
Technische Universität Berlin

Formal Verification of Low-Level Code

in a Model-Based Refinement Process

vorgelegt von

Dipl.-Math. Nils Erik Berg

(geb. Jähnig)

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

–Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Axel Küpper

Gutachterin: Prof. Dr. Sabine Glesner

Gutachterin: Prof. Dr. Barbara König

Gutachter: Prof. Dr. Gerald Lüttgen

Tag der wissenschaftlichen Aussprache: 10. Mai 2019

Berlin 2019

Abstract

Embedded systems often control safety critical environments, such as cars, airplanes, traffic

control, or pacemakers. Embedded systems are often non-terminating and communicating.

To confine the complexity of those systems (e.g. introduced by communication details),

comprehensive verification and simulation is usually done on an abstract model (e.g. a formal

specification) instead of the implemented system itself. However, it is still an open problem

how to relate the actual executable low-level code with the abstract models.

In industrial practice, embedded systems in safety critical areas are commonly designed

with model-based approaches. The model-based development of (embedded) systems starts

with the verification (or simulation) of properties on an abstract model. There are two

important categories of properties: safety properties, which exclude bad behavior, and

liveness properties, which ensure good behavior. The abstract model is implemented and/or

compiled to executable low-level code, but there is a large verification gap between the

model whose properties are verified and the system that is actually executed. Both manual

implementation and the compilation process are complex and error prone. Furthermore,

complexity of the verification rises even higher when concurrent systems that communicate

with each other are developed.

We address the problem that the executed low-level code is not guaranteed to have the

same safety and liveness properties as the abstract model.

To overcome this problem, we present a formal framework that enables rigorous verification

of preservation of safety and liveness properties from an abstract model to low-level code.

The key idea of our approach is to divide the relation between abstract model and low-level

code into two steps to achieve compositionality :

• A compositional relation between the abstract model and an intermediate model, and

• a non-compositional relation between the intermediate model and the low-level code.

This separation enables us to reason compositionally about the first half, relating the abstract

model and the intermediate model, and use a general theorem for the second half, which

results in an overall compositional verification.

With our framework, we enable the verification of the conformance of a program in

low-level code to its Communicating Sequential Processes (CSP) specification, i. e., that all

safety and liveness properties are preserved. To this end, we have transferred and extended

the notion of CSP refinement to also cover low-level code. To separate the verification into

two steps, we define our low-level language with abstract communication Communicating

Unstructured Code (CUC) as intermediate model. To relate the specification in CSP and

the intermediate model in CUC, we present a Hoare calculus which allows us to reason over

the communication behavior of a (possibly non-terminating) CUC program. To relate the

intermediate model in CUC with our low-level language Shared Variables (SV), we define

our notion of handshake refinement and prove in a general theorem the preservation of

both safety and liveness properties for related CUC and SV programs. Our formalization

in a theorem prover enables users to mechanize and reuse their proofs. Together with the

compositionality of our approach, this makes it possible to provide rigorous guarantees of

concurrent low-level programs in a way that scales with the number of components.

i

Zusammenfassung

Eingebettete Systeme steuern häufig sicherheitskritische Umgebungen wie z.B. Autos, Flug-

zeuge, Verkehrssteuerungen oder Herzschrittmacher. Eingebettete Systeme sind oft nicht-

terminierend und kommunizieren miteinander. Um die Komplexität dieser Systeme (die z.B.

durch Kommunikationsdetails entsteht) in den Griff zu bekommen, werden normalerweise

abstraktere Modelle (z.B. in Form einer formalen Spezifikation) zur Verifikation oder Simula-

tion herangezogen anstelle des Systems selbst. Den ausführbaren Low-Level-Code mit den

abstrakten Modellen in Beziehung zu setzen ist ein noch ungelöstes Problem.

In der industriellen Praxis werden eingebettete Systeme in sicherheitskritischen Bereichen

im Allgemeinen mit modellbasierten Ansätzen entworfen. Die modellbasierte Entwicklung von

(eingebetteten) Systemen beginnt mit der Verifikation (oder Simulation) von Eigenschaften

eines abstrakten Modells. Es gibt zwei wichtige Kategorien von Eigenschaften: Sicherheit-

seigenschaften, die unerwünschtes Verhalten ausschließen, und Lebendigkeitseigenschaften,

die erwünschtes Verhalten gewährleisten. Das abstrakte Modell wird durch implementieren

und/oder kompilieren in ausführbaren Low-Level-Code überführt. Jedoch ist der Erhalt

der Eigenschaften vom abstrakten Modell hin zum tatsächlich ausgeführten System nicht

gesichert; es entsteht die sogenannte Verifikationslücke.

Um diese Verifikationslücke zu schließen, stellen wir ein formales Framework vor, das die

rigorose Verifikation der Erhaltung der Sicherheits- und Lebendigkeitseigenschaften von einem

abstrakten Modell bis hin zum Low-Level-Code ermöglicht. Die Kernidee unseres Ansatzes

besteht darin, die Beziehung zwischen dem abstrakten Modell und dem Low-Level-Code in

zwei Schritte zu unterteilen, um so Kompositionalität zu erreichen:

• Eine Relation zwischen dem abstrakten Modell und einem Zwischenmodell und

• eine weitere Relation zwischen dem Zwischenmodell und dem Low-Level-Code.

Diese Unterteilung erlaubt es uns, kompositional über Relation vom abstrakten Modell zum

Zwischenmodell zu argumentieren, und ein allgemeingültiges Theorem für die zweite Hälfte

zu verwenden. Insgesamt ist so eine kompositionale Verifikation möglich.

Unser Framework ermöglicht die Verifikation der Konformität eines Programms in Low-

Level-Code zu seiner Spezifikation in Communicating Sequential Processes (CSP), d.h., dass

alle Sicherheits- und Lebendigkeitseigenschaften erhalten bleiben. Zu diesem Zweck haben

wir den Begriff der CSP-Verfeinerung auf Low-Level-Code übertragen und erweitert. Um

die Verifizierung in zwei Schritte zu unterteilen, definieren wir als Zwischenmodell unsere

Low-Level Sprache mit abstrakter Kommunikation Communicating Unstuctured Code (CUC).

Um die Spezifikation in CSP und das Zwischenmodell in CUC in Beziehung zu setzen,

stellen wir einen Hoare-Kalkül vor, der die Verifikation von Kommunikationsverhalten eines

(möglicherweise nicht-terminierenden) CUC-Programms ermöglicht. Um das Zwischenmodell

in CUC mit unserer Low-Level Sprache Shared Variables (SV) in Verbindung zu bringen,

definieren wir unseren Begriff der Handshake-Verfeinerung und beweisen in einem allge-

meingültigen Theorem den Erhalt von Sicherheits- und Lebendigkeitseigenschaften für in

Beziehung stehende CUC- und SV-Programme. Unsere Formalisierung in einem Theorem-

beweiser ermöglicht es dem Benutzer, Beweise zu mechanisieren und wiederzuverwenden.

Zusammen mit der Kompositionalität unseres Ansatzes ermöglichen wir, rigoros Eigen-

schaften für Low-Level-Programme zu garantieren, und zwar gut skalierbar mit der Anzahl

der nebenläufigen Komponenten des Systems.

ii

Acknowledgment

This work has been developed in the Software and Embedded Systems Engineering group at

Technische Universität Berlin in the context of the DFG funded VATES project.

There are a lot of people without whom this thesis would not have been started, continued

or finished.

First, I want to thank my supervisor Prof. Dr. Sabine Glesner, who made it all possible,

and my reviewers Prof. Dr. Barbara König and Prof. Dr. Gerald Lüttgen for taking the

time and giving me valuable feedback.

All people at the SESE group (past and present) were a blast to work with and always

had time to discuss work-related and personal matters. Thank you all! In particular, I was

lucky to discuss my work at great lengths with our three post-docs: Dr. Thomas Göthel, Dr.

Björn Bartels, and (meanwhile) Prof. Dr. Paula Herber. Their feedback, inspirations, pep

talks and the sheer amount of time they spent for and with me was invaluable for me.

Last but not least, I want to thank my family. My wife Mascha helped me at every stage

of my thesis and took care of the non-thesis part of my life (while working on her own thesis!).

With respect to my children Leo and Wim, sincerely I hope that I will never have as little

time for them as I had in the last six months of finishing this thesis. And finally, I want to

thank my parents, who let me always do what I want and supported me.

iii

Contents

1 Introduction 1

2 Background 6

2.1 Low-Level Code . 6

2.2 Simulations and Bisimulations . 8

2.3 CSP . 10

2.3.1 Syntax and Operational Semantics . 10

2.3.2 Traces Semantics . 14

2.3.3 Stable Failures Semantics . 18

2.3.4 Failures-Divergences Semantics . 23

2.3.5 Properties . 23

2.3.6 Failures-Divergences Refinement Checker (FDR4) 25

2.4 Isabelle/HOL . 25

2.5 Summary . 25

3 Related Work 27

3.1 Formalizations of Low-Level Languages Geared Towards Compositional Verifi-

cation . 27

3.2 Compositional Proof Calculi for Concurrent Systems 28

3.3 Relating Synchrony and Asynchrony . 29

3.4 Liveness-Preserving Implementation Relations 31

3.4.1 Vertical Bisimulation . 32

3.4.2 Coupled Simulation . 33

3.4.3 Global Bisimulation . 34

3.5 Implementing Synchronous Communication 34

4 Approach 36

5 Communicating Unstructured Code (CUC) 40

5.1 Low-Level Code Model . 41

5.2 Syntax and Semantic States . 43

5.3 Semantics . 49

5.3.1 Operational Semantics . 49

5.3.2 Defining Denotational Semantics with Fixpoints 51

iv

Contents

5.3.3 Traces Semantics . 53

5.3.4 Stable Failures Semantics . 57

5.3.5 Compatibility to CSP . 63

5.4 Hoare Calculus . 65

5.5 Relating CSP and CUC . 68

5.5.1 Example . 70

5.5.2 Automation Approaches . 73

5.6 Summary . 74

6 Relating Abstract Communication to Low-Level Protocols 75

6.1 Shared Variables (SV) . 76

6.1.1 Semantic States and Syntax . 76

6.1.2 Semantics . 77

6.2 Handshake Protocol . 79

6.2.1 Description of the Handshake Protocol 80

6.2.2 Restriction of CUC . 81

6.3 Definitions and SV Semantics with Events . 83

6.4 Handshake Refinement . 89

6.5 Preservation of Safety and Liveness Properties 94

6.5.1 Handshake Refinement preserves Safety and Liveness Properties . . . 94

6.5.2 Fitting Programs preserve Safety and Liveness Properties 97

6.6 Summary . 98

7 Evaluation & Case Study 100

7.1 Specification in CSP . 101

7.2 Sufficient Property: Specification as an Assertion 103

7.3 Correctness Proof of the Sufficient Property 104

7.4 Implementation in CUC . 104

7.5 The CUC Programs fulfills the Sufficient Property 106

7.6 Implementation in SV . 106

7.7 Summary . 109

8 Conclusion 110

8.1 Results . 110

8.2 Discussion . 112

8.3 Future Work . 114

A Appendix 117

A.1 Correspondence Proofs . 117

A.1.1 Proof: Concurrent Case of Correspondence of Traces 117

A.1.2 Proof: Concurrent Case of Correspondence of Stable Failures 120

A.2 Proofs of T1 to SF4 for CUC . 127

A.3 Mapping to the Isabelle/HOL Formalization 130

A.4 Protocol Constraints . 136

A.5 Proof: Fitting Implies Handshake Refinement 139

A.6 Refusals imply Refusals . 143

v

Contents

A.7 Proofs from the Evaluation . 144

A.7.1 Proof of Correctness of the Sufficient Property of the Server 144

A.7.2 Proof that the CUC Program for the Server satisfies its Sufficient

Property . 146

Lists 158

List of Definitions . 158

List of Theorems and Assumptions . 160

List of Examples . 162

List of Figures . 163

Bibliography . 170

vi

Chapter 1

Introduction

Embedded systems often control safety critical environments, such as cars, airplanes, traffic

control, or pacemakers. Embedded systems are often non-terminating and communicating.

To confine the complexity of those systems (e.g. introduced by communication details),

comprehensive verification and simulation is usually done on an abstract model (e.g. a formal

specification) instead of the implemented system itself. However, it is still an open problem

how to relate the actual executable low-level code with the abstract models.

In industrial practice, embedded systems in safety critical areas are commonly designed

with model-based approaches. A prominent example is the automotive industry, where official

regulations such as the ISO 26262 [ISO09] prescribe the use of model-based development. The

model-based development of (embedded) systems starts with the verification (or simulation)

of properties on an abstract model. There are two important categories of properties: safety

properties, which exclude bad behavior, and liveness properties, which ensure good behavior.

The abstract model is implemented and/or compiled to executable low-level code, but there

is a large verification gap between the model whose properties are verified and the system

that is actually executed. Both the manual implementation and the compilation process are

complex and error prone. Furthermore, complexity of the verification becomes even more

challenging when concurrent systems that communicate with each other are developed.

In this thesis, we address the problem that the executed low-level code is not guaranteed

to have at least the same safety and liveness properties as the abstract model. This is still

an open problem, due to the following reasons:

• The complexity and the inherent non-compositional semantics of communication

protocols hinder scalability, due to shared resources, which affect multiple components.

• The change of abstraction level from abstract communication to a communication

protocol and the structural difference between the model, which has a higher level struc-

ture, and low-level code, which is unstructured, entail different models of computation,

which need to be related.

• The infinite or very large state spaces that may arise from non-termination or from

reading data from external sources require special care to be represented in a finite

1

form that allows for compositional treatment.

The aim of this thesis is to develop a formal framework that enables rigorous verification

of preservation of safety and liveness properties from an abstract model to a low-level model,

i. e., the semantic representation of low-level code. We require the formal framework to fulfill

the following criteria:

• Our framework should enable model-based development.

• To minimize the verification gap, our framework should be able to relate an abstract

model with a low-level model, which contains the typical constructs of executable

low-level code, such as conditional branches and shared variable communication.

• Our framework should ensure the preservation of both safety and liveness properties.

• The framework should be applicable to systems that consist of concurrent and commu-

nicating components.

• Due to the high complexity of concurrency and communication, we require our verifica-

tion to be scalable with respect to concurrent combination.

• Our framework is required to be able to handle infinite or very large state spaces,

arising from non-termination of programs or reading of data from external sources.

• We require our framework to be rigorous, i. e., to preclude the manual introduction of

errors.

• Our framework should facilitate reuse of the results and enable (semi-) automation.

To achieve the objectives defined above, we propose a formal framework to relate a low-

level model with an abstract model. The key idea of our approach is to divide the relation

between abstract model and low-level model into two steps to achieve compositionality :

• A compositional relation between the abstract model and an intermediate model, and

• a non-compositional relation between the intermediate model and the low-level model.

We show this relation for a class of programs in a general theorem, resulting in an

overall compositional verification.

This separation enables us to reason compositionally about the first half, relating the abstract

model and the intermediate model, and provide a general theorem for the second half. As

we prove the general theorem for all programs of the considered class (which uses a verified

channel implementation), this results in compositional verification.

Our approach and the resulting framework can be divided into five parts, which are shown

in Figure 1.1.

L1) The abstract model is defined in the language CSP (Communicating Sequential Pro-

cesses), which is a process algebra capable of describing concurrent and non-terminating

systems with compositional semantics. The notion of CSP’s stable failures refinement

2

Communicating
Sequential Processes

Communicating
Unstructured Code

write/
compile
program

show with
Hoare calculus

Shared Variables

substitute
abstract

communication
with handshake

protocol

general proof with
handshake refinement

L1

L3

L2

P1

P2

Figure 1.1: Overview

allows one to relate processes by their behaviors and enables an iterative model-based

development approach. CSP refinement is compositional and preserves safety and

liveness properties. We propose to extend the stable failures refinement from CSP to a

low-level model.

L2) To define intermediate models, we propose the language CUC (Communicating Un-

structured Code), alongside formal semantics for it. It is close to low-level code but has

an abstract communication primitive. The communication semantics is similar to the

communication semantics of CSP, which enables the inheritance of its compositionality.

Otherwise, the semantics captures the challenging unstructured nature of low-level

code.

L3) To define low-level models, we propose the language SV (for “shared variables”) in

which any communication employing shared variables can be modeled, together with

formal low-level semantics for it. The semantics is precise yet general and can be

adapted to, e. g., a specific memory model. The semantics can model a large and

relevant subset of current instruction set architectures, e. g., RISC-V.

P1) We define a Hoare calculus to facilitate compositional reasoning about the relation of a

CSP model and a CUC model. As this part requires interaction of the designer/devel-

oper, we formalize it in the theorem prover Isabelle/HOL to ensure the rigorousness of

our framework.

P2) We instantiate the abstract communication from CUC to a concrete protocol in SV and

give a general theorem that any SV program using the protocol has the same safety and

liveness properties as its CUC counterpart. The main challenge for the instantiation of

the abstract communication instruction with a concrete communication protocol is to

3

relate the synchronous communication from CSP/CUC to the asynchronous commu-

nication over shared variables in a way that preserves safety and liveness properties.

Because of the different abstraction levels, ordinary CSP refinement is not sufficient.

To this end, we propose our notion of handshake refinement, which is an asymmetric

relation that takes into account the implementation of synchronous communication.

It allows decisions to be distributed over execution steps and components. It is weak

enough to relate those two behaviors but still strong enough to preserve safety and live-

ness properties. As this part does not require the interaction of the designer/developer,

we decided to not formalize it in a theorem prover and give concise proofs containing

the essential ideas.

The main contribution of this thesis is a framework for compositional verification of the

refinement relation between a specification in CSP and an implementation in SV. This

includes:

• Our two-part approach of the framework, allowing for compositional handling of shared

variable communication.

• The definition of our low-level language CUC with abstract communication and its

operational, traces and stable failure semantics.

• A Hoare calculus which allows us to reason about the communication behavior of a

(possibly non-terminating) CUC program.

• Our notion of handshake refinement together with a proof that the handshake refinement

preserves both safety and liveness properties.

• A general proof that a CUC program and an SV program using the handshake protocol

are in a handshake refinement relation.

Prior to this thesis, we have published a precursor to CUC without communication

at NFM’14 [BJ14] and CUC itself as well as its operational and traces semantics at

FESCA’15 [JGG15]. The stables failures semantics, the Hoare calculus and the first part

of the presented framework are published at SEFM’16 [JGG16]. The language SV with

operational semantics, the handshake refinement and the verification of the protocol for

all instances are published at ICFEM’18 [BGDG18]. In the publications at FESCA’15,

SEFM’16, and ICFEM’18 I am the main author. In the publication at NFM’14 I am a

coauthor with about 50% of own contributions, mainly the formalization.

