Skip to main content
Log in

Introduction of a Proximal Stat5 Site in the Murine α-Lactalbumin Promoter Induces Prolactin Dependency In Vitro and Improves Expression Frequency In Vivo

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

In order to establish a possible correlation between in vitro prolactin induction and the transcriptional activity of mammary gene promoters in transgenic mice, a functional Stat5-binding site was created by means of site-directed mutagenesis at position −70 on a 560 bp murine α-lactalbumin promotor linked to a CAT reporter gene. Surprisingly, the wild-type promoter was constitutively active in vitro and could not be induced by prolactin. Introducing the proximal Stat5 site abolished this constitutive activity and resulted in prolactin dependence in both CHO-K1- and HC11-transfected cells. In transgenic mice, both the frequency of lines expressing the transgene and the prevalence of mid to late pregnancy expression were increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bignon, C., Daniel, N. and Djiane, J. (1993) β-galactosidase and chloramphenicol acetyltransferase assays in 96-well plates. BioTech. 15, 243–5.

    Google Scholar 

  • Burdon, T.G., Maitland, K.A., Clark, A.J., Wallace, R. and Watson, C.J. (1994) Regulation of the sheep β-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-ã activation site-related element. Mol. Endo. 8, 1528–36.

    Google Scholar 

  • Cardiff, R.D. (1996) The biology of mammary transgenes: five rules. J. Mam. Gland Biol. and Neo. 1, 61–73.

    Google Scholar 

  • Chung, J.H., Whiteley, M. and Felsenfeld, G. (1993) A 59 element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–14.

    PubMed  Google Scholar 

  • Clark, A.J. (1996) Genetic modification of milk proteins. Am. J. Clin. Nutr. 63, 633S-8S.

    PubMed  Google Scholar 

  • Colman, A. (1996) Production of proteins in the milk of transgenic livestock: problems, solutions and successes. Am. J. Clin. Nutr . 63, 639S-45S.

    PubMed  Google Scholar 

  • Demmer, J., Burdon, T.G., Djiane, J., Watson, C.J. and Clark, A.J. (1995) The proximal milk protein binding factor binding site is required for the prolactin responsiveness of the sheep β-lacoglobulin promoter in Chinese hamster ovary cells. Mol. Cell. Endo. 107, 113–21.

    Google Scholar 

  • Dobie, K.W., Lee, M., Fantes, J.A., Graham, E., Clark, A.J., Springbett, A., Lathe, R. and McClenaghan, M. (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc. Natl. Acad. Sci. USA 93, 6659–64.

    PubMed  Google Scholar 

  • Faerman, A., Barash, I., Puzis, R., Nathan, M., Hurwitz, D.R. and Shani, M. (1995) Dramatic heterogeneity of transgene expression in the mammary gland of lactating mice: a model system to study the synthetic activity of mammary epithelial cells. J. Histochem. Cytochem. 43, 461–70.

    PubMed  Google Scholar 

  • Farini, E. and Whitelaw, C.B.A. (1995) Ectopic expression of β-lactoglobulin transgenes. Mol. Gen. Genet. 246, 734–8.

    PubMed  Google Scholar 

  • Fujiwara, Y., Miwa, M., Takahashi, R., Hirabayashi, M., Suzuki, T. and Ueda, M. (1997) Position-independent and high-level expression of human β-lactalbumin in the milk of transgenic rats carrying a 210 kb YAC DNA. Mol. Reprod. Develop. 47, 157–63.

    Google Scholar 

  • Gilmour, K.C., Pine, R. and Reich, N.C. (1995) Interleukin 2 activates STAT5 transcription factor (mammary gland factor) and specific gene expression in T lymphocytes. Proc. Natl. Acad. Sci. USA 92, 10772–6.

    PubMed  Google Scholar 

  • Gorman, C.M., Moffat, L. and Howard, B.H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044–51.

    PubMed  Google Scholar 

  • Groner, B. and Gouilleux, F. (1995) Prolactin-mediated gene activation in mammary epithelial cells. Current opinion in Genet. & Develop. 5, 587–94.

