x = 0. The 
interesting two configuration bits end up in positions C1, C2, without us knowing 
which they are.

Now we do the same with C1, C2, based on the value of y, so that the only relevant 
configuration bit is now in C1. In the last step we write this value in both Vg and 
Vh (recall the fan-out two requirement).

To see that P is secure, we use Corollary 8.1 and the fact that no turn operations are 
performed outside of sorting steps.

Dependent on the topological ordering used in Protocol 11.1, the helping deck we 
use to implement forks is not fully required. Instead of using a “fresh“ pair of cards 
to store a copy of the incoming value whenever a fork is encountered, we can reuse 
cards that have already served their function and will not be used in the remainder of 
the protocol. This includes, for instance, the cards that encoded configuration bits of 
universal circuits or X-switches that have already been executed.

Remark 11.1 (Reusability of the Circuit). If we would like to be able to execute the 
circuit multiple times, we want that the programming bits of Alice’s program are not 
destroyed during the execution. Here, we have to take a little care to ensure that the 
relevant bits are written back and that conditionally swapped cards are “unswapped” 
again. For this variant of our algorithm, we replace all sort operations in Protocol 11.1
by their starred variants. In the case of v being a universal gate, we need to take 
extra care: In the penultimate line of the case, instead of reusing Ve and Vf (which 
are now in temporary use to swap back the relative positions of the cards containing 
the configuration bits), we set Vg and Vh as the positions of two new cards, containing 
♣♡ as in the fork case. To undo the swaps, we perform sortVf ↑ (C1, C2) and then 
sortVe ↑ ((C1, C2), (C3, C4)) at the very end of the procedure in the universal gate case. 
Afterwards, the cards in Ve and Vf may be reused again.
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Bob’s input⏟ ⏞⏞ ⏟
⏞ ⏟⏟ ⏞
tape[0]

⏞ ⏟⏟ ⏞
tape[1]

· · · ⏞ ⏟⏟ ⏞
tape[k−1]

♣ ♡⏞ ⏟⏟ ⏞
tape[k]

· · · ♣ ♡⏞ ⏟⏟ ⏞
tape[N−1]

♣
rot[0]

♡
rot[1]

· · · ♡
rot[k−1]

♡
rot[k]

· · · ♡
rot[N−1]

tape: ♣
sav[0]

♡
sav[1]

⏞ ⏟⏟ ⏞
w0

l n r

⏞ ⏟⏟ ⏞
shift0

· · ·⏞ ⏟⏟ ⏞
q′
0

⏞ ⏟⏟ ⏞
w1

⏞ ⏟⏟ ⏞
shift1

· · ·⏞ ⏟⏟ ⏞
q′
1

q[0]:

· · · · · ·q[1]:

...... ...
· · · · · ·q[M−1]:

♣ next[0]

♡ next[1]

♡ next[M−1]
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Figure 11.1.: Overview of a run of the universal TM.

11.2. Securely Simulating a Turing Machine

Assume we wish to execute a Turing machine (TM) with a secret encoding provided by 
one player, Alice, on a secret input provided by another player, Bob. As any secure 
card protocol uses a fixed number of cards and has a running time which is independent 
of the input, there must be known bounds on certain parameters of the Turing machine. 
Let M be a bound on the number of states, N a bound on the number of accessed 
tape cells and t a bound on the execution time. For simplicity, assume Alice’s TM has 
precisely M states (it can be padded with dummy states), runs t steps (“halting” can 
be achieved by staying in one state, writing the current tape symbol and not moving) 
and think of the tape as a cycle of length N (which makes no difference for a TM only 
ever accessing N memory cells).

All cards (and names for them occurring in the following description) used for our 
protocol, with the exception of a few helping cards used for sort∗ and rot∗ operations, 
are given in Figure 11.1. The encoding of a Turing machine consists of the encoding of 
its M states. The encoding of each state q ∈ {0, . . . ,M − 1} consists of the encoding of 
two transitions, one for each of the two tape symbols ♡♣ and ♣♡. Take for instance 
the positions w0, shift0 = (l,n,r) and q′

0 encoding the transition from state q = 0
if the tape symbol is ♣♡. The two cards in positions w0 contain the tape symbol to 
be written. The three cards in positions shift0 specify the movement of the Turing 
machine head, ♣♡♡ for “left”, ♡♡♣ for “right”, ♡♣♡ for “no movement” / “halt”. 
Lastly, the M cards in positions q′

0 contain a unary encoding of q − q′ (mod M) where 
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11. Private Function Evaluation with Cards

q′ ∈ {0, . . . ,M − 1} is the index of the state to be entered next (♣♡ . . .♡ encodes 0, 
♡♣♡ . . .♡ encodes 1, etc.).

The input to the TM, provided by Bob, is encoded in the first k bits of the tape. 
When executing the Turing machine, the current tape cell will always be in position 
tape[0] and the current state in position q[0]. Instead of having an explicit moving 
head we simply rotate the entire tape. Moreover, instead of having an explicit value 
encoding the current state, we rotate the sequence of states. This is also the reason we 
encode state index differences in the state transitions instead of absolute indices. The 
protocol is given as Protocol 11.2 and consists of a loop that does t times the following:

• “read” the tape symbol in position tape[0] by conditionally swapping the two 
transitions in state q[0] such that the transition that should be done is available 
in the positions w0, shift0 and q′

0. To undo this operation later, the value of 
tape[0] is also stored temporarily in (sav[0], sav[1]).

• the content of tape[0], which was reset to 0 in the previous step, is now overwritten 
with the symbol in position w0.

• The cards in positions (l,n,r) are used to rotate the ♣ of rot[0] into the positions 
rot[0], rot[1] or rot[N−1] depending on whether the ♣-card among shift0 is in 
position n, r or l, respectively. Then the tape and rot cards are rotated together 
such that the tape cell whose corresponding rot card is ♣ comes to rest in position 
tape[0] (and such that one does not learn which rotation has been performed.)

• The same idea is used to first copy the information about the next state into 
next[0 . . .M−1] and then rotate the sequence of all states accordingly. Note that 
we need to undo the conditional swap of the two transitions in Q[0] before the 
rotation of the states (using a coupled sorting with (sav[0], sav[1])).

Using this protocol idea, we obtain the following theorem.

Theorem 11.2. For any k,N,M, t ≥ 0 there exists a secure card-based protocol P with 
the following properties:

1. The input sequences are all sequences (V, P ) where
• V encodes the values of  k Boolean variables (v1, . . . , vk) ∈ {0, 1}k using the 

deck k · [♣,♡].
• P encodes a Turing machine T with a state set of size M , using the deck

2M · [3 · ♣, (M + 2) · ♡].

2. The output is a sequence of cards encoding the output of  T after running t steps 
on a cyclic tape of length N initially containing the input (v1, . . . , vk).

3. In addition to the cards encoding the inputs, the helping deck [(N −k+3) ·♣, (M +
2N − k − 1) · ♡] ∪ [♣,min{2,M − 1} · ♡] is used. (The latter part is implicit in 
the use of the starred rot∗ commands and not shown in Figure 11.1.)
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11.2. Securely Simulating a Turing Machine

foreach node v of  Un in (some) topological order do
if v is an input node then

let e be the outgoing edge, Ie the positions of the corresponding input bit
set Ve := Ie // regard the cards at Ie to belong to e

else if v is an X-switch then
let Cv be the position pair of the configuration bit for v
let e, f be the two incoming edges and g, h the two outgoing edges
sortCv ↑ (Ve, Vf )
set Vg := Ve and Vh := Vf

else if v is a Y-switch then
let Cv be the position pair of the configuration bit for v
let e, f be the two incoming edges and g the outgoing edge
sortCv ↑ (Ve, Vf )
set Vg := Ve

else if v is a fork then
let e be the incoming edge and g, h the two outgoing edges
set Vg := Ve
set Vh as the positions of two new cards, containing ♣♡
sort∗ Ve ↑ Vh

else if v is a universal gate then
let C1, . . . , C4 be the position pairs containing the configuration bits of v
let e, f be the two incoming edges and g, h the two outgoing edges of v
sortVe ↑ ((C1, C2), (C3, C4))
sortVf ↑ (C1, C2)
set Vg := Ve and Vh := Vf
sortC1 ↑ ((Vg[0], Vh[0]), (Vg[1], Vh[1]))

else if v is an output node then
let e be the only incoming wire at the output node
(result, Ve)

Protocol 11.1. UC(⟨C⟩, I): executing C on input I

repeat t times
sorttape[0] ↑ ((w0, shift0,q′

0, sav[0]), (w1, shift1,q′
1, sav[1]))

sort∗ w0 ↑ tape[0]
rot∗(n, l,r) ↑ (rot[0],rot[N−1],rot[1])
rotrot ↑ tape
rot∗ q′

0 ↑ next
sort sav ↑ ((w0, shift0,q′

0), (w1, shift1,q′
1))

rotnext ↑ q
result tape // or parts of it

Protocol 11.2. executeTM()
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Proof. The protocol is given in Protocol 11.2 and Figure 11.1. For security, observe 
that the protocol consists only of sort sub-protocols; we can thus use Corollary 8.1.

For the cards needed, we just count the number of cards depicted in Figure 11.1. In 
a bit more detail, for the helping cards needed, note that we need N − k pairs of ♣♡
for the empty tape cells, which are placed next to Bob’s input string. We have one ♣
for each of the registers rot, sav and next, and N − 1, 1 and M − 1 ♡s respectively. 
The second part of the union scales with the size of the largest register to be used in 
starred commands, which is either shift0 or q′

0.

Remark 11.2 (Variants to the Implementation). Using techniques presented in Sec-
tion 11.3, we could use a binary instead of a unary encoding of state indices in the 
encoding of transitions. This would reduce the number of required cards from O(N+M2)
to O(N +M log(M)). However, given that the charm of Turing machines is their sim-
plicity rather than their efficiency, we felt that we should reserve this trick for later.

For simplicity, we also chose to describe how to implement TMs with band alphabet 
{0, 1}, excluding the special blank symbol ␣. While one can generically map this to the 
standard case by using an encoding 1 =̂ 11, 0 =̂ 10, and ␣ =̂ 00, let us briefly discuss 
how one can easily upgrade our implementation with a TM supporting an additional 
blank symbol. For this, we encode tape cells with three cards via ♣♡♣ =̂ 0, ♡♣♣ =̂ 1
and ♣♣♡ =̂ ␣. In this way, the first two cards encode the value as previously, unless 
they are ♣♣, which would be a blank. We then need to add w2, shift2 and q′

2 to each 
of the qs, specifying the operation in the case that a blank symbol is used (Note that 
the wi contain the symbol to be written in reversed order, to ensure the right action is 
done to the tape cards). This approach has the advantage of allowing us to learn the 
length of the output after the computation (if it is not to be protected), by just turning 
over the third card in each of the tape cells and outputting (the first two cards of) those 
cells which do not show a ♡, i.e., which are not blank.

Remark 11.3 (Reusability of the TM). First note that we never destroy any of the 
state description entries of the TMs code as in normal execution it is always possible to 
enter the state again. Hence, to be able to run a TM multiple times, we only need to 
ensure that after the execution the first state is again in q[0]. As we cannot trust Alice to 
provide a program that guarantees this behavior, we can introduce an additional register 
start[0 . . .M − 1] which is a copy of next and is rotated together with q. It can then 
be used to rotate q back into its initial configuration by executing rot start ↑ q after 
the loop in Protocol 11.2.

11.3. Securely Simulating a Random Access Machine (RAM)

We now describe a simple bounded Random Access Machine model. The goal is to 
execute a RAM machine with a secret encoding of the machine specified by one player, 
Alice, on a secret input provided by another player, Bob.
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A Simple RAM Model

We assume fixed constants N = 2n (memory words), M = 2m (instruction groups), 
k ≤ N (input size) and t <∞ (time limit). The machine has access to N binary words 
ram[0], . . . ,ram[N − 1] of length n each, the first k of which contain the input and the 
remaining N − k contain zero. The following types of instructions are available, where 
x, y are n-bit words and p is an m-bit word:

Load a Constant. ram[x]← y
Copy. ram[x]← ram[y]

Indirect Read. ram[x]← ram[ram[y]]
Indirect Write. ram[ram[x]]← ram[y]

Addition. ram[x]← ram[x] + ram[y]
Subtraction. ram[x]← ram[x]− ram[y]

Conditional Jump. jnzram[x] p

To simplify the implementation step later, we assume that a program is a sequence 
i[0], . . . , i[M ] of groups of instructions. Each group of instructions contains precisely 
one instruction of each of the above types, in canonical order. Note that this fixed 
instruction order does not affect the strength of the model. Indeed, if we assume that 
without loss of generality the cell ram[0] is never used in any “real” instruction, we 
may choose x = y = 0 to turn any instruction into a dummy instruction that has no 
effect. By turning all but one desired instruction in each instruction group into such a 
dummy instruction, we can implement programs without having to worry about the 
fixed instruction order at the expense of increasing the number of instructions by a 
constant factor.

Here, the jnzram[x] p (“jump if not zero”) instruction means that if ram[x] contains 
zero, the execution should continue with the next instruction group. Otherwise, p is 
to be interpreted as the relative offset to the next instruction group that should be 
executed, i.e., if the current instruction group has index j, then the instruction group 
with index (j + p) mod M should be executed next.

Implementation with Cards

Assume we want a secure implementation of the RAM model with parameters N = 2n, 
M = 2m, k, t using playing cards. We may imagine that one player, Alice, provides the 
sequence of instructions, and the other player, Bob, provides the input in ram[0 . . . k−1]
of k · n bits. As usual, each bit is encoded with a pair of cards and a word of n or m
bits is a sequence of n or m such pairs. In addition to the inputs, we have an encoding 
of ram[k . . . N−1] (initially zero) and two additional n-bit “accumulators” A and A′

(initially zero). Finally, there are ♡-cards in (“instruction pointer”) positions labeled 
ip[1], . . . , ip[M − 1], ip∗ and one ♣-card in the position labeled ip[0], which will be used 
for the conditional jumps. An overview is given in Figure 11.2.

We say a few words about the implementation of the instructions, starting with a 
general description of how words can be loaded from and stored to arbitrary addresses.
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Bob’s input⏟ ⏞⏞ ⏟
ram[0]⏟ ⏞⏞ ⏟

⏞ ⏟⏟ ⏞
ram[0]1

⏞ ⏟⏟ ⏞
ram[0]2

· · · ⏞ ⏟⏟ ⏞
ram[0]n

· · ·

ram[k−1]⏟ ⏞⏞ ⏟
⏞ ⏟⏟ ⏞

ram[k−1]1

· · · ⏞ ⏟⏟ ⏞
ram[k−1]n

ram[k]⏟ ⏞⏞ ⏟
♣ ♡⏞ ⏟⏟ ⏞

ram[k]1

· · · ♣ ♡⏞ ⏟⏟ ⏞
ram[k]n

· · ·

ram[N−1]⏟ ⏞⏞ ⏟
♣ ♡⏞ ⏟⏟ ⏞

ram[N−1]1

· · · ♣ ♡⏞ ⏟⏟ ⏞
ram[N−1]n

ram[0 . . . N−1]:

⟨ binary encoding of parameters for instructions of group 0 ⟩i[0]:

⟨ binary encoding of parameters for instructions of group 1 ⟩i[1]:

...... ...
⟨ binary encoding of parameters for instructions of group M − 1 ⟩i[M−1]:

♣ ip[0]

♡ ip[1]

♡ ip[M−1]

♡ ip∗
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♣ ♡⏞ ⏟⏟ ⏞
a1

♣ ♡⏞ ⏟⏟ ⏞
a2

· · · ♣ ♡⏞ ⏟⏟ ⏞
an

Accumulator a :
♣ ♡⏞ ⏟⏟ ⏞

a′
1

♣ ♡⏞ ⏟⏟ ⏞
a′
2

· · · ♣ ♡⏞ ⏟⏟ ⏞
a′
n

a′ :

Figure 11.2.: Overview of our RAM machine construction, cf. Protocol 11.5.

Loading a Word. Assume that an address is available as an n-bit word x = (x1, . . . , xn), 
each bit xi encoded as a pair of face-down cards in positions Xi = (Xi[0], Xi[1])
and that the word ram[x] should be loaded into the accumulator. We give an 
implementation as Protocol 11.3. The first loop uses n conditional swaps of RAM 
ranges to transport the content of ram[x] into ram[0]. The invariant is that after 
the i-th loop, the content of ram[x] has been transported to ram[x]&(2n−i − 1)
where & denotes the bitwise AND. For instance, if n = 4 and x = 10 = (1010)2, 
then in the rounds i = 1 the left half ram[0 . . . 7] and right half ram[8 . . . 16]
of the memory would be swapped and in round i = 3 the ranges ram[0, 1] and 
ram[2, 3] would be swapped, in total transporting ram[10] via ram[2] to ram[0].

The second for-loop copies the content of ram[0] to the accumulator. Since the 
copy protocol can copy information only onto card pairs that are in a known state, 
we must securely reset the accumulator bits before each copy operation. The third 
for-loop undoes all swaps of the first loop, in reverse order.

Storing a Word. Storing is very similar to loading, we give an implementation in Pro-
tocol 11.4. Here, instead of copying the RAM content to the accumulator in the 
second line of the second for loop, we copy the value of the accumulator into the 
RAM.

Move Operations. The operations previously dubbed copy, indirect read and in-
direct write are easy to implement using the load and store algorithms. For 
temporary storage, the accumulator A′ is used. For instance, the indirect store 
operation ram[ram[x]] ← ram[y] with the words x and y encoded in positions 
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for i = 1 to n do
sort∗Xi ↑ (ram[0 . . . 2n−i−1],ram[2n−i . . . 2n−i+1−1])

for i = 1 to n do
sortAi // securely reset i-th bit of accumulator
sort∗ ram[0]i ↑ Ai // copy i-th bit

for i = n down to 1 do
sort∗Xi ↑ (ram[0 . . . 2n−i−1],ram[2n−i . . . 2n−i+1−1])

Protocol 11.3. load(X), where X = (X1, . . . , Xn) is a sequence of n card-pairs 
encoding an n-bit address x = (x1, . . . , xn).

for i = 1 to n do
sort∗Xi ↑ (ram[0 . . . 2n−i−1],ram[2n−i . . . 2n−i+1−1])

for i = 1 to n do
sortram[0]i // securely destroy content
sort∗Ai ↑ ram[0]i // copy i-th bit of accumulator

for i = n down to 1 do
sort∗Xi ↑ (ram[0 . . . 2n−i−1],ram[2n−i . . . 2n−i+1−1])

Protocol 11.4. store(X), where X = (X1, . . . , Xn) is a sequence of n card-pairs 
encoding an n-bit address x = (x1, . . . , xn).

X and Y can be implemented using load(Y ), swap(A,A′), load(X), swap(A,A′), 
store(A′), where swap just swaps the two card sequences.

Loading Constants. Copying a value given directly in the instruction is simply done by 
copying each of the n bits one by one.

Addition and Subtraction. Secure half and full adders have been described by [MAS13]. 
If n ≥ 2, the accumulator A′ is sufficient to store carry-bits temporarily. We omit 
the details.

Conditional Jump. While it would be possible to have an instruction pointer that is 
affected by jump operations, we opt for an approach that seems slightly more 
elegant. We always execute instruction group i[0], and when executing the last 
instruction jnzram[x] p of that group, we rotate the sequence of all instructions 
such that either ip[1] or ip[p] becomes ip[0], depending on the value of ram[a]. 
See below for the exact description.