We give short summaries to the remaining chapters of this thesis:

In Chapter 2, we cover the background for this thesis. We explain our understanding of

low-level code by introducing the term Instruction Set Architecture. We introduce CSP with

its syntax and semantics. We give the definitions for the relations between CSP processes

that are relevant in the context of this thesis, namely bisimulations and refinements. Closely

related, the concepts of safety and liveness properties as we use them are defined. Finally, we

briefly introduce the verification tools used in this thesis, namely Isabelle/HOL and FDR4.

4

Chapter 3 gives on overview of related work. We cover low-level semantics aimed at

verification, compositional proof calculi for concurrent systems, comparisons of synchrony and

asynchrony, liveness-preserving relations, and implementations of synchronous communication.

The liveness-preserving relations are inspirations to our handshake refinement.

In Chapter 4, we describe our approach and the resulting two-part framework in more de-

tail and consider the role of each part within the framework. We focus on the compositionality

of the overall framework.

Chapter 5 describes the first part of the framework, where an abstract specification is

related to a low-level language with an abstract communication mechanism. To this end, we

discuss our understanding of a low-level code model and define CUC and its various semantics.

We show the correspondence between the various semantics and their conformance to the

CSP semantics. Our Hoare calculus is introduced. Finally, we present how to show a stable

failures refinement between a CSP process and a CUC program.

Chapter 6 describes the second part of the framework, where the abstract communication

is related to its implementation with a protocol. To this end, we define SV and its semantics.

We use an exemplary handshake protocol to implement the abstract communication. The

core of this chapter is the definition of the handshake refinement to verify the protocol.

The important theorems assert that the handshake refinement preserves safety and liveness

properties as well as the fact that all “fitting” CUC and SV programs are related by the

handshake refinement.

In Chapter 7, we evaluate our framework by applying it to a system which is concurrent,

communicating and non-terminating. As an exemplary system we choose redundant m-

servers-n-clients: n clients request computations from m (in our case three) redundant server

components. We show a stable failures refinement between the abstract specification of the

system and its low-level implementation.

Chapter 8 summarizes and discusses the achievements of this thesis and gives an outlook

on future work.

5

Chapter 2

Background

In this chapter, we introduce the background that is the basis for our framework. In

Section 2.1, we introduce the concept of low-level code and define the term instruction set

architecture. The introduced concept of low-level code is the basis for our low-level code

model, which is described in 5.1. In Section 2.2, we define the notions of simulation and

bisimulation as traditional means to relate systems, possibly at different levels of abstraction.

Simulations and bisimulations are the basis of our handshake refinement in Chapter 6.1. In

Section 2.3, we introduce the process algebra Communicating Sequential Processes (CSP)

with its syntax and its semantics. We cover the operational semantics and two denotational

semantics in detail: The traces semantics and the stable failures semantics. The denotational

semantics enables the notion of CSP refinement, which we also introduce. In our approach, we

use CSP as a specification language. Our intermediate language CUC (defined in Chapter 5)

uses the communication mechanism of CSP and defines a low-level code model in all other

aspects. Finally, we briefly introduce the theorem prover Isabelle/HOL in Section 2.4. We

have formalized the results from Chapter 5 in Isabelle/HOL.

2.1 Low-Level Code

In this section, we define and explain the term Instruction Set Architecture (ISA). The ISA

defines the machine code or assembly language, i. e., the instructions a processor can execute.

It is the interface between software and hardware, and as such, the instructions defined by

an ISA form the lowest level of software. We use the ISA as a basis to define our low-level

code model in Section 5.1. The content of this section is mainly based on [Pag09, HP17].

An ISA defines an instruction set, the semantics for the instructions and also the number

of general purpose registers. Additional data can be stored in the memory. We give an

example of machine code and how it is executed and then briefly discuss various aspects

of ISAs. A low-level program is a sequence of instructions stored in memory. A program

counter (pc), a special register, points to the instruction which is to be executed next. As an

example, we use the machine code presented in Figure 2.1, which uses the ISA RISC-V [WA17].

RISC-V is a recent open source instruction set architecture developed at UC Berkeley. In

Figure 2.1, each line of code starts with the address of the instruction in memory. This is

6

2.1. Low-Level Code

1: ld %r1 %a ## load the content from memory address a

into register r1

2: ld %r2 %b ## load the content from memory address b

into register r2

3: add %r3 %r1 %r2 ## add the content of registers r1 and r2

and store the result in register r3

4: sd %r3 %c ## store the value from register r3

at the memory address c

5: halt ## termination of the program

Figure 2.1: Example Program in Machine Code: Addition of Two Values from Memory

usually not part of the machine code, but implicitly given by the placement of the program

in memory. We write it here for clarity. Next is the name of the instruction, followed by the

arguments. The name of the first instruction of the example is ld, short for load double, as

it loads a double word (64 bits) from the memory address %a to the register %r1. %a and %r1

specify addresses. When the program is executed, the instruction to which the pc points to

is first fetched, then the program counter is increased, and then the fetched instruction is

executed. Finally, the results are written to the registers and/or the memory. This cycle

is repeated until the fetched instruction is halt. Apart from data transfer instructions

(load and store) and arithmetic and logic instruction (in this example add), there are also

control flow instructions. Control flow instructions can change the value of pc to allow for a

non-linear execution of a program, e. g., loops or branches. Interesting for the context of this

thesis are also multi-processor synchronization instructions that allow multiple processors to

work concurrently on a shared memory. Multi-processor synchronization instructions allow

for two sequential actions in an atomic operation, i. e., without the interference of another

process. They test whether a shared variable has a desired value or is unchanged and then

subsequently modify the variable.

Closely related to the ISA is the micro architecture (or hardware), which specifies the

actual implementation of an ISA. The same ISA can be implemented by different micro

architectures. There are several different ISAs, differing in many aspects. Two common

categories of ISAs are Complex Instruction Set Computers (CISC) and Reduced Instruction

Set Computers (RISC). Both approaches differ in various aspects of their ISA.

CISC architectures (such as the x86 architecture commonly used for desktop machines),

have instructions of variable length, which execute complex tasks. For example, a single

CISC instruction can read a value from memory, execute an arithmetic operation, and write

the result back to memory. Architectures where most instructions can access the memory are

called register-memory architectures. Instructions in a CISC architecture can take many clock

cycles. CISC architectures typically contain many specialized instructions which have to be

implemented in hardware. The advantage of CISC is that programs are shorter, reducing

the amount of storage needed. The disadvantage is that instructions have a variable length,

thus, optimizations for preloading subsequent instructions are much harder.

7

2.2. Simulations and Bisimulations

RISC architectures (such as the Advanced RISC Machine (ARM) processors that are found

in many mobile devices), have fewer instructions, which are combined to form more specialized

functionality. The instructions can typically be executed within one clock cycle, which makes

optimizations such as pipelining easier to implement. Several RISC architectures have a fixed

length encoding of instructions, making preloading of subsequent instructions more predictable.

Similarly, one can choose between fixed or variable length of data. RISC architectures are

usually load-store architectures (in contrast to the register-memory architectures). Only

the instructions load and store can access the memory and transfer data to and from the

registers.

The difference between CISC and RISC architectures becomes blurred, as many CISC

implementations use internally a RISC layer (e. g., Intel Pentium), and RISC architectures

can have specialized extensions, effectively building complex instructions à la CISC. For

our purposes, we choose a RISC architecture, namely RISC-V, as it allows us to formalize

fewer instructions. In this section, we have introduced the term Instruction Set Architecture,

which defines the machine code of a processor. We will use the concept of an instruction set

as a basis for our low-level code model in Section 5.1.

2.2 Simulations and Bisimulations

In this section, we introduce the concepts of simulation and bisimulation, which relate

behaviors of systems defined as labeled transition system. The goal of simulation and

bisimulation relations is to relate systems with similar behavior. We start with the definition

of labeled transition systems and then proceed to define simulations and bisimulations. The

material presented in this section is based on [Mil89].

A labeled transition system (LTS) describes transitions between states. Those transitions

are labeled with events.

Definition 2.1: Labeled Transition System

A labeled transition system (A,→) consists of a set of states A and a set of transitions

→ ⊆ A× Σ×A, which connect the states and are labeled each with an event from the

set Σ.

A common way to relate behaviors expressed as LTS are simulations and bisimulations.

Informally, an LTS (A,→1) simulates an LTS (A,→2) if it can perform at least the same

events from states related by the relation. We first define the notion of simulation.

8

2.2. Simulations and Bisimulations

Definition 2.2: Simulation

A simulation R ⊆ A×A is a relation of states. It relates two LTS (A,→1) and (A,→2)

with →1,→2 ⊆ A× Σ×A. The following property is required to hold for a simulation R:

∀(a, b) ∈ R. ∀ ev ∈ Σ. ∀ b′ ∈ A. b ev−→2 b
′ =⇒ ∃ a′. a ev−→1 a

′ ∧ (a′, b′) ∈ R

We can extend the definition of an LTS to include a set of initial states. Considering

the sets of initial states A0
1 and A0

2, we say (A,→1, A
0
1) simulates (A,→2, A

0
2) if (all)

their initial states a01 ∈ A0
1 and a02 ∈ A0

2 are in a simulation relation (a01, a
0
2) ∈ R. We

furthermore say that in every pair of the simulation, (A,→1) can answer all events of

(A,→2).

It is common for LTS to allow transitions to be unlabeled or have a special event for

internal or invisible transitions. The special event τ is used for internal transitions that

are not externally observable. This allows for a weaker formulation of simulation, where

the answering transition can be surrounded by any number of internal transitions and the

internal transitions can be answered by no transitions at all. A weaker formulation allowing

additional internal steps is desirable, e. g., when a single higher-level action is implemented

with multiple lower-level actions of which only one is visible. Let
τ−→∗ denote zero or more

transitions labeled with τ .

Definition 2.3: Weak Simulation

A weak simulation R ⊆ A×A is a relation of states for which the following property

holds:

∀(a, b) ∈ R. ∀ ev ∈ Σ. ∀ b′ ∈ A.
b

ev−→2 b
′ ∧ ev ̸= τ =⇒ ∃ a′. a τ−→∗

1
ev−→1

τ−→∗
1 a

′ ∧ (a′, b′) ∈ R
∧ b ev−→2 b

′ ∧ ev = τ =⇒ ∃ a′. a τ−→∗
1 a

′ ∧ (a′, b′) ∈ R

Note that the LTS with the empty set of transitions is simulated by anything. The

symmetric pendant to (weak) simulation is (weak) bisimulation. A bisimulation requires for

every pair that the same events are possible.

Definition 2.4: Bisimulation

A bisimulation R ⊆ A×A is a relation of states, for which the following property holds:

∀(a, b) ∈ R. ∀ ev ∈ Σ.

∀ a′ ∈ A. a ev−→1 a
′ =⇒ ∃ b′. b ev−→2 b

′ ∧ (a′, b′) ∈ R

∧ ∀ b′ ∈ A. b ev−→2 b
′ =⇒ ∃ a′. a ev−→1 a

′ ∧ (a′, b′) ∈ R

We say (A,→1, A
0
1) is bisimilar to (A,→2, A

0
2)
(
(A,→1, A

0
1) ∼ (A,→2, A

0
2)
)
if (all) their

initial states a01, a
0
2 are in a bisimulation relation (a01, a

0
2) ∈ R.

9

2.3. CSP

We also define a weak variant of bisimulation to allow for additional internal transitions.

Definition 2.5: Weak Bisimulation

A weak bisimulation R ⊆ A×A is a relation of states, for which the following property

holds:

∀(a, b) ∈ R. ∀ ev ∈ Σ.

∀ a′ ∈ A. a ev−→1 a
′ ∧ ev ̸= τ =⇒ ∃ b′. b τ−→∗

2
ev−→2

τ−→∗
2 b

′ ∧ (a′, b′) ∈ R
∧ ∀ a′ ∈ A. a ev−→1 a

′ ∧ ev = τ =⇒ ∃ b′. b τ−→∗
2 b

′ ∧ (a′, b′) ∈ R
∧ ∀ b′ ∈ A. b ev−→2 b

′ ∧ ev ̸= τ =⇒ ∃ a′. a τ−→∗
1
ev−→1

τ−→∗
1 a

′ ∧ (a′, b′) ∈ R
∧ ∀ b′ ∈ A. b ev−→2 b

′ ∧ ev = τ =⇒ ∃ a′. a τ−→∗
1 a

′ ∧ (a′, b′) ∈ R

We say (A,→1, A
0
1) is weakly bisimilar to (A,→2, A

0
2)
(
(A,→1, A

0
1) ≈ (A,→2, A

0
2)
)
if (all)

their initial states a01, a
0
2 are in a weak bisimulation relation (a01, a

0
2) ∈ R.

In this section, we have introduced the notions of simulation and bisimulation. They

can be used to formally relate systems that are described as LTS. In the next section, we

introduce Communicating Sequential Processes (CSP) and its notion of refinement. The

refinement models of CSP are less discriminating than the bisimulation relation. They enable

more differences between abstract and concrete models, while still preserving properties of

interest.

2.3 CSP

In this section, we introduce Communicating Sequential Processes (CSP). CSP is a process

algebra, originally introduced by Hoare in [Hoa78]. It has since been in substantial develop-

ment and current versions of CSP can be found in [Sch99, Ros10]. It is designed to model

concurrent processes that communicate via events. Communication is synchronous and can,

thus, be used to synchronize processes or exchange data. The major advantage of CSP are

its semantical models which allow for compositional reasoning. In the following, we introduce

the syntax of CSP we use in this thesis, as well as its operational and denotational semantics.

We also introduce the concept of CSP refinement. The material presented in this section is

based on [Sch99].

2.3.1 Syntax and Operational Semantics

In Definition 2.6 we define the grammar for a CSP process P . Processes can be constructed

from the basic processes STOP and SKIP and using operators such as event prefixing

(→), sequential composition (;), external (□) and internal choice (⊓), interleaving (9) and
alphabetized parallel composition (∥). Finally, process variables (X) are used to express

(mutual) recursion.

10

2.3. CSP

Definition 2.6: Grammar of CSP Processes

Let P be a process, ev ∈ Σ an event from the set of all events Σ, also called the

communication alphabet. Let α be a communication interface α ⊆ Σ and let X express a

process variable.

P := STOP | SKIP | ev → P | P ; P | P □ P | P ⊓ P | P 9 P | P α∥α P | X

To limit the scope of this thesis, we do not use the operators hiding, renaming, and interface

parallel. They can be incorporated into the framework in future work. The basic process

STOP has no behavior. For all following CSP operators, we give their operational semantics

in form of an inference rule after a short explanation. Labeled arrows, e.g.
ev−→, denote a

semantical step. The basic process SKIP can successfully terminate. Successful termination

is expressed with the special symbol ✓, which is not part of Σ. To refer to all events including

✓ we write Σ✓.

SKIP
✓−→ STOP

The prefix operator (ev → P) models the occurrence of an event ev , after which the process

behaves as P .

(ev → P)
ev−→ P

Sequential composition (P1 ;P2) allows us to chain processes together. The second process

is only executed if the first process has successfully terminated. The event ✓ that indicates

the successful termination is turned into a τ event, as the combined process is no longer

terminated.

P1
ev−→ P ′

1

(P1 ; P2)
ev−→ (P ′

1 ; P2)
ev ̸= ✓

P1
✓−→ P ′

1

(P1 ; P2)
τ−→ P2

External choice (P1 □ P2) offers externally (i. e., to other processes or to the abstract

environment) the choice whether the process should continue as P1 or as P2. Strictly

speaking, the external choice operator offers the choice between the first visible event of each

of P1 and P2. If the first visible event of both P1 and P2 is the same, then it is undefined

(nondeterministically chosen) which process continues. If one of the processes performs an

internal event, then the external choice is not resolved.

P1
ev−→ P ′

1

(P1 □ P2)
ev−→ P ′

1

(P2 □ P1)
ev−→ P ′

1

P1
τ−→ P ′

1

(P1 □ P2)
τ−→ (P ′

1 □ P2)

(P2 □ P1)
τ−→ (P2 □ P ′

1)

11

2.3. CSP

Internal choice (P1 ⊓ P2) resolves the choice between P1 and P2 internally.

(P1 ⊓ P2)
τ−→ P1

(P1 ⊓ P2)
τ−→ P2

Internal choice can be used to model (yet) underspecified behaviors (in terms of alternative

behaviors) or unpredictable environments.

In CSP, channels are introduced as syntactic sugar on events using the dot-notation: The

event c.v is said to communicate the value v over channel c. To describe an input in CSP,

c?x : T is used, which denotes an external choice over all events of the form c.v with v ∈ T.

c?x : T→ Px := □
v ∈T

c.v → Pv

The semantics of c?x : T can be formulated also as a derived rule:

(c?x : T→ Px)
c.v−→ Pv

v ∈ T

An output is denoted as c!v and simply means c.v. To extract a value from an event c.v we

define val(c.v) := v. Note that there is no actual native concept of sending and receiving

in CSP, only synchronization. Therefore, CSP needs only a single communication operator

→. As we have seen, other operators can be derived. On the other hand, as ? and ! are

only syntactic sugar, it is perfectly valid to synchronize two “senders” or two “receivers”.

Example 2.1: Synchronizing Two “Senders”

Consider the two “sending” processes P = c!5 → P ′ and Q = c!5 → Q′. If those two

processed are synchronized over the channel c, then they can agree to synchronize on

the event c.5. So in CSP “sender” and “receiver” denote only the amount of events that

are offered. We take up this concept later in Section 6.2 when we construct a sender

that can only synchronize with receivers (and vice versa) within the CSP communication

mechanism.

To combine processes concurrently, CSP provides multiple operators, of which we consider

interleaving and alphabetized parallel. Interleaving (P1 9 P2) does not allow any communica-

tion between the processes P1 and P2 and allows both processes to take turns in performing

any number of events.

P1
ev−→ P ′

1

(P1 9 P2)
ev−→ (P ′

1 9 P2)

(P2 9 P1)
ev−→ (P2 9 P ′

1)

ev ̸= ✓

12

2.3. CSP

The interleaving process can only terminate if both processes terminate.