    Google Scholar 

  • Happ, B. and Groner, B. (1993) The activated mammary gland specific nuclear factor (MGF) enhances in vitro transcription of the β-casein gene promoter. J. Steroid Biochem. Molec.Biol. 47, 21–30.

    PubMed  Google Scholar 

  • Harris, S., McClenaghan, M., Simons, J.P., Ali, S. and Clark, A.J. (1991) Developmental regulation of the sheep β-lactoglobulin gene in the mammary gland of transgenic mice. Develop. Genetics 12, 299–307.

    Google Scholar 

  • Hennighausen, L., Robinson, G.W., Wagner, K.U. and Liu, X. (1997) Prolactin signaling in mammary gland development. J. Biol. Chem . 272, 7567–9.

    PubMed  Google Scholar 

  • Jolivet, G., L'Hotte, C., Pierre, S., Tourkine, N. and Houdebine, L.M. (1996) A MGF=STAT5 binding site is necessary in the distal enhancer for high prolactin induction of transfected rabbit βs1-casein-CAT gene transcription. FEBS Letters 389, 257–62.

    PubMed  Google Scholar 

  • Landt, O., Grunert, H.P. and Hahn, U.A. (1990) A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125–128.

    PubMed  Google Scholar 

  • Lathe, R. Vilotte, J.L. and Clark, A.J. (1987) Plasmids and bacteriophage vector for excision of intact inserts. Gene 57, 193–201.

    PubMed  Google Scholar 

  • Lee, K.F., Atiee, S.H. and Rosen, J.M. (1989) Differential regulation of rat β-casein-chloranphenicol acetyltransferase fusion gene expression in transgenic mice. Mol. Cell. Biol. 9, 560–5.

    PubMed  Google Scholar 

  • Lesueur, L., Edery, M., Paly, J., Clark, J., Kelly, P.A. and Djiane, J. (1990) Prolactin stimulates milk protein promoter in CHO cells cotransfected with prolactin receptor cDNA. Mol. Cell. Endo. 71, R7–12.

    Google Scholar 

  • Li, S. and Rosen, J.M. (1995) Nuclear factor I and mammary gland factor (Stat5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol. 15, 2063–70.

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–75.

    PubMed  Google Scholar 

  • Luo, G. and Yu-Lee, L.Y. (1997) Transcriptional inhibition by Stat5. J. Biol. Chem. 272, 26841–9.

    PubMed  Google Scholar 

  • Meier, V.S. and Groner, B. (1994) The nuclear factor YY1 participates in repression of the β-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction. Mol. Cell. Biol. 14, 128–37.

    PubMed  Google Scholar 

  • Mercier, J.C. and Vilotte, J.L. (1997) The modification of milk protein composition through transgenesis: progress and problems. In Houdebine, L.M. ed., Transgenic animalsgeneration and use, pp. 473–82. Switzerland: Harwood academic publishers.

    Google Scholar 

  • Molenaar, A.J., Davis, S.R. and Wilkins, R.J. (1992) Expression of β-lactalbumin, βs1-casein, and lactoferrin gene is heterogeneous in sheep and cattle mammary tissue. J. Histochem. Cytochem. 40, 611–8.

    PubMed  Google Scholar 

  • Nakhasi, H.L. and Qasba, P.K. (1979) Quantification of milk proteins and their mRNAs in rat mammary gland at various stages of gestation and lactation. J. Biol. Chem . 254, 6016–25.

    PubMed  Google Scholar 

  • Popov, L.S. (1996) Some aspects of structure and expression of milk protein genes (a review). Mol. Biol. 30, 742–53.

    Google Scholar 

  • Relk, W. and Constancia, M. (1997) Making sense or antisense? Nature 389, 669–71.

    PubMed  Google Scholar 

  • Robinson, G.W., McKnight, R.A., Smith, G.H. and Hennighausen, L. (1995) Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121, 2079–90.

    PubMed  Google Scholar 

  • Rosen, J.M., Li, S., Raught, B. and Hadsell, D. (1996) The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. Am. J. Clin. Nutr. 63, 627S-32S.