The overall execution of the RAM program is given in Protocol 11.5. We assume the 
addresses x and p are available in positions X and P , respectively. To carry out the 
conditional jump, first load x into the accumulator and form the Boolean OR of all its 
bits. Assuming ram[0] is not zero, then the bit a1 is set to true by this OR operation 
and the single ♡-card is swapped into ip∗ before the for-loop and is put into position 
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ip[1] afterwards. If, however, ram[0] is zero, then a1 is set to false in which case the 
for-loop transports the ♣-card into position ip[p] (the loop invariant is that the ♣-card 
is in position ip[p&(2m−i− 1)]). The rot operation in the last step rotates the sequence 
of instructions as desired.

repeat t times
⟨execute all instructions in group i[0], except the jump⟩
// Now execute jnz ram[x] p:
load(X)
A1 ← A1 or A2 or . . . or An

A1 ← ¬A1 // swap A1's cards
sort∗A1 ↑ (ip[0], ip∗)
for i = m down to 1 do

sort∗ Pi ↑ (ip[0 . . . 2m−i−1], ip[2m−i . . . 2m−i+1−1])
sortA1 ↑ (ip∗, ip[1])
rot ip[0 . . .M − 1] ↑ i[0 . . .M − 1]

result ram // or parts of it

Protocol 11.5. executeRAM()

Theorem 11.3. For any N = 2n,M = 2m, k < N, t ≥ 0 there exists a secure card-based 
protocol P with the following properties:

1. The input sequences are all sequences (V, P ) where
• V encodes k n-bit words (v1, . . . , vk) ∈ {0, 1}nk using the deck nk · [♣,♡].
• P encodes an n-bit-word RAM machine R with M instruction groups using 

the deck kM · [♣,♡], where k = O(n +m) is the length of the encoding of 
one instruction group.

2. The output is a sequence of cards encoding the output of  R on input (v1, . . . , vk)
after t steps.

3. In addition to the cards encoding the inputs, we need the helping deck (N − k +
2)n · [♣,♡]∪ [♣,M · ♡]. (Additional cards for the starred sort variants can borrow 
from A′.)

Proof. For the correctness, we refer to the above explanation of all the relevant com-
mands. For security we again use Corollary 8.1 and the fact that we do not turn over 
any cards outside sort or rot operations. For this, note that the OR operation in line 5 
of Protocol 11.5 can be framed as a sort operation, cf. Protocol 8.10.

Remark 11.4 (Reusability of the Program). Similarly to Remark 11.3 for the TM case, 
we can ensure that we end in the original configuration (with the first instruction in 
ip[0]) by introducing an additional register start[0 . . .M − 1] which is rotated together 
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with the instruction groups and ip. At the end of the execution we use it to rotate 
everything back into place and additionally reset the accumulators.

11.4. Securely Evaluating a Branching Program

Branching Programs [B89] are commonly used for constructing program obfuscation, 
e.g., in [GGH+13; GKW17; WZ17], which inspired this section.

Branching Programs

A branching program B of length N and width w for k variables is a sequence

((j(i), π
(i)
0 , π

(i)
1 ))1≤i≤N ∈ ({1, . . . , k} × Sw × Sw)N

of instructions. The permutation belonging to a sequence v⃗ = (v1, . . . , vk) ∈ {0, 1}k of 
inputs is

B(v⃗) =
∏︂

1≤i≤N

π(i)v
j(i)
.

In other words, in the i-th step, the value of the j(i)-th variable determines which of 
the two permutations of the i-th instruction is used.

For σ ∈ Sw we say B σ-computes a Boolean circuit C, if for any v⃗ ∈ {0, 1}k

B(v⃗) =

{︄
σ, if C(v⃗) = 1,
id, if C(v⃗) = 0.

Now let State be a set of states on which Sw acts via some group action ∗ and executing 
B on v⃗ starting from some start state q0 ∈ State means computing states (qi)1≤i≤N

iteratively as qi+1 = πv
j(i)
∗ qi. Of course, we end with qN = πv

j(N)
∗ · · · ∗ πv

j(1)
∗ q0 =

B(v⃗) ∗ q0. In this document, State is a set of card sequences of length w and π ∗ q yields 
the card sequence q permuted by π.

A Peculiar Subset of S5

Barrington’s Theorem makes heavy use of the fact that S5 is not a solvable group. In 
particular, there are permutations π, τ ∈ S5 such that the commutator [π, τ ] := π ∘
τ ∘ π−1 ∘ τ−1 is not the identity permutation. There is some freedom when choosing 
permutations for the construction that follows. To be more specific, we define the five 
permutations ϕ0, . . . , ϕ4 as

ϕ0 :

1

2

34

5
ϕ1 :

1

2

34

5
ϕ2 :

1

2

34

5
ϕ3 :

1

2

34

5
ϕ4 :

1

2

34

5
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In general, we can define ϕi = (1 2 3 4 5)i ∘ ϕ0 ∘ (1 2 3 4 5)−i for any i ∈ Z but, of 
course, only the remainder of the index modulo 5 is relevant.

It is easy to check that ϕ0 = ϕ5 = [ϕ3, ϕ4] and ϕ−1
0 = ϕ−1

5 = [ϕ1, ϕ3]. We can 
therefore write each element ϕ ∈ F := {ϕ0, . . . , ϕ4, ϕ

−1
0 , . . . , ϕ−1

4 } as ϕ = [ϕ′, ϕ′′] for 
some other elements ϕ′, ϕ′′ ∈ F . More concretely, we have

ϕi = [ϕi+3, ϕi+4], ϕ−1
i = [ϕi+1, ϕi+3].

Barrington’s Theorem

We now state a central theorem due to Barrington, which we specialize to permutations 
from the set F defined above. For self-containedness and illustration, we give the elegant 
and constructive proof in full. Recall from Chapter 11 that the depth of a circuit C is 
the maximum number of ∧ and ∨ gates on a path in C.

Theorem 11.4 (Barrington [B89]). For any Boolean circuit C of depth d and ϕ ∈ F
there exists a branching program B = B(C) of width 5 and N ≤ 4d instructions 
that ϕ-computes C.

Proof. The proof works by induction on the length d′ of the longest path in C. If d′ = 0, 
then we also have d = 0 and the output node is labeled with a constant 0, a constant 
1 or the index j of a variable. In these cases, the trivial branching programs with a 
single instruction of the form (_, id, id), (_, ϕ, ϕ) or (j, id, ϕ), respectively, ϕ-compute 
C (here, _ is a placeholder for an arbitrary variable index).

Now assume d′ > 0. If the output node is labeled „¬“, then the value at its unique 
predecessor is computed by a circuit C ′ with longest path of length d′ − 1. Therefore, 
there is a branching program B′ that ϕ−1-computes C ′ with at most 4d instructions. 
Let (j, π, π′) be the last instruction of B′. Replacing it with (j, ϕ ∘ π, ϕ ∘ π′) yields a 
branching program B that ϕ-computes C since we have

B(v⃗) = ϕ⇔ B′(v⃗) = id⇔ C ′(v⃗) = 0⇔ C(v⃗) = 1

and for similar reasons B(v⃗) = id⇔ C(v⃗) = 0.
If the output node is labeled ∧, then values at its two predecessors are computed by 

two circuits C ′ and C ′′ with longest path of length at most d′−1 and depth at most d−1. 
We previously observed that we can write ϕ = [ϕ′, ϕ′′] for two permutations ϕ′, ϕ′′ ∈ F . 
Let B′

ϕ′ and B′
ϕ′−1 be two branching programs that ϕ′-compute and ϕ′−1-compute C ′, 

respectively, and similarly B′′
ϕ′′ and B′′

ϕ′′−1 be two branching programs that ϕ′-compute 
and ϕ′′−1-compute C ′′, respectively.
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11.4. Securely Evaluating a Branching Program

We obtain B as the concatenation of these four branching programs. Depending on 
the values r′ = C ′(v1, . . . , vk) and r′′ = C ′′(v1, . . . , vk) we get the following behavior of 
B:

B(v⃗) = B′
ϕ′(v⃗) ∘B′′

ϕ′′(v⃗) ∘B′
ϕ′−1(v⃗) ∘B′′

ϕ′′−1(v⃗)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ′ ∘ ϕ′′ ∘ ϕ′−1 ∘ ϕ′′−1 = [ϕ′, ϕ′′] = ϕ if r′ = r′′ = 1

id ∘ϕ′′ ∘ id ∘ϕ′′−1 = id if r′ = 0, r′′ = 1

ϕ′ ∘ id ∘ϕ′−1 ∘ id = id if r′ = 1, r′′ = 0

id ∘ id ∘ id ∘ id = id if r′ = r′′ = 0

Since C(v⃗) = 1⇔ r′ = r′′ = 1, this means B indeed ϕ-computes C.

Implementing Branching Programs with Cards
We first describe how the encoding P = P (C) is obtained from C, as the format of P
already contributes to hiding details about C, especially the pattern in which variables 
are used. Firstly, by Barrington’s Theorem (Theorem 11.4) there is a branching program 
B = B(C) that ϕ−1

0 -computes C with N ≤ 4d instructions. We now transform B into 
a normalized branching program B′ by preceding each instruction (j, π0, π1) of B with 
the j − 1 dummy instructions (1, id, id), . . . , (j − 1, id, id) and appending to it the k − j
dummy instructions (j+1, id, id), . . . , (k, id, id). This means that B′ accesses all variables 
periodically in canonical order. Note that B′ contains kN ≤ k ·4d. (In addition, we may 
choose to pad B′ to a longer program B′′ of length kN ′ if we wish to hide the length 
of B′ and thus of B.) Clearly, B′ exhibits the same behavior as B. The sequence P is 
now simply obtained by concatenating the kN sequences encoding the permutations 
occurring in the description of B′.

Theorem 11.5. For any k,N ≥ 0 there exists a secure card-based protocol P with the 
following properties:

1. The input sequences are all sequences (V, P ) where
• V encodes the values of  k Boolean variables (v1, . . . , vk) ∈ {0, 1}k using the 

deck k · [♣,♡].
• P encodes a normalized branching program B of length kN with one bit 

output using the deck 2kN · [1, 2, 3, 4, 5].

2. The output is two cards encoding B(v1, . . . , vk).

3. In addition to the cards encoding the inputs, the helping deck [2 · ♡, 5 · ♣] is used. 
Each execution of the protocol performs 2kN shuffle actions.

Proof. The protocol is described in Protocol 11.6. We denote by capital letters the 
sets of positions on which the corresponding parts of the input (denoted by lower case 
letters) are present at the start of the protocol. Additionally, there are helping cards 
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for i← 0 to N − 1 do
for j ← 1 to k do

sort∗ Vj ↑ (Π(ik+j)
0 ,Π

(ik+j)
1 )

sortΠ(ik+j)
0 ↑ q

result qR

Protocol 11.6. Executing a branching program.

Bob’s input⏟ ⏞⏞ ⏟
⏞ ⏟⏟ ⏞

V1

⏞ ⏟⏟ ⏞
V2

· · · ⏞ ⏟⏟ ⏞
Vk

qR⏟ ⏞⏞ ⏟
♣ ♡ ♣ ♣ ♣⏞ ⏟⏟ ⏞

q

⏞ ⏟⏟ ⏞
Π

(1)
0

⏞ ⏟⏟ ⏞
Π

(1)
1

Π(1):

⏞ ⏟⏟ ⏞
Π

(2)
0

⏞ ⏟⏟ ⏞
Π

(2)
1

Π(2):

......
⏞ ⏟⏟ ⏞

Π
(k·N)
0

⏞ ⏟⏟ ⏞
Π

(k·N)
1

Π(k·N):

A
lic

e’
s
in
pu

t
k
·N

br
an

ch
in
g
in
st
ru
ct
io
ns

Figure 11.3.: Overview of the branching program construction. Alice’s input is the 
branching program ((j(i), π(i)0 , π

(i)
1 ))1≤i≤N ∈ ({1, . . . , k}×S5×S5)N in normalized form.

present in positions q that initially contain the sequences ♣♡♣♣♣ as well as two cards 
to support the sort∗-operation (not shown in Figure 11.3).

Consider an iteration of the inner loop with r = ki+j. First, the encodings of the two 
permutations π(r)0 and π(r)1 (in positions Π(r)

0 and Π(r)
1 ) are swapped if vj (in position 

Vj) is 1 and left as is otherwise. Hence, an encoding of π(r)vj ends up in position Π(r)
0 , 

from where it is obliviously applied to the sequence in q. For correctness, note that by 
assumption the normalized branching program ϕ−1

0 -computes C, i.e., if the output is 0, 
in total we perform id on the cards in q, which results in a 0 being encoded in qR. If C
outputs 1, then ϕ−1

0 is applied to the cards of q, resulting in ♡♣♣♣♣, as ϕ−1
0 maps 

2 ↦ 1, yielding an encoded 1 in qR.
Security of P follows again from the fact that the protocol is only composed of valid 

sort operations and Corollary 8.1.

Remark 11.5 (Reusability of the Program). To allow for reusing the branching program 
after its execution, we would need to write the executed permutation of each step back 
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into its register and to undo any conditional swaps. In more formal terms, we replace 
the sort command in the second line of the inner loop of Protocol 11.6 with its starred 
variant. To undo the swap, we repeat the first line of the inner loop after the second 
line.

A Note Regarding Active Security
Note that a malicious Alice might learn something about the input passed to the program 
by choosing the permutations of the program in such a way that the output (the first 
two cards in q after the protocol run) is not ♣♡ or ♡♣, but ♣♣. If we want to avoid 
this, we can initialize q with ♣♡♣♡♣ (replacing the penultimate ♣ with a ♡), and 
instead of opening just the first two cards at the end, we have to ensure that the content 
of the register gets mapped to a single bit, without revealing anything else. For this, 
note that after a protocol run of a legal program, q contains one of two configurations 
namely ♣♡♣♡♣ if id was applied, and ♡♣♣♣♡ if ϕ−1

0 was applied. Important here, is 
that in the first case, the ♡s have distance 1 and in the second case distance 0, which 
is invariant over random cuts, and represents the two possible configuration classes 
(orbits w.r.t. random cuts) in the five-card trick [dB90]. We cannot use the five-card 
trick directly, as its output is not in committed format, however. To overcome this, we 
can make use of the recent five-card AND protocol of [AHMS18] (cf. Figure 7.14), which 
starts with a situation as above and then outputs a bit commitment to the AND value 
in a (restart-free) Las Vegas fashion.

Moreover, for active security in all the protocols in this chapter, one should additionally 
implement the shuffle operation with active security as in Chapter 12. For ease of 
implementing the coupled shuffles, we recommend to use envelopes to avoid additional 
helping cards, as in Figure 8.8.

11.5. Conclusion
We give four card-efficient and conceptually simple protocols for executing a universal 
machine model in a secure multiparty computation protocol, hence achieving Private 
Function Evaluation. These are for circuits, Turing and word-RAM machines and 
branching programs, giving the user a palette of options, from which they can choose 
the most suitable one. We give the concrete numbers of necessary cards for each of the 
models, carefully reusing helping cards where possible. We additionally discuss several 
adaptions, e.g., on how to execute these in a non-destructive way that lets us reuse the 
program multiple times.

Our results can also be interpreted as a straightforward instantiation of Oblivious 
RAM (ORAM), making heavy use of the fact that we can physically and obliviously 
move around “RAM cells”, which is not possible in the usual cryptographic ORAM 
model. By stating these classical cryptography problems, such as constructing ORAM 
or program obfuscation in the language of card-based cryptography, it might not only 
be of didactic use in explaining these to students, but also provide some insight into the 
constructions in the classical cryptographic realm.
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12. Active Security for Card-based 
Protocols

This chapter is mainly based on [KW17], with some adaptations to the common notation 
and a new part on input-aware protocols and their security.

In the formal computational model of Mizuki and Shizuya [MS14a], a protocol 
specification may use any of the most general shuffling operations, namely applying 
a permutation from an arbitrary permutation set chosen according to an arbitrary 
distribution. This computational model is very useful when showing impossibility 
results and lower bounds on cards, cf. Chapter 9, but it seems unlikely that all shuffle 
operations permitted in the model have a convincing real world implementation. This 
spawned some formal protocols with apparently good parameters, but unclear real-world 
implementations, especially if active security is a concern, cf. Section 8.3.

There is to this day still no positive account of what shuffles can be done with playing 
cards beyond the justification of individual protocols, and even then, most work with 
“honest-but-curious” assumptions, with no guarantees when one of the players deviates 
from the protocol.

Related Work. Other works have investigated the question of active attacks, albeit 
with a different focus. Mizuki and Shizuya [MS14b] address active security against 
adversaries who deviate from the input encoding, e.g., giving input (♡,♡) instead of 
(♡,♣). We sketch in Section 12.9 how our results subsume this, using a separate input 
phase. Moreover, they stress the necessity of non-symmetric backs to avoid marking 
cards by rotating them. Finally, using a secret sharing-like mechanism, they specify 
how to avoid security breaches by scuff marks on the backs of the cards. Shinagawa 
et al. [SMS+15b] describe a method against injection attacks in their model using 
polarizing plates. Recently and independently, Ueda et al. [UNH+16] give an elaborate 
implementation of the special case of random bisection cuts, including experiments 
showing the real-world security of the shuffle. Moreover, Shinagawa et al. [SMS+15a] 
give a security notion that takes into account a number of players.

Besides short ad-hoc discussions of the shuffle security, we believe that this is an 
exhaustive list of all investigations into active security so far. In particular, the issue of 
ensuring that only permutations allowed in the protocol description can be performed 
during a shuffle has not been addressed for cases where this is non-trivial.

Our Contribution. At several places in the literature the open question of achieving 
actively secure shuffles and protocols is posed. In this chapter, we answer a significant 
part of this question by explaining how any protocol in the model of [MS14a] that is 
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restricted to uniform closed shuffles can be transformed into an actively secure protocol 
using only a linear number of helping cards. Uniform closed shuffles, namely those that 
rearrange the cards according to a uniform distribution on a permutation group, have 
already been identified in Section 6.7 as a natural class of operations.

Furthermore, we define a new model for card-based cryptography, which we call 
two-player protocols. These, in turn, use permutation protocols that allow Alice to apply 
a π ∈ Π of her choosing to a sequence of face-down cards, such that Bob learns nothing 
about her choice. We believe this to be of independent interest, e.g., as an approach to 
formalize protocols such as the three-card AND protocol by Karun Singh as described 
in [MWS15, Sect. 3.2] that does not fit into the model of Mizuki and Shizuya.

The idea of using “private permutations” as base operations instead of shuffles was 
first mentioned in [KWH15, Sect. 8]. Independently from our work, these operations are 
used in [NTM+16] to more efficiently perform an instance of the millionaires’ problem 
with cards and in [NSIO17] for the case of a three-input voting protocol. The way they 
are used there causes the protocol to require input awareness for the players, which 
is usually not required by, e.g., a committed format protocol. For a correct analysis 
however, one has to introduce two operations, namely privatePerm and inputPerm, with 
the first allowing to do a permutation privately, without anyone looking, and the 
second additionally marks this permutation as an input, which is to be protected by 
corresponding notions of security.

12.1. Implementing Cuts and Pile Cuts with Choice
A set Π ⊆ Sn of permutations has an actively secure implementation with choice, or 
is implemented for short, if there is a procedure that allows Alice to apply a π ∈ Π of 
her choosing to a sequence of face-down cards, such that Bob learns nothing about her 
choice, but is certain that Alice did not choose π ̸∈ Π. Also, no player learns anything 
about the face-down cards if the other player is honest.

Example: Bisection Cut with Envelopes. Mizuki and Sone [MS09] make use of the 
following procedure on six cards: The cards in positions 1, 2 and 3 are stacked and put 
in one envelope and the cards in position 4, 5 and 6 are put into another. Behind her 
back, Alice then swaps the envelopes or leaves them as they are – her choice. Unpacking 
yields either the original sequence or the sequence 4, 5, 6, 1, 2, 3. The bisection cut 
Π = {id, (1 4)(2 5)(3 6)} is therefore implemented (with active security and choice) 
using two indistinguishable envelopes.

The role of the envelopes is to ensure that the two groups of cards stay together and 
the ordering within a group is preserved. The idea is that opening the envelopes behind 
her back would be impractical and noisy, so even if Alice is malicious, she is limited to 
the intended options. For a model of secure envelopes, cf. [MN06a; MN10a].