P1
✓−→ P ′

1 P2
✓−→ P ′

2

(P1 9 P2)
✓−→ (P ′

1 9 P ′
2)

Alphabetized parallel (P1 α1∥α2 P2) allows each process Pi to perform events from their

communication interface (or alphabet) αi. Events in the intersection of both communication

interfaces (α1 ∩ α2) can only be performed synchronously, i. e., by both processes at the

same time. The processes perform the remaining events from their respective communication

interfaces in an interleaving fashion.

P1
ev−→ P ′

1 P2
ev−→ P ′

2

(P1 α1∥α2 P2)
ev−→ (P ′

1 α1∥α2 P
′
2)

ev ∈ (α✓
1 ∩ α✓

2)

P1
ev−→ P ′

1

(P1 α1∥α2 P2)
ev−→ (P ′

1 α1∥α2 P2)

(P2 α2∥α1 P1)
ev−→ (P2 α2∥α1 P

′
1)

ev ∈ (α1 ∪ {τ}) \ α2

A process that is prevented from communicating an event from its communication interface

is called blocked. If it is blocked eternally, it is said to be in a deadlock. Common scenarios

for a deadlock are that the other process in an alphabetized parallel has stopped or is blocked

itself.

CSP allows for building (mutually) recursive processes using process variables. The

process P = a→ Q communicates the event a and then behaves as the process Q.

P
ev−→ P ′

X
ev−→ P ′ X = P

To illustrate the definition of a CSP process, we give an example.

Example 2.2: Counter Process

Using the concepts defined above, we can construct a process C0 that holds a number

that can be incremented or decremented via the events up and down.

C0 = up→ C1

Cn = down→ Cn−1 □ up→ Cn+1 n > 0

Here, Ci for n ≥ 0 are process variables to which processes are assigned in a mutually

recursive fashion. C0 offers the event up and then behaves as C1. Cn for n > 0 offers

both the events up and down and then behaves as Cn−1 if down was communicated and

behaves as Cn+1 if up was communicated. Note that we defined an infinite number of

process variables using parametrized process names, also called a process scheme. Using

parameters allows CSP processes to store information without having an explicit state.

13

2.3. CSP

Note that there is a special interpretation of events and the abstract environment: In CSP,

we can imagine an abstract environment E that is willing to synchronize on any event. The

environment can be thought of being in parallel to the topmost process. For a process P

with events in α this may look like this:

P α∥Σ E

This process can engage exactly in the same events as just the process P . Visible events

can be divided into two categories: observational events and communication events (similar

to external and waiting states in [PS92]). Communication events are meant to synchronize

two or more components (and possibly also exchange data) and observational events only

indicate to an observer what is happening. Technically, they have the same semantics (they

synchronize with other components), but observational events only synchronize with the

environment and, in the complete system, communication events always synchronize with

other components. For the construction of CUC in Chapter 5, we focus on communication

events.

Having introduced the syntax and operational semantics of CSP, we proceed to its

denotational semantics. The advantage of the denotational semantics is that they are

compositional and allow for compositional reasoning about properties of CSP processes. CSP

has three main denotational models (traces, stable failures and failures-divergences), which

increasingly discriminate more behaviors. All three denotational semantics are accompanied

by their notion of refinement (⊑), which defines behavioral inclusion: one process behaves

within the bounds defined by another process. The important aspect of the CSP refinements

is that they are compositional with respect to contexts1 (C), i. e., if only a part of the system

is refined, the whole system is also in a refinement relation:

∀ C. A ⊑ B =⇒ C(A) ⊑ C(B)

As parallel composition can also be part of the context C, this allows for modular verification

of concurrent systems. The refinement relations of CSP are similar in intent to the simulation

relation.

2.3.2 Traces Semantics

The least discriminating denotational semantics of CSP is the traces semantics. A trace is a

sequence of visible events.

1A context is a “process with a hole” and is formalized as a function from CSP process to CSP process.

14

2.3. CSP

Definition 2.7: Traces

A trace tr is a sequence of events. We write

tr ∈ Σ∗

Similar, for traces that can “successfully terminate”, we write

tr ∈ (Σ∗)
✓

To obtain the events that occur within a given trace tr , we write set(tr).

The traces semantics can be characterized operationally.

Definition 2.8: Operational Characterization of the Traces Semantics of CSP

With the following expression, we denote that there is an execution of process P with the

observed trace tr after which the process behaves as P ′.

P
tr
=⇒ P ′

The traces semantics T of a CSP process P captures all traces tr that can be observed

when the process P is executed.

tr ∈ T (P) := ∃P ′. P
tr
=⇒ P ′

Definition 2.9 shows the denotational traces semantics of CSP. For the basic processes

STOP and SKIP the possible traces are directly defined (only the empty trace for STOP

and additionally also the trace containing only ✓ for SKIP). Whenever the set of traces

is defined, the empty trace is included, as every process can be observed to do nothing.

The traces semantics for the other operators are defined based on the traces semantics of

the component processes. The traces of the prefix operator (→) include every trace of the

following process P prefixed with the event ev . The traces of the sequential composition are

the traces of the first process without ✓. If the first process successfully terminates, then

the traces of the second process may be appended. Both internal (⊓) and external choice (□)

combine the traces of the components by set union. The equivalent definition of both choices

implies that the traces semantics cannot distinguish between both choices. The traces of the

interleaving operator (9) are defined via the predicate interleaves. Informally speaking, a

trace is an interleaving of two given traces, if it is a piece-wise combination of the two given

traces. The traces of the alphabetized parallel operator (α1
∥α2

) are related with the traces

of the components via projections (|̀). For each component Pi, when only considering the

events from the respective communication alphabet (|̀ αi), the combined trace is required to

be part of the traces of the component Pi. Additionally, all events of the combined trace

must be events of one of the components’ communication interface αi or the termination

indicator ✓. A process that is defined using process variables can be recursive. If it is not

recursive, the process variable can be replaced by the designated process and the traces can

15

2.3. CSP

Definition 2.9: Traces Semantics of CSP

T (STOP) = {⟨⟩}
T (SKIP) = {⟨⟩, ⟨✓⟩}
T (ev → P) = {⟨⟩} ∪ {⟨ev⟩⌢tr | tr ∈ T (P)}
T (P1 ; P2) = {tr | tr ∈ T (P1) ∧✓ /∈ set(tr)} ∪

{tr1⌢tr2 | tr1⌢✓ ∈ T (P1) ∧ tr2 ∈ T (P2)}
T (P1 □ P2) = T (P1) ∪ T (P2)

T (P1 ⊓ P2) = T (P1) ∪ T (P2)

T (P1 9 P2) = {tr | ∃ tr1 tr2. tr1 ∈ T (P1) ∧
tr2 ∈ T (P2) ∧
tr interleaves tr1 tr2}

T (P1 α1∥α2 P2) = {tr | tr |̀ α1 ∈ T (P1) ∧
tr |̀ α2 ∈ T (P2) ∧
set(tr) ⊆ (α1 ∪ α2)

✓}

T (X = F (X)) =
⋃
n

T (Fn(STOP))

where

⟨⟩ interleaves tr1 tr2 ⇔ tr1 = tr2 = ⟨⟩
⟨✓⟩ interleaves tr1 tr2 ⇔ tr1 = tr2 = ⟨✓⟩

⟨ev⟩⌢tr ̸= ⟨✓⟩ =⇒
⟨ev⟩⌢tr interleaves tr1 tr2 ⇔ head(tr1) = ev ∧ tr interleaves tail(tr1) tr2 ∧

head(tr2) = ev ∧ tr interleaves tr1 tail(tr2)

be determined. If the process is recursive, then we need a fixpoint. In this case, we can

consider the union over all traces, which are defined by repeatedly applying the process

function F to the basic process STOP .

Example 2.3: Traces of a Recursive CSP Process

Consider the process

P = a→ P

We can formulate the same process with a function F from process to process

F (X) := a→ X

P = F (P)

16

2.3. CSP

Example 2.3: Traces of a Recursive CSP Process

Let us now consider the sequence of traces of multiple applications of F to STOP :

T
(
F 0(STOP)

)
= T (STOP) = {⟨⟩}

T
(
F 1(STOP)

)
= T (a→ STOP) = {⟨⟩, ⟨a⟩}

T
(
F 2(STOP)

)
= T (a→ a→ STOP) = {⟨⟩, ⟨a⟩, ⟨a, a⟩}
...

...⋃
n

T
(
Fn(STOP)

)
= T (a→ a→ . . .→ STOP) = {⟨a⟩n | n ≥ 0}

The traces semantics and its operational characterization coincide, so we always use T (P) to

denote the traces of the process P . It is now possible to compare two processes with regard

to their traces semantics.

Definition 2.10: Traces Refinement

P ⊑T Q := T (Q) ⊆ T (P)

Note the inverse positioning of P and Q. P is refined by Q if the traces of Q are a subset

of the traces of P .

A safety property describes all behaviors that are allowed to happen (and thereby excludes the

behaviors that are not allowed). A safety property can describe, e. g., that only allowed values

are communicated. We can describe safety properties with processes.

Example 2.4: Safety Property as Process

Let bad ∈ Σ be an undesirable event. We can formulate the safety property S that bad

should not be communicated as follows.

S = ⊓
ev∈Σ\{bad}

ev → S

We use the indexed internal choice ⊓
ev∈EV

ev → Pev , which denotes an internal choice with

the option to communicate ev and then behave as Pev for each ev ∈ EV . In the case of

our safety property S, we allow any event but bad and then behave again as S, describing

any sequence of events that do not contain the event bad.

As the traces refinement is a subset relation of behaviors, it can be used to verify that a

process P has a certain safety property S.

S ⊑T P

Furthermore, as the refinement relation is transitive, if we refine the process P to P ′, than S

17

2.3. CSP

holds also for P ′.

S ⊑T P ∧ P ⊑T P ′ =⇒ S ⊑T P ′

Thus, the refinement relation allows both to verify properties of processes as well as the

preservation of properties from one process to another.

The traces refinement is similar to the simulation refinement in that it (only) sets an

upper bound to the behavior. In contrast to the simulation relation, the traces refinement

cannot discriminate the branching behavior of two processes. A CSP specific example is that

the traces semantics for both internal choice and external choice are the same, thus they are

trace equivalent.

Definition 2.11: Trace Equivalence

P ≡T Q := P ⊑T Q ∧Q ⊑T P

Example 2.5: External and Internal Choice Cannot be Differentiated by the Traces

Semantics

(a→ P □ b→ Q) ≡T (a→ P ⊓ b→ Q)

Note that although they have the same traces semantics, they offer different events. The

process with the external choice offers both the events a and b at the same time. The

process with the internal choice offers either the event a or the event b depending on the

resolution of the internal choice.

The traces semantics considers only events that have been communicated by a process. To

consider liveness properties, we also need to consider events that are offered by a process.

The stable failures semantics, which we cover next, considers the offered events.

2.3.3 Stable Failures Semantics

The stable failures semantics covers, in addition to the traces taken, also the information

which events are offered. This allows for the verification of liveness properties, i. e., properties

that talk about the progress of processes. The stable failures semantics records at every

stable state all events that can be refused.

Definition 2.12: Stable Process

A process is stable if no internal transitions are possible. Formally

P ↓:= ̸ ∃P ′. P
τ−→ P ′

In stable processes, the sets of events that can be refused are considered.

18

2.3. CSP

Definition 2.13: Refusal Set

P ref X := ∀ ev ∈ X. ̸ ∃P ′. P
ev−→ P ′

Note that P ref ∅ is always true. Furthermore, any subset of a refusal set is also a refusal set.

The information about the events that are refused and the information about the trace

that was executed to get to the current state of the process are combined. To ensure that

the events are offered stably, i. e., the process cannot make an internal transition which

changes the offered events, only stable processes are considered. We first show the operational

characterization of the stable failures and then give its denotational semantics.

Definition 2.14: Operational Characterization of the Stable Failures Semantics of CSP

A stable failure of a CSP process P is a pair of a trace tr and a refusal set X. It denotes

that there is a stable process P ′ which can be reached from the initial state P via the

trace tr and which refuses X.

(tr , X) ∈ SF(P) := ∃P ′. P ′ tr
=⇒ P ′ ∧ P ′↓ ∧ P ′ ref X

Definition 2.15 shows the denotational stable failures semantics of CSP. The stable failures

for the basic processes are directly defined, the stable failures for the other operators are

defined based on the stable failures semantics of the component processes. The basic process

STOP can be observed to do nothing (empty trace) and afterwards it can refuse anything.

We define another basic process DIV , which is the process that diverges, i. e., can engage

in infinitely many internal transitions. As it is never stable, its stable failures semantics is

the empty set. The basic process SKIP can refuse anything but successful termination after

the empty traces, and after the successful termination it can refuse anything. The stable

failures of the prefix operator (→) include every stable failure of the following process P ,

where the trace is prefixed with the event ev . Additionally, after the empty trace anything

but the event ev can be refused. The stable failures of the sequential composition are the

stable failures of the first process that can refuse to successfully terminate. If the first process

successfully terminates, then the traces of the second process may be appended and the

respective refusal sets are inherited. In the stable failures semantics, internal (⊓) and external

choice (□) have different semantics. They differ in the refusal set that occur after the empty

trace. The stable failures semantics of the external choice include only those refusal sets

after the empty trace, which occur in both of the stable failures of the components. In

contrast, the stable failures of the internal choice includes all refusal sets that occur in any

of the stable failures of the components. After the first visible event, both choices combine

the stable failures of the components. The stable failures of the interleaving operator (9)
is defined via the predicate interleaves as in the traces semantics. Additionally, if any

component refuses successful termination, the interleaving process can refuse it, too. The

stable failures of the alphabetized parallel operator (α1
∥α2

) are related with the traces of the

components via projections (|̀) as in the trace semantics. Additionally, the refusal sets of the

combined process need to match the combination of existing refusal sets of the components,

when restricted to the respective communication interfaces. The stable failures semantics for

19

2.3. CSP

Definition 2.15: Stable Failures Semantics of CSP

SF(STOP) = {(⟨⟩, X) | X ⊆ Σ✓}
SF(DIV) = {}
SF(SKIP) = {(⟨⟩, X) | ✓ /∈ X} ∪ {(⟨✓⟩, X) | X ⊆ Σ✓}
SF(ev → P) = {(⟨⟩, X) | ev /∈ X} ∪ {(⟨ev⟩⌢tr , X) | (tr , X) ∈ SF(P)}
SF(P1 ; P2) = {(tr , X) | (tr , X ∪ {✓}) ∈ SF(P1)} ∪

{(tr1⌢tr2, X) | tr1⌢✓ ∈ T (P1) ∧ (tr2, X) ∈ SF(P2)}
SF(P1 □ P2) = {(⟨⟩, X) | (⟨⟩, X) ∈ SF(P1) ∩ SF(P2)} ∪

{(tr , X) | tr ̸= ⟨⟩ ∧ (tr , X) ∈ SF(P1) ∪ SF(P2)}
SF(P1 ⊓ P2) = SF(P1) ∪ SF(P2)

SF(P1 9 P2) = {(tr , X1 ∪X2) | ∃ tr1 tr2. X1 |̀ Σ = X2 |̀ Σ ∧
(tr1, X1) ∈ SF(P1) ∧
(tr2, X2) ∈ SF(P2) ∧
tr interleaves tr1 tr2}

SF(P1 α1
∥α2

P2) = {(tr , X) | ∃X1 X2.

X ∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2) ∧
(tr |̀ α1, X1) ∈ SF(P1) ∧
(tr |̀ α2, X2) ∈ SF(P2) ∧
set(tr) ⊆ (α1 ∪ α2)

✓}

SF(X = F (X)) =
⋃
n

SF(Fn(DIV))

recursive processes are defined as the union over all stable failures, by repeated application

of the process function F . In contrast to the traces semantics, the initial process used for the

fixpoint of the stable failures semantics is DIV . DIV diverges immediately and therefore

has no stable failures at all.

Example 2.6: Stable Failures of a Recursive CSP Process

Consider the process

P = a→ P

We can formulate the same process with a function F from process to process

F (X) := a→ X

P = F (P)

20

2.3. CSP

Example 2.6: Stable Failures of a Recursive CSP Process

Let us now consider the sequence of stable failures of multiple applications of F to DIV :

SF
(
F 0(DIV)

)
= SF(DIV) = {}

SF
(
F 1(DIV)

)
= SF(a→ DIV) = {(⟨⟩, X) | a /∈ X}

SF
(
F 2(DIV)

)
= SF(a→ a→ DIV) = {(⟨⟩, X) | a /∈ X} ∪ {(⟨a⟩, X) | a /∈ X}
...

...⋃
n

SF
(
Fn(DIV)

)
= SF(a→ a→ . . .→ DIV) = {(⟨a⟩n, X) | n ≥ 0 ∧ a /∈ X}

In CSP, there are two kinds of stable processes (i. e., where no internal transitions are

possible): Processes ready to communicate and STOP . Let us call failures resulting from

the former communication failures and from the latter terminal failures. Considering the

sequential composition P1 ; P2, the main difference between the communication failures

and the terminal failures is that the terminal failures of P1 are removed by the sequential

composition operator.

The stable failures semantics and its operational characterization coincide, so we always

use SF(P) to denote the stable failures of the process P . It is now possible to compare two

processes with respect to their stable failures semantics.

Definition 2.16: Stable Failures Refinement

P ⊑SF Q := T (Q) ⊆ T (P) ∧ SF(Q) ⊆ SF(P)

Note the inverse positioning of P and Q. P is refined by Q in the stable failures model if

a) the traces of Q are a subset of the traces of P (as in the traces refinement) and b) the

stable failures Q are a subset of the stable failures of P .

The part T (Q) ⊆ T (P) (which is equivalent to P ⊑T Q) ensures that the traces also are

a subset for the reachable processes from Q that are not captured by the stable failures

semantics, i. e., reachable unstable processes. The part SF(Q) ⊆ SF(P) expresses that all
reachable stable processes Q′ from Q have a corresponding process P ′ reachable from P , and

that the events that can be refused in Q′ can also be refused in P ′.

Example 2.7: Resolution of Non-Determinism

In the stable failures model, external choice and internal choice are no longer equivalent,

as the internal choice can refuse more than the external choice.

P □ Q ̸⊑SF P ⊓ Q

21

2.3. CSP

Example 2.7: Resolution of Non-Determinism

The other direction is still valid.

P ⊓ Q ⊑SF P □ Q

This is also the main idea of CSP refinement: to resolve non-determinism. Following this

idea, it is also valid to refine only one branch of the internal choice.

P ⊓ Q ⊑T /SF P

P ⊓ Q ⊑T /SF Q

A liveness property (in the sense of CSP) is a property that ensures the availability of events

that can be stably offered. A liveness property can describe, e. g., deadlock freedom (by

stating that there must be always an event available). Again, we can describe a liveness

property as a process.