    PubMed  Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–7.

    PubMed  Google Scholar 

  • Schmidhauser, C., Casperson, G.F., Myers, C.A., Bolten, S. and Bissell, M.J. (1992) A novel transcriptional enhancer is involved in the prolactin and EMC-dependent regulation of β-casein gene expression. Mol. Biol. Cell. 3, 699–709.

    PubMed  Google Scholar 

  • Schmitt-Ney, M., Doppler, W., Ball, R.K. and Groner, B. (1991) β-casein gene promoter activity is regulated by the hormonemediated relief of transcriptional repression and a mammarygland specific nuclear factor. Mol. Cell. Biol. 11, 3745–55.

    PubMed  Google Scholar 

  • Soulier, S., Vilotte, J.L., Stinnakre, M.G. and Mercier, J.C. (1992) Expression analysis of ruminant β-lactalbumin in transgenic mice: developmental regulation and general location of important cis-regulatory elements. FEBS Letters 1,2, 13–8.

    Google Scholar 

  • Vilotte, J.L. and L'Huillier, P.J. (1996) Modification of milk protein composition by gene transfer. In Phillips, C.J.C. ed. Progress in Dairy Science, pp. 281–310. Oxon: CAB International.

    Google Scholar 

  • Vilotte, J.L. and Soulier, S. (1992) Isolation and characterization of the mouse β-lactalbumin-encoding gene: interspecies comparison, tissue-and stage-specific expression. Gene 119, 287–92.

    PubMed  Google Scholar 

  • Vilotte, J.L., Soulier, S., Stinnakre, M.G., Massoud, M. and Mercier, J.C. (1989) Efficient and tissue-specific expression of bovine β-lactalbumin in transgenic mice. Eur. J. Biochem. 186, 43–8.

    PubMed  Google Scholar 

  • Wang, Y., DeMayo, F.J., Tsai, S.Y. and O'Malley, B.E. (1997) Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotech. 15, 239–43.

    Google Scholar 

  • Watson, C.J., Gordon, K.E., Robertson, M. and Clark, A.J. (1991) Interaction of DNA-binding proteins with a milk protein gene promoter in vitro: identification of a mammary gland-specific factor. Nucl. Acids Res. 19, 6603–10.

    PubMed  Google Scholar 

  • Webster, J., Wallace, R.M., Clark, A.J. and Whitelaw, C.B.A. (1995) Tissue-specific, temporally regulated expression mediated by the proximal ovine β-lactoglobulin promoter in transgenic mice. Cellul. Mol. Biol. Res. 41, 11–15.

    Google Scholar 

  • Whitelaw, C.B.A. (1996) Hormonal influences on β-lactoglobulin transgene expression inferred from chromatin structure. Biochem. Biophys. Res. Com. 224, 121–5.

    PubMed  Google Scholar 

  • Whitelaw, C.B.A., Springbett, A.J., Webster, J. and Clark, A.J. (1993) The majority of G0 mice are derived from mosaic embryos. Transg. Res. 2, 29–32.

    Google Scholar 

  • Whitelaw, C.B.A. and Webster, J. (1998) Temporal profiles of appearance of DNase I hypersensitive sites associated with the ovine β-lactoglobulin gene differ in sheep and transgenic mice. Mol. Gen. Genet. 257, 649–654.

    PubMed  Google Scholar 

  • Whitelaw, C.B.A., Wilkie, N.M., Jones, K.A., Kadonaga, J.T., Tjian, R. and Lang, J.C. (1988) Transcriptionally active domains in the 59 flanking sequence of human c-myc. UCLA Symp. on Mol. Biol. 58,337–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulier, S., Lepourry, L., Stinnakre, Mg. et al. Introduction of a Proximal Stat5 Site in the Murine α-Lactalbumin Promoter Induces Prolactin Dependency In Vitro and Improves Expression Frequency In Vivo. Transgenic Res 8, 23–31 (1999). https://doi.org/10.1023/A:1008851802022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008851802022

Navigation