Example: Unequal Division Shuffle. A bisection cut on n cards can be interpreted as 
“either do nothing or rotate the sequence by n/2 positions”. Generalizing this, we now 
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Chosen Pile Cut

k = !
k

k = ?

Special Case: Chosen Cut

k = !

k

k = ?

Uniform Cut

k = ?

k

k = ?

Assumption: Cuts imperfectly observable
Players lose track of repeated cuts.

Tool: Deck with red backs
[♠,♢, . . . ,♢]

(Formal) Action: Chosen Pile Cut

ki = k = !

k1 k2

. . .

kl

ki
!
= kj

Permutation Protocol: Generalized Coupled Rotation
See Figure 12.6. Special Case: Two piles

Helping Deck
[♠,♠,♠,♢, . . . ,♢]

Helping Deck
[♠,♢, . . . ,♢]

Action: Chosen Generalized Coupled Rotation

ki = k = !

k1 k2

. . .

kl

ki
!
= kj

Special Case: Two piles

k1 = k2 = !

k1 k2

k1
!
= k2

Action: Chosen Permutation from Closed Π

π = ! π
!
∈ Π

Other Actions
turn: reveal cards
perm: public permutation
result: output

Model: Two Player Protocol
Actions: privatePerm, perm, turn, result

Notion: Active Security
Permutation sets implemented, player
knowledge independent of in-/output.

Security-respecting Implementation (see Proposition 12.2)

Model: Uniform Closed MS Protocol
Actions: shuffle, perm, turn, result

Notion: Security
Execution path independent of
in-/output.

Action: Uniform Closed Shuffle

π ∈ Π
(random)

requires

uses uses

informally justified by

uses

uses

uses

formally implemented by

decomposes into

may use

may use

may use

has

has

A uniform cut (p. 174) rotates 
a pile of cards by a uniformly 
random value unknown to Al-
ice and Bob. From this we 
build chosen cuts (p. 174) leav-
ing a pile rotated by a value 
chosen by Alice but unknown 
to Bob. When generalized to 
chosen pile cuts (p. 175) and 
formalized, we obtain a chosen 
pile cut action that rotates a 
sequence of equally-sized piles 
by a value k chosen by Alice. 
Bob remains oblivious of that 
value but he can be sure that 
the cards are not rearranged 
in any other way. In particu-
lar he knows that each pile is 
rotated by the same amount, 
even if Alice is dishonest.
With the help of a permuta-
tion protocol (p. 176) this is ex-
tended to the case where piles 
may have different sizes. This 
yields chosen coupled rotations
(p. 177) in the case of two piles 
and chosen generalized coupled 
rotations (p. 177) in the case 
of more than two piles.
These are powerful enough to 
build arbitrary chosen permu-
tations from a closed permu-
tation set (p. 180). In that 
setting, Alice may choose any 
permutation π from a group 
of permutations Π. Bob will 
not learn π but can be sure 
that no permutation outside 
the set Π is performed.
A two player protocol (p. 181) 
may make use of these chosen 
closed permutation actions as 
well as the other actions turn, 
perm and result.
Uniform closed Mizuki–
Shizuya (MS) protocols (p. 45) 
are a large natural subset of 
protocols as formalized by 
Mizuki and Shizuya. Our 
main result is that for any 
such protocol there is a two 
player protocol computing the 
same function that is actively 
secure (p. 184) if the original 
protocol is secure (p. 182). 
This security-respecting imple-
mentation (p. 185) replaces 
each uniform closed shuffle 
with two corresponding 
chosen closed permutations.
Active security is bought with 
helping cards needed in several 
places; intuitively to prove the 
legitimacy of Alice’s actions to 
Bob.

Figure 12.1.: Overview of the content of this chapter. The images of Alice and Bob 
are adapted from xkcd (by Randall Munroe), which is licensed as CC-BY-NC-2.5.
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want to “either do nothing or rotate the sequence by l positions” for some 0 < l < n, 
i.e., implement Πl = {id, (1 2 . . . n)l}. Nishimura et al. [NNH+15; NNH+18] describe 
a corresponding mechanism using two card cases with sliding covers. The card cases 
behave like envelopes but are heavy enough to mask inequalities in weight caused by 
different numbers of cards, and support joining the content of two card cases – for 
details refer to their paper (or Section 12.8).

While we are very fond of creative ideas such as these, we shall make it our mission 
to implement card based protocols using only one tool: additional cards.

Cutting the Cards
By the cut on n cards we mean the permutation set Π = ⟨(1 . . . n)⟩ and, ordinarily, 
Alice would cut a pile of n cards by taking the top-most k cards (for some 0 ≤ k < n) 
from the top of the pile and setting them aside and then placing the remaining n− k
cards on top. In this form, Alice can only approximately pick k while allowing Bob to 
approximately observe k. Implementing Π requires fixing both problems.

Uniform Cut. As an intermediate goal we implement a uniform cut on n cards, i.e., 
we perform a permutation (1 2 . . . n)k for 0 ≤ k < n chosen uniformly at random and 
unknown to the players. As proposed in [dB90], this is done by repeatedly cutting the 
pile in quick succession until both players lost track of what happened. More formally, 
under reasonable assumptions, the state of the pile is described by a Markov chain 
that converges quickly to the uniform stable distribution, yielding an almost uniform 
distribution after a finite number of steps.

Arguably, if the pile is too small, say two cards, the number of cards taken during 
each cut is perfectly observable. In that case, we put a sufficiently large number c of 
cards with different backs behind each card, repeatedly cut this larger pile and remove 
the auxiliary cards afterwards. Note that [UNH+16] found it to work well in practice 
even for n = 2 and c = 3.1 We shall not explore this further and use uniform cuts as a 
primitive in our protocols.

Uniform Cut with Alternating Backs. Later we apply the uniform cut procedure to 
piles of n · (m+ 1) cards with n cards of red back, each preceded by m cards of blue 
back. From a “uniform cut” on such a pile, we expect a cut by 0 ≤ k < n · (m + 1)
where ⌊k/(m + 1)⌋ is uniformly distributed in {0, . . . , n − 1} and independent of the 
observable part k (mod m + 1). We leave it to the reader to verify that the iterated 
cuts still work under the same assumptions.

Chosen Cut. We now show how to implement Π = ⟨(1 . . . n)⟩ with active security 
and choice. Say Alice wants to rotate the pile of n cards by exactly k positions for a 
secret 0 ≤ k < n. We propose the process illustrated in Figure 12.2.

1If not satisfied, the reader may be more inclined to accept some variant of Berry’s turntable as 
described by Verhoeff [V14, Sect. 3], cf. also our discussion on page 37 of Chapter 5. There, cards are 
attached to a wheel-of-fortune-esque device.
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Example (n = 5, k = 4) General Description

c1 c2 c3 c4 c5

c1 ♢ c2 ♢ c3 ♢ c4 ♠ c5 ♢

↷ Alice inserts helping cards, puts ♠ right of ck.

♢ c4 ♠ c5 ♢ c1 ♢ c2 ♢ c3

↷ A uniform cut is performed.

♢ ♠ ♢ ♢ ♢
c4 c5 c1 c2 c3

↷ The helping cards are revealed.

♠ ♢ ♢ ♢ ♢
c5 c1 c2 c3 c4

↷ The ♠ is rotated to the front.

c5 c1 c2 c3 c4

↷ The helping cards are discarded.

Figure 12.2.: Alice cuts a pile of n cards, here (c1, . . . , c5), with back at position k
with a helping deck of n helping cards [♠, 4 · ♢] with back . In this illustration we 
annotated face-down cards with the symbol they contain.

π : τ :

Figure 12.3.: Rotating a sequence of four piles of three cards each by one position 
(left) is described by a permutation π with three cycles of length 4. Alternatively, we 
can think of π as π = τ3 where τ is the cyclic permutation of length 12 (right).

Alice is handed the helping deck [♠, (n−1) · ♢] with red backs and secretly rearranges 
these cards in her hand, putting ♠ in position k. The helping cards are put face-down 
on the table and interleaved with the pile to be cut (each blue card followed by a red 
card). The ♠ is now to the right of the card that was the k-th card in the beginning. 
To obscure Alice’s choice of k, we perform a uniform cut on all cards as described 
previously. The red helping cards are then turned over. Rotating the sequence so as to 
put ♠ in front, and removing the helping cards afterward leaves the cards in the desired 
configuration. Bob is clueless about k since he only observes the position of ♠ after the 
cut, which is independent of the position of ♠ before the cut (which encodes k).

Chosen Pile Cut. Chosen cuts can be generalized in an interesting way. Given n piles 
of m cards each and 0 ≤ k < n, Alice wants to rotate the sequence of piles by exactly 
k positions, meaning the i-th pile will end up where pile i + k has been (modulo n). 
Again, k must remain hidden from Bob and he, on the other hand, wants to be certain 
that Alice does not tamper with the piles in any other than the stated way. Note that 
this is equivalent to cutting a pile of nm cards where only cutting by multiples of m is 
allowed, see Figure 12.3. In that interpretation, the i-th pile is made up of the cards in 
positions (i− 1)m+ 1, . . . , im.
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We apply the same procedure as before with n helping cards, except this time, instead 
of a single blue card we have m blue cards (a pile) before each of the n gaps that Alice 
may fill with her red deck [♠, (n−1) · ♢]. Now the special ♠-card marks the end of the 
k-th pile and is (after a uniform cut) rotated to the beginning of the sequence, ensuring 
that after removing the helping cards again we end up having rotated the n ·m cards 
by a multiple of m as desired. Note that, uniform (non-chosen) pile cuts have been 
proposed in [ICM15] as “pile-scramble shuffles”, with an implementation using rubber 
bands, clips or envelopes.

Summary. If Π = ⟨(1 2 . . . n ·m)m⟩ for n,m ∈ N , then Π is implemented with active 
security and choice using the helping deck [♠, (n−1) · ♢]. For m = 1 it is called a cut, 
for m > 1 a pile cut. We use the same name for conjugates of Π, i.e., if card positions 
are relabeled. Any subset ∅ ̸= Π′ ⊂ Π of a (pile) cut is also implemented: Alice places 
♠ only in some positions, the others are publicly filled with ♢.

12.2. Permutation Protocols for Arbitrary Groups
We introduce a formal concept that allows to compose simple procedures to implement 
more complicated permutation sets.

For notation, when applying a permutation π of X to a set S ⊆ X we write π(S) :=
{π(s) : s ∈ S}. We say that π respects S if π(S) = S. In that case, π also respects the 
complement X \ S and we can define the restriction of π to S as the permutation τ
with domain S and τ(s) = π(s) for all s ∈ S.

Definition 12.1. A permutation protocol P = (n,H,Γ, A) is given by a number n
of object cards, a deck of helping cards H with initial arrangement Γ: {n+ 1, . . . , n+
|H|} → H, and a sequence A of actions where each action can be either

• (privatePerm,Π) for Π ⊆ Sn+|H| implemented with active security and choice, and 
respecting {1, . . . , n} (i.e., ∀π ∈ Π: π({1, . . . , n}) = {1, . . . , n}), or

• (check, p, o) for a position p of a helping card (i.e., n < p ≤ n + |H|) and an 
expected outcome o ∈ H.

Indeed, consider the following procedure: We start with n object cards lying on a table 
(positions 1, . . . , n). We place the sequence Γ next to it, at positions n+ 1, . . . , n+ |H|, 
and go through the actions of P . Whenever the action (privatePerm,Πi) is encountered, 
we use the procedure Pi implementing Πi to let Alice apply a permutation on the 
current sequence. When an action (check, p, o) is encountered, the p-th card is revealed. 
If its symbol is o, Bob continues, otherwise he aborts, declaring Alice as dishonest. In 
the end, the helping cards are removed, yielding a permuted sequence of object cards. 
(All permutations respect {1, . . . , n}, hence, the helping and the object cards remain 
separated).

We are interested in the set comp(P) ⊆ Sn+|H| of permutations compatible with 
P. If there are k privatePerm actions with permutations sets Π1, . . . ,Πk and πi ∈ Πi, 
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then πk ∘ . . . ∘ π1 is compatible with P if each check succeeds, meaning if (check, p, o)
happens after the i-th privatePerm action (and before the i + 1st, if i < k) then 
Γ[(πi ∘ . . . ∘ π1)−1(p)] = o. We argue that this implements Π′ = comp(P)|{1,...,n} using 
H (and, possibly, helping cards to implement Πi).

Alice can freely pick any π′ ∈ Π′; using an appropriate decomposition, all checks will 
succeed. In this case, Bob knows that the performed permutation is from Π′. No player 
learns anything about the object cards (only helping cards are turned) and conditioned 
on Alice being honest, the outcome of the checks is determined, so Bob learns nothing 
about π′.

Coupled Rotations. Let ϕ = (1 2 . . . s), ψ = (s+1 s+2 . . . s+t), and assume s < t. 
For π = ψ ∘ϕ = ϕ ∘ψ we call Π = {πk : 0 ≤ k < s} the coupled rotation with parameters 
s and t. Note that Π is not a group since πs ̸∈ Π. We aim to implement Π. We make 
use of a helping deck [♠, (t−1) · ♢] available in positions H = {h0, h1, . . . , ht−1} with 
♠ at position h0. Then define ϕ̂ := ϕ ∘ (h0 . . . hs−1) and ψ̂ := ψ ∘ (h0 . . . ht−1)

−1

and consider the permutation protocol P in Figure 12.5 (left), and Figure 12.4 for 
illustration. The idea here is that Alice may choose k and k′ and perform ϕ̂k and ψ̂k′

to the sequence. However, k is “recorded” in the configuration of a helping sequence 
and −k′ is “added” on top. A check ensures that the helping sequence is in its original 
configuration, implying k = k′ as required. Note that ⟨ϕ̂⟩ and ⟨ψ̂⟩ are pile cuts, which 
we already know how to implement. In total, we implemented

comp(P) = {ψ̂k′ ∘ ϕ̂k : 0 ≤ k < s, 0 ≤ k′ < t,Γ[(ψ̂k′ ∘ ϕ̂k)−1(h0)] = ♠}|{1,...,n}
= {ψ̂k′ ∘ ϕ̂k : 0 ≤ k < s, 0 ≤ k′ < t, k′ = k}|{1,...,n}
= {ψk ∘ ϕk : 0 ≤ k < s}|{1,...,n} = Π.

Products, Conjugates and Syntactic Sugar. The protocol in Figure 12.5 (middle) 
implements Π2 ∘Π1 using Π1 and Π2, showing that if Π1 is implemented using H1 and 
Π2 is implemented using H2, then Π2 ∘Π1 is implemented using H1∪H2. As a corollary, 
if Π is implemented using H then so is any conjugate Π′ = {π−1} ∘Π ∘ {π}. Figure 12.5
(right) uses (perm, π) instead of (privatePerm, {π}) to emphasize that such deterministic 
actions can be carried out publicly.

Generalized Coupled Rotations. We generalize the idea of a coupled rotation to more 
than two sequences. Let π ∈ Sn with cycle decomposition π = ϕ0 ∘ · · · ∘ ϕm for m ≥ 2
and increasingly ordered cycle lengths t0 ≤ t1 ≤ t2 ≤ . . . ≤ tm. We aim to implement 
Π = {πk : 0 ≤ k < t0} using tm+2 · t0 helping cards, originally available in the following 
positions which we label as shown.

♠
m0

♢
m1

♢
mtℓ−1

♠
x0

♢
x1

♢
xt0−1

♠
s0

♢
s1

♢
st0−1

. . .

. . .

. . .

. . .

. . .

. . .

main temp store
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Example (s = 3, t = 8, k = k′ = 2) General Description

A: a0 a1 a2

H: ♢ ♢ ♢ ♢ ♢H: ♠ ♢ ♢

B: b0 b1 b2 b3 b4 b5 b6 b7

The sequences A and H (first s
cards) are rotated to the right by
the same value k ∈ {0, 1, . . . , s− 1}
chosen by Alice.

(This is a pile cut.)
A: a1 a2 a0

H: ♢ ♢ ♢ ♢ ♢H: ♢ ♢ ♠

B: b0 b1 b2 b3 b4 b5 b6 b7
H is rearranged to represent −k
(mod t): cards i, j ∈ {0, . . . , t − 1}
are swapped iff i+ j ≡ 0 (mod t).

(This is does not leak k.)A: a1 a2 a0

H: ♢ ♢ ♢ ♢ ♢ ♢ ♠ ♢

B: b0 b1 b2 b3 b4 b5 b6 b7

H and B are rotated to the right
by k′ ∈ {0, 1, . . . , t − 1} chosen by
Alice. If Alice is honest she must
choose k = k′.

(This is a pile cut.)A: a1 a2 a0

H: ♠ ♢ ♢ ♢ ♢ ♢ ♢ ♢

B: b6 b7 b0 b1 b2 b3 b4 b5

The first card of H is revealed. A
♠ occurs iff Alice was honest.

Figure 12.4.: The sequence A of length s and B of length t are to be rotated by the 
same value k chosen privately by Alice. A helping sequence ensures that the same value 
is used. All cards are face-down, except for the highlighted card in the last step. The 
dotted lines indicate that cards are belonging to the same pile in a pile cut, i.e., they 
maintain their relative position during the cut. The rearrangement of the helping cards 
is useful in this visualization (so that H and B can be rotated in the same direction) 
but is not reflected in the formal description.

privatePerm, ⟨ϕ̂⟩

privatePerm, ⟨ψ̂⟩

check, h0,♠

privatePerm,Π1

privatePerm,Π2

perm, π

privatePerm,Π

perm, π−1

Figure 12.5.: Protocols implementing a coupled rotation (left), the product of two 
permutation sets (middle) and the conjugation of a permutation set (right).
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choose
k

clone
saved

k
i-th

cycle
last

cycle

privatePerm, ⟨ϕ0 ∘ ψstore⟩

perm, πstore↔tmp

privatePerm, ⟨ψcopy⟩

check, x0,♠

privatePerm, ⟨ϕ̂i⟩

check,m0,♠

perm, πstore↔main

privatePerm, ⟨ϕ̂m⟩

check,m0,♠

fo
r
i
∈
{1
,.
..
,m

−
1}

Figure 12.6.: Protocol to implement a generalized coupled rotation with m+ 1 cycles 
of length t0, t1, . . . , tm. Notation is explained in the text.

We think of the three areas as “registers” containing values indicated by the position of 
♠ (initially 0). The registers have associated rotations:

ψtemp := (x0 . . . xt0−1), ψstore := (s0 . . . st0−1), ψi := (m0 . . . mti−1).

The protocol’s idea is that Alice performs ϕk0
0 ∘ · · · ∘ ϕkm

m and checks will ensure 
k1 = k2 = . . . = km. To this end, k0 is recorded in the store register (we use ⟨ϕ0 ∘ψstore⟩). 
Then, for each round i ∈ {1, 2, . . . ,m− 1} the value k0 is cloned into the main register 
by first swapping it to the temp register and then moving it to the store and main 
register using ψcopy := ψ−1

temp ∘ ψstore ∘ ψ0. The cloned copy of k0 in main is consumed 
when forcing Alice to do ϕ̂i

k0 where ϕ̂i := ϕi ∘ ψ−1
i . The last round is similar. Using 

the following two swappings, the protocol is formally given in Figure 12.6.

πstore↔tmp := (s0 x0) · · · (st0−1 xt0−1), πstore↔main := (s0 m0) · · · (st0−1 mt0−1).