Example 2.8: Liveness Property as a Process

Let emergency brake be an event that needs to be offered at all times. We can formulate

the liveness property L that emergency brake should be always available as follows.

L =

⎛⎝ ⊓
ev∈Σ\{emergency brake}

ev → L

⎞⎠ □ emergency brake → STOP

The indexed internal choice allows for any combination of events other than emergency brake.

The external choice ensures that the event emergency brake cannot be refused by L.

This time we use the stable failures refinement to verify that a process P has a fulfills a

certain liveness property L:

L ⊑SF P

The stable failures refinement (and the failures-divergences refinement from the next subsec-

tion) are also transitive.

Compared to weak simulations and weak bisimulations, the stable failures refinement

ensures availability of events similar to a weak bisimulation (and is as such roughly more

discriminative than a weak simulation) but does not require the whole branching structure

to be equivalent. In particular, if in a process two internal transitions are available (e. g.,

occurring due to an internal choice), all but one branch can be removed, and it is still a

stable failures refinement. This allows for the reduction of non-determinism.

Other definitions of liveness also include the notion of livelock freedom or divergence

freedom, which is covered in CSP by the failures-divergences semantics, which we briefly

describe in the next subsection.

22

2.3. CSP

2.3.4 Failures-Divergences Semantics

In this subsection, we describe the failures-divergences semantics. The failures-divergences

semantics records in addition to the traces and failures also the divergences, i. e., traces that

lead to processes where infinite internal loops are possible. These infinite loops have the

effect that all visible events can be refused.

As the failures-divergences semantics distinguishes between a process that has divergences

and a process that does not have divergences, the failures-divergences refinement (⊑FD)
can be used to verify that a process is divergence free or livelock free. More specifically,

P ⊑FD Q implies that Q has at most the divergences that P has. In this thesis, we consider

only divergence free CSP processes unless otherwise noted.

That concludes the introduction of the semantics of CSP. In the next subsection, we

introduce wellformedness properties that are required for semantics of CSP.

2.3.5 Properties

In this subsection, we briefly discuss the wellformedness properties that are required for the

CSP semantics, in order for the refinement notion of CSP to preserve safety and liveness

properties. The CSP semantics are defined in way that the properties hold true. So they can

be understood as theorems that hold for the semantics in Definitions 2.9 and 2.15. We refer

to [Sch99, Ros10] for a comprehensive description of the wellformedness properties.

The first two properties ensure that the empty trace (Property T1) and traces of partial

executions (Property T2) are always included in the traces semantics. Let P be a process, tr

and tr ’ traces.

Property T1

⟨⟩ ∈ T (P)

The empty trace must always be contained. Any process can be observed to do nothing.

Property T2

∀ tr tr ′. tr ′ ≤ tr ∧ tr ∈ T (P) =⇒ tr ′ ∈ T (P)

(where ≤ is the prefix relation: tr ′ ≤ tr := ∃ tr ′′. tr ′⌢tr ′′ = tr .)

T is prefix closed. All partial behaviors can be observed.

The properties for the stable failures semantics are concerned with the connection to the

traces semantics (Property SF1), ensure that there are “enough” refusal sets so that resolution

of non-determinism can be expressed with a subset relation (Properties SF2 and SF3), and

that terminated processes can refuse anything (Property SF4).

23

2.3. CSP

Property SF1

(tr , X) ∈ SF(P) =⇒ tr ∈ T (P)

All traces are included in the traces semantics. This property ensures that the stable

failures semantics “acts” within the boundaries of the traces semantics. However, this

does not cover all traces from the traces semantics, which is why the trace refinement is a

requirement for the stable failures refinement.

Property SF2

(tr , X) ∈ SF(P) ∧X ′ ⊆ X =⇒ (tr , X ′) ∈ SF(P)

Refusal sets are subset closed. This property ensures, e. g., that internal choice can be

refined by external choice.

Property SF3

(tr , X) ∈ SF(P) ∧ ∀ a ∈ X ′. tr⌢⟨a⟩ ̸∈ T (P) =⇒ (tr , X ∪X ′) ∈ SF(P)

All events that can be refused occur in a refusal set. More specifically, the refusal sets

can be augmented with refused events. This is the crucial property ensuring that the

stable failures are “enough” refusals to show liveness properties, because it ensures that

all events that can be refused are contained in the stable failures semantics.

Property SF4

tr⌢⟨✓⟩ ∈ T =⇒ (tr⌢⟨✓⟩, X) ∈ SF

Terminal failures are stable.

As the refinement notions of CSP are based on set inclusion, we need to ensure that

the semantics of the compared processes are indeed useful descriptions of a system. If we

only would use the subset relation of the refinement, and not have the properties defined

above of the process semantics, than we would not have, e. g., that the empty trace or traces

of partial executions are part of the semantics, or that we can refuse only a subset of the

refusals, which allows for the refinement of internal choice to external choice.

In this subsection, we have presented the wellformedness properties for the traces and

the stable failures semantics of CSP. When designing the traces and stable failures semantics

for CUC in Chapter 5, we ensure that they meet the wellformedness properties as well. In

the next subsection, we briefly introduce FDR4, an automatic refinement checker for CSP.

24

2.4. Isabelle/HOL

2.3.6 Failures-Divergences Refinement Checker (FDR4)

In this subsection, we briefly introduce the Failures-Divergences Refinement Checker (FDR4).

FDR4 takes as inputs programs specified in CSPm, a machine readable dialect of CSP that

is enhanced with functional programming constructs. FDR4 is basically a model checker. To

show a refinement, e. g., P ⊑ Q, it constructs a finite state machine for each of the processes.

The state machines are then used to show the refinement in a game fashion: The state

machine for P has to answer all transitions of the state machine of Q. The state machines

enable the refinement-checking of non-terminating processes when state matching is possible.

Due to the nature of model checking, it can only check finite state machines.

We mention FDR4 because it allows for the automatic verification of refinement relations

between CSP processes and is an important part of the CSP ecosystem. We do not use

FDR4 in this thesis, as we are interested in refinement relations between CSP processes and

low-level code. In a model-driven design process, the application of FDR4 would take place

before the application of our framework.

2.4 Isabelle/HOL

In this section, we briefly introduce Isabelle/HOL [NPW02]. Isabelle is a theorem prover with

which mathematical theories can be formalized to formally reason about them. The proofs in

Isabelle are machine checked, i. e., all steps are checked to be correct with respect to the used

logic and theories. It is built around a small kernel formalizing constructive logic. With that

small kernel other logics can be formalized using datatypes, functions, definitions, axioms

and theorems. There are many logics formalized in Isabelle. A well-developed logic with a

lot of submitted theories is higher order logic, hence the name Isabelle/HOL. Isabelle/HOL

not only allows for the formalization and mechanical proof checking. Its tool suite also

provides search algorithms to help finding proofs and proof procedures (tactics and tacticals)

to (semi-) automate (parts of) proofs. We have formalized the contents of Chapter 5 in

Isabelle/HOL, e. g., our syntax of CUC and its operational and denotational semantics, as

well as our Hoare calculus, theorems, lemmas, and their proofs. For the formalization of CSP

within Isabelle/HOL, we use the CSP-Prover library [IR05].

2.5 Summary

In this chapter, we have introduced the background for this thesis. We have covered

Instruction Set Architectures to explain our understanding of low-level code. We have defined

simulations and bisimulations as traditional means to relate system behaviors and as a basis

for the handshake refinement we define in Chapter 6.1. We have introduced CSP, its syntax,

its semantics, and its notion of refinement. A crucial property of the CSP refinement is

that it is compositional. As such, it allows us to verify single components individually and

compose the results. We define semantics similar to CSP’s for our language CUC in Chapter 5

and ensure that they fulfill the wellformedness properties to extend the refinement notion

from CSP-only to also cover CUC. Finally, we have briefly introduced the theorem prover

Isabelle/HOL, which we have used to formalize the results from Chapter 5, i. e., the theory

25

2.5. Summary

of CUC. The formalization in Isabelle/HOL ensures the rigorousness of our framework even

in the case of user provided proofs, which are required in the first part of our framework.

Furthermore, the formalization in Isabelle/HOL allows for the (semi-) automation of proofs

to help the user. In the next chapter, we discuss related work.

26

Chapter 3

Related Work

In this chapter, we present the related work of this thesis in four parts. In 3.1, we consider

approaches that model low-level languages for formal verification. This entails approaches that

define syntax and semantics for low-level languages and calculi for verification of properties

on programs in that language. As we aim at showing properties for non-terminating systems,

we are particularly focusing on denotational semantics, which are suitable to describe infinite

behaviors and are compositional. In Section 3.2, we consider compositional proof calculi for

concurrent systems. Our aim is to define a proof calculus for CUC to relate it to CSP. In

Section 3.3, we consider fundamental work in the area of relating and comparing synchronous

and asynchronous languages, as our aim is to relate a specification in the synchronous

language CSP to an implementation in low-level code, which is asynchronous. We consider

implementation relations that preserve liveness properties in 3.4 as our aim is to implement

the synchronous communication of CSP while preserving liveness properties. In 3.5, we look

at other approaches to implement synchronous communication concepts.

3.1 Formalizations of Low-Level Languages Geared To-

wards Compositional Verification

In this section, we give an overview over approaches concerned with the formalization of

low-level code for compositional verification.

Saabas and Uustalu [SU05] present a compositional big step semantics of an unstructured

language. To this end, a generic structuring mechanism for the code is presented, which

makes the semantics (sequentially) compositional and also allows for a compositional proof

calculus. Although they formally relate a high-level language (WHILE) and a low-level

language, communication is not considered and behaviors of non-terminating systems are

also not captured. We use their structuring mechanism for CUC.

In [BG11], Bartels and Glesner formalize a subset of the compiler intermediate-represen-

tation LLVM [LA04] to relate low-level code and TimedCSP (an extension of CSP with a

notion of time). They relate the two languages with a weak timed bisimulation. A timed

labeled transition system (TLTS) is constructed for the LLVM program and annotated by

hand with labels matching the labels in the TLTS of the TimedCSP process. The annota-

27

3.2. Compositional Proof Calculi for Concurrent Systems

tions of the TLTS for the LLVM program assert properties about the program state and

can be verified with the Hoare calculus they provide, which is an adaptation of the work

of Saabas and Uustalu [SU05]. They consider communication in LLVM as synchronous,

therefore the receiving process is blocking until the data to be communicated is written

to a register. Building on this assumption, they relay the interplay of the communication

to TimedCSP, without having a concurrent semantics and modeling the synchronization

mechanism needed for this. Our goal is to verify the communication and synchronization

mechanisms themselves. Thus, their approach is too abstract to perform this. We use the

idea to relay the communication to CSP (to inherit its concurrent compositionality), but we

prove the correctness of this approach using our concurrent semantics and our verification of

the synchronization protocol.

Tews [Tew04] developed a compositional semantics for a C-like language with goto

statements, which is used to verify Duff’s device. Duff’s device is a programming technique

invented to copy large amounts of data, dealing in an interesting way with the leftovers

of loop unrolling: A jump into the body of a while loop expressed with a not nested but

intermingled use of a switch construct and a while loop. However, this approach does not

model communication.

A different approach, but also including a formalization of a low-level language for

verification is the certified compiler CompCert [Ler09]. The verification of a compiler is

scalable in the sense that the transformation is verified once, yielding the verification of

all transformed programs. In the CompCert project, executable low-level code (Assembly)

is related to high-level code (Clight). While Clight can express low-level communication,

it does not have an abstract concept of communication. Therefore, they cannot consider

liveness properties in the sense of stably offering communication events.

In contrast to our approach, the presented approaches either do not consider liveness or

no communication, or neglect the low-level implementation of communication and synchro-

nization.

3.2 Compositional Proof Calculi for Concurrent Systems

In this section, we give an overview over compositional proof calculi used for concurrent

systems.

A denotational semantics and a Hoare-style proof calculus for a high-level language with

communication is defined by Zwiers [Zwi89]. The semantics deals with traces and ready

sets, which are similar in intention to refusals, i. e., they allow for the formulation of liveness

properties. As low-level code is not considered, the semantics is not applicable. The important

part of such semantics and the accompanying proof calculus is the looping construct, which

is different in low-level languages, where sequential composition and looping construct have

to be combined because jumps into and out of code are possible almost everywhere. The key

for us to achieve (sequential) compositionality when reasoning about low-level code is the

structuring mechanism from [SU05].

Session types, for example used in [LNTY17] to reason about safety and liveness of

programs in Go [DK15], are also a proof calculus to reason about communication in concurrent

28

3.3. Relating Synchrony and Asynchrony

systems. The language Go considered in [LNTY17] has a native concept of channels for

communication and a very restricted goto instruction. We do not consider it as a low-level

language, as is used high-level communication instructions and and high-level control-flow

instructions. Although the channel interactions are verified, the preservation of properties of

channel implementations are not verified. To our awareness, there are no session types for

low-level languages.

Rely/Guarantee (also known as Assume/Guarantee or Assumption/Commitment) was

first published in [Jon81]. It is a proof calculus to reason about concurrent components that

communicate via shared variables. It is a descendant of the traditional Hoare calculus. In

addition to the pre- and postcondition, it also defines invariants that are used to formalize the

effect a process has on the shared resources (guarantee) and the state of the shared resources

it can rely on. When combining the reasoning of concurrent components, the guarantees

of the components need to imply the relied upon assertions of the other components. The

Rely/Guarantee approach is geared towards shared variable communication and therefore

suited for a formalization of the proofs about our language using shared variables (SV) and

the handshake refinement in Section 6.1 in Isabelle/HOL in future work. A Rely/Guarantee

calculus for the x86 instruction set was formalized in [Rid10]. We do not use the Rely/Guar-

antee approach for our proof calculus in Chapter 5 because the invariants consider changes

between pairs of states and their successor states, whereas we are interested in the capturing

of the abstract communication behavior in the form of stable failures.

In this section, we have presented compositional proof calculi for concurrent systems.

Because of our design of our framework, we do not need to consider concurrent components

in the phase where we want to employ a proof calculus. We only consider communication

behavior of single components and can compose the results due to the compositionality our

framework inherited from CSP. Different formalizations of a concurrent proof calculus for

CUC are possible. We choose to extend a Hoare logic with communication invariants, as

it goes along well with the stable failures semantics, and yields an elegant solution (in our

opinion). Sessions types might be a viable alternative solution. To simplify the reasoning

about further communication protocols to implement the abstract communication in future

work, the Rely-Guarantee approach to designing a calculus is well suited.

3.3 Relating Synchrony and Asynchrony

In this section, we present fundamental work concerned with the relation between languages

with synchronous and asynchronous semantics and/or communication and their (relative)

expressiveness. Note that synchrony of semantics does not imply synchrony of communication.

Where synchronous semantics denotes that all components must take their steps at the

same time (e. g., SCCS, see below), synchronous communication denotes that components

taking part in a communication have to wait until all partaking components are ready to

communicate. Examples are multi-way synchronization (CSP) or handshake communication

also called two-way rendez-vous (CCS). The counterpart to synchronous semantics are

interleaving semantics, which can have a synchronous step (as in CSP or CCS) or be pure

interleaving semantics without a synchronous step (such as our language SV). Communication

29

3.3. Relating Synchrony and Asynchrony

can be classified as synchronous (all wait), blocking (receivers wait) and non-blocking (nobody

waits). Non-blocking communication is asynchronous communication as neither sender nor

receiver wait for another. In blocking communication, there is some sort of synchronization on

the communication, so it can be viewed both as synchronous communication and asynchronous

communication.

In [Mil83], Milner introduces a process calculus with synchronous semantics (SCCS). He

shows that his previously defined Calculus of Communicating Systems (CCS) [Mil80], which

has an interleaving semantics, can be embedded. However, the work is not concerned with the

question whether communication is synchronous or asynchronous but only uses synchronous

communication. Subsequently, it does not investigate synchronization mechanisms for

communication.

Broy and Olderog investigate in [BO01] the relationship between synchronous and asyn-

chronous communication where asynchronous communication is buffered, e. g., via an ad-

ditional buffer process. However, as we want to verify the low-level implementation of

communication, we do not consider high-level constructs such as buffers in our implemen-

tation language. Apart from the different abstraction level used by Broy and Olderog,

their transformation from synchronous to asynchronous systems is to introduce buffers for

all (previously synchronous) communication. In doing so, they lose synchronicity and the

“refusal structure” of the synchronous specification, i. e., the transformation does not preserve

liveness properties.

In [Pet12], Peters compares the expressiveness of different synchronous and asynchronous

process calculi (variants). She uses the concept of translations with certain requirements

from one language into another, resulting in what she calls Translational Expressiveness.

Her focus is to define and show encodings (or their absence) with a good quality (defined

by several criteria), whereas our focus in this thesis is to bridge the gap between process

calculi and low-level code. As in [Pet12] both target and source languages are process

calculi, there is a more generous use of parallel composition, whereas we allow only top-level

parallelism, and at least for our handshake protocol, refrain from using additional concurrent

components. Although it can be argued that conceptually we use additional components

(the channels), whose logic is included in the existing components and whose data is stored

in the shared memory. In future work, a classification of our encoding (implementation) with

similar criteria as used by Peters seems reasonable, especially when considering different

synchronization protocols and comparing them.

Protocol implementations usually require multiple semantical steps, as writing and reading

of data and synchronizations are individual steps. Peters defines the notion of emulation,

which denotes all steps in the implementation required to perform similar behavior to the

emulated step in the specification. We define emulation in a similar way:

Definition 3.1: Emulation

All steps in the implementation required to implement a step of the specification together

are called emulation. The step in the specification is then called emulated. Usually, the

emulation consists of all the steps of the protocol execution.

The fact that the implementation emulates the synchronization behavior of the specifica-

30

3.4. Liveness-Preserving Implementation Relations

tion gives rise to an asymmetric relation between them. The liveness-preserving relations

presented in the next section all deal with this asymmetry.

In this section, we have presented approaches to encode one process calculus (variant) in

another. In contrast, we provide a methodology to show that the protocols implemented

in a low-level language are indeed encodings of their more abstract specifications. We are

not concerned with the question of encodability itself. As our low-level language contains

mechanism for synchronization over shared variables, and is therefore more general, all

process calculi should be encodable in it. We leave the question of the quality of those

encodings for future work.

3.4 Liveness-Preserving Implementation Relations

In this section, we discuss existing relations that aim at relating implementations of syn-

chronization to their abstract counterpart. In particular, we focus on the distribution of

simultaneous decisions over multiple steps. Before we present the approaches, we illustrate

the problem of splitting up simultaneous decisions.

s1r1 s1r2 s2r1 s2r2

τ τ

s1r1 s1r2 s2r1 s2r2
̸≈

τ τ τ τ

(s1r1) (s1r2) (s2r1) (s2r2)

τ τ

τ τ τ τ

(s1r1) (s1r2) (s2r1) (s2r2)

(a) (b)

(c) (d)

̸≈

Figure 3.1: Simultaneous Decisions and Their Split-up Implementations

Consider two senders s1, s2 and two receivers r1, r2 ready to communicate synchronously

over the same channel. The channel can only process one communication between a single

31

3.4. Liveness-Preserving Implementation Relations

sender and single receiver at the time. Using abstract communication, where both sender

and receiver are determined at the same time, we have four possible semantical steps that

coincide with the simultaneous decisions, one for each combination of senders and receivers.

In Figure 3.1a this situation is depicted for CSP-style communication (communication

remains visible). In Figure 3.1c, the same situation is depicted for CCS-style communication

(successful communication is internal), where we have added observational events to observe

who has communicated. When implementing the abstract communication with a protocol,

the sender and the receiver are determined not simultaneously, but sequentially. This

situation is depicted in Figures 3.1b and 3.1d. We first have an internal event, where the

sender is selected, and then the receiver is selected and the communication can happen.

In the case of CCS-style communication, we have added again the observational events.

Bisimulation relations, both weak and strong, preserve the branching structure of an LTS.

As apparent from the different branching structures, 3.1a and 3.1b as well as 3.1c and 3.1d

are not (weakly) bisimilar, respectively. The reason for this is that the middle layer in 3.1b

and 3.1d (surrounded by dotted lines) has no (weakly) bisimilar counterpart in 3.1a and 3.1c,

respectively. In other words, we cannot find a state in 3.1a/c that only offers the choice

between the receivers.

The following relations are all concerned with splitting of single events into multiple

events (often internal). The latter two especially are concerned with splitting up of decisions

and tackle the problem of split-up decisions for CCS style communication. All three have

their roots in bisimulation and respect the refusal structure, and, thus, preserve safety and

liveness properties.

3.4.1 Vertical Bisimulation

Vertical Bisimulation by Rensink and Gorrieri [RG97] provides a congruence relation for action

refinements whose implementations can interleave. The idea is to extend a bisimulation with

parts where a single action in the specification can be implemented by multiple steps. These

additional steps can lead to intermediate states, which do not have a bisimilar counterpart

in the specification. Their definition is different from the standard bisimulation in that it

keeps track of started executions of the implementations. This is facilitated by extending the

usual binary relation of processes P and Q with a third place for the residual state R. Their

relation is asymmetric, i. e., if the triplet (P,R,Q) is in a vertical bisimulation relation, then

P is implemented by Q (but usually not vice versa). The progress in Q for the emulation of

a single event from P is recorded in R. This allows for relating successors of Q at different

stages all to be related to the same P , and at the same time being treated differently as they

can be discriminated by R (the progress of the emulation).

A relation is a vertical bisimulation , if it fulfills the definitions of three relations, which we

briefly describe: The up-simulation, the down-simulation, and the strict residual simulation.

The up-simulation ensures that the implementation is simulated by the specification,

i. e., that the behavior of the implementation is bounded by the behavior of the specification.

The up-simulation ensures the preservation of safety properties.

The down-simulation ensures that the implementation does at least what is specified.

The specification is simulated by the implementation, but the down-simulation considers only

states where no emulation is currently in progress, i. e., where the residual state is empty.

32

3.4. Liveness-Preserving Implementation Relations

This enables the asymmetry of the vertical bisimulation (the “vertical” part). In the vertical

bisimulation , all steps of an emulation are required to be labeled with different visible events.

The first step is labeled with the emulated event in the specification. The reachability of the

next state where no emulation is in progress is ensured by the strict residual simulation.

The strict residual simulation states that while there are unfinished emulations, those

emulations can progress while the specification remains in its state. Assuming terminating

emulations, this ensures that a state is reachable where every emulation currently in progress is

finished (and no new one is started). Note that only the emulations (protocol implementations)

are assumed to be terminating, not the entire programs. Furthermore, the strict residual

simulation only ensures reachability and does not guarantee that those states are visited

during an execution. In a concurrent implementation, multiple emulations can interleave.

The strict residual simulation, thus, ensures the reachability of “emulation free” states and

with that the linearizability of the emulations.

In the vertical bisimulation , Rensink and Gorrieri did not consider the refinement of the

synchronization mechanism itself: Both source language and target language use the same

CSP-like synchronization. We use the idea of augmenting a (bisimulation) relation with a

third element which keeps track of the progress of emulations to be able to relate intermediate

states of the emulation to the specification, although they have different communication

capabilities.

3.4.2 Coupled Simulation

Coupled simulation was introduced by Parrow and Sjödin [PS92] to relate the emulation of a

multi-way synchronization to its specification. The intent is to create an equivalence where

“choice can be resolved gradually over several steps”[PS92]. In the resulting relation, internal

choice is associative, i. e., internal decisions which occur at the same time can be split up

into multiple, sequential internal decisions.

Coupled simulation consists of two mutual weak simulations, which are coupled at certain

pairs. The underlying idea is similar to the vertical bisimulation where also two simulations

are combined. Where the vertical bisimulation weakens a bisimulation (a single relation

must fulfill the simulations in both directions), the coupled simulations strengthen mutual

simulations. Formally:

Definition 3.2: Coupled Simulation

Two weak simulations S1 and S−1
2 are a coupled simulation if

1) (P,Q) ∈ S1 ∧ Pstable =⇒ (P,Q) ∈ S2

2) (P,Q) ∈ S2 ∧Qstable =⇒ (P,Q) ∈ S1

In contrast to vertical bisimulation and our handshake refinement, coupled simulation

allows for implementations in both directions due to its symmetric definition.

Although Parrow and Sjödin implement the CSP-typical multi-way synchronization, their

specification language differs in an important aspect from CSP: Successful communication

is hidden to the outside. This is common for CCS and its descendants. Hiding successful

33

3.5. Implementing Synchronous Communication

communication leads to different semantics. Consider a parallel combination of multiple

components which successfully communicate. It can be “unfolded” with external choice in

CSP, but it is “unfolded” with internal choice in CCS. Due to successful communication

being internal, they use observational events to show behavioral equivalence whereas we do

not use observational events but relate the communication events directly. This enables us

to make assertions about their availability.

Furthermore, coupled simulation relates only stable states and not concrete implementa-

tions of communication. It does not distinguish between internal steps that are necessary

for the implementation of the communication and other internal steps. Therefore, it loses

information, which can be valuable, e. g., when considering divergences outside of the imple-

mentation of communication. In contrast, our handshake refinement also relates internal steps

outside of the implementation of the communication, where it ensures structural equivalence

like a strong bisimulation. Thus, it ensures that divergences cannot be introduced outside of

the implementation of the communication.

3.4.3 Global Bisimulation

In [dFG06], Frutos-Escrig et al. present global (timed) bisimulation, which allows for as-

sociativity of internal choices, i. e., nested internal choices are globally bisimilar to the

single flattened internal choice between all the possibilities of the different branches. The

problem of relating nested choices with the corresponding flattened version is related to our

problem, as we need to decouple the decisions who is the sender and who is the receiver, thus,

trying to relate two decisions at once and two consecutive decisions. However, the nested

choices we want to flatten are not internal choices, but visible events (different possibilities

of components synchronizing). The idea of global bisimulation is to augment the original

transition system with so called dynamic transitions, which model unifying multiple levels

of internal choices and also separating internal choices into multiple levels for the inverse

direction. It is a symmetric relation, weaker than standard bisimulations. According to the

authors, it is specifically designed as a simpler alternative to the symmetric relation obtained

by applying an asymmetric relation in both directions, e. g., how traces equivalence between

two processes A and B is defined as A being a traces refinement of B and B being a traces

refinement of A. The approach solves a similar problem as coupled simulations (while being

much more complicated in proofs due to the huge amount of additional dynamic transitions

to be considered) and is also not applicable to our problem, as it only allows distribution of

internal choices whereas we consider visible events. We do not benefit from the symmetry of

the relation, as we want to relate specifications with their implementations.

None of the presented implementation relations solves our problem. However, we take the

vertical bisimulation as a basis for our relation and incorporate the idea to only “apply” the

down-simulation at stable states of the emulation from the coupled simulation.

3.5 Implementing Synchronous Communication

In this section, we give an overview over approaches to implement synchronous communication

similar to the communication of CSP. The related work in this section is related to the second

34

3.5. Implementing Synchronous Communication

half of our approach, the relation between CUC and an implementation of a synchronization

protocol in SV.

As already mentioned in Section 3.4.2, Parrow and Sjödin [PS92] implement multi-way

synchronization in a process calculus with asynchronous, non-blocking communication. They

use additional components (mediators and ports) to implement a distributed synchronizer.

The mediators communicate on the behalf of the processes via the ports. The ports ensure that

the synchronization of the multiple components only takes place if all potential components

participate. To his end, they use a two-phases-synchronization protocol. However, their target

language is an asynchronous process calculus, and not a low-level language. Furthermore,

the details of the protocol execution are implemented in a predicative way, underlining the

abstract nature of their implementation. We use a low-level language as a target language and

opted for a simpler protocol (unidirectional communication with two participants) for the sake

of readability. In future work, we could extend our approach to multi-way synchronization

by adapting their protocol.

Basu et al. [BBO12] define synchronizability of asynchronous systems. They use this

notion to show that it is appropriate to consider a synchronized version of a synchronizable

asynchronous system. In their setting, the synchronous system uses handshake communication

(similar to CCS), and the asynchronous system communicates via non-blocking queues. Their

main result is an induction over the length of blocking queues, generalizing to blocking queues

of arbitrary length. However, queues are a high-level construct, and as such, not part of a

low-level language.

In [Pee04], Peeters models CSP-like communication in hardware using handshake protocols.

In hardware, low-level communication is synchronous (a wire from sender to recipient). Thus,

he uses synchronization primitives for the protocol implementation, which is not the problem

we are considering.

A different approach is taken by Gardner [Gar03]. He constructs a communication back-

bone from a CSP process, which can then be enriched with C++ code. Although the idea of

this framework is akin to correct by construction design, the verification of the framework

itself is not addressed.

In this section, we have presented four different approaches concerned with the imple-

mentation of synchronous communication as used in CSP. None of the approaches considers

a low-level implementation with asynchronous primitives.

In this chapter, we have given an overview of related work. We have presented approaches

for formalizations of low-level languages, compositional proof calculi for concurrent systems,

how to relate synchrony and asynchrony, liveness preserving implementation relations, and

implementations of synchronous communication. We have shown that none of the approaches

covered our problem of relating abstract specifications with low-level executable code while

preserving safety and liveness properties. In the next chapter, we illustrate our approach.

35

Chapter 4

Approach

In this chapter, we present our approach to relate an abstract specification and its low-

level implementation. One of the main challenges when verifying concurrent systems is

the exponential increase in the number of possible interactions and the number of possible

combined states with the number of components. We solve this problem by extending the

notion of Communicating Sequential Processes (CSP) refinement and defining compatible

semantics and relations. Doing so, we inherit the compositionality of CSP. One of the main

advantages of our approach is that interactions only need to be verified on an abstract level.

Then, each concurrent component can be refined individually, preserving the result of the

verification of the interactions.

Our approach to relate an abstract specification and a low-level implementation is

a two-step process. First, we focus on the transition from an abstract process in CSP

to a low-level program and keep the abstract communication and the ability to reason

(concurrently) compositional. This results in a compositional relation of CSP and our

intermediate language Communicating Unstructured Code (CUC), a low-level language with

abstract CSP-like communication. In a second step, we focus on the transition from abstract

communication to a low-level implementation of communication, which we solve for all

programs that use a communication protocol we verify. This results in a relation of CUC and

our low-level language Shared Variables (SV), which is similar to CUC, however has low-level

communication instructions instead of the abstract communication mechanism. Thus, SV

contains only low-level instructions. We verify a handshake protocol and show that all CUC

programs and similar SV programs that use the verified protocol are related. Finally, we

can combine the relation from CSP to CUC and the relation from CUC to SV to ensure

the preservation of safety and liveness properties from an abstract specification in CSP to a

low-level implementation in SV. The entire framework is rigorous and scales well with the

number of components.

Our proposed framework has five parts as depicted in Figure 4.1. The Figure is identical

to Figure 1.1 in the introduction. However, this time we will go through the parts of the

framework in the order they are presented in this thesis. The order of the five parts is as

follows:

L1) The specification in CSP

36

Communicating
Sequential Processes

Communicating
Unstructured Code

write/
compile
program

show with
Hoare calculus

Shared Variables

substitute
abstract

communication
with handshake

protocol

general proof with
handshake refinement

L1

L3

L2

P1

P2

Figure 4.1: Overview

L2) Our intermediate language CUC

P1) Our Hoare calculus to relate CSP and CUC

L3) Our low-level language SV

P2) Our handshake refinement to relate CUC and SV

L1) We use CSP as abstract specification language and extend the notion of CSP refinement

to unstructured low-level code. We require our specification language to model concurrency,

communication and non-termination. Especially important in concurrent settings is (con-

current) compositionality: The ability to reason about the components individually and

compose the results. All of these properties are core to CSP. CSP is also suited for an

iterative development process. Its notion of refinement allows us to relate abstract and more

specific CSP models while preserving safety and liveness properties across abstraction levels.

However, CSP refinement is only defined between CSP processes. With our extension of the

refinement notion of CSP to relate CSP processes and unstructured low-level code, we close

the verification gap from abstract specification language to executable low-level language.

We focus on liveness properties in terms of stable failures. We discuss in Future Work

(see Section 8.3) that our framework can be extended to also reason about divergences, which

additionally capture livelocks

We assume the CSP specification to be refined to an “implementation”-level within the

standard CSP refinement. In particular, we only permit top-level parallelism. Furthermore,

as we relate the specification and the implementation by their communication behavior,

we focus on communication events. We ignore observational events, which do not have a

direct counterpart in programs and, thus, would require annotations. Our approach is fully

compatible with observational events and can be extended if needed.

37

L2) We define our intermediate language CUC, which combines low-level instructions to

change the state and the control flow with the abstract communication mechanism of CSP.

This enables us to focus on the internals of each component separately while retaining the

compositionality of the communication mechanism of CSP. The abstract communication

can later be instantiated with different protocols. We define operational and denotational

semantics for CUC and show their correspondence. The denotational semantics for CUC

consist of a traces semantics to formulate safety properties and a stable failures semantics to

formulate liveness properties.

P1) We present a Hoare calculus to relate a CSP process and a CUC program via their

communication behavior (their stable failures). As CUC uses the communication mechanism

of CSP, we can rely on the compositionality of the parallel operator of CSP and relate the CSP

process and the CUC program for each component individually, retaining the (concurrent)

compositionality of CSP. CSP processes and low-level programs are structurally different.

Especially due to the fact that in CSP internal computations are abstracted away and in a

low-level program they usually constitute the largest part. To overcome this problem, we first

state an intermediate property, i. e., a property that is only true for the stable failures of the

CSP process under consideration, and prove that it is sufficient (in the mathematical sense).

We call this intermediate property “sufficient property”. Then, we use our Hoare calculus to

show this sufficient property correct for the CUC program. This approach has the benefits

that a) it is modular, i. e., another low-level representation can be used to fulfill this sufficient

property, and b) using our Hoare calculus, we can reason (sequentially) compositionally

about the low-level code. With our Hoare calculus, we can reason about communicating

and non-terminating programs, by using and showing the sufficient property as an invariant.

Currently, the formulation of the sufficient property has to be done manually. Its proof with

respect to the CSP process can be conducted with mechanical assistance in Isabelle/HOL.

L3) We define our low-level language SV. One way to implement multiple communicating

components is to use a single machine with a thread-like structure and shared memory.

Our low-level language SV has local memory for each component and shared memory for

inter-thread communication. SV differs from CUC in that it does not have the abstract

communication instruction. Instead, it has instructions to read from and write to shared

memory and an atomic compare-and-set instruction. With SV, we cover a large subset of

common low-level instructions, i. e., instructions from common Instruction Set Architectures.

P2) We present an example of how to show the relation between CUC and SV. To this end,

we consider a simple handshake protocol that implements the synchronous communication of

two parties over a channel. Therefore, we restrict the multi-way communication of CUC to

unidirectional channels. We define our notion of handshake refinement. Its idea is rooted

in bisimulation. However, it takes into account the emulation of the communication, which

is distributed over multiple steps and multiple components, making it asymmetric. Our

handshake refinement preserves safety and liveness properties. We define the notion of an SV

program fitting a CUC program, which can be automated with a simple syntax check. We

prove a theorem that relates every CUC program to its fitting SV programs. This enables us

to consider the whole system without losing the compositional nature of the overall approach

38

to relate CSP and SV. The only global properties we need for the application of the theorem

are a separation of local and shared memory as well as the injectivity of the mapping from

names of channel variables to actual shared variables within SV.

In this chapter, we have given an overview of our proposed framework and its parts.

We enable compositional reasoning by first keeping the compositional communication of

CSP from CSP to CUC, and then using a general theorem from CUC to SV. Thus, our

framework scales very well with the number of components, and even better for homogeneous

components, as individual refinements of components can be reused. In the next chapter, we

introduce CUC and show how to relate it with CSP.

39

Chapter 5

Communicating Unstructured

Code (CUC)

In order to bridge the verification gap between abstract specification and executable low-level

code, we choose a two-step approach. Our first step out of two to relate CSP with a low-level

language is to focus on the internal computations and keep the CSP communication. This

enables us to keep the (concurrent) compositionality of the communication of CSP, and

yet relate each process with a low-level program. To this end, we define Communicating

Unstructured Code (CUC), a language that combines low-level control flow with abstract

communication. The key idea is an abstract communication instruction comm that models

the CSP communication mechanism and thereby allows for concurrent compositionality.

Another key idea of CUC are its generic instruction schemes that can be instantiated to

many different instructions of actual instruction set architectures. Apart from the genericity,

the small number of instruction schemes allows for more manageable formalizations and

proofs.

In this chapter we present our notion of low-level code model (5.1), the syntax and

semantics of CUC (5.2 and 5.3), a Hoare calculus to reason about its possibly non-terminating

behaviors (5.4), and finally a method to show a stable failures refinement between a CSP

process and a CUC program (5.5).