We now check that this implements the generalized coupled rotation Π using the helping 
cards [3 · ♠, (tm + 2t0 − 3) · ♢]. The main ingredient is the loop invariant:

If  π ∈ Sn+2t0+tm is compatible with the actions until after the i-th execution 
of the loop and S is the starting sequence then there exists k ∈ {0, . . . , t0−1}
such that:

• π|{1,...,n} = ϕk
i ∘ . . . ∘ ϕk

1 ∘ ϕk
0,

• in π(S) all registers contain 0 except for store, which contains k.
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This invariant can be proved by induction:
i = 0. The protocol starts with all registers containing the value 0. In the first action, 

Alice picks 0 ≤ k < t0 and performs π = ϕk
0 ∘ ψk

store. Clearly, π|{1,...,n} = ϕk
0 and 

in π(S) the store register contains k with both other registers containing 0. This 
establishes the invariant for i = 0, i.e., before the first execution of the loop.

i → i+1. Assume the loop invariant holds for i. In the beginning of the i+1st loop, 
the contents of store and temp are swapped, which leads to temp containing k, 
while the other registers contain 0. The permutation ψcopy decrements the value of 
the temp register while simultaneously incrementing the value of store and main 
(each modulo t0). Since the operation (check, x0,♠) expects the value of temp to 
be 0, the only power of ψcopy that will allow the check to pass is k. Assuming 
this happens, temp and main both contain k, while temp contains 0. Similar 
to before, ϕ̂i decrements main modulo ti and since the operation (check, x0,♠)
expects main to contain 0, the only power of ϕ̂i that allows the check to succeed 
is k. Afterwards, the current iteration of the loop permuted the object cards by 
ϕk
i and left store containing k while the other registers contain 0. This establishes 

the loop invariant.
The three actions following the loop are essentially the m-th iteration of the loop without 
the copying step so it is straightforward to verify that π ∈ Sn is compatible with the 
protocol, iff π|{1,...,n} = ϕk

m ∘ . . . ∘ ϕk
0 for some 0 ≤ k < t0.

We remark that by introducing additional check steps, any subset of a generalized 
coupled rotation can be implemented as well.

Subgroups of Sn. Generalized coupled rotations are sufficient for:
Proposition 12.1. Any subgroup Π of  Sn can be implemented with active security and 
choice using only the helping deck [3 · ♠, (n− 3) · ♢] for (generalized) coupled rotations 
and the helping deck [♠, (n−1) · ♢] for (pile) cuts.
Proof. Note that Π =

∏︁
π∈Π⟨π⟩, i.e., Π can be written as the product of cyclic subgroups. 

Moreover, any cyclic subgroup can be written as ⟨π⟩ = {π0, . . . , πk−1}m, where k is 
the length of the shortest cycle in the cycle decomposition of π and m = ⌈ord(π)/(k −
1)⌉. Hence, Π can be written as the product of rotations and (generalized) coupled 
rotations, each of which are implemented with the required helping decks. Using the 
implementation of products (page 177), we are done.

A simple decomposition of Π into products of previously implemented permutation sets 
is desirable to keep the resulting permutation protocol simple. We do not deal with this 
here and merely state that |Π| is an upper bound on the number of terms required.

12.3. Computational Model with Two Players
In the following, two players jointly manipulate a sequence of cards to compute a 
randomized function, i.e., they transform an input sequence into an output sequence. 
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Both have incomplete information about the execution and the goal is to compute with 
no player learning anything about input or output.2

Two Player Protocols. A two player protocol is a tuple (D, U,H,Q,A) where, as in 
Mizuki–Shizuya protocols, D is a deck, U is a set of input sequences, H a card sequence 
with helping cards, Q is a set of states, and A an action function that however, maps 
to PlayerActionℓ, which can be perm, turn, result, and privatePerm, with parameters as 
explained below. All input sequences have the same length and are formed by cards 
from D, with the helping sequence H concatenated at the beginning of the protocol. 
The total length of the card sequence is then denoted by ℓ.

When a protocol is executed on an input sequence I ∈ U , we start with the face-down 
sequence Γ = I in initial state q0 ∈ Q and empty permutation traces T1 and T2 for 
players 1 and 2, respectively. Execution proceeds according to A, with one of the actions 
as in Section 6.3, except that the shuffle action is replaced as follows:

• (privatePerm, p,Π,F(·)), for a player p ∈ {1, 2}, a permutation set Π ⊆ Sℓ and F
being a parameterized distribution on Π. Formally, F is a function that maps the 
current permutation trace Tp of player p to a distribution F(Tp) on Π. If F(Tp) is 
the uniform distribution on Π for each Tp we denote this as U(·). Player p picks a 
permutation π ∈ Π. The current sequence Γ is replaced by the permuted sequence 
π(Γ) and π is appended to the player’s permutation trace Tp. If player p is honest
she picks π according to F(Tp).

The execution yields an execution trace (I,O, T1, T2, V ), containing input, output, 
permutation traces of the players and the visible sequence, see Figure 12.7 for an 
example. The output of non-terminating protocols is O = ⊥.

Note that we will use permutation protocols from Section 12.2 in the privatePerm steps, 
however we use them as black boxes. In particular, the actions specific to permutation 
protocols (e.g., check) are not part of two player protocols. We say P is implemented
using a helping deck H if each permutation set occurring in a privatePerm action is 
implemented using H (in the sense of Section 12.1).

The way we define it, existence, implementability and security of a protocol are 
separate issues. Security is discussed next.

12.4. Passive and Active Security
Intuitively, an implemented protocol is (information-theoretically) secure if no player 
can derive any statistical information about input or output from the choices and 
observations they make during the execution of the protocol. So the first question is, 
what information does a player obtain, say Alice, that could potentially be relevant? At 
first we consider the setting where both players are honest.

Surely, Alice knows the public information V in which the sequence of encountered 
actions and their parameters are implicit. For each such action she may have obtained 

2An explanation of our security notions follows in Section 12.4.
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privatePerm, 1, {id, (1 2)(3 4)},U(·)

privatePerm, 2, {id, (1 2)(3 4)},U(·)

turn, {1, 2}turn, {1, 2}

result, 3 result, 4

♣♡♡♣

v1:

v2:

v3:

v4: v5:

D = [3 · ♣, 2 · ♡],

U = {(♣,♡,♣,♣),
(♣,♡,♡,♣),
(♡,♣,♣,♣),
(♡,♣,♡,♣)},

Q,A : as shown on the left 

Figure 12.7.: A protocol example in the two player model, with possible execution 
trace: (I = (♡,♣,♡,♣), O = (♡), T1 = (id), T2 = ((1 2)(3 4)), V = (v1, v2, v3, v5)). 
This is an actively secure implementation of the AND protocol in [M16a, Sect. 3.2]. 
(Here, we use an ad-hoc “instruction tree diagram” to hide details about the state.) 
The first two cards encode an input a as (♣,♡) =̂ 0, (♡,♣) =̂ 1, the third card encodes 
an input b as ♣ =̂ 0, ♡ =̂ 1. This encoding is also used for output a ∧ b.

additional information during its execution. To get a complete picture, we carefully go 
through all types of actions:

• turn actions reveal some card symbols. However, each outcome is already implicit 
in V .

• perm actions are deterministic and reveal no information. The same is true for 
result actions. Note that they only indicate the position of the output, not reveal 
it.

• For privatePerm actions, the observations that can be made depend on the imple-
mentation. If the protocols are implemented in our sense (see Section 12.1) and 
Alice is the active player, then Alice learns nothing of relevance except her own 
choice of permutation (which is recorded in her permutation trace) and, since 
Alice is honest, Bob learns nothing at all.

So the only potentially relevant information player p has with regards to input and 
output is V and Tp. Therefore it is adequate to define:

Definition 12.2 (Passive Security). A two player protocol P = (D, U,H,Q,A) is 
secure against passive attackers if for any random variable I ∈ U the following holds: If 
(I,O, T1, T2, V ) is the execution trace when executing P with honest players on input I, 
then (I,O) is independent of (Tp, V ) for both p ∈ {1, 2}.

Delegated Computation. Passive security implies that if a player has no prior knowl-
edge about in- or output, executing the protocol leaves her in this oblivious state. In 
particular, by following the protocol, the players implement what can be called an 
oblivious delegated computation where the computation is performed on secret data 
provided by a third party, and the output is not revealed afterwards to the executers.
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Note that this setting differs from the standard MPC setting, where players provide 
part of the input and usually the output is sent to the players in non-committed (non-
hiding) form, i.e., learned by the players. In this case, security then means that the 
players learn nothing except what can be deduced from the facts they are permitted 
to know. It is important to understand that our definition is still adequate for such 
cases, as any protocol that is secure in the delegated computation setting is also secure if 
players have (partial) information about input and output. The formal reason is the 
basic fact that for any event E relating only to (I,O), i.e., E is independent of (Tp, V ), 
conditioning the probability space on E will retain the independence of (I,O) and 
(Tp, V ).

Moreover, protocols secure in the delegated setting are flexibly applicable in different 
contexts, making it a very suitable framework. For example, non-delegateable (non-
committed input format) protocols which can only be performed by players knowing 
the input [cf. MWS15; NTM+16; NSIO17] cannot be transfered to the delegated set-
ting and are hence unsuitable for use with hidden intermediate results from previous 
computations.

Hence, we protect the output and do not assume knowledge of the inputs. This is a 
natural setting for card-based cryptography, as all committed-format protocols in the 
literature achieve this notion, it ensures that the protocols can be used in larger protocols, 
and it is at least as secure as the other notions, as we are in the information-theoretic 
setting.

The above definition of passive security is sufficient if players can be trusted to 
properly execute the protocol. In that case any privatePerm action can directly be 
performed by the specified player while the other player looks away. Of course, our 
main concern here is the situation where looking away is not an option.

Permutation Security and Active Security. To argue about security in the presence 
of a malicious player, we must first discuss what such a player may do. Doing this 
rigorously would require to closely model the physical world, which allows for different 
threats than in the usual cryptographic settings. We certainly have to assume physical 
restrictions, as otherwise we cannot achieve anything.3 For example, as our security 
relies on the possibility of keeping face-down cards, we must assume that an attacker 
does not resort to certain radical means that immediately and unambiguously identify 
her as an attacker. She does not interfere with the correct execution of perm and turn
actions, nor does she, in open violation of the protocol, spontaneously seize or turn over 
some of the cards or mark them in any way.

On the other hand we can plausibly argue that certain mechanisms are sufficient to 
counter attacks other than those that this chapter is concerned with. We may argue 
that the cards could be put into envelopes, and any attempt to reveal its contents 

3We do not get ultimately strong guarantees for the physical actions such as in quantum cryptography, 
where, if (a subset of) quantum theory is true, no adversary can predict a randomness source, no 
matter what she does physically.
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contrary to the protocol will be countered by the cautious other players jumping in to 
physically abort the protocol in that case.

Concerning an operation (privatePerm,Alice,Π,F(·)) with implemented Π, there is 
by definition of implemented permutation set no possibility for Alice to perform a 
permutation π ̸∈ Π. If she causes a permutation protocol to fail, Bob aborts the 
execution before any sensitive information is revealed. Otherwise, Alice is limited to 
disrespecting F(·). This is captured in the following definition:

Definition 12.3. Let P = (D, U,H,Q,A) be a two player protocol.

1. A permutation attack ξ on P as player p ∈ {1, 2} specifies for each visible sequence 
trace (prefix) v, upon which an action of the form (privatePerm, p,Π,F(·)) would 
follow, a permutation ξ(v) ∈ Π. Replacing such F(·) with the (point) distributions 
that always choose ξ(v), yields the attacked protocol Pξ.

2. An attack ξ is unsuccessful if the following holds. Whenever I ∈ U is a random 
variable denoting an input and (I,O, T1, T2, V ) and (I,Oξ, T ξ

1 , T
ξ
2 , V

ξ) are the 
resulting execution traces of P and Pξ, then for any values i, o, v:

Pr[V ξ = v] > 0 =⇒ Pr[(I,Oξ) = (i, o) |V ξ = v] = Pr[(I,O) = (i, o)]. (★)

3. We say P is secure against permutation attacks if each permutation attack on P
is unsuccessful.

In light of our discussion above we finally define:

Definition 12.4. A two player protocol P = (D, U,H,Q,A) has an actively secure im-
plementation if each permutation set Π occurring in a privatePerm action is implemented 
and P is secure against permutation attacks.

Intuitively, a protocol has permutation security if: No matter what permutations 
a player chooses (∀ξ), and no matter what the turn actions end up revealing (∀V ξ), 
the best guess for the in- and output (distribution of (I,Oξ), given V ξ) is no different 
from what he would have said, had he not been involved in the computation at all 
(distribution of (I,O)). We make a few remarks.

• Passively secure protocols terminate almost surely, otherwise O = ⊥ can be 
recognized from an infinite path V . For similar reasons, a permutation attacker 
can never cause a protocol with permutation security to run forever.4

• In our definition, permutation attackers are deterministic without loss of generality. 
Intuitively, if an attacker learns nothing no matter what ξ she chooses, then 
choosing ξ randomly is just a fancy way of determining in what way she is going 
to learn nothing.

4Protocols that almost surely output ⊥ are a pathological exception.
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• For similar reasons, permutation security implies passive security, since playing 
honestly is just a weighted mixture of “pure” permutation attacks.

• We cannot say anything if both players are dishonest or if they share their execution 
traces with one another. We also cannot guarantee that player p learns nothing if 
player 3− p is dishonest.

Permutation Security from Passive Security. There is an important special case in 
which the powers of a permutation attacker turn out to be ineffective, namely if the 
distributions F(Tp) never assign zero probability to a permutation.

Proposition 12.2. Let P = (D, U,H,Q,A) be a passively secure two player protocol 
where for each action of form (privatePerm, p,Π,F(·)) and each permutation trace Tp of 
player p, F(Tp) has support Π5. If for each attack ξ the attacked protocol Pξ terminates 
with probability 16, then P is secure against permutation attacks.

Proof. Consider an attack ξ on P as player p ∈ {1, 2}, let I ∈ U be any random variable 
denoting an input and (I,O, T1, T2, V ) and (I,Oξ, T ξ

1 , T
ξ
2 , V

ξ) be the execution traces 
of P and Pξ.

Let v be any visible sequence trace with Pr[V ξ = v] > 0 and t the permutation trace 
that ξ prescribes for player p if he observes v (whenever V ξ = v, then T ξ

p = t). For any 
i, o we have:

Pr[(I,Oξ) = (i, o)|V ξ = v] = Pr[(I,Oξ) = (i, o) |(T ξ
p , V

ξ) = (t, v)]

= Pr[(I,O ) = (i, o) |(Tp , V ) = (t, v)]

= Pr[(I,O ) = (i, o)].

From the first to the second line, note that firstly, since v is finite, the sequence t of 
choices is finite as well, so, using the assumption that supp(F(Tp)) = Π in all cases, 
there is some positive probability that an honest player behaves exactly like the attacker 
with respect to this finite sequence of choices. Therefore, the conditional probability in 
the second line is well defined. Secondly, the attacked protocol and the original protocol 
behave alike once we fix the behavior of player p so we have the stated equality. From 
the second to the third line we use the passive security of P.

In P, a permutation attacker can only choose permutations that an honest player may 
have chosen randomly, so non-trivial information she obtains about in- and output 
is also available to a passive attacker with positive probability. The protocol from 
Figure 12.7 has active security precisely for this reason.

5Otherwise, active attackers may pick π ∈ Π which honest players never choose.
6this excludes a pathological case
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12.5. Implementing Restricted Mizuki–Shizuya Protocols
In [MS14a], Mizuki and Shizuya’s self-proclaimed goal was to define a “computational 
model which captures what can possibly be done with playing cards”. Hence, any secure 
real-world procedure to compute something with playing cards can be formalized as 
a secure protocol in their model.7 The other direction is not so clear. Given a secure 
protocol in the model, can it be implemented in the real world? We believe the answer 
is probably “no” (or, at least, not clearly “yes”). However, our work of identifying 
implementable actions in the two player model implies that a very natural subset of 
actions in Mizuki and Shizuya’s model is implementable, even with active security: 
uniform closed shuffles (see below). Note that these shuffles already allow for securely 
computing any circuit [MS09].

For a definition of Mizuki–Shizuya protocols, see Section 6.3. Note that this model 
abstracts from concrete players and instead of privatePerm actions uses the common 
(shuffle,Π,F) operations, and instead of having separate permutation traces for the 
players, there is a single permutation trace T .

Implementing Uniform Closed Mizuki–Shizuya Protocols. We are ready to state our 
main theorem of this chapter.

Theorem 12.1. Let P = (D, U,H,Q,A) be a secure Mizuki–Shizuya protocol using 
only uniform closed shuffles. Then there is a two player protocol P̂ = (D, U,H ‖ Ĥ, Q̂, Â)
with actively secure implementation computing the same function as P.

Moreover, the implementation of  P̂ uses as helping deck only [3 · ♠, (n− 3) · ♢] for 
(generalized) coupled rotations and [♠, (n−1) ·♢] for chosen (pile) cuts, which are given 
in Ĥ. Here, n is the total length of the card sequences in P.

We sketch the proof here and give the formal proof below. Each uniform closed shuffle 
(shuffle,Π,U) of P is replaced by two actions (privatePerm, p,Π,U) for p ∈ {1, 2}. For 
π2 ∘π1 to be uniformly random in Π, it suffices if π1 or π2 is chosen uniformly random in 
Π (while the other is known). Therefore, the joint permutation applied to the sequence 
after both privatePerm actions looks uniformly random to both players. Hence, they 
learn nothing from the execution of P̂ that they would not have also learned from 
executing P . Since P is secure, P̂ is passively secure and by Proposition 12.2 also secure 
against permutation attacks. Moreover, by Proposition 12.1 all Π are implemented 
using the stated helping decks, so P̂ has an actively secure implementation.

Proof. As already mentioned, we obtain P̂ by replacing each shuffle action in P by two 
privatePerm actions. More precisely, let {(q1, v1), (q2, v2), . . . } be the pairs consisting of 
qi ∈ Q and (non-empty) visible sequence traces vi, such that the last visible sequence is 
denoted as v+i , and to which the action function assigns a following shuffle action. Let 
for each i denote the action by A(qi, v+i ) = (q′, (shuffle,Πi,Ui)), where Πi is some group 

7Excluding the use case of non-committed input protocols from [MWS15] and [NTM+16], where the 
input is provided by a choice of privatePerm operations by a player, requiring input awareness/knowl-
edge.
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and Ui the uniform distribution on Πi. The new set Q̂ is obtained from Q by replacing 
each qi with two elements q(1)i and q(2)i with Â(q(1)i , v+i ) = (q

(2)
i , (privatePerm, 1,Πi,Ui)), 

and Â(q(2)i , v′i) = (q′, (privatePerm, 2,Πi,Ui)), where v′i is the visible sequence after 
privatePerm by player 1. Everything else remains unchanged.

Permutation schemes. To simplify the following argument we shall pick all relevant 
permutations a priori instead of producing them on-demand: A permutation 
scheme is a sequence (π1, π2, . . . ) of permutations with πi ∈ Πi. We shall imagine 
that P is executed by first choosing a permutation scheme T = (π1, π2, . . . )
uniformly at random (each πi uniformly at random from Πi and independent of 
the rest)8 and then executing the protocol as usual, except that we now use the 
chosen permutations, i.e., when reaching a shuffle action for pair (qi, vi) we are 
determined to use πi.

Clearly, this does not affect the execution of P in the following sense. If I is 
a random input then the tuple (I,O, V, T V ) of input, output, execution path 
and permutation trace, resulting from this new way of executing P has the 
same distribution as the ordinary permutation trace of P. By T V we mean the 
projection of the scheme T to those components used in the execution, i.e., those 
on vertices occurring in V (in descending order).

In the same way we think of the execution of P̂, having players 1 and 2 pick 
permutation schemes T1 = (π1, π2, . . . ) and T2 = (τ1, τ2, . . . ) in advance and 
having player 1 use πi in situation (q(1)i , vi) and player 2 use τi when situation 
(q

(2)
i , vi ‖ v′i) is encountered. Then the tuple (I, Ô, V̂ , T V̂

1 , T V̂
2 ) of input, output, 

execution path and permutation traces obtained from this new way of executing 
P̂ has the same distribution as the ordinary execution trace of P̂. We use these 
modified execution traces in the following.