We published a precursor to CUC without communication in [BJ14], the syntax and its

operational and traces semantics in [JGG15], and the stable failures semantics, the Hoare

calculus and the method to show the stable failures refinement in [JGG16].

All results of this chapter apart from the concurrent cases in Theorems 5.1 and 5.2 are

formalized in Isabelle/HOL in [BBD+19], although we reworked the semantics in this thesis

for better presentation. The proof for the concurrent cases in Theorems 5.1 and 5.2 can

be found in the Appendix A.1. All definitions, assumptions, lemmas and theorems that

are included in the Isabelle/HOL formalization in one form or another (sometimes only

implicitly) are marked with the following symbol: . If they are only partly included in

the Isabelle/HOL formalization (such as the aforementioned theorems), they are marked

with
∗
. In Appendix A.3, we give a mapping from the formalization in this thesis to the

formalization in the Isabelle/HOL formalization.

40

5.1. Low-Level Code Model

5.1 Low-Level Code Model

In this section, we describe our understanding of a low-level code model and discuss briefly

which concepts our framework supports. The aim of our framework is to cover all abstract

concepts of low-level languages. Our framework aims at the level of Instruction Set Architec-

tures, as these are the lowest level of software. Current instructions sets all cover similar

abstract concepts. We choose the instruction set of RISC-V [WA17] as an exemplary assembly

language for illustration for the following reasons: RISC-V is the subject of current research

(e. g., [PKND18, FRC+18, Cho18]) and it is also very interesting for the industry: The board

of directors of the RISC-V foundation includes companies like Google, NVIDIA, NXP, and

Western Digital and several large scale implementations are planned [Ros18].

We aim at formalizing low-level user level programs (i. e., not interactions with the

operating system). According to [Wat16], the user level instructions of RISC-V can be

divided into the following categories of instructions (including both the base instruction set

and the extensions). We group the categories into three kinds. We discuss afterwards how

we intend to cover each kind of instructions.

I: State Transformations:

• System instructions, which include a system call, a breakpoint, and read and/or

write access to control and status registers.

• Computations, of arithmetic or logical nature

• (Optimized) Integer Multiplication and Division

• Floating-Point Arithmetics.

• Memory Access, e. g., load and store which transfer data between the registers

and the memory.

II: Control Flow, i. e., computed1 and uncomputed jumps

III: Multi-Processor Synchronization

I State Transformations: We consider the program counter, the (local) registers, and

the (shared) memory as the state of the system under consideration. The instructions

grouped under State Transformations modify the state. All instructions additionally increase

the program counter by one instruction. As we are interested in covering the abstract

concepts of low-level languages represented by the three kinds of instructions I, II and III,

we use an abstract representation of the local state consolidating both registers and the local

memory. This enables the instantiation of our framework with different memory models

and simplifies our proofs. We use a mapping from names to values to model the state

(apart from the program counter). In low-level terms, this would correspond to a direct

addressing of separated memory blocks (i. e., pointer arithmetics is not possible). However,

in Section 8.3, we discuss the possibility to replace the abstract representation of the state

with a more fine grained representation, taking the separation of register and memory into

account, as well as block sizes. Most instructions, e. g., arithmetic and boolean operations,

1They are called conditional branches in RISC-V. However, they read the jump target from a register.
To avoid confusion with the conditional branch instruction we define in Section 5.2 which has fixed jumps
targets, we call the RISC-V command computed jump.

41

5.1. Low-Level Code Model

transfer of data between different parts of the state, or setting of special registers, can be

modeled as a transformation of the function representing the state. We use an instruction

scheme to model state transformations. This instruction scheme can be instantiated to match

the desired instructions. This enables us to represent all state transformations by a single

instruction scheme, which vastly reduces the formalization efforts, while being applicable

to many instruction sets. We do not model system calls, as we do not model the operating

system.

II Control Flow: Control flow at the ISA level consists of modifying the program counter.

There are uncomputed jumps, which always jump to the same target, and there are conditional

and computed jumps, which jump to different targets based on a condition or a previous

computation. Our framework covers conditional jumps with fixed jump targets. Thus,

control flow depending on the current state is possible, but the jump targets cannot be

computed (i. e., read from a regular register). Our framework does not cover computed

jumps. However, in Section 8.3 we argue that computed jumps can be integrated into our

framework using the technique of Control Flow Integrity [ABEL05] that limits the legal

jump targets for computed jumps and is a standard feature of current compilers. The same

expressiveness of choosing from a list of possible jump targets can be constructed in the

current framework by chaining conditional jumps. Uncomputed jumps can be modeled using

conditional jumps. Note that we cannot model directly the jump-and-link instructions of

RISC-V, which modify the program counter and a register, as we choose to separate control

flow from state transformations for cleaner semantics and proofs. Conceptually, we can

combine control flow and state transformations into one instruction scheme, which we leave

for future work.

III Multi-Processor Synchronization: The category of multi-processor synchronization

contains instructions to explicitly synchronize components or avoid data races. To this end,

it is necessary to inspect a shared variable (called a semaphore) and set it subsequently in

an atomic fashion, i. e., without another component modifying the resource in the meantime.

In the first step of our framework, which is described in this chapter, we use an abstract

communication instruction. In the second step of our framework, which is described in

Chapter 6, we model the multi-processor synchronization with the instruction compare-and-

set (cas) to cover this concept. It compares the value of a shared variable with a given

value. If the two values match, the shared variable is set to a third value. RISC-V uses

the two instructions load-reserve and store-conditional to construct atomic operations. The

instruction load-reserve loads a value from memory and marks the address as reserved. The

instruction store-conditional attempts to store a value, but only succeeds, if the address in

memory is still reserved. The compare-and-set operation can be implemented using load-

reserve and store-conditional. While the combination of load-reserve and store-conditional

is a bit more flexible than compare-and-set, they fulfill the same role to construct atomic

complex operations. The drawback of the combination of load-reserve and store-conditional is

that in general its naive use tends to create livelocks. According to [Wat16], the livelocks can

be prevented by complying to certain restrictions, e. g., limiting the number of instructions

between load-reserve and store-conditional and requirements to the implementation of the

architecture. We use the instruction compare-and-set as it requires less instructions than

42

5.2. Syntax and Semantic States

the combination of load-reserve and store-conditional, which helps us to keep the instruction

set and programs small and simple. Furthermore, we do not have to consider the additional

requirements to prevent the livelocks. We leave the replacement of the cas instruction with

the load-reserve and store-conditional instructions in our framework for future work.

Having discussed how we intend to cover the different aspects of low-level code, we make a

brief note on the unstructured nature of low-level code.

We consider unstructured programs, which do not have structuring statements known

from high-level languages such as if-then or while. We consider branching instructions as

“normal” instructions that modify the program counter, which points to the instruction which

is to be executed next. Thus, when we combine two instructions, we might create a loop.

Therefore, our sequential composition operator ⊕ which we introduce in Section 5.2 also

serves as looping construct.

In this section, we have described our understanding of low-level code and discussed to

what extend and in which manner we aim at modeling it. We identified three kinds of

instructions and cover all of them with some restrictions. In the next sections, we present

the syntax and semantics of our low-level language with abstract communication CUC.

5.2 Syntax and Semantic States

In this section, we present the semantic states of CUC, its instructions and consequently its

programs. We give informal semantics for the instructions.

In Definition 5.1, we provide basic data types that we use throughout the thesis. The

semantics operates on (concurrent) states (σ ∈ States) that are either local states (σ ∈
LStates) or a concurrent composition of states (States ∥ States). We define the concurrent

states recursively with a tree structure (instead of in a set or list), as it makes it more

amenable for future definitions and proofs. If needed, the “concurrency trees” can be

flattened to a set or list. The local states each have a data store (ds ∈ DS) and a program

counter (pc ∈ Labels). The data store is modeled as a function from names to values. If

needed, it can model separate parts, e. g., registers and memory. We usually simply refer

to registers stored in the data store. The program counter points to the instruction that is

to be executed next. We denote the data store of a local state σ with σds and its program

counter with σpc . Communication is done via events ev from an alphabet Σ, which we define

as in CSP. We also define the set of boolean values B.

43

5.2. Syntax and Semantic States

Definition 5.1: Basic Data Types

DS := Names → Values

Labels := N
LStates := Labels ×DS

States := LStates | States ∥ States
Σ (the set of all events)

B := {true, false}

The language CUC consists of three instruction schemes: A (non-deterministic) state

transformation do, a conditional branch instruction cbr, and an abstract communication

instruction comm. Let P(S) denote the power set of the set S.

Definition 5.2: Instructions of CUC

Instructions := do f f : DS →P(DS)

| cbr b m n b : DS → B, m, n : Labels
| comm fev fds fev : DS →P(Σ), fds : DS × Σ→ DS

do f takes the current state and defines the possibly multiple successor states by f . The

program counter is increased by one. We restrict f to always yield at least one successor

state.

Assumption 5.1: At Least One Successor State

∀ ds ∈ DS . f(ds) ̸= ∅

Example 5.1: Instantiations of do f

do f can be instantiated to model common instructions such as e. g., add, load (ld) or

store (sd) from RISC-V. Let ds[x := v] be the function that maps x to v and otherwise

maps names to values as ds does. For load and store, we model the difference between

registers and memory with name spaces, i. e., R.x is a register address and M.x is a

memory address. do f can also be used to model reading data of type T from a sensor.

add c a b := do λds . {ds[c := ds(a) + ds(b)]}
sd R.v M.x := do λds . {ds[M.x := ds(R.v)]}
ld R.x M.v := do λds . {ds[R.x := ds(M.v)]}

read sensor x := do λds . {ds[x := v] | v ∈ T}

44

5.2. Syntax and Semantic States

cbr b m n evaluates the predicate b on the current state and, if true, sets the pc to m,

otherwise to n.

Example 5.2: Instantiations of cbr b m n

Under the assumption that each instruction has a unique label ℓ, cbr can be instantiated

to BEQ (branch if eqal) or CJ (compressed jump). BEQ branches if the values stored in the

registers r1 and r2 are equal and CJ unconditionally jumps. Let “ ” denote an unused

and therefore arbitrary value.

ℓ : BEQ r1 r2 offset := cbr
(
λds. ds(r1) = ds(r2)

)
(ℓ+ offset) (ℓ+ 1)

ℓ : CJ offset := cbr (λds. true) (ℓ+ offset)

comm fev fds uses fev to determine from the current state which events it offers to communi-

cate. fds is used to update the data store depending on the communicated event. In contrast

to do f , the successor state is determined deterministically for simplicity.

Example 5.3: Instantiations of comm fev fds

The instruction comm can be instantiated, e. g., to send a value stored in a variable over

channel out , to receive a value of type T over channel in and store it in a register, or to

select between sending a value on one channel or receiving a value on another channel. Note

that, as we use CSP communication, the only difference between “sending” and “receiving”

a value is in the number of offered events. In Section 6.2, we introduce restrictions to

obtain “true send/receive semantics”. As we use the communication mechanism of CSP,

we use the val function, as already defined in Section 2.6, to extract the value of an event.

send x := comm (λds. {out .v | v = ds(x)}) (λds ev . ds)

receive x := comm (λds. {in.v | v ∈ T}) (λds ev . ds [x := val(ev)])

select x := comm (λds. {in.v | v ∈ T} ∪ {out .v | v = ds(x)})
(λds ev . if ev = in.v then ds[x := v] else ds)

Based on these three instruction schemes, we can define entire programs as follows. A local

CUC program lp ∈ LP is a set of labeled instructions, i. e., pairs of labels and instructions.

Definition 5.3: Local Program lp

LP := P(Labels × Instructions)

45

5.2. Syntax and Semantic States

Example 5.4: Local Program lpex

lpex :=
{(

1, do (λds . {ds[x := 5]})
)
,(

2, comm (λds. {a.ds(x)}) (λds ev . ds)
)
,(

3, cbr (λds. true) 2 2
)}

A program is a set of labeled instructions. The instruction at Label 1 sets the register x

to 5. The instruction at Label 2 communicates the value of register x over channel a. The

instruction at Label 3 jumps back to label 2. If started with a state with the program

counter set to 1, the overall program communicates a.5 indefinitely.

We require the labels for lp ∈ LP to be unique, i. e., the same labels imply the same

instructions.

Assumption 5.2: Uniqueness of Labels

(ℓ, ins1) ∈ lp ∧ (ℓ, ins2) ∈ lp =⇒ ins1 = ins2

To talk about the labels of a program and in particular to determine whether a pc does

point into a program, we define a function that returns the labels of a program.

Definition 5.4: Labels of a Program labels

labels(lp) := {ℓ | ∃ ins . (ℓ, ins) ∈ lp}

We write ℓ ∈pc lp := ℓ ∈ labels(lp).

Example 5.5: Labels of a Program

labels(lpex) = {1, 2, 3}

2 ∈pc lpex

To define concurrent programs cp ∈ CP from multiple local programs, we define an

operator to combine programs into concurrent programs. For compatibility with CSP, we

use its alphabetized parallel operator, which defines the communication interfaces for each of

the two (concurrent) programs.

Definition 5.5: Concurrent Program cp

CP := LP | CP P(Σ)∥P(Σ) CP

46

5.2. Syntax and Semantic States

Note that we only allow the concurrent combination of local or concurrent programs.

Inside a local program, we do not allow for concurrency. This allows for reasoning about

purely sequential components. We could flatten the tree and obtain a set of local programs.

Creation of a finite number of new components can be mimicked by activating idle components

via communication.

Example 5.6: Concurrent Program cpex

lp′
ex :=

{(
1, comm (λds. {a.v|v ∈ T}) (λds ev . ds[y := val(ev)])

)
,(

2, cbr (λds. true) 1 1
)}

cpex := lpex {a.v|v∈T}∥{a.v|v∈T} lp′
ex

For a given concurrent state and its associated concurrent program we always assume that

they have the same ∥-tree structure. This allows for a uniform handling of the concurrent

structures.

Assumption 5.3: Same Tree Structure

For a given concurrent state and its associated concurrent program, we always assume

that they have the same tree structure, i. e., they are isomorphic.

To facilitate (sequentially) compositional reasoning about CUC programs, we use a

technique from Saabas and Uustalu [SU05] to define a tree structure on CUC programs which

yields structured programs sp ∈ SP . To “forget” the structure we define the unstructuring

function U . Similar to the labeled instructions, a single instruction is a pair of a label (from

Labels) and an instruction (from Instructions). We use the operator ⊕ to denote sequential

composition. We will use this structure for the denotational semantics (in 5.3.3 and 5.3.4)

and the Hoare calculus (in 5.4). Different structures of the same labeled instructions have

the same semantics, as we show in Corollary 5.1.

Definition 5.6: Structured Program sp

SP := Labels × Instructions | SP ⊕ SP

Example 5.7: Structured Program spex

spex :=
(
1, do (λds. {ds [x := 5})

)
⊕
((

2, comm (λds. {a.ds(x)}) (λds ev . ds)
)

⊕
(
3, cbr (λds. true) 2 2

))
It follows from Corollary 5.1 that ⊕ is associative, so we can use parentheses as we see

47

5.2. Syntax and Semantic States

Example 5.7: Structured Program spex

fit. Note that ⊕ allows for the construction of loops. In this example, there is a loop

containing the instructions at Label 2 and Label 3.

Definition 5.7: Unstructuring Function, U

U(ℓ, ins) := {(ℓ, ins)}
U(sp1 ⊕ sp2) := U(sp1) ∪ U(sp2)

To talk about the labels of a structured program, and in particular to determine whether

a pc does point into a structured program, we overload the labels function.

Definition 5.8: Labels of a Structured Program labels

labels(sp) := labels(U(sp))

Again we write ℓ ∈pc sp := ℓ ∈ labels(sp).

We also require uniqueness of labels for sp.

Assumption 5.4: Uniqueness of Labels for sp

(ℓ, ins1) ∈ U(sp) ∧ (ℓ, ins2) ∈ U(sp) =⇒ ins1 = ins2

We define a structured concurrent program scp ∈ SCP similar to the (unstructured)

concurrent programs. Again, we only allow the concurrent composition of (local) structured

programs and structured concurrent programs (also called top-level parallelism/concurrency),

not within (local) structured programs. We also assume that the concurrent states and the

associated structured concurrent programs have the same tree structure (Assumption 5.3).

Definition 5.9: Structured Concurrent Program scp

SCP := SP | SCP P(Σ)∥P(Σ) SCP

Example 5.8: Structured Concurrent Program scpex

We define sp′
ex and compose it concurrently with spex from Example 5.7.

sp′
ex :=

(
1, comm (λds. {a.v|v ∈ T}) (λds ev . ds[y := val(ev)])

)
⊕
(
2, cbr (λds . true) 1 1

)
scpex := spex {a.v|v∈T}∥{a.v|v∈T} sp′

ex

48

5.3. Semantics

Having defined semantic states and CUC programs, we proceed to define their semantics

in the next section.

5.3 Semantics

We give three semantics for CUC. First, an operational (small-step) semantics in Subsec-

tion 5.3.1. It reflects the intentions of the instructions clearly and is well-suited for proofs

that reason about single steps (e. g., bisimilarity proofs). To account for the fact that all

instructions are possible jump targets, our operational semantics is only defined for the

whole code. It follows that it is not sequentially compositional. Second, we also define

two compositional (both sequentially and concurrently), denotational semantics: The traces

semantics in Subsection 5.3.3 and the stable failures semantics in Subsection 5.3.4. They

share important properties with their CSP counterparts that we use to formally relate CSP

and CUC in Section 5.5. The traces semantics enables the traces refinement which preserves

safety properties. The stable failures semantics enables the stable failures refinement which

preserves liveness properties. The Hoare calculus in Section 5.4 is defined on top of the stable

failures semantics.

5.3.1 Operational Semantics

The operational semantics of local and concurrent programs in CUC is depicted in

Definition 5.10. It contains three kinds of rules: 1) Those for local steps (do, cbr, comm),

2) those for concurrent steps (sync, interleaving-left, interleaving-right), and

3) those for executions (exec-0, exec-ev, exec-τ). It is defined on programs in LP and

CP , respectively.

The local steps (do, cbr, comm in Definition 5.10) agree on the informal descriptions from

the last section. The first assumption of each rule ensures that the respective instruction is

in the labeled instruction set and that the pc points to it. do and cbr are internal transitions

and labeled with τ . In do, the data store is updated according to the function f . Multiple

different successor states might be possible. The program counter is increased by one. In

cbr, the data store remains unchanged and the program counter is set according to the

evaluation of the predicate b. The transition of comm is labeled with the communicated

event ev . In comm, the set of possible events is given by the function fds . The data store is

updated according to the function fds which depends on the communicated event ev . The

program counter is increased by one.