Computing the same function. In the following we make heavy use of the fact that 
X ⊥ Y implies f(X) ⊥ g(Y ) whenever X and Y are (vectors of) random variables, 
f and g deterministic (measurable) functions and ⊥ denotes independence of 
random variables. Here, O is determined by (I, T ), i.e., there is a deterministic 
measurable function f with O = f(I, T ). By construction, any permutation done 
by player 1 in P̂ is immediately followed by a corresponding permutation by player 
2 and we see Ô = f(I, T2 ∘ T1). Clearly, the folded permutation scheme T2 ∘ T1 has 
the same distribution as T , so Ô has the same distribution as O. Since we made 
no assumptions on I, we conclude that P and P̂ compute the same function.

Passive Security. Note that V is determined by (I, T ), meaning there is a deterministic 
measurable function g with V = g(I, T ). If ext is the function acting on pairs 
(qi, vi) by replacing occurrences qi with the two states q(1)i and q(2)i as described 

8Formally, Ω =
∏︁

i∈NΠi is a measurable space when augmented with the σ-algebra generated by ⋃
i∈N Fi, with Fi := {Π1 × · · · ×Πi−1 × {πi} ×Πi+1 × · · · : πi ∈ Πi}.
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above, then we have by construction V̂ = (ext ∘ g)(I, T2 ∘ T1). We now see that 
(I,O, V ) = (I, f(I, T ), g(I, T )) has exactly the same distribution as

(I, Ô, ext−1(V̂ )) = (I, f(I, T2 ∘ T1), g(I, T2 ∘ T1)).

Therefore, the passive security of P reflected in (I,O) ⊥ V translates into (I, Ô) ⊥
ext−1(V̂ ) which implies (I, Ô) ⊥ V̂ . This is the crucial step in the following chain 
of reasoning:

Tp ⊥ T2 ∘ T1 Players choice masked by other players choice
⇒ Tp ⊥ (I, T2 ∘ T1) Schemes are chosen a priori, independent of I
⇒ Tp ⊥ (I, T2 ∘ T1, Ô, V̂ ) Since Ô = f(I, T2 ∘ T1), V̂ = (ext ∘ g)(I, T2 ∘ T1)
⇒ Tp ⊥ (I, Ô, V̂ ) Projection
⇒ (Tp, V̂ ) ⊥ (I, Ô) Using V̂ ⊥ (I, Ô)

⇒ (T V̂
p , V̂ ) ⊥ (I, Ô) T V̂

p is a function of Tp and V̂ .

This also shows the corresponding independence for the ordinary execution trace, 
proving passive security of P̂.

Permutation Security. This follows immediately from passive security and Proposi-
tion 12.2.

Implementation. By Proposition 12.1, each group Πi is implemented with active security 
and choice using the stated helping decks.

Active Security. The last two points constitute an actively secure implementation by 
Definition 12.4.

12.6. The Issue of Reusing Helping Cards
Assume we already implemented some permutation protocols P1 and P2 for permutation 
sets Π1 and Π2 using some helping decks H1 and H2. Now we design another permutation 
protocol P3 implementing Π3 and using its own deck of helping cards H3. Assume 
some privatePerm actions of P3 involve Π1 and Π2 and we intend use P1 and P2 as 
“subroutines”. It is hence interesting to ask, what helping deck do we need for P3 in 
total.

Within P3 the deck H3 is in use, potentially encoding important information, so 
unless we make further assumptions, subroutines must treat those cards as object cards. 
If, however, the subroutines P1 and P2 are used sequentially, they may share resources. 
So all in all, we need (H1 ∪H2) +H3.

This assumes that the required helping cards from H1 can be re-used in P2 after 
they were used in P1. In particular, they need to be turned, which assumes that the 
arrangement of H1 after use does not contain sensitive information any more. This is 
reasonable: Not only do all of our own protocols end with the helping cards in canonical 
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order, it would also be easy to destroy any information encoded in them by shuffling 
them after use, e.g., by using repeated uniform cuts.

12.7. On the Interplay of Our Definitions

Note that our definition of implemented with active security and choice makes sure that 
the privatePerm actions of a two player protocol can be executed in a way that makes 
our security definitions adequate.

Consider some action (privatePerm,Alice,Π,F(·)), e.g., Π = {id, (1 2 3)(4 5 6 7)}
with probabilities 1/3 and 2/3 for the two options. The fact that Π is implemented with 
active security and choice (by virtue of being subset of a coupled rotation) guarantees:

• Alice may choose π ∈ Π according to the distribution (privately in her head or 
using some private random device) and follow a sequence of actions that ultimately 
will permute the current sequence of cards by π. She will remember π for later, 
in particular, we record π in her permutation trace and let future distributions 
depend on π.

• Alice’s choice is hidden from Bob. Also, neither player learns anything about the 
current sequence as no cards from it are being turned. In particular it makes sense 
to not attribute any observations to the players during privatePerm operations 
(other than Alice “observing” her choice π).

• Alice cannot perform any π /∈ Π, which justifies that Definition 12.3 only considers 
attacks that respect Π.

• The procedure implementing Π fails gracefully if Alice cheats, without revealing 
anything about the object cards. Note that we do not consider the case of aborts 
in two-player protocols. This is reasonable: Firstly, the only thing an attacker 
can hope to achieve is destroy information (by shuffling cards in non-permitted 
ways, blowing his cover in the process) without learning anything he would not 
have learned otherwise. Secondly, all protocols we suggested can recover even if 
checks fail9. In our cases, the check operations would have to reveal an entire 
“register” of helping cards and would be succeeded by permutations that “fix” any 
discrepancy between expected result and actual result.

Note that previously we allowed for permutation protocols to fail (if a check action 
fails). This is not modeled here “without loss of generality”, as there is no advantage 
for an attacker to blow his cover like that.10

9Admittedly, we cannot recover from Alice flipping over the table or running off with the cards, though.
10If he just wants to sabotage the calculation with no intention of staying hidden, he might as well 

throw over the table. But see also Section 12.7 for an explanation of how aborts in (our) permutation 
protocols can be avoided altogether.
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shuffle, {id, (h0 h2)},U

shuffle, ⟨ϕ̂⟩,U

turn, {h0, . . . , h4}

perm, id

♠♢♢♢♢

perm, ϕ̂

♢♢♢♢♠

perm, ϕ̂2

♢♢♢♠♢

perm, ϕ̂3

♢♢♠♢♢

perm, ϕ̂4

♢♠♢♢♢

Figure 12.8.: Protocol implementing (shuffle,Π = {id, (1 2 3 4 5)3},U) with five 
helping cards (details explained in the text).

What if a player aborts a permutation protocol? In our formulation, if Alice is 
dishonest and causes a check of a permutation protocol to fail, then it is aborted with 
no general way of recovering from such a state. This may be undesirable: It would 
certainly be better if computations could always continue, even in the presence of a 
dishonest player. In fact, it is possible to adapt the concept of a permutation protocol 
to achieve this in the case of generalized coupled rotations. The check operations would 
have to reveal the entire register and would be succeeded by permutations (dynamically 
responding to the result of the check) that “fix” the discrepancy between expected 
result and actual result. In that case, all but the first privatePerm action can actually 
be replaced by the corresponding uniform shuffle operation, i.e., uniform pile cuts. We 
eventually decided against the more complicated concept of permutation protocols to 
focus on the core ideas.

12.8. Implementing a Non-closed Shuffle Operation

Our focus on uniform closed shuffle operations has its reasons, but this should not 
distract from the fact that many other shuffle operations are both important and 
implementable. Let us take a special case of (shuffle, {id, (1 2 3 4 5)3},U). It was for 
instance put to use in [CHL13], albeit without further elaboration on its security or 
implementation.

Note that Π has an implementation with active security and choice (by virtue of being 
the subset of a cut), but performing (privatePerm, p,Π,U(·)) for p ∈ {1, 2} one after the 
other as we do for closed permutation sets could result in the permutation (1 2 3 4 5)6. 
However, we can use a similar idea as we did when implementing cuts. We propose the 
procedure shown in Figure 12.8 which is a “protocol implementing a shuffle” (albeit not 
in our formal sense as defined above). We assume that we initially have five object cards 
in positions 1 through 5 and a helping deck H = [♠, 4 · ♢] originally lying in positions 
h0 through h4 (say hi = i+ 6). The ♠ starts at position h0, but after the first shuffle 
operation will end up at a position hs, where s can be 0 or 2 with equal probability. We 
now perform some power of ϕ̂ = (1 2 3 4 5) ∘ (h0 h1 h2 h3 h4) which rotates both the 
helping sequence and the object cards by some uniformly random 0 ≤ k < 5, leaving ♠
in position hs+k (mod 5).
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The turn step reveals the helping cards and thereby s+k (mod 5). Now ϕ̂−s−k (mod 5)

is performed, leaving the helping sequence in its original state and the object cards 
rotated by k − s − k = −s. Since −s is with equal probability 0 or 3 (mod 5) a 
uniformly random permutation from Π happened as desired. The only information that 
was revealed is s+ k which is independent of −s. Note that the two involved shuffle 
operations are uniform closed and may therefore be implemented as in Section 12.5. 
With this, we implement the non-closed shuffle with more basic shuffle operations.

We are confident that a clean formalization and generalization of this concept is 
possible and excited about future research that explores what other shuffle operations 
can be implemented in this sense.

12.9. Achieving Input Integrity
Mizuki and Shizuya [MS14b] consider malicious players disrespecting the input format, 
in their case by giving ♣♣ or ♡♡ as an input, even though only ♡♣ and ♣♡ are 
permitted. Note that we usually leave this problem aside when assuming that inputs 
are already lying on the table when the protocol starts. However, see Figure 12.9 for 
a “state diagram” of their protocol, which is only a schematic, as the protocol is not 
secure in our sense. This is because the players learn whether the input was well-formed 
or not, contradicting independence of visible sequence trace V and input sequence I.

It is beneficial for composability/modularity to not assume knowledge about the inputs 
from the players running the protocol, as they might work with hidden intermediate 
results of the surrounding protocol.

We can think of the following strategy to integrate a player input procedure into our 
model, encompassing input security. One example is to have a unique starting sequence 
such as ♣♡♣♡ on the table, and have player 1 applying permutation (1 2) for input 1, 
and id otherwise. Afterwards, player 2 applies permutation (3 4) if he wants to input 1, 
and id otherwise. Then we arrive at the usual starting situation. This procedure however 
cannot be achieved with the model as we defined it, as distributions in privatePerm
actions do not formally depend on player inputs, and if they would, the permutations 
done by the command are for introducing uncertainty, but are not themselves protected 
by our formalism. That is, one may learn something about the permutation done, as 
long as this does not give anything away about the input sequence/value that is to be 
protected, as in usual card-based protocols.

Hence, we introduce an additional formal action (inputPerm, p,Π, val) and an input 
trace Ip for player p ∈ {1, 2}, which behaves as follows:

(inputPerm, p,Π, val) for a player p ∈ {1, 2}, a permutation set Π ⊆ Sℓ and val being 
a valuation that maps permutation π ∈ Π to bits {0, 1}k if player p is supposed 
to input k bits at this step. This specifies which Boolean input the respective 
permutation corresponds to and is allowed to vary for the inputs of the players, 
as this is the case in the protocols from the literature. For simplicity, we assume 
it is a bijection between Π and {0, 1}k. (If multiple permutations are needed to 
encode for an input, as in Figure 12.14, we omit it from the action specification 
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♣♡♣♡ X0

♡♣♣♡ X1

♣♣♣♡ X⊥♣

♡♡♣♡ X⊥♡

♣♡♣♡ 1/2X0

♡♣♡♣ 1/2X0

♡♣♣♡ 1/2X1

♣♡♡♣ 1/2X1

♣♣♣♡ 1/2X⊥♣

♣♣♡♣ 1/2X⊥♣

♡♡♣♡ 1/2X⊥♡

♡♡♡♣ 1/2X⊥♡

(shuffle, ⟨(1 2)(3 4)⟩)

♡♣♡♣ X0/X
′

♡♣♣♡ X1/X
′

♣♡♣♡ X0/X
′

♣♡♡♣ X1/X
′

♣♣♣♡ 1/2
♣♣♡♣ 1/2

♡♡♣♡ 1/2
♡♡♡♣ 1/2

(turn, {1, 2})Pr[♡♣??]= 1/2X ′ := 1/2(X0 +X1)

Pr[♣♡??]= 1/2X ′ Pr[♣♣??]=X⊥♣

Pr[♡♡??]=X⊥♡

(result, 4, 3)

✓

(result, 3, 4)

✓

(abort)

⊥
(abort)

⊥

Figure 12.9.: A protocol for detecting if two cards, supposed to encode a bit in 
standard format, actually do so. For reference, see [MS14b]. Note that this is not a 
formal state tree as in Definition 7.3, the protocol does not fulfill the usual notion of 
security. We sketch how this can nevertheless be depicted, by allowing rational functions 
and constants in place of polynomials. Note however that nothing about the bit is 
leaked, if the input is not ♣♣ or ♡♡.

and specify it globally). Here, player p picks a permutation π ∈ Π. The current 
sequence Γ is replaced by the permuted sequence π(Γ) and π is appended to the 
player’s input trace Ip. If player p is honest she picks π according to her intended 
input.

In general, this allows the input phase and the computation phase to be arbitrarily 
interleaved. This may allow to save cards if not all bits are needed at the same time. 
However, the notions of passive and active security would need to be updated, since now 
the output of the protocol is not necessarily independent of the permutation trace of a 
player. Hence, as discussed above, we confine these actions to the start of the protocol, 
before anything interesting is visible. In the case of passive security we would want only 
that the input of the other player and the output conditioned on Ip are protected. For 
active security the notion is more tricky still – we will leave this as future work. 

Let us nevertheless specify a variant of our state diagram formalism, which is com-
patible with inputs via permutations. See Figure 12.10 for illustration. Let N be the 
number of players, and P = {1, . . . , N} be a set formally representing them. Here, 
before any player inputs, there is supposed to be a unique sequence H on the table 
and U is the empty set. We assign to this sequence in the start state the polynomial 
consisting only of the formal variable XT1,...,TN , where Tp is the current permutation 
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♣♡♣♡♣♡ X??

♣♡♣♡♣♡ X0?

♡♣♣♡♣♡ X1?

(inputPerm, 1, ⟨(1 2)⟩, valord),
with valord : π ↦ ord(π)

♣♡♣♡♣♡ X00

♣♡♡♣♣♡ X01

♡♣♣♡♣♡ X10

♡♣♡♣♣♡ X11

(inputPerm, 2, ⟨(3 4)⟩, valord)

♡♣♡♣♣♡ 1/2X11

♣♡♣♡♡♣ 1/2X11

♡♣♣♡♣♡ 1/2X10 + 1/2X00

♣♡♣♡♣♡ 1/2X10 + 1/2X00

♣♡♡♣♣♡ 1/2X01

♡♣♣♡♡♣ 1/2X01

(privatePerm, 1, ⟨(1 2)(3 5)(4 6)⟩)
(privatePerm, 2, ⟨(1 2)(3 5)(4 6)⟩)

♡♣♡♣♣♡ X11

♡♣♣♡♣♡ X10 +X00

♡♣♣♡♡♣ X01

♣♡♣♡♡♣ X11

♣♡♣♡♣♡ X10 +X00

♣♡♡♣♣♡ X01

(turn, {1, 2})
♡♣???? ♣♡????

(result, 3, 4)

✓

(result, 5, 6)

✓

Figure 12.10.: Prepending the six-card AND protocol of Mizuki and Sone [MS09] by a 
separate input phase. Here, the shuffle is implemented by two privatePerm operations.

trace of player p. In this case we denote the empty sequence by () or ? and start with 
variable X()...() = X?...?.

When an (inputPerm, p,Π, val) is encountered, we update the variables according to 
the possible inputs by player p. As there is no possibility for ambiguity, we usually 
write the result of val directly at the respective position, as in Figure 12.10. The only 
exception is Figure 12.14, where we evaluate via the valp as soon as the input is uniquely 
determined. A bit more formally, by evaluate in this paragraph, we mean to write 
Xval1(T1),...,valN (TN ), if valp are the input valuations of players p ∈ {1, . . . , N}.
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♣♣♡ X??

♣♣♡ X0?

♣♡♣ X1?

(inputPerm, 1, ⟨(2 3)⟩, valord),
with valord : π ↦ ord(π)

♣♣♡ X00

♣♣♡ X01

♣♡♣ X10

♡♣♣ X11

(inputPerm, 2, ⟨(1 2)⟩, valord)

(result, 1)

✓

♣♡ X??

♣♡ X0?

♡♣ X1?

(inputPerm, 1, ⟨(1 2)⟩, valord),
with valord : π ↦ ord(π)

♣♡ X00

♡♣ X01

♡♣ X10

♣♡ X11

(inputPerm, 2, ⟨(1 2)⟩, valord)

(result, 1, 2)

✓

Figure 12.11.: On the left, we show the state tree of a three-card AND protocol 
[MWS15, Sect. 3.2] requiring input awareness, and with non-standard (single-card) 
output encoding. On the right is the state tree of a two-card XOR protocol of [NSIO17] 
requiring input awareness, and with standard output encoding ⟦·⟧>.

12.10. Protocols with Input Awareness

Using the formalism of the previous section, let us describe several protocols using 
inputPerm operations from the literature. For some of them, our discussion on having 
an actively secure implementation with choice for a shuffle helps us to show that they do 
not plausibly offer active security. This section contains new, unpublished results that 
will be integrated in an updated version of [KW17]. As a side-note: we can transform 
every protocol requiring input awareness to one without, if the permutation is encoded 
as in Section 8.6, and by using a sort protocol, at the cost of the necessary additional 
cards.

As an introduction, let us first show two very simple protocols for computing AND
and XOR from [MWS15, Sect. 3.2] and [NSIO17], respectively, in Figure 12.11. For 
example, in the AND protocol (using start sequence ♣♣♡), the first player can either do 
id or (2 3), with valord(id) = 0 and valord((2 3)) = 1. The second player does essentially 
the same operation, but on the first two cards. In total, the ♡ is moved to the first 
position if and only if both players chose to apply their respective transposition (of order 
1). As both permutation sets are chosen cuts, the inputPerm action has an actively 
secure implementation with choice. Additionally, as it only acts on two cards, we might 
plausibly argue that it has such an implementation even without any additional cards, 
by allowing the inputting players to possibly swap the card pair behind their back. 

Recently, Nakai et al. [NSIO17] proposed a protocol with input awareness for com-
puting the majority of three bits. In our interpretation, this can be written as in the 
left state diagram of Figure 12.12. Observe that the permutation set of player 2 is 
not closed. If the player has the option to apply (2 3) or (3 4), we cannot think of 
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♡♣♣♡ X???

♡♣♣♡ X0??

♣♡♣♡ X1??

(inputPerm, 1, ⟨(1 2)⟩, valord),
with valord : π ↦ ord(π)

♡♣♣♡ X00?

♡♣♡♣ X01?

♣♣♡♡ X10?

♣♡♡♣ X11?

(inputPerm, 2, {(2 3), (3 4)}, val′),
with val′ : (2 3) ↦ 0, (3 4) ↦ 1

♡♣♣♡ X000 +X001

♡♣♡♣ X010

♣♣♡♡ X100

♣♡♡♣ X110 +X111

♡♡♣♣ X011

♣♡♣♡ X101

(inputPerm, 3, ⟨(2 3)⟩, valord)

(result, 2)

✓

♡♣♣♡ X???

♡♣♣♡ X0??

♣♡♣♡ X1??

(inputPerm, 1, ⟨(1 2)⟩, valord),
with valord : π ↦ ord(π)

♡♣♣♡ X00? +X0⊥id?

♡♣♡♣ X01?

♣♣♡♡ X10?

♣♡♡♣ X11?

♡♡♣♣ X0⊥(2 4)?

♣♡♣♡ X1⊥(2 4)? +X1⊥id?

(inputPerm, 2, {(2 3), (3 4)}, val′),
with val′ : (2 3) ↦ 0, (3 4) ↦ 1

♡♣♣♡ X000 +X001 +X0⊥id0 +X0⊥id1

♡♣♡♣ X010 +X0⊥(2 4)1

♣♣♡♡ X100 +X1⊥(2 4)1 +X1⊥id1

♣♡♡♣ X110 +X111

♡♡♣♣ X011 +X0⊥(2 4)0

♣♡♣♡ X101

(inputPerm, 3, ⟨(2 3)⟩, valord)

(result, 2)

✓

Figure 12.12.: State tree of three-inputs majority protocol by [NSIO17] on the left, 
with active attack possibility on the right, where val′ maps π ↦ ⊥π if π /∈ {(2 3), (3 4)}. 
The non-standard output valuation val♡ maps ♡ ↦ 1 and ♣ ↦ 0.

a mechanism that prevents the player from doing id or (2 4). Of course, note that 
the authors do claim security only in the honest-but-curious setting. On the right of 
Figure 12.12, we depict an attack on the protocol by also evaluating the possibilities 
of the two other permutations, which our valuation formally maps to ⊥id or ⊥(2 4), 
respectively. Using this, one can observe that, e.g., player 2 can force the result to be 1
via applying (2 4), even though the other players’ input is 0. (This can be read from 
the sequence ♡♡♣♣ having probability X011 +X0⊥(2 4)0.) For comparison, note that in 
committed-format protocols, the current protocol using the fewest cards for three-input 
majority is [NMS13] utilizing eight cards.

In Figure 12.13, we give an alternative four-card majority protocols, with deck 
D = [♣,♣,♣,♡], which also does not offer active security11, but is conceptually very 
simple – similar to the AND protocol we saw before. Here each player cyclically rotates 
the so-far relevant cards by one if he inputs a 1 and does nothing otherwise. If the 
majority of the players did input 1, then the ♡ is in the first two positions – a shuffle 
of these two cards conceals which one it was. In the end, the non-standard valuation 
outputs 1 if the two first cards are not equal. (Note that this idea can be generalized 

11At least not without helping cards, otherwise one could use the implementation of a subset of a cut 
from p. 176 (“Summary”)
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♣♣♣♡ X???

♣♣♣♡ X0??

♣♣♡♣ X1??

(inputPerm, 1, ⟨(3 4)⟩, val ̸=id)

♣♣♣♡ X00?

♣♣♡♣ X10? +X01?

♣♡♣♣ X11?

(inputPerm, 2, {id, (2 4 3)}, val ̸=id)

♣♣♣♡ X000

♣♣♡♣ X100 +X010 +X001

♣♡♣♣ X110 +X101 +X011

♡♣♣♣ X111

(inputPerm, 3, {id, (1 4 3 2)}, val̸=id)

♣♣♣♡ X000

♣♣♡♣ X100 +X010 +X001

♣♡♣♣ 1/2(X110 +X101 +X011 +X111)
♡♣♣♣ 1/2(X110 +X101 +X011 +X111)

(shuffle, ⟨(1 2)⟩)

(result, 1, 2, val ̸=)

✓

Figure 12.13.: State tree of three-inputs majority protocol with deck D = [♣,♣,♣,♡], 
with non-closed permutation sets (suffering the same attack), but being conceptually 
simpler. The idea is that players rotate the sequence by one, if their input is 1, or do 
nothing otherwise. In the end, if more than one player rotated, a heart ends up in either 
the first or the second column. An additional shuffle obscures which of both was the 
case. The non-standard output valuation val̸= maps ♣♡ ↦ 1, ♡♣ ↦ 1, and ♣♣ ↦ 0.

for more than three inputs.) Here, the shuffles are also non-closed, allowing for a similar 
active attack.

For an illustration of the generality of our formalism, consider the three-card three-
input majority function from [WKS+18] in Figure 12.14. It is very interesting that one 
can reduce the number of cards to three, although at the cost of a second input phase 
for players 1 and 3. Note that having such a second input phase for the player makes it 
even harder to guarantee active security, in particular if not all pairs of choices that a 
player can make in the two phases do encode for an input. Hence, there is an active 
attack, written in the terms

A♣♣♡ =X(id)⊥id1 +X(π1)⊥id0 +X(id)⊥π240

A♣♡♣ =X(π1)⊥id1 +X(id)⊥id0 +X(π1)⊥π241
+X(π1)⊥π240

A♡♣♣ =X(id)⊥π241

B♣♣♡ =X⊥id⊥id1 +X1⊥id0 +X⊥id10 +X⊥id01 +X⊥id⊥π240
+X0⊥id1 +X⊥π15⊥id0

+X⊥π1500
+X0⊥π240
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♣♣♡ X()()()

♣♣♡ X(id)()()

♣♡♣ X(π1)()()

(inputPerm, 1, {id, π1 := (2 3)})

♣♣♡ X(id)(id)()

♣♡♣ X(π1)(id)() +X(id)(π2)()

♡♣♣ X(π1)(π2)()

(inputPerm, 2, {id, π2=(1 3 2)})

♣♣♡ X(id)(id)1 +X(π1)(id)0 +X(id)(π2)0

♣♡♣ X(π1)(id)1 +X(id)(π2)1 +X(id)(id)0

♡♣♣ X(π1)(π2)1 +X(π1)(π2)0

(inputPerm, 3, {id, π1})

♣♣♡ X(id)10 +X(id)01 +X(π1)00 +A♣♣♡
♣♡♣ X(id)11 +A♣♡♣
♡♣♣ X(π1)11 +X(π1)10 +X(π1)01 +X(id)00 +A♡♣♣

(inputPerm, 2, {id, π3 := (1 2)})

♣♣♡ X100 +X010 +X001 +B♣♣♡
♣♡♣ X000 +B♣♡♣
♡♣♣ X111 +X110 +X101 +X011 +B♡♣♣

(inputPerm, 1, {id, π3})

(result, 1)

✓

Figure 12.14.: State tree of three-inputs majority protocol with deck D = [♣,♣,♡] of 
[WKS+18]. As soon as a player has input all the required permutations and the valuation 
value is unique, we write valp(Ip) into the index instead of the full input trace Ip. The 
input valuation differs by player, let valp be the input valuation of player p, mapping 
input traces to bits. Here, val1 : (π1, id) ↦ 1, (id, π3) ↦ 0, val2 : (π2, id) ↦ 1, (id, π3) ↦ 0, 
and val3 : (id) ↦ 1, (π1) ↦ 0.

B♣♡♣ =X1⊥id1 +X⊥id11 +X⊥id⊥id0 +X1⊥π241
+X1⊥π240

+X⊥π1511
+X⊥π1510

+X⊥π1501
+X0⊥π241

B♡♣♣ =X⊥id⊥π241
+X⊥id00 +X⊥π15⊥id1 +X0⊥id0 +X⊥π15⊥π241

+X⊥π15⊥π240
,

where ⊥id denotes that the player falsely input id twice and ⊥πij denotes that the player 
first input πi then πj , which is not a valid choice.

12.11. Conclusion
Central to our notion of active security is the concept of a permutation set implemented 
with active security and choice, indicating that a player Alice can choose to perform a 
permutation from the set while Bob can know that Alice did not cheat, but nothing 
else. We argued that cuts and pile cuts have such an implementation and we used 
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permutation protocols to build more sophisticated procedures handling any group of 
permutations. Moreover, we defined security for Mizuki–Shizuya protocols, active and 
passive security for our own two player protocols and showed how secure Mizuki–Shizuya 
protocols using only uniform closed shuffles can be transformed into actively secure two 
player protocols. This is a solid foundation for actively secure card-based cryptography.

Open Problems. Some card-minimal protocols, e.g., the general k-ary boolean function 
protocol of Section 8.3, use non-closed shuffles, with no evidence yet that this is necessary. 
As we have determined that uniform closed shuffles are a natural shuffle class, which 
can be done actively secure, it is interesting to find card-minimal protocols for these 
functions using only uniform closed shuffles.

Another natural problem is to implement more general shuffles, and even to charac-
terize the shuffles which are possible with (a linear number of) helping cards, and the 
assumption of the security of a uniform random cut. To give one non-trivial example, 
we show in Section 12.8 how any subset of a cut can be implemented.

Moreover, it is interesting which functionalities are realizable – at all or more efficiently 
– in the two player setting compared to the computational model of [MS14a], possibly by 
composing privatePerm operations in more sophisticated ways than done in Section 12.5. 
Moreover, we can formalize protocols using permutations as inputs in our model using 
an inputPerm action. Here, it is interesting to find protocols with the minimal number of 
cards for different functionalities with only closed permutation choice sets, a prerequisite 
to achieve active security using our framework. 
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13. Introduction

This part on Secure Electronic Payment and Human–Server Interaction is directly based 
on the paper “Your Money or Your Life—Modeling and Analyzing the Security of 
Electronic Payment in the UC Framework” [AGH+19b], with some changes to account 
for the slightly different viewpoint taken on in this thesis.

“Your money, or your life!” – surrender your belongings or face death. This threat was 
used by bandits in England until the 19th century [O81]. As people often needed to carry 
all their valuables with them when traveling, banditry was a lucrative (albeit dangerous) 
endeavor. Today, electronic money transfer (EMT) systems alleviate the need to have 
one’s valuables at hand, but introduce new threats as well. Instead of resorting to 
violence, modern thieves may compromise their victim’s bank account. Once they are 
widely deployed, insecure EMT systems are notoriously difficult to transition away from 
– magnetic stripes are still in use today. The current state-of-the-art payment standard 
EMV (short for Europay International, MasterCard and VISA, also known as “Chip 
and PIN”) improves on this, but falls short of providing a secure solution to payment 
(or money withdrawal), as shown by its many weaknesses described in literature.

Among these are practical attacks, such as (i) “cloning” chip cards by pre-computing 
transaction messages (so-called “pre-play attacks”) [BCM+14], (ii) disabling the personal 
identification number (PIN) verification of stolen cards by intercepting the communi-
cation between chip card and point of sale (POS) device [MDAB10], (iii) tricking an 
innocent customer into accepting fraudulent transactions by relaying transaction data 
from a different POS (so-called “relay attacks”) [DM07].

Upon close examination of these attacks one finds that these issues mainly stem from 
two major false assumptions which are baked into the design of the EMV protocol: 
(i) that the communication between all protocol participants (e.g., between the chip 
card and the POS) cannot be intercepted, and (ii) that the POS (or the automated 
teller machine (ATM)) itself is trustworthy. Even though these assumptions are critical 
for the security of EMV, they are not explicitly stated in the standardization documents 
[E11a; E11b; E11c]. We suggest that this is mainly because EMV has been created by 
a functionality-focused engineering process in which problems are fixed as they occur 
and features are added when necessary, rather than a design process that uses formal 
models and techniques. Modern cryptographic protocols in contrast are designed by first 
providing a formal description of the protocol, explicitly stating all necessary assumptions 
and then giving a proof of security. This does not make cryptographic protocols 
unbreakable, but it does make their potential breaking points explicit. Therefore, we 
argue that it is necessary to start developing electronic payment protocols by using 
the same methodology of rigorous formal modeling as has already been established in 
cryptography.
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13.1. Our Contribution

In this work, we give a novel formal model for electronic payment based on the Universal 
Composability (UC) framework by Canetti [C01], which incorporates a stronger, but 
also more realistic adversarial model than has been used for the design of EMV. We first 
give a formal description of electronic payment which works for both payment at a POS 
and for the withdrawal of cash at an ATM. Second, we provide an ideal functionality for 
electronic payment, which captures the desired security guarantees for such protocols. 
Our model can also be used in the case where one participant is human.

We then prove a set of general requirements for designing such protocols. These 
requirements can act as a guideline for future protocol designers. Based on these 
results, we argue that a number of current payment systems are insecure already on 
a conceptual level. Inspired by this analysis, we propose a simple electronic payment 
protocol which mainly requires secure communication between the bank and the initiator 
of a transaction. We propose to realize this with a smartphone, as is common in many 
modern payment protocols. However, unlike these protocols, our protocol can be proven 
secure if either the smartphone or the ATM/POS device behaves honestly, whereas all 
other protocols we analyzed need to trust at least one of them exclusively.

13.2. Related Work

Secure Human–Server Communication. Basin, Radomirovic, and Schläpfer [BRS15] 
give an enumeration of minimal topologies of channels between a human (restricted in its 
abilities), a trusted server, a possibly corrupted intermediary and a trusted device, that 
realize an authenticated channel between the human and the server. Our work differs 
in two main aspects: Their model uses either fully secure or untrusted channels only 
and cannot account for just authenticated or just confidential communication, which 
is important in our setting due to the presence of CCTV cameras or shoulder-surfing. 
For example, we assume that everything displayed at the ATM or a user’s smartphone 
is not confidential, while entering a PIN at the PIN pad can be done in a confidential 
way, by suitably covering the pad in the process. Second, our model is given in the 
UC framework, which gives stronger guarantees and composability, as well as security 
for concurrent and interleaved execution, compared to the stand-alone setting they 
consider.

Alternative Hardware Assumptions. As we will see later in Section 14.2, the confir-
mation of payment information by the user is an important sub-problem we aim to solve 
for achieving secure payment. A possible solution is “Display TAN” [B18] providing 
a smartcard with a display to show the transaction data. Smart-Guard [DBR16] uses 
such smartcards with a display together with an encrypting keyboard fixed to the card 
to achieve a functionality which may be used for payment. These strong hardware 
assumptions allow for flexible trust assumptions, accounting for several combinations of 
trusted/hacked status of the involved devices. Their protocol comes with a formally 
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verified security proof, albeit not in the UC framework. For our construction we do not 
propose a new kind of hardware device, but rely on the user’s smartphone.

Ecash and Cryptocurrencies. Besides human–server payment protocols, there is also 
electronic cash, first invented by [CFN90], and modern decentralized cryptocurrencies, 
such as Bitcoin [GKL15], which can be used to transfer money. In general, these have 
very different design goals, as they care to establish an electronic money system with 
certain anonymity/pseudonymity properties, without the possibility to double-spend 
and in particular, without a trusted bank. In contrast, we are concerned with the 
authenticated transmission of the transaction data from a human user to the bank. 
To the best of our knowledge, there is no UC-based model of electronic payment as 
presented in our work.

EMV. EMV is not only a single payment protocol, but a complete protocol suite for 
electronic payment (cf. [E11a; E11b; E11c]). Protocols that are EMV-compliant might 
just implement the EMV interface while using another secure protocol. This means 
that, while there are multiple attacks against the EMV payment protocol, not every 
protocol with EMV in its name is automatically insecure. In addition to the attacks 
mentioned previously, there are other attacks as described by Chothia et al. [CGdR+15] 
and Emms et al. [EAF+14].

Anderson et al. [ABC+12] discuss whether EMV is a monolithic system reducing the 
possibilities for innovation. Since we use the UC framework for our model, we inherently 
support non-monolithic, modular systems. Sub-protocols that UC-realize each other 
can be exchanged for one another. Furthermore, [ABC+12] explore the possibility to 
use smartcards (as used by EMV) for other applications.

Degabriele et al. [DLP+12] investigate the joint security of encryption and signatures 
in EMV using the same key-pair. A scheme based on elliptic curves (as it is used in 
EMV) is proven secure in their model. However, as they conclude, their proof does not 
eliminate certain kinds of protocol-level attacks. Cortier et al. [CFF+17] present an 
EMV-compliant protocol using trusted enclaves and prove the security of their protocol 
using TAMARIN [BCD+18]. Both approaches lack the modularity, composability and 
concurrent security provided by the UC framework.

13.3. The Universal Composability Framework
The Universal Composability (UC) framework, introduced by Canetti in 2001 [C01], is 
a widely established tool for proving the security of cryptographic protocols based on 
the real-world–ideal-world paradigm. The desired security properties of a protocol are 
described in terms of a so-called ideal functionality, which can be seen as an incorruptible 
third party carrying out the desired task by definition. The ideal functionality explicitly
captures the allowed influence an adversary can have and the knowledge he can gain 
during an execution of the protocol. Informally, a protocol π is said to UC-realize an 
ideal functionality F if there is no interactive distinguisher Z (the so-called environment) 
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that can distinguish between the execution of π and the execution of (the ideal protocol 
of) F .

The framework is specifically well-suited for our case, as it already incorporates an 
adversary that can control all communication between the protocol parties. If one 
wants to deviate from this (e.g., when secure communication is available) one must 
explicitly add new functionalities for communication to the model (so-called hybrid 
functionalities), making the security assumptions of the protocol explicit.

One of the main advantages of the UC framework is that it, unlike stand-alone security 
models, brings a strong composition theorem. This allows for breaking protocols into 
smaller components and proving their security individually.

Let us give a brief review of the Universal Composability (UC) framework. It is 
a tool for modeling and proving the security of multi-party protocols by comparing 
their execution to an idealized version of the protocol, in accordance to the well-known 
real-ideal paradigm. In the UC framework, participants in a protocol π are modeled 
as Interactive Turing Machines (ITMs), which interact with each other by exchanging 
messages. The execution of such a protocol happens in the context of two additional 
ITMs: the adversary A and the environment Z. The adversary represents the party 
which wants to attack the protocol, and it has full control over all exchanged messages. 
Further, the adversary can corrupt specific protocol participants (depending on the 
chosen model of corruption either at the beginning (static corruption) or at any point 
(adaptive corruption) of the protocol execution) at which point it will gain full control 
over their execution. The environment represents the perception of the execution from 
an outside point of view and it will try to use information gained by the adversary 
about interactions happening during a protocol execution to distinguish if it observes a 
real or an ideal protocol execution.

Since the adversary is able to control all communication, authenticated communication 
cannot be realized in the bare (UC) model. Even if authentic communication is assumed 
in the plain model, no non-trivial functionality can be realized [CF01]. However, one can 
employ so-called hybrid functionalities. A hybrid functionality F is an ITM which can 
be accessed directly by all participants of a protocol execution without the adversary 
being able to interrupt, learn or change that communication (with the exception of 
what is explicitly stated in the ideal functionality’s description). This can, for example, 
be used to model a key distribution process prior to the protocol execution or a secure 
channel between two participants. The exact behavior of F must specified in advance 
and can include communication with the adversary. For example, a communication 
link using a hybrid functionality F such as FAUTH might be set up in a way that A
can read and block arbitrary network messages but cannot change its contents. The 
execution of a protocol is turn-based. If an instance of an ITM (ITI) is activated, it can 
perform computations and send a single message to either another party or a hybrid 
functionality. Then its turn ends. If an ITI receives a message, it is the next to be 
activated. The first ITI to be activated is the environment Z.

Because parties may behave indeterministically, their outputs are modeled as distri-
butions. Further, since protocol runs are parameterized (e.g., by the security parameter 
λ), the following definition uses probability ensembles. The output of the whole protocol 
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is the output of Z and we assume, without loss of generality, that it consists of one bit. 
The distribution of all outputs of Z is a probability ensemble of the input z and the 
security parameter λ.

Definition 13.1 (Ensemble of a protocol execution). We denote the random variable 
which describes the execution of a protocol π with adversary A, environment Z, 
input z, security parameter λ as EXECπ,A,Z(λ, z). The set of random distributions 
{EXECπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ is denoted as EXECπ,A,Z .

In the following, we are going to compare two ensembles of probability execution. To 
this end, we define the indistinguishability of two binary probability ensembles x and Y
as follows:

Definition 13.2 (Indistinguishability). Two binary ensembles X and Y are indistin-
guishable (X ≈ Y ), if for all c, d ∈ N there exists a k0 ∈ N, so that for all k > k0 and all 
a ∈

⋃
κ≤kd{0, 1}κ, it holds:

|Pr[X(k, a) = 1]− Pr[Y (k, a) = 1]| < k−c.