The concurrent steps (sync, interleaving-left, interleaving-right in Definition 5.10)

are similar to those of CSP. In sync, both components offer the same event ev if the event ev

is in both their communication interfaces. In interleaving-left σ1 offers the event ev , but

it is allowed to make the transition independently of σ2, as ev is not in the communication

interface of σ2. interleaving-right is analogous.

49

5.3. Semantics

Definition 5.10: Operational Semantics of CUC

(σpc , do f) ∈ lp σ′
ds ∈ f(σds) σ′

pc = σpc + 1

σ
τ−→lp σ

′ do

(σpc , cbr b m n) ∈ lp σ′
ds = σds b σ ∧ σ′

pc = m ∨ ¬b σ ∧ σ′
pc = n

σ
τ−→lp σ

′ cbr

(σpc , comm fev fds) ∈ lp ev ∈ fev (σds) σ′
ds = fds(σds , ev) σ′

pc = σpc + 1

σ
ev−→lp σ

′ comm

σ1
ev−→cp1 σ

′
1 σ2

ev−→cp2 σ
′
2 ev ∈ α1 ∩ α2

σ1 ∥ σ2
ev−→(

cp1α1∥α2cp2

) σ′
1 ∥ σ′

2

sync

interleaving-left

σ1
ev−→cp1 σ

′
1 ev ∈ (α1 ∪ {τ}) \ α2

σ1 ∥ σ2
ev−→(

cp1α1∥α2cp2

) σ′
1 ∥ σ2

interleaving-right

σ2
ev−→cp2 σ

′
2 ev ∈ (α2 ∪ {τ}) \ α1

σ1 ∥ σ2
ev−→(

cp1α1∥α2cp2

) σ1 ∥ σ′
2

exec-0

σ
⟨⟩
=⇒cp σ

exec-ev

σ
tr′
=⇒cp σ

′′ σ′′ ev−→cp σ
′ tr′⌢⟨ev⟩ = tr

σ
tr
=⇒cp σ

′

exec-τ

σ
tr
=⇒cp σ

′′ σ′′ τ−→cp σ
′

σ
tr
=⇒cp σ

′

∗

50

5.3. Semantics

The execution semantics (exec-0, exec-ev, exec-τ in Definition 5.10) is defined starting

with the trivial execution, i. e., the empty trace (exec-0), and then prepending either

visible steps and the communicated event to the trace (exec-ev), or prepending invisible

steps and leaving the trace unchanged (exec-τ). Execution relations can be defined either

by prepending or by appending single steps. As we only consider finite executions (as in

CSP2), they are equivalent. We choose to append single steps, as this eases the proofs of

correspondence with the denotational semantics. The execution semantics describes possibly

partial executions. If we want to talk about a terminating execution, we use an additional

condition that the pc of the final state does not point into the code:

Definition 5.11: Terminating Execution

An execution tr is final if and only if σ
tr
=⇒cp σ

′ ∧ σ′
pc ̸∈pc cp.

In Example 5.9 we illustrate the operational semantics of CUC using the program cpex
from Example 5.6. In this subsection, we have defined the operational semantics for CUC.

It gives the formal intuition of CUC. The operational semantics of CUC is very similar

to the operational semantics of CSP in that it is labeled, concurrent composition requires

communication interfaces, and it has interleaving steps and synchronous steps. In the next

subsection, we give a brief introduction on how to construct denotational semantics for non-

terminating programs using fixpoints. We use fixpoints for the definition of the denotational

semantics of CUC in the subsequent subsections.

5.3.2 Defining Denotational Semantics with Fixpoints

In this subsection, we describe how to use fixpoints to construct denotational semantics for

non-terminating programs.

In contrast to operational semantics, which describe how single instructions manipulate

the state, in denotational semantics each program is assigned a function (its denotation)

which maps an initial state to the meaning of the program. This can be, e. g., a final state or

a set of traces as in the case of CSP or a set of state-trace pairs as in the semantics of CUC

we define in the next subsection.

To be able to assign a denotation to programs containing loops, a function extend from

denotation to denotation is considered, which extends the denotation with the semantics for

one execution of the loop. The least fixpoint of this function extend is then the denotation

of the program containing the loop. The initial denotation, i. e., the bottom element of the

complete partial order of denotations, is the function that maps every input to the empty set.

To define a least fixpoint (and ensure its existence3), we use a chain-complete partial order

on the denotations. A partial order is chain-complete, if every chain has a least upper bound

(in the carrier set of the partial order). The chain-complete partial order on the denotations is

usually obtained by lifting the chain-complete partial order on the result of the computations,

2In the semantical models of CSP we consider, i. e., traces and stable failures, the infinite executions are
modeled with all finite prefixes of infinite executions.

3The existence of fixpoints for chain-complete partial orders is ensured by the Kleene fixpoint theorem,
which can be found, e. g., in [Win93].

51

5.3. Semantics

Example 5.9: Operational Semantics of cpex

We illustrate the operational semantics of CUC by giving the labeled state graph for
program cpex . We first repeat the definition of cpex for convenience.

lpex :=
{(

1, do (λds . {ds[x := 5})
)
,(

2, comm (λds. {a.ds(x)}) (λds ev . ds)
)
,(

3, cbr (λds. true) 2 2
)}

lp′
ex :=

{(
1, comm (λds. {a.v|v ∈ T}) (λds ev . ds[y := val(ev)])

)
,(

2, cbr (λds. true) 1 1
)}

cpex := lpex {a.v|v∈T}∥{a.v|v∈T} lp′
ex

We indicate the executed instruction in parenthesis after the event, e. g., τ(do) stands
for the event τ that was caused by the instruction do being executed. Let both the
program counters of the concurrent initial state σ∥ = σ ∥ σ′ point to the first instruction

(σpc = σ′
pc = 1). From there, lpex executes do, reaching σ1

∥ = σ1 ∥ σ1′, where σ1
pc = 2

and σ1
ds = σds [x := 5]. Then both components synchronously communicate a.5 and reach

σ2
∥. Afterwards, the cbr instructions of lpex and lp′

ex (indicated as cbr′) are executed

interleaved and passing via σ3
∥ or σ4

∥, respectively, reach again σ1
∥.

σ∥

σ1
∥

τ (do)

σ2
∥

a.5 (comm ∥ comm′)

σ3
∥

τ (cbr)

σ4
∥

τ (cbr′)

τ (cbr′) τ (cbr)

52

5.3. Semantics

i.e., the co-domain of the denotations. In general, the resulting denotation may not be

computable in finite time, but fixpoint induction can be used to reason about properties

of denotations of programs containing loops. Fixpoint induction (or Scott induction, e.g.,

in [Win93]) requires the function extend to be continuous, and the property of interest I to

be admissible. A function is continuous if the application of the function and the application

of the supremum of a chain are interchangeable. A property is admissible, if the property

holding for all elements of a chain implies that the property also holds for the supremum of

the chain. The fixpoint induction then consists of showing the base case and the step case,

like a regular induction.

To define the denotational semantics of CUC in Section 5.3 we lift the subset relation

on sets (of trace-state pairs or failures) to functions and use the point wise subset relation

to define a partial order on functions on sets (of trace-state pairs or failures). For any two

functions f and g that map from sets to sets, we define the partial order as follows, where S

ranges over all possible sets (of trace-state pairs or failures)

f ≤ g := ∀S. f(S) ⊆ g(S)

Both partial orders are chain-complete: The subset relation is chain-complete and the

point-wise subset relation, too, as it disjointly combines chain-complete partial orders.

In this subsection, we have described how to use fixpoints to construct denotational

semantics for non-terminating programs. We use fixpoints to construct the traces semantics

and the stable failures semantics of CUC. In the next subsection, we define the traces

semantics for CUC, which allows us to consider all behaviors of a (concurrent) program at

once. It allows for the formulation of safety properties.

5.3.3 Traces Semantics

In this subsection, we define the traces semantics for CUC. We first give the operational

characterization of the traces semantics and then the traces semantics itself. In Theorem 5.1,

we show that they both describe the same behaviors.

Definition 5.13: Operational Characterization of the Traces of CUC

The traces semantics of CUC captures all traces tr that can be observed when running

the program cuc starting in the state σ.

tr ∈ Tcuc(σ) := ∃σ′. σ
tr
=⇒cuc σ

′

The (denotational) traces semantics differs in three important aspects from the operational

semantics: 1) It allows us to determine first the semantics of single components and then

combine them to a concurrent semantics, making it concurrently compositional. 2) It also

allows us to compose the semantics of parts of a program, making it sequentially compositional.

3) It captures non-terminating behaviors, by considering all finite (partial) behaviors.

The traces semantics is depicted in Definition 5.12. Similarly to the operational semantics,

it contains the same three kinds of rules, albeit in different order: 1) The local single steps

(T -do, T -cbr, T -comm), 2) the (local) semantics for multiple steps (T -seq, T -ext),

53

5.3. Semantics

Definition 5.12: Traces Semantics of CUC

T -do
Jℓ, do fKT (S) := S ∪

{
(tr, σ′)

⏐⏐(tr, σ) ∈ S ∧ σpc = ℓ ∧
σ′
ds ∈ f(σds) ∧ σ′

pc = σpc + 1
}

T -cbr

Jℓ, cbr b m nKT (S) := S ∪
{
(tr, σ′)

⏐⏐⏐(tr, σ) ∈ S ∧ σpc = ℓ ∧

σ′
ds = σds ∧

(
b σ ∧ σ′

pc = m ∨ ¬b σ ∧ σ′
pc = n

)}
T -comm
Jℓ, comm fev fdsKT (S):= S ∪

{
(tr′, σ′)

⏐⏐(tr, σ) ∈ S ∧ σpc = ℓ ∧
ev ∈ fev (σds) ∧ tr′ = tr⌢⟨ev⟩ ∧
σ′
ds = fds(σds , ev) ∧ σ′

pc = σpc + 1
}

T -seq
Jsp1 ⊕ sp2K

T :=
(
µd. extend(sp1, sp2) (d)

)
T -ext

extend(sp1, sp2) (d) := λS. S ∪ d
(
Jsp1K

T (S)
)
∪ d
(
Jsp2K

T (S)
)

T -par
Jscp1 α1

∥α2
scp2K

T (S) =
{
(tr, σ′

1 ∥ σ′
2)
⏐⏐ (⟨⟩, σ1 ∥ σ2) ∈ S ∧

(tr |̀ α1, σ
′
1) ∈ Jscp1K

T ({(⟨⟩, σ1)}) ∧
(tr |̀ α2, σ

′
2) ∈ Jscp2K

T ({(⟨⟩, σ2)}) ∧
set(tr) ⊆ (α1 ∪ α2)

}

54

5.3. Semantics

and 3) the concurrent composition (T -par). It is defined for programs in SP and SCP ,

respectively.

The idea of the traces semantics is to describe all behaviors of a CUC program at once,

both in terms of partial executions of possibly non-terminating executions and in terms of

alternative behaviors due to different interactions between components or non-determinism.

Similarly to CSP, to account for the multitude of behaviors, we express the traces semantics

as a set of pairs of traces and states. We require a state with every trace, as CUC is stateful

in contrast to the stateless CSP. The intuition of the pair is that the trace leads to the state.

The traces semantics is defined as a semantic function J·KT that maps a structured

(concurrent) CUC program to its denotation. The denotation is a function mapping from a

set of trace-state pairs to a set of trace-state pairs. Intuitively, J·KT assigns every program a

function that takes a set of trace-state pairs and computes (the reflexive, transitive hull of)

the successor pairs.

J·KT : SCP →
(
P(Σ∗ × States)→P(Σ∗ × States)

)
Requiring sets also as inputs to the denotations allows us to chain denotations directly and

facilitates an elegant formulation of the sequential composition (T -ext). For compatibility

with CSP in Section 5.3.5, we require the inclusion of the empty trace and prefix closure of

traces. To this end, we assume that the traces of all initial trace-state pairs are empty, i. e.,

when we look at the semantics of a whole program, we require the initial traces to be empty.

Assumption 5.5: Empty Initial Traces

When considering the denotational semantics of an entire program, we assume that all

traces in the input set are empty.

∀ s ∈ Sinit . ∃σ. s = (⟨⟩, σ)

The semantics of the (local) single step rules T -do, T -cbr, and T -comm (cf. Defini-

tion 5.12) are very similar to their operational semantics counterparts. For all states where

the pc points to the label ℓ of the respective instruction, all successor states are computed

from the respective instruction as defined in the operational semantics and are added to the

resulting set. In T -comm, the trace is extended with the communicated event.

The semantics of the sequential composition (T -seq and T -ext in Definition 5.12) are

different from the execution semantics. We use (parts of) a structured program instead of the

whole program as a labeled instruction set. The function extend, defined in T -ext, extends
a given denotation d with the executions of the two components sp1 and sp2 respectively.

Recall that a denotation is a function mapping input trace-state pairs to output trace-state

pairs. Thus, a denotation is of the same type as, e. g., Jℓ : do fKT . With the help of extend,

we describe in T -seq the sequential composition ⊕ which is modeled as fixpoint of extend

and thus as the repeated, possibly alternating application of the two components sp1 and

sp2. We use the µ operator to denote the least fixpoint of a denotation. The underlying

55

5.3. Semantics

chain-complete partial order is the point-wise subset relation. Note that ⊕ is also the looping

construct as every part of code can contain branch instructions.

Example 5.10: T -seq and T -ext

We illustrate the rule T -seq and T -ext with an example, which is a simplified version of

sp′
ex . Consider the initial trace-state pair (⟨⟩, σ) with σpc = 1 and the program(

1, comm (λds . {a}) (λds ev . {ds})
)
⊕
(
2, cbr (λds. true 1 1)

)
It is a non-terminating program communicating a repeatedly with its environment. Ac-

cording to T -extend, both instructions are evaluated separately, where initially comm

modifies the set accordingly (e. g., append a to the trace) and cbr does nothing, as σpc
does not point to it.

J1, comm...KT
(
{(⟨⟩, σ)}

)
= {(⟨⟩, σ), (⟨a⟩, σ[pc := 2])}

J2, cbr...KT
(
{(⟨⟩, σ)}

)
= {(⟨⟩, σ)}

In the next iteration of the fixpoint iteration, both instructions are again executed. This

time comm does nothing (new) but cbr will now generate trace-state pairs whose program

counter points to comm, so in the next iteration the loop will be executed from the

beginning.

J1, comm...KT
(
{(⟨⟩, σ), (⟨a⟩, σ[pc := 2])}

)
= {(⟨⟩, σ), (⟨a⟩, σ[pc := 2])}

J2, cbr...KT
(
{(⟨⟩, σ), (⟨a⟩, σ[pc := 2])}

)
= {(⟨⟩, σ), (⟨a⟩, σ[pc := 2]), (⟨a⟩, σ)}

As a global fixpoint we get the following set of trace-state pairs, where ⟨a⟩∗ denotes the

trace of 0 or more repetitions of the event a.

J(1, comm...)⊕ (2, cbr...)KT
(
{(⟨⟩, σ)}

)
= {(⟨a⟩∗, σ), (⟨a⟩∗, σ[pc := 2])}

We define the concurrent semantics as close a possible to the concurrent CSP semantics.

The purpose is to inherit the (concurrent) compositionality of the parallel composition of

CSP and thus the compositionality of its refinement relation. This enables us to refine

each component separately. It is important to notice that we only define top-level parallel

composition. So, components can be composed in parallel, but may themselves not contain

parallel components. Remember that the nesting structure of a concurrent state matches the

nesting structure of a parallel program (Assumption 5.3). We choose alphabetized parallel

as the most general parallel combination in CSP that can be used to represent the other

two, namely interface parallel and interleaving. We closely follow the CSP definition of

alphabetized parallel and adjust it to CUC by adding the states. As we only allow top-level

composition, we consider only entire local programs and thus assume initial traces to be

empty (Assumption 5.5). In the same way as in CSP, the concurrent composition of two

components considers all interleavings of the traces of the components, synchronizing on the

given alphabets.

Having defined the denotational traces semantics, we show its correspondence to the

56

5.3. Semantics

operational characterization. When defining a denotational semantics, it is important to relate

it to the operational characterization to show its adequacy. We show correspondence between

the denotational traces semantics and its operational characterization by showing that the

traces semantics is sound and complete with respect to the operational characterization.

Informally, we show that, starting in an arbitrary state, the traces observable through

the execution semantics and the traces semantics of a given unstructured program and a

structured version of it are the same:

Theorem 5.1: Correspondence Between Operational Characterization and Traces Semantics

tr ∈ TU(scp)(σ)⇔ ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

) ∗

The proof for the concurrent case can be found in Appendix A.1.1. From the correspon-

dence we can directly conclude that the specific structure we chose for a program does not

change its semantics. This also implies commutativity and associativity of ⊕.

Corollary 5.1: Invariance Under Structure

U(sp1) = U(sp2) =⇒ Jsp1KT
(
S) = Jsp2KT (S)

The traces semantics defined in this subsection allows us to use the traces refinement

of CSP, which preserves safety properties. In contrast to the operational semantics, it is

compositional, both sequentially and concurrently. The safety properties ensure that “nothing

bad” happens. However, doing nothing ensures doing “nothing bad”, and, thus, preserves

all safety properties. This is not what we expect from an implementation. We expect that

“something good” happens, which is captured by liveness properties. Therefore, we require

also that liveness properties are preserved. Especially reactive systems are required to react

to user inputs or environment changes. In the next subsection, we define a stable failures

semantics. The corresponding stable failures refinement preserves also liveness properties.

5.3.4 Stable Failures Semantics

In this subsection, we define the stable failures semantics for CUC. The main advantage of

using the stable failures semantics is that it captures information about the communication

capabilities in addition to the observed behavior. Recording communication capabilities

allows for the formulation of liveness properties. As internal transitions could change the

offered communication, we consider only states where internal transitions are not possible.

Hence, they are called stable. To enable the use of a subset relation as refinement relation,

we do not record which events are offered, but which events cannot be offered. Hence, they

are called failures.

Our definition of the stable failures semantics of CUC is similar to the definition of the

traces semantics of CUC. The three important differences are 1) that we add distinct states

where the component is ready to communicate, 2) that we include refusal sets to capture

which communication events can be refused, and 3) that we only consider stable states for

57

5.3. Semantics

semantics. First, we motivate and define the necessary notions, and then we define the stable

failures semantics for CUC.