The security of a protocol execution is based on a comparison with an execution of 
an idealized version of the protocol: the ideal protocol. The ideal protocol contains the 
ideal functionality F , which completely realizes the properties of the analyzed protocol. 
In the ideal protocol, all parties only act as dummy parties which directly give their 
input to the ideal functionality and receive back their output without performing any 
computation themselves. The ideal functionality may communicate with the adversary 
in order to model the influence the adversary is allowed to have. We call the ideal-world 
adversary the “adversary simulator” S. Modeling real-world communication networks, 
the real-world adversary A is able to block all communication between parties (even 
e.g., in the FAUTH-hybrid model). A could, for example, interrupt a protocol execution 
in a way that (honest) parties make no output because the protocol execution has 
not finished. In the ideal execution, where the corresponding output is determined by 
the ideal functionality, we thus allow the ideal-world adversary S to do the same with 
respect to party outputs. To this end, ideal functionalities usually handle party output 
by making public or private delayed outputs. At each delayed output, the adversary is 
asked to confirm the output. This confirmation may happen at any later point in the 
execution. Furthermore, delayed outputs do not have to be confirmed in the order they 
are generated by the ideal functionality. If the delayed output is public, the adversary 
learns the complete output. If the delayed output is private, the adversary learns only 
some specified parts of the output. Note that UC security does not model an “absolute” 
security guarantee but a guarantee relative to the defined ideal functionality.

Definition 13.3 (Ideal protocol). Let F be an ideal functionality. Then, the ideal 
protocol for F is denoted as IDEALF .

Based on that notion, we now formalize the indistinguishability of two subroutine-
respecting protocols in the UC framework (cf. [C01, Def. 5]). Informally, a protocol π is 
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subroutine-respecting if “the only input/output interface between each instance of π
and other protocol instances in the system is done by the main parties of π”, cf. [C01, 
Sect. 5.1]. The simulator’s job is to simulate the presence of A to the environment, so 
that it cannot distinguish the real protocol execution from the idealized version. The 
security notion requires that there is a successful simulator for every adversary.

Definition 13.4 (UC-emulation). Let π and ϕ be two subroutine-respecting PPT 
protocols. Then π UC-emulates the protocol ϕ, denoted by π ≥ ϕ, if for all PPT A
there exists a PPT S, so that for all balanced PPT Z, it holds:

EXECπ,A,Z ≈ EXECϕ,S,Z

We can now formally state what it means for a protocol to (UC-)realize a functionality.

Definition 13.5 (UC-security). A protocol π (securely) UC-realizes an ideal func-
tionality F , if π UC-emulates the corresponding ideal protocol IDEALF . If the ideal 
functionality is clear from the context, we also say that π is UC-secure.

For the sake of simplicity, we often write π ≥ F instead of π ≥ IDEALF .
The UC framework is a powerful instrument for analyzing the security of protocols 

because it provides a composition theorem. Informally speaking, the composition 
theorem states that if π securely realizes an ideal functionality F , one can use π instead 
of the hybrid functionality F in other protocols without compromising security: Let 
ρF be a protocol that makes subroutine calls to a polynomial number of instances of 
the ideal functionality F . The UC composition theorem guarantees that if π ≥ F , then 
ρπ ≥ ρF . This composition theorem can be generalized to general protocol emulation 
as follows:

Theorem 13.1 (UC composition theorem). Let π, ϕ be subroutine-respecting protocols 
such that π ≥ ϕ. Let ρϕ be an arbitrary protocol that makes subroutine calls to a 
polynomial number of instances of  ϕ. Then, ρπ ≥ ρϕ.
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14. A Model for Electronic Payment
As a basis for our model, observe the process of withdrawing cash at an ATM. First, 
there is the bank and its customer, Alice. Second, there is the money dispensing unit 
inside the ATM. Assuming authenticated communication from Alice to the bank and 
from the bank to the money dispensing unit, secure payment is easy: Alice communicates 
the amount of cash she needs and the identity of the money dispensing unit she expects 
to receive the cash from. The bank then instructs the money dispensing unit to dispense 
the money. However, Alice is a human and therefore cannot perform cryptographic 
operations required for a classical channel establishment protocol. Thus, Alice needs 
another party which offers a user interface to her and communicates with the bank, 
namely an ATM.

This does not only apply to cash withdrawal but can be extended to EMT in general. 
To this end, think of Alice as the initiator of a transaction and the money dispensing 
unit as the receiver. The process of money withdrawal can now be framed as a payment 
of money from Alice’s account to the account of the money dispensing unit (which, 
upon receiving money, promptly outputs cash) using the ATM as an (input) device. 
The same works for the point of sale: here, the device’s owner (e.g., the supermarket) is 
the receiver.

Regarding our adversarial model, as discussed earlier, we make no assumption about 
the trustworthiness of the ATM whatsoever and do assume that the adversary has control 
over all communication. We do make certain assumptions regarding the trustworthiness 
of different protocol participants. First, we assume the money dispensing unit (or 
receiver in general) to be trusted. If it is under adversarial control, the adversary 
could simply dispense money at will. Second, since our work focuses on the challenges 
that arise from the interaction of humans with untrustworthy devices over insecure 
communication, we do not model the bank’s book-keeping and therefore assume the 
bank to be incorruptible. Third, for reasons of simplicity, our model only considers a 
single bank, even though in practice most transactions involve at least two banks. This 
is justified, however, as banks in general can communicate securely with each other.

14.1. Modeling Electronic Payment in the UC framework
In the following, to simplify the model, we consider the case of static corruption, where 
parties may only be corrupted prior to protocol execution. Extending our work to 
adaptive corruption is left for future work.

We denote the set of initiators as SI, the set of receivers as SR, the set of devices as 
SD and the bank as B. We also define a mapping D : SR → SD of receivers to single 
devices (D(R)) to explicitly name which device belongs to which receiver.
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In order to model the adversary’s probability of successfully attacking credentials 
like PINs, we introduce a parametrized distribution D. Let X denote the event of a 
successful attack. Then D : A→ FX maps a value d (e.g., the amount) from a domain 
A (e.g., Q) to a probability mass function fd,X ∈ FX over {confirm, reject}. An 
adversary’s success probability of correctly guessing a four-digit PIN chosen uniformly 
at random with one try could be modeled as follows: D(m$) = fX for all m$ ∈ Q
with fX(confirm) = 1

10000 , fX(reject) = 9999
10000 . D could also map different d ∈ A to 

different fX,d, modeling that transactions with small amounts require less protection 
than ones with bigger amounts. FD is the ideal functionality F parametrized with D. 
Ideal functionalities may have additional parameters, either implicit or explicit ones 
passed as arguments, e.g., FD(A,B).

In the best possible scenario, ideal payment would work as follows: the initiator 
submits his desired transaction data to an ideal functionality, which then notifies 
the bank and the receiver about who paid which amount of money to whom without 
involvement of the adversary whatsoever. In our adversarial model, no payment protocol 
realizes this strong ideal functionality: an attacker who controls all communication 
will at least be able to observe that a transaction takes place, even if he cannot see or 
change its contents. What is more, such a strict security definition would ignore the 
fact that in all payment protocols which rely on the initiator being protected by a short 
secret (like a PIN), an attacker always has a small chance of success by guessing the 
secret correctly.

Our ideal functionality for electronic payment is thus designed with regards to the 
following principles: (i) The adversary always gains access to all transaction data. An 
electronic payment operation can be secure (that is all participants of the transaction 
get notified about the correct and non-manipulated transaction data) without the 
transaction data being secret. (ii) The adversary can always successfully change the 
transaction data at will with a small probability (e.g., if he guesses the PIN correctly). 
(iii) The payment operation occurs in three stages. In the first stage, the initiator 
inputs his intended transaction data which the adversary can change at will. This 
models that a corrupted input device will always be able to change the human initiator’s 
transaction data, even if it will be detected at a later stage. In the second and third 
stage, the receiver and the bank are notified about the transaction data. The resulting 
functionality is depicted in Figure 14.1.

14.2. Confirmation is Key

Since the human initiator of a transaction cannot be sure that an untrusted input device 
correctly processes his transaction data, he needs a way of confirming the transaction 
data with the bank before the transaction is processed. We formalize this confirmation 
mechanism within the ideal functionality FCONF (specified in Figure 14.2). FCONF is a 
two-party functionality which allows a sender to transmit a message and the receiver 
of the message to confirm or reject it. As with the ideal payment functionality, the 
adversary gets the chance to force a confirmation with a certain probability, modeling 
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The Ideal Functionality for Electronic Payment FPAY,D(I,B,R).

Parametrized by a set of receivers SR, a designated receiver R ∈ SR, a set of initiators 
SI, an initiator I ∈ SI, the bank B and a parametrized distribution D.
Initialize I ′ = I, R′ = R, attacked = no.
Assertion: At any time, I, I ′ ∈ SI and R,R′ ∈ SR. If the assertion is violated, halt.

Phase 1: Collecting Information
1. Upon receipt of message (transfer, sid, R,m$) from I: Send (sid, I, R,m$) to the 

adversary, receive (sid, I ′, R′,m′
$) and output (input-received, sid, I ′, R′,m′

$) to B.

Phase 2: Confirmation and Execution
2. Resume upon instruction by the adversary.
3. If I ′ is honest, (I ′, R′,m′

$) ̸= (I,R,m$) and attacked = no, halt.
4. Make a public delayed output of (received, sid, I ′,m′

$) to R′.

Phase 3: Ensuring Consistency
5. Resume upon instruction by the adversary and make a public delayed output of 

(processed, sid, I ′, R′,m′
$) to B. Halt upon confirmation by the adversary.

Attack
• Upon receiving an input (attack, sid) in Phase 2 from the adversary, sample an 

element b ∈ {confirm, reject} according to D(m′
$). If b = confirm, set attacked =

yes, otherwise set attacked = no. Return (attack, sid, attacked) to the adversary. 
Ignore all further attack queries.

Figure 14.1.: The ideal functionality FPAY for electronic payment.

the insecurity inherent to real-world protocols which use short secrets. Note that he 
can always force the confirmation to be rejected.

To realize FPAY, we need authenticated communication from the bank to the receiver, 
so that the receiver can be notified of the transaction. For most real-world payment 
protocols, this authenticated communication is easy to establish, since receivers are 
electronic devices and not humans. In the case of cash withdrawal, the bank owns 
the money dispensing unit and can pre-distribute cryptographic keys to establish 
authenticated communication.

Using FCONF and FAUTH [C01, Sect. 6.3], we propose a protocol πPAY which realizes 
FPAY. This protocol is informally depicted in Figure 14.3. The comprehensive formal 
description of the protocol can be found in the full version [AGH+19a]. Having defined 
all required protocols and functionalities, we are now ready to state our theorem.

Theorem 14.1. Let I, B, R, and D(R) ITMs, where I is human, and B and R are 
honest. Then, πPAY, informally depicted in Figure 14.3, UC-realizes FPAY,D(I,B,R)
in the FAUTH(B,R),FAUTH(R,B),FCONF,D(B, I)-hybrid model.
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The Ideal Functionality for Confirmation FCONF,D(S,C).

Parametrized by the message sender S, the respective confirmer C and a parametrized 
distribution D.
Initialize attacked = no, initiated = no, completed = no.

• Upon receiving (initiate, sid, C,m) from ITI S, make a public delayed output of 
(initiate, sid, S,m) to C and set initiated = yes. Ignore all subsequent initiate
messages.

• Upon receiving (reply, sid, S, b) from ITI C when initiated = yes, completed = no
and b ∈ {confirm, reject}: Make a public delayed output of (answer, sid, C, b) to 
S. Upon confirmation from the adversary, set completed = yes and halt.

• Upon receiving (force-confirm, sid) from the adversary, assert that C is honest, 
initiated = yes, completed = no and attacked = no. If this holds, set attacked = yes
and sample an element b ∈ {confirm, reject} according to D(m). If b = confirm, 
set completed = yes and make a public delayed output of (answer, sid, C, confirm)
to S and halt upon confirmation by the adversary. Otherwise, return (fail, sid) to 
the adversary.

• Upon receiving (force-reject, sid) from the adversary, assert that C is honest, 
initiated = yes, completed = no and attacked = no. If this holds, set attacked = yes
and completed = yes, make a public delayed output of (answer, sid, C, reject) to S
and halt upon confirmation by the adversary. Otherwise, return (fail, sid) to the 
adversary.

Figure 14.2.: The ideal functionality for confirmation of messages.

The technical proof is given in the full version [AGH+19a]. Even though this might 
seem unsurprising at first, this allows us to break down the complexity of realizing FPAY
into two easier problems: realizing a confirmation mechanism between the initiator and 
the bank and realizing authenticated communication between the receiver and the bank.

14.3. How Our Model Captures Existing Attacks

One of our main motivations for establishing a new formal model for electronic payment 
is to make trust assumptions explicit in order to detect unrealistic ones which enable 
practical attacks like [BCM+14], [MDAB10] and [DM07]. Thus, our model needs to be 
able to capture these kinds of attacks. Protocols analyzed within our framework must 
be insecure if they allow for these attacks. In the following, we explain how this is 
achieved.

Changing Transaction Data. An adversary controlling all communication or the input 
device can easily change transaction data. Protocols which allow this unconditionally 
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14.3. How Our Model Captures Existing Attacks

I D(R) B R output

(transfer, R,m$)Phase 1:
(transfer, I, R,m$)

(input-received, I, R,m$)

(initiate, I, (I, R,m$))Phase 2:
(answer, B, confirm)

(pay, I,m$)

(received, I,m$)

(completed, R)Phase 3:
(processed, I, R,m$)

Figure 14.3.: The protocol πPAY realizing FPAY,D(I,B,R) using FCONF,D(B, I), 
FAUTH(B,R) and FAUTH(R,B), the latter two depicted as . The use of an imperfect 
FCONF,D is depicted via . The protocol is between the human initiator I, the ATM 
D(R), the bank B and the money dispenser R. The protocol proceeds in three phases, 
namely (1) the information collection phase, (2) the confirmation and execution phase 
and (3) the phase which ensures a consistent view on what happened.

are insecure in our model, since FPAY only allows to change the transaction data 
successfully if the adversary mounts a successful attack (i.e., guesses the initiator’s PIN 
in the real world) or the (possibly changed) initiator is corrupted.

Relay Attacks. The aim of a relay attack [DM07] is to get Alice to authorize an 
unintended transaction, which benefits the attacker, by relaying legitimate protocol 
messages between the POS device she uses to pay for goods to another POS device 
which Alice uses at the same time. If Alice’s input device is corrupted, she cannot 
know with certainty which transaction data she authorizes. Depending on the point of 
view, this amounts to either changing the receiver of a transaction initiated by Alice or 
changing the initiator of a transaction initiated by a third party Carol. Thus, in our 
model, this attack is just a special case of changing transaction data.
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15. Requirements for Secure Payment

The core challenge when realizing FPAY is the authenticated transmission of transaction 
data from the (human) initiator to the bank. This can also be captured formally: the 
functionality FPAY can be used to implement the ideal authenticated communication 
functionality FAUTH between initiator and bank (up to the attack success probability 
captured by the distribution D) by encoding the message as an amount to be transmitted. 
We use this insight to establish several guidelines for the design of secure payment 
protocols: First, we state a necessary condition for protocols that realize FPAY: they 
must use setups that are strong enough to realize authenticated communication between 
the (human) initiator and the bank. Protocol designers can use this condition as an 
easily checkable criterion for the insecurity of payment protocols. Second, we state 
several setups that are sufficient for realizing FPAY.

For the proofs, we define an ideal functionality FAUTH,D, analogous to FCONF and 
FPAY, that allows the adversary to change the message to be sent with a certain 
probability parametrized by D. Analogous to FCONF as shown in Figure 14.2, we 
define an ideal functionality FAUTH,D that allows the adversary to change the message 
transmitted or force the transmission of messages according to some parametrized 
probability distribution D. For the sake of an easier exposition, we consider ideal 
functionalities like FAUTH,D that model the transmission of only one message. This is in 
line with the protocols we consider. If multiple messages have to be transmitted over the 
same “channel”, this model does not adequately capture reality, as an adversary would 
be able to attack each transmission independently. In this case, ideal functionalities for 
channels like FSC (cf. [CK02]) can be adapted the same way.

15.1. Establishing Criteria for Secure Electronic Payment

In this section, we establish necessary and sufficient criteria for secure electronic payment. 
Let FAUTH,D(I,R) denote the imperfect ideal authenticated communication functionality 
between parties I and R, and FSMT,D(I,R) the corresponding ideal secure message 
transfer functionality (where successful attacks relative to D results in loss of secrecy 
and authenticity). For a formal description, see the full version [AGH+19a]. Throughout 
this section, let I, B, R be ITMs, where I is human1, B is honest and D a parametrized 
distribution. We obtain the following theorem:

Theorem 15.1. There exists a protocol π that UC-realizes FAUTH,D(I,R) in the
FPAY,D(I, ★,R)-hybrid model, where ★ is an arbitrary protocol party.

1Note that our results hold for arbitrary I.
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Ideal functionality FAUTH,D(S,R).

Parametrized by a sender S, a receiver R and a parametrized probability distribution D.
Initialize initiated = no, attacked = no.

• Upon receiving an input (Send, S,R, sid,m) from ITI S, set initiated = 1 and generate 
a public delayed output (Sent, S,R, sid,m) to R and halt.

• Upon receiving (force-send, sid,m′, v) from the adversary: If initiated = yes and 
the (Sent, S,R, sid,m) output has already been delivered to R or if attacked = yes, 
do nothing. Otherwise, sample r ← D(m′) and set attacked = yes. If r = v, output 
(Sent, S,R, sid,m′) to R and halt. Otherwise, output (fail, sid) to the adversary.

Figure 15.1.: Ideal functionality FAUTH,D.

Proof Sketch. First, let us outline the description of the protocol π. Upon receiving 
input (Send, S,R, sid,m), S starts an interaction with FPAY where S acts as initiator, 
receiver and device while R acts as the bank. S sends (transfer, sid ′, S,m) to FPAY. 
When receiving (processed, sid ′, S,R,m), R outputs (Sent, I, sid,m′).

We now consider how to simulate when Z has changed either the sender or the 
amount (corresponding to the message). When FAUTH,D asks S for confirmation 
about the delayed output, S waits until receiving (attack, v) from Z and sends 
(force-send, sid, amount′, v) to FAUTH,D. If the output is (fail, sid), S reports 
(fail, sid) to Z. If the attack is successful, B outputs the correct value in the in-
teraction with FPAY.

Note that authenticated communication between R and S (corresponding to bank 
and receiver) is not necessary as π executes FPAY only until the first message to R
(corresponding to the bank) is sent.

In particular, Theorem 15.1 implies that protocols without any authenticated com-
munication or only between the bank and the receiver cannot realize FPAY:

Corollary 15.1. Let π be a protocol that is in the FAUTH(B,R), FAUTH(R,B)-hybrid 
model only (in particular, there is no authenticated communication between I and B). 
Then there is no protocol ρ in the bare model such that ρπ UC-realizes FPAY,D(I,B,R)
if  D admits the adversary at least a non-negligible successful attack probability.

This insight can be generalized and gives a necessary condition: A protocol π that 
realizes FPAY,D(I,B,R) must use setups that can be used to realize FAUTH,D(I,B).

Theorem 15.2 (Necessary Requirements for Setups). Let F be a set of ideal function-
alities. Let Π be the set of all subroutine-respecting protocols with the set of protocol 
parties P ⊆ {I,R,B} that use only ideal functionalities in F . If there is no proto-
col π ∈ Π such that πF realizes FAUTH,D(I,B), then there is no protocol ρ ∈ Π such 
that ρF realizes FPAY,D(I,B,R).
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Theorem 15.2 can be easily shown using Theorem 15.1 and the UC composition 
theorem:

Proof. Let F ′ ⊆ F . Suppose for the sake of contradiction that there exists a protocol 
ρ ∈ Π such that ρF ′ ≥ FPAY(I,R,B,D) and for all protocols π ∈ Π, it holds that 
πF

′ ̸≥ FAUTH,D(I,B). By Theorem 15.1, there exists a protocol τ ∈ Π that UC-realizes 
FAUTH,D(I,B) in the FPAY(I,R,B,D)-hybrid model. By the UC composition theorem, 
it follows that τρF

′
≥ FAUTH,D(I,R). By setting π := τρ, we obtain a contradiction 

that there is no protocol π ∈ Π such that πF ′ UC-realizes FAUTH,D(I,B).

Conversely, it is easy to see that FPAY,D can be realized by (also) using FAUTH,D(I,B), 
for example. Several sufficient requirements are stated in the following theorem:

Theorem 15.3 (Sufficient Requirements). Let π be a protocol that UC-realizes

1. FAUTH,D(I,B), or
2. FSMT,D(B, I), or
3. FCONF,D(B, I).

Then, there exists a protocol ρ s.t. ρπ UC-realizes FPAY,D(I,B,R) in the FAUTH(B,R),
FAUTH(R,B)-hybrid model.

Proof Sketch. (i) holds because FAUTH,D(I,B) can be used instead of FCONF,D(B, I)
in πPAY. (ii) holds because FSMT,D(I,B) can be used to realize FAUTH,D(I,B). (iii) 
follows from Theorem 14.1.

15.2. Towards Realistic Assumptions
Protocols are built on assumptions to achieve security. However, there often is a 
huge discrepancy regarding to how realistic these assumptions are. EMV relies on the 
security of the ATM which is often publicly accessible and offers a large attack surface. 
Unpatched operating systems and exposed USB interfaces are only two examples for 
vulnerabilities that have been exploited successfully. As explained in Section 14.2, a 
secure protocol can be constructed by establishing a confirmation mechanism. However, 
if the input device is corrupted, an additional device is required.

Such additional devices could for example be TAN generators or smartphones. In 
principle these allow for the creation of protocols that are secure in our model. However, 
smartphones, which are increasingly used to replace smartcards, regularly call for 
attention because of vulnerabilities. They are complex systems connected to the 
Internet and are thus more vulnerable to attacks – especially if they are operated by 
people without expertise in IT security. However, this dilemma can be resolved by 
requiring trust in only one of the two devices. We call this property 1-of-2 (one-out-
of-two) security (which is, in the case of authentication, also known as multi-factor 
authentication). This means that a protocol is still secure if one of the two devices is 
corrupted, no matter which one. We argue that, in addition to realizing FPAY, payment 
protocols should support this property in order to further reduce the attack surface.
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16. Analysis of Current Payment Protocols

In this chapter, we use our acquired insights to analyze current protocols for withdrawing 
cash, paying at the POS, and online banking. Table 16.1 summarizes our findings. 
Our model allows for a structured and fast categorization of payment protocols on a 
conceptual level, even without a detailed protocol description. Even though EMV is 
the most widely used standard for payments, we do not elaborate on its security in this 
chapter. As mentioned before, its design incorporates at least two assumptions that do 
not hold, as several attacks have been demonstrated. Current payment protocols such 
as Google Pay, Apple Pay, Samsung Pay, Microsoft Pay and Garmin Pay provide an 
app that uses the EMV contactless standard to communicate with existing POS devices 
via near-field communication [S16; Va]. Since they rely on Consumer Device Cardholder 
Verification Method, the user is authenticated by the mobile device exclusively. Currently, 
these apps use a PIN, a fingerprint or face recognition and thus do not incorporate a 
second device such as the POS device for authentication. Therefore the security of the 
protocol is solely based on the mobile device.

The protocols discussed in this section make additional implicit assumptions, which 
we believe to be plausible, but want to make explicit. These include the following: 
(i) An additional trusted device beside the input device. This is a plausible assumption 
if the device is simple, less so if it is a smartphone. However, using an additional 
device could enable protocols to be 1-of-2-secure. (ii) Authenticated communication 
between the initiator of a transaction and an additional personal device. This is a 
realistic assumption, since the initiator owns the device. Likewise the initiator can 
authenticate themselves to the device, e.g., by unlocking the screen of a mobile device. 
(iii) Confidential communication from the initiator to the ATM, which can be realized by 
covering the PIN pad with one’s hand if the ATM is not compromised. (iv) Confidential 
communication from the ATM to the bank. This can be realized using public-key 
cryptography.

In the following, we examine multiple protocols for cash withdrawal and online 
banking.

Cardless Cash. Cardless Cash [C18] is an app-based protocol for cash withdrawal 
offered by numerous banks in Australia. In its most simple variant, it works as follows: 
After registration, the app can be used to create a “cash code” by entering the desired 
amount and a phone number. The phone number is used to send a PIN via SMS and 
allows to permit someone else to withdraw cash. To dispense the cash, the PIN has to 
be entered at the ATM alongside the cash code. The security of the protocol is solely 
based on the ATM, since all relevant information is entered there and no additional 
confirmation mechanism is established.
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VR-mobileCash. VR-mobileCash [Vb] is another app-based protocol for cash with-
drawal offered by Volks- und Raiffeisenbanken, a German association of banks. Upon 
registration, the user receives the mobile personal identification number (mPIN), which 
has to be entered on the ATM later on to confirm a transaction. To withdraw cash, the 
user has to enter the desired amount in the app. After selecting mobile payment at the 
ATM, the ATM shows a mobile transaction identification number (mTIN) which has to 
be entered in the app. The ATM then shows the requested amount and asks the user 
to enter the mPIN. If the mPIN is correct the ATM dispenses the requested amount of 
cash.

Although not stated explicitly in the public documentation, the mobile device has to 
be online during the transaction, as the ATM is informed about the transaction data. 
If the mobile device is corrupted but the ATM is honest, a user can detect an attack 
because he has to confirm the transaction by entering the mPIN at the ATM and thus 
verifies the location of the ATM. However, a corrupted ATM can employ a relay attack 
by displaying the mTIN of another corrupted ATM and forwarding the entered mPIN 
to it thus allowing the second corrupted ATM to dispense the cash. This could be fixed 
by adding a serial number imprinted on the ATM which is also displayed in the app 
after entering the mTIN. Thereby VR-mobileCash could potentially realize FPAY and 
even be 1-of-2-secure.

chipTAN. ChipTAN [P18] is a protocol for online banking widely used in Germany. 
Here, the initiator uses a computer as an input device and possesses two additional 
personal devices: a transaction authentication number (TAN) generator and a smartcard. 
The TAN generator is used to confirm transactions and thus realizes a confirmation 
mechanism. This works as follows: First, a transaction has to be requested in the 
browser. Then, the banking website shows a flickering code. The user puts the smartcard 
into the TAN generator and scans the flickering code. After reviewing the transaction 
data presented on the personal device, he presses a button which reveals a TAN that 
has to be entered into the website.

This protocol satisfies all requirements for a secure realization of FPAY by establishing 
a confirmation channel that allows a user to detect tampering of the transaction data. 
What is more, the protocol potentially provides a form of 1-of-2 security, since as long as 
either the input device or alternatively the TAN generator together with the smartcard 
are uncorrupted, there exists a confirmation mechanism from the bank to the initiator. 
This is only true for single transactions, however (see [R09] for details).

photoTAN. PhotoTAN (or QR-TAN) is a variant of chipTAN, where the code to 
transmit data to the TAN generator is encrypted by the bank. Furthermore, a smart-
phone can be used as an alternative to a special-purpose TAN generator. In our model, 
this encryption does not have an impact on security, since the transaction data is not 
confidential and is displayed on the smartphone nonetheless. However, some banking 
apps for photoTAN [D18; C13] show the TAN immediately after scanning the code and 
before the transaction data have been confirmed by the user. Thus, in the scenario of 
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Table 16.1.: Comparison of different payment protocols. A protocol is marked as offline, 
if the additional device does not require an Internet connection during the payment 
process. The security of a protocol is put in parentheses if it meets our requirements 
for a secure protocol but has not been proven secure.

Protocol Offline Secure Applicable for

Cardless Cash ✓ × Withdrawal
VR-mobileCash × × Withdrawal

chipTAN ✓ (✓: 1-of-2) Online banking
photoTAN ✓ (✓: 1-of-2) Online banking

L-Pay (our scheme) ✓ ✓: 1-of-2 Withdrawal, PoS

cash withdrawal, an attacker that corrupted an ATM and deploys a camera, monitoring 
the ATM, could change the submitted transaction data at the ATM, read the TAN 
from the victim’s display and confirm the transaction without the initiator’s consent.
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17. Realizing Secure Electronic Payment

In Section 14.2, we gave a protocol πPAY realizing FPAY,D(I,R,B) in the FAUTH(B,R), 
FAUTH(R,B), FCONF,D(B, I)-hybrid model. While realizing FAUTH between the bank 
and the receiver is simple, realizing FCONF,D(B, I) in a way suitable for humans is a 
challenge under realistic trust assumptions.

The protocols in Chapter 16 use one or more additional devices, such as smartphones, 
smartcards or TAN generator to give the initiator a confirmation capability. Yet all cash 
withdrawal protocols still need a trusted ATM. In the following, we improve on this by 
presenting a simple offline protocol called L-Conf (informally described by πL-Conf in 
Figure 17.1). It is inspired by chipTAN and photoTAN which use similar mechanisms. 
Our protocol is secure even if either the additional device A, such as the initiator’s 
smartphone, or the input device is compromised. We call this property one-out-of-two 
security, formally defined as follows:

Definition 17.1 (One-out-of-two security). Let X1, X2 be Boolean variables, π a 
protocol and F an ideal functionality. We say that π UC-realizes F with one-out-of-two 
security relative to X1 and X2, if X1 ∨X2 implies that π UC-realizes F .

πL-Conf can be used with πPAY to realize FPAY. We call the resulting protocol L-Pay. 
The protocol starts with a setup phase: The bank B and the initiator I agree on a 
PIN and the initiator’s smartphone shares keys with the bank for an authenticated 
secret-key encryption scheme.

The main part, depicted in Figure 17.1, consists of the execution of two protocols π1
and π2, each realizing FCONF(B, I) under different assumptions. By combining their 
results, the composed protocol πL-Conf realizes FCONF(B, I) even if either the input 
device or the additional device is compromised.

In π1, the bank first encrypts the transaction data together with a fresh one-time 
TAN. The ciphertext is then transmitted to the initiator’s input device, displayed 
appropriately, transferred to the smartphone (e.g., by scanning a QR code) and is 
decrypted. The TAN is only shown after the transaction data has been checked and 
explicitly confirmed by the initiator. Afterwards, the initiator enters the TAN into the 
input device.

In order to achieve security even if the initiator’s smartphone is corrupted, π2 requires 
the initiator to also check and confirm the transaction by entering his PIN into the 
input device (confidentially over FConfid), which is then sent to the bank confidentially. 
Only if the bank receives both the correct TAN and PIN, it considers the transaction to 
be confirmed. Now, if only the initiator’s smartphone is corrupted, the adversary is able 
to present false transaction data to them or even to perform the confirmation himself. 
However, this would be noticed immediately, since the transaction data shown on the 
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17. Realizing Secure Electronic Payment

I A D(R) B output

Enc(I,m$, R,nonce)Part 1:
c=(I,m$, R)

(fetch)if c′ received,
c = c′, b = 1:

(nonce)

(nonce) (nonce)

c′=(I′,m′
$, R

′)Part 2:
(PIN )if c received,

c = c′, b = 1:
(PIN )

(answer, B, confirm)

Figure 17.1.: Main phase of πL-Conf realizing FCONF,D(B, I) using authenticated and 
confidential channels drawn as and , respectively. The protocol is between the 
human initiator I, his personal device A, the ATM D(R) and the bank B. The bit 
b ∈ {0, 1} indicates, whether I wants to confirm, hence (nonce) and (PIN ) are only 
sent in this case.

input device would be wrong and the initiator would not enter his PIN. Conversely, if 
only the input device is malicious and displays wrong transaction data, the initiator 
will notice this using their smartphone.

Theorem 17.1. Let I, B, D(R) and A be ITMs, where I is human. Let S be the 
domain of  D1 and D2, let π1 UC-realize FCONF,D1(B, I) if  A is honest and let π2 UC-
realize FCONF,D2(B, I) if  D(R) is honest. Then, πL-Conf UC-realizes FCONF,D3(B, I) in 
the FAUTH(A, I), FAUTH(I, A), FAUTH(D(R), I), FConfid(I,D(R)), FConfid(D(R), B)-
hybrid model where for all x ∈ S:

D3(m$)(x) :=

{︄
max(D1(m$)(confirm),D2(m$)(confirm)), x = confirm,
1−max(D1(m$)(confirm),D2(m$)(confirm)), x = reject.

Proof Sketch. The protocol πL-Conf (Figure 17.1) can be interpreted as the composition 
of two confirmation protocols π1 (Part 1) and π2 (Part 2) UC-realizing FCONF,D1(B, I)
if A is honest, and FCONF,D2(B, I) if D(R) is honest, respectively (omitting the message 
from B to D(R) to initiate Part 2). Let b ∈ {confirm, reject} denote the initiator’s 
input and let b1, b2 ∈ {confirm, reject} denote the outputs of π1 and π2 as received by 
B, respectively. After having received b1 and b2, B outputs b′, which is confirm if b1 =
b2 = confirm, and reject otherwise. By definition, b′ = confirm while b = reject
holds with probability upper-bounded by max(D1(m$)(confirm),D2(m$)(confirm)). 
Thus, πL-Conf UC-realizes FCONF,D3(B, I) with one-out-of-two security relative to the 
assumptions that A or D(R) is honest, respectively.

For the complete construction and proof, see the full version [AGH+19a].
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Part IV.
Conclusion and Outlook
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Conclusion

This chapter contains a conclusion of the thesis, and draws from the introductory and 
conclusion sections of all the papers used in this thesis. We proceed in the inverse order 
of the parts.

On Human-Friendly Secure Payment

Designing secure payment protocols poses a particular challenge. They typically involve 
a human user who is not capable of performing cryptographic operations and therefore 
needs an intermediate device (e.g., an ATM) to interface with the protocol, which can 
not always be trusted. In this work we introduce a formal model for the security of 
such protocols. In particular, we do not assume all intermediate devices to be trusted. 
We use the UC framework, guaranteeing strong security and composability even in 
concurrent and interleaved executions.

With our model, we develop a set of basic requirements for electronic payment 
protocols without which no protocol can be considered secure. Based on these results, 
we discuss different current payment protocols and find that most do not realize these 
requirements. We then specify a protocol called L-Pay (based upon chipTAN and 
photoTAN), which uses an additional smartphone or TAN generator as a user’s device 
and which is secure in our model even if either the ATM or the user’s device is honest.

On Cryptography with a Deck of Cards

We believe that our work on card-based cryptography may well be described as trans-
formative for the field. Among other, we 

• discuss variants of the computational model and propose a new way of speaking 
about protocols via state diagrams, which allow to act as witness from which 
security and correctness can directly be read,

• identify a suitable security notion which allows to capture committed format and 
non-committed format protocols in the same framework.

• construct card-minimal AND protocol using four cards, both in the two-color and 
in the standard deck setting with non-closed (or non-uniform) and uniform closed 
shuffles, respectively. We also give a five-card AND protocol exhibiting a finite 
running time behavior in the two-color deck case.
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Table 17.1.: Minimum number of cards required by committed format AND and 
n-COPY protocols, subject to the requirements specified in the first two columns. The 
second column specifies shuffle restrictions. See also Figure 9.7.
Running Time Shuffle Restr. #Cards Protocol Lower Bound

AND Protocols:

restart-free LV closed 4 Theorem 8.1 – (trivial)
restart-free LV uniform 4 Theorem 8.2 – (trivial)
restarting LV uniform closed }︂

5 [AHMS18, Sect. 2] Theorem 9.6restart-free LV uniform closed
finite – }︂

5 Theorem 8.4 Theorem 9.1finite uniform
finite closed }︂

6 [MS09, Sect. 3] Theorem 9.5finite uniform closed

COPY Protocols:

restarting LV – }︂
2n+ 1 [NNH+18, Sect. 5] [KKW+17, Sect. 8]restart-free LV uniform

restarting LV closed }︄
2n+ 2 [MS09, Sect. 5]

Theorem 9.7,
[KKW+17, 
Sect. 9]

finite –
finite uniform closed

Table 17.2.: Comparison of protocols for arbitrary k-ary Boolean functions. In the 
terminology of [SM19], a type-1 deck is a deck in which all symbols are distinct, except 
from one symbol that may occur more than once and a type-2 deck contains at least 
two symbols at least twice. In both deck types no symbol should occur more that half 
the size of the deck. For the special case of symmetric functions, one can, e.g., reduce 
the size of the deck in [NHMS15] to 2k + 2.

Deck Running Time Shuffles Reference

k · [♡,♣] restarting LV uniform non-closed Theorem 8.5
(k + 3) · [♡,♣] finite uniform closed [NHMS15]
Type-2, 2k + 6 cards finite uniform closed [SM19]
Type-1, 2k + 7 cards finite uniform closed [SM19]
[1, . . . , 2k + 8] finite uniform closed [SM19]
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Table 17.3.: Minimum number of cards required by committed format AND and base 
conversion protocols for standard decks, subject to the requirements specified in the 
first two columns. The second column specifies shuffle restrictions. Note that random 
cuts are a subclass of uniform closed shuffles.
Running Time Shuffle Restr. #Cards Protocol Lower Bound

AND Protocols:

Las Vegas random cuts 4 Theorem 8.6 – (trivial)
finite – }︂

≥ 5a,≤ 8 [M16b, Sect. 3.4] Theorem 9.9finite uniform closed

Disjoint Base Convert Protocols:

finite uniform closed 4 [M16b, Sect. 3.2] – (trivial)

Overlapping Base Convert Protocols:

Las Vegas random cuts 3 Theorem 8.7 – (trivial)
finite – }︂

5 Theorem 8.8 Theorem 9.8finite uniform closed
a Lower bound result only holds for fixed output basis, flexible case is open.

• prove these and other protocols from the literature for AND, COPY and base 
convert as optimal for their respective parameters. This completes the landscape of 
tight lower bounds with all practicality restrictions we identified in the beginning, 
at least for the two-color deck case. For this, we extensively extend the toolset 
of proof techniques for impossibility results in card-based cryptography. As a 
corollary, we show that restarting in AND and COPY protocols cannot decrease 
the number of cards.

• additionally introduce a formal verification technique to card-based cryptography, 
which allows us to show a certain protocol to have a shortest run, w.r.t. the 
practicality restrictions that the protocol fulfills.

• construct four different protocols for private function evaluations allowing for some 
choice in the computational model that the function is specified in. These are 
conceptually relatively simple and easy to understand by its use of the introduced 
sorting protocol abstraction

• show how a passively secure protocol can be transformed into an actively secure 
version, given certain conditions. Additionally, we discuss the active security of 
several protocols with input awareness from the literature.

A survey of all card-minimal protocols with respect to all combinations of restrictions are 
given in Table 17.1. For a survey of protocols computing arbitrary Boolean functions, we 
refer the reader to Table 17.2. We have three key parameters in describing the properties 
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of protocols: the deck used (in particular its size), whether it is a finite-runtime or 
a Las Vegas algorithm, and which type of shuffles are used in the protocols. Finally, 
Table 17.3 summarizes our results for protocols with a standard deck.

Outlook and Future Work
For the case of human-friendly electronic payment, similar to [BRS15], future work could 
explore the generation of a complete set of possible channel topologies allowing for 
electronic payment in our model and with strong UC security guarantees. Also, one 
important security mechanism missing in our model is time (e.g., for arguing about the 
security of timestamps), which is impossible to model in the standard UC framework 
however. Extensions exist that model time [KMTZ13] which could be incorporated in 
our model in the future. Since we assume the bank to be trusted, we limited our model 
to a single bank and disregarded the problem of book-keeping. Fture work could expand 
our model to include these features.

For card-based cryptography, there are two main directions to explore: deriving 
tight lower bounds for standard deck protocols, or even for arbitrary decks, possibly 
refining our formal verification method to automatize the process. Moreover, the case of 
protocols with input awareness, as discussed in Section 12.10 is not yet developed much, 
with no lower bounds on the number of cards yet. Finally, it would be nice to have a 
rigorous didactic study to back up anecdotal evidence of its usefulness in classroom 
scenarios.
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