A failure is a triplet (tr , σ,X) consisting of a trace tr leading to a state σ where the events

in X can be refused. We explain and define the stable failures of CUC in the following. As in

CSP, we only include stable failures. A failure is stable, if it does not change unnoticed, thus, if

it cannot perform an internal action τ . Let cuc be a CUC program.

Definition 5.14: CSP-like Stable States of CUC

σ↓cuc:= ̸ ∃σ′. σ
τ−→cuc σ

′

Refusal sets are defined similarly to their CSP counterparts.

Definition 5.15: Refusal Set of CUC

A state σ refuses a set of visible events X in cuc, if it cannot perform any a ∈ X. Let

X ⊆ Σ.

σ refcuc X := ∀ a ∈ X. ̸ ∃σ′. σ
a−→cuc σ

′

Having defined stable states and refusal sets, we use them to define the operational charac-

terization of the stable failures of a CUC program cuc.

Definition 5.16: Operational Characterization of the Stable Failures of CUC

A stable failure of a CUC program cuc is a pair of a trace tr and a refusal set X. It

denotes that there is a stable state σ′ which can be reached from the initial state σ via

the trace tr and refuses X.

(tr , X) ∈ SFcuc(σ) := ∃σ′. σ
tr
=⇒cuc σ

′ ∧ σ′↓cuc ∧ σ′ refcuc X

We distinguish between two types of stable failures: Terminal failures, where the program

has ended, and communication failures, where the program is ready to communicate. However,

we cannot distinguish those two settings in the traces semantics of CUC, as we cannot

distinguish between “the pc points to comm” and “comm is ready to communicate and

offers certain communication events”. To facilitate the distinction, we introduce special

communication states (CStates). They have the same type (LStates) as the previously defined

local states, which we call now normal states for distinction. To distinguish the types of

normal states and communication states we extend the type of the normal states with “×{c}”
to obtain communication states. We define the sum-type of normal and communication

states (NCStates) as well as its concurrent composition (CNCStates) as usual. Let σ be a

(possibly concurrent) normal or communication state.

58

5.3. Semantics

Definition 5.17: Communication States

CStates := (Labels ×DS)× {c}
NCStates := LStates | CStates

CNCStates := NCStates | CNCStates ∥ CNCStates

In Definition 5.18, we introduce a predicate N(·) to test if a local state is normal, and a

function ·C which converts a normal state to a communication state.

Definition 5.18: Test for Normal State and Conversions to Communication State, N(·), ·C

N(σ) := σ ∈ LStates

·C : LStates → CStates

σC := (σ, c)

Let a CUC failure be a triple consisting of a trace, a state, and a refusal set. We can now

define J·KSF , which maps structured (concurrent) CUC programs to functions from sets of

failures to sets of failures. Intuitively, J·KSF assigns every program a function that takes a set

of failures and computes (the transitive hull of) the successor failures.

J·KSF : SCP →
(
P(Σ∗ × CNCStates ×P(Σ))→P(Σ∗ × CNCStates ×P(Σ))

)
To ensure compatibility to the CSP stable failures refinement (discussed in Subsec-

tion 5.3.5), we need to account for initial failures, whose state does not point into the

program, and, thus, is not “processed” by the semantics. We require all initial states to be

normal so that we do not introduce unrelated communication behavior. Furthermore, we

require all initial refusals to be maximal and subset closed to ensure that also “unprocessed”

failures comply to Properties SF2 and SF3 of stable failures semantics. Also, we require

again all initial traces to be empty.

Assumption 5.6: Initial Failures

∀ s ∈ Sinit . ∃σ X. s = (⟨⟩, σ,X) ∧N(σ) ∧
(
∀Y ⊆ Σ. (⟨⟩, σ, Y) ∈ Sinit

)
When applying the sequential composition of the stable failures semantics, former terminal

failures, which did not point into the program and now point into the program, are no longer

stable and need to be removed. To this end, we define the following operator \(·) for sets
of local failures. It will be used with the sets of labels of a (sub-)program as a parameter.

We will give an example of its use when explaining the rule of the stable failures semantics

(Example 5.11).

59

5.3. Semantics

Definition 5.19: Removal of Former Terminal Failures, \(·)

S\labels := S \ {(tr , σ,X) | σpc ∈ labels ∧N(σ)}

Definition 5.20: Stable Failures Semantics of CUC

SF-do
Jℓ : do fKSF (S) := S\ℓ ∪

{
(tr, σ′, X)

⏐⏐ (tr, σ,) ∈ S ∧ σpc = ℓ ∧N(σ) ∧
σ′
ds ∈ f(σds) ∧ σ′

pc = ℓ+ 1 ∧X ⊆ Σ
}

SF-cbr
Jℓ : cbr b m nKSF (S) := S\ℓ ∪

{
(tr, σ′, X)

⏐⏐ (tr, σ,) ∈ S ∧ σpc = ℓ ∧N(σ) ∧(
b(σds) ∧ σ′

pc = m ∨ ¬b(σds) ∧ σ′
pc = n

)
∧

σds = σ′
ds ∧X ⊆ Σ

}
SF-comm
Jℓ : comm fev fdsKSF (S):= S\ℓ ∪

{
(tr, σC , X)

⏐⏐(tr, σ,) ∈ S ∧ σpc = ℓ ∧N(σ) ∧
X ⊆ Σ \ fev (σds)

}
∪
{
(tr′, σ′, X)

⏐⏐(tr, σ,) ∈ S ∧ σpc = ℓ ∧N(σ) ∧
ev ∈ fev

(
σds
)
∧ tr′ = tr⌢⟨ev⟩ ∧

σ′
ds = fds

(
σds , ev

)
∧ σ′

pc = ℓ+ 1 ∧X ⊆ Σ
}

SF-seq

Jsp1 ⊕ sp2K
SF (S) :=

((
µd. extend(sp1, sp2) (d)

)
(S)
)
\labels(sp1⊕sp2)

SF-ext
extend(sp1, sp2) (d) := λS. S ∪ d

(
Jsp1K

SF (S)
)
∪ d
(
Jsp2K

SF (S)
)

SF-par
Jscp1 α1

∥α2
scp2K

SF (S) =
{
(tr, σ′

1 ∥ σ′
2, X)

⏐⏐ ∃X1 X2. (⟨⟩, σ1 ∥ σ2,) ∈ S ∧
X ∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2) ∧
(tr |̀ α1, σ

′
1, X1) ∈ Jscp1K

SF({(⟨⟩, σ1,)
})
∧

(tr |̀ α2, σ
′
2, X2) ∈ Jscp2K

SF({(⟨⟩, σ2,)
})
∧

set(tr) ⊆ (α1 ∪ α2)
}

60

5.3. Semantics

The SF semantics is depicted in Definition 5.20. Similar to the traces semantics, it

contains 1) the local single steps (SF-do, SF-cbr, SF-comm), 2) the semantics for multiple

local steps (SF-seq, SF-ext), and 3) the concurrent composition (SF-par). As T , it is
defined for programs in SP and SCP , respectively.

The semantics of the local single step rules SF-do and SF-cbr (cf. Definition 5.20),

are similar to T -do and T -cbr (cf. Definition 5.12). The differences are that the former

terminal failures of the input set are removed, only successors to normal states are included,

and all possible refusal sets are added.

Example 5.11: T -do and \(·)

Consider the initial input set {(⟨⟩, σ,X), (⟨⟩, σ′, Y)}, where X and Y are arbitrary refusal

sets, σpc = 5, σ′
pc = 1, both normal, and the instruction (1, do

(
λds . {ds})

)
, which does

nothing but increment the program counter. As the program counter of σ is not pointing

to this instruction, the failure is still terminal. Thus, the failure (⟨⟩, σ,X) is not removed.

Furthermore, there are no successor failures of (⟨⟩, σ,X). The program counter σ′
pc points

to the instruction, so there are successor failures {(⟨⟩, σ′[pc := 2], Z) | Z ⊆ Σ}. As the

initial failure (⟨⟩, σ′, Y) points into the program, it is not terminal anymore, thus, no

longer stable and needs to be removed. The resulting failures are:

J1, do ; λds. {ds}KSF
(
{(⟨⟩, σ,X), (⟨⟩, σ′, Y)}

)
= {(⟨⟩, σ,X), (⟨⟩, σ′, Y)} \{1} ∪ {(⟨⟩, σ′[pc := 2], Z) | Z ⊆ Σ}
= {(⟨⟩, σ,X)} ∪ {(⟨⟩, σ′[pc := 2], Z) | Z ⊆ Σ}

The rule SF-comm in Definition 5.20 is the most different from its T counterpart. It

adds two types of failures instead of one: The communication failures and the new terminal

failures. The new terminal failures are similar to those added in SF-do and SF-cbr,
i. e., with a possibly updated data store and an incremented program counter. However,

the communicated event is appended to the trace. The communication failures have a

communication state instead of a normal state and only add refusal sets that do not include

events offered by fev . The communication failures only serve the purpose to keep track of

the communication possibilities during the execution of the comm instruction. It is never

removed by a subsequent application of the semantics (cf. Definition 5.19 of \(·)). Successor
failures are only calculated based on the normal states. The normal states are also likely to

be removed by a subsequent application of the semantics.

The semantics of the sequential composition (SF-seq and SF-ext in Definition 5.20) only

differ in the removal of the former terminal failures after the application of the fix point

operator in SF-seq.

61

5.3. Semantics

Example 5.12: SF-comm, SF-seq and SF-ext

We illustrate the rules SF-comm, SF-seq and SF-ext with an example. Consider the

initial failure (⟨⟩, σ,X) with σpc = 1, X arbitrary and the same program as in Example 5.10(
1, comm (λds . {a}) (λds ev . {ds})

)
⊕
(
2, cbr (λds. true 1 1)

)
According to SF-extend, both instructions are evaluated separately, where initially comm

modifies the set accordingly (e. g., append the event a to the trace and add all appropriate

refusal sets). In contrast to Example 5.10, the stable failures semantics does not retain

the initial failures, as they are no longer terminal. They are removed by \{1}. Also, the
communication failure is added. The instruction cbr does nothing, as σpc does not point

to it.

J1, comm...KSF
(
{(⟨⟩, σ,X)}

)
=
{
(⟨⟩, σC , Y) | Y ⊆ Σ \ {a}

}
∪
{
(⟨a⟩, σ[pc := 2], Y) | Y ⊆ Σ

}
J2, cbr...KSF

(
{(⟨⟩, σ,X)}

)
=
{
(⟨⟩, σ,X)

}
In the next iteration of the fixpoint iteration, both instructions are again executed, with

combined initial failures. This time, the instruction comm does nothing (new) but cbr

will now generate trace-state pairs whose program counter points to comm, so that in the

next iteration the loop will be executed from the beginning with a longer trace. Both

instructions remove former terminal failures with \(·).

J1, comm...KSF
({

(⟨⟩, σ,X)
}
∪
{
(⟨⟩, σC , Y) | Y ⊆ Σ \ {a}

}
∪
{
(⟨a⟩, σ[pc := 2], Y) | Y ⊆ Σ

})
=

{
(⟨⟩, σC , Y) | Y ⊆ Σ \ {a}

}
∪
{
(⟨a⟩, σ[pc := 2], Y) | Y ⊆ Σ

}
J2, cbr...KSF

({
(⟨⟩, σ,X)

}
∪
{
(⟨⟩, σC , Y) | Y ⊆ Σ \ {a}

}
∪
{
(⟨a⟩, σ[pc := 2], Y) | Y ⊆ Σ

})
=
{
(⟨⟩, σ,X)

}
∪
{
(⟨⟩, σC , Y) | Y ⊆ Σ \ {a}

}
∪
{
(⟨a⟩, σ, Y) | Y ⊆ Σ

}
As a global fixpoint we get the following set of trace-state pairs. The stable failures

semantics contains only terminal failures and communication failures. As this program

does not terminate, there are no terminal failures in its semantics, only communication

failures. The former additional failures, which are retained by the “S ∪” part in SF-
extend are removed by the \{1,2} in SF-seq.

J(1, comm...)⊕ (2, cbr...)KSF
(
{(⟨⟩, σ,X)}

)
=
{
(⟨a⟩∗, σC , Y) | Y ⊆ Σ \ {a}

}
We modeled the rules for the concurrent semantics (SF-par in Definition 5.20) again

closely after their CSP counterpart. If one of the multiple (concurrent) states can refuse an

event of its communication interface, then the combined states can refuse it, too. Again, as

we only allow top-level concurrency, we only consider entire local programs and thus only

consider empty traces of the initial failures (Assumption 5.6).

Similar to the correspondence of the traces semantics, we can also show that the de-

notational stable failures semantics and its operational characterization describe the same

62

5.3. Semantics

behaviors.

Theorem 5.2: Correspondence Between Operational Characterization and Stable Failures

Semantics

(tr , X) ∈ SFU(scp)(σ)⇔ ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
∗

The proof can be found in Appendix A.1.2.

In this subsection, we have defined the stable failures semantics. In contrast to the

traces semantics of the last section, the stable failures semantics allows for the formulation

of liveness properties. In the next subsection, we show that the traces and stable failures

semantics are compatible to their CSP counterparts.

5.3.5 Compatibility to CSP

In this section, we show that our CUC semantics enjoys the fundamental properties of the

denotational CSP semantics. This allows us to show that CUC is compatible with CSP, which

finally allows us to prove a stable failures refinement between a CUC implementation and its

CSP specification. As mentioned in the CSP section, the refinement relation is basically a

subset relation. However, not every subset of behaviors is coherent and corresponds to a

process or program. The compared sets of behaviors themselves (the semantics) need to fulfill

certain properties. We introduce and explain adapted versions for CUC of the properties of

the CSP denotational semantics (see Section 2.3.5). The adaption are due to the different

semantics of CSP and CUC and consist mostly of taking into account programs and states,

which are not present in the CSP semantics. For each of the following properties, we require

that it holds for the initial set of trace-state pairs or failures, respectively (Assumptions 5.5

and 5.6). The proofs can be found in Appendix A.2. The first two properties (T1 and T2)

require the empty behavior and all partial behaviors to be observable by the traces semantics.

The latter four properties (SF1 to SF4) require the stable failures semantics to comply with

the traces semantics and to contain all refusal sets that are possible for a given program.

Property T1

⟨⟩ ∈ Tcuc(σ)

The empty trace must always be contained. Any program can be observed to do nothing.

Property T2

∀ tr tr ′. tr ′ ≤ tr ∧ tr ∈ Tcuc(σ) =⇒ tr ′ ∈ Tcuc(σ)

T is prefix closed. All partial behaviors can be observed.

63

5.3. Semantics

Property SF1

(tr , X) ∈ SFcuc(σ) =⇒ tr ∈ Tcuc(σ)

All trace-state pairs are included in the traces semantics. This property ensures that the

stable failures semantics “acts” within the boundaries of the traces semantics.

Property SF2

(tr , X) ∈ SFcuc(σ) ∧X ′ ⊆ X =⇒ (tr , X ′) ∈ SFcuc(σ)

Refusal sets are subset closed.

Property SF3

(tr , X) ∈ SFcuc(σ) ∧ ∀ a ∈ X ′. tr⌢⟨a⟩ ̸∈ Tcuc(σ) =⇒ (tr , X ∪X ′) ∈ SFcuc(σ)

All events that can be refused occur in a refusal set. More specifically, the refusal sets

can be augmented with refused events. This is the crucial property ensuring that the

stable failures are “enough” refusals to show liveness properties, because it ensures that

all events that can be refused are contained in the stable failures semantics.

Property SF4

σ
tr
=⇒cuc σ

′ ∧ σ′
pc ̸∈pc code =⇒ ∃X. (tr , X) ∈ SFcuc(σ)

Terminal failures are stable.

Although the equivalence ∃σ′. σ
tr
=⇒cuc σ

′ ⇔ tr ∈ Tcuc(σ) holds, we choose not to use T
as in the CSP version of SF4, as we need to talk about the reached state σ′ explicitly to

model terminal behavior.

The fact that these properties hold for the denotational semantics of CUC allow us to

extend the refinement notion from CSP to CUC, both for the traces and for the stable

failures model. Additionally, the Properties SF1 and SF4 relate the traces and stable failures

semantics of CUC.

In this subsection, we have shown that the traces and the stable failures semantics of

CUC share the fundamental properties of the denotational semantics of CSP. This allows

us to extend the notion of refinement from only relating traces or stable failures of CSP to

relating traces or stable failures, respectively, with those of CUC. The extended notion of

CSP refinement to include also CUC is the basis for our workflow to relate CSP specifications

and CUC programs in Section 5.5.

In this section, we have defined three different semantics for CUC: 1) The operational

semantics to define the intuition of a CUC program, 2) the traces semantics to describe all

64

5.4. Hoare Calculus

behaviors of a CUC program in a compositional way, and 3) the stable failures semantics to

additionally describe future communication capabilities. We have shown the correspondence

between the denotational semantics (traces and stable failures) and their operational charac-

terizations. We have shown compatibility of the traces and stable failures semantics to their

CSP counterparts, and with that also between the traces and stable failures semantics of

CUC itself. The compatibility between the CSP and the CUC semantics allows us to extend

the respective refinement notions of CSP to CUC.

In the next section, we define a Hoare calculus for the stable failures semantics of CUC,

which enables to show refinements between CSP specifications and CUC programs.

5.4 Hoare Calculus

To facilitate compositional reasoning about (non-concurrent) structured programs, we intro-

duce a Hoare calculus for our stable failures semantics of CUC. We use the Hoare calculus

in the next section to show properties for the stable failures of a CUC program. This

enables us to relate them to the stable failures of a CSP process in order to show a stable

failures refinement. Therefore, we require our Hoare calculus to enable reasoning about

non-terminating and communicating programs. As the notion of stable failures refinement is

concurrently compositional, single components can be refined and the resulting composition

is again a refinement. Therefore, we consider only the refinement of single components

explicitly and define our Hoare calculus for (non-concurrent) structured programs.

Our assertions are predicates in higher order logic (HOL) on single CUC failures.

Definition 5.21: Hoare Triple for CUC

{P} sp {Q} := ∀ s.
(
P (s) −→ ∀ s′ ∈ JspKSF ({s}). Q(s′)

)
Starting with the precondition P , a structured CUC program sp satisfies the postcondition

Q, if all stable failures in the stable failures semantics of sp satisfy Q, when the initial

failures satisfy P .

Observe that our semantics yields a set that includes all intermediate stable failures, i. e.,

all stable failures that occur during the execution of a program. Thus, postconditions in our

Hoare calculus are also invariants for communication failures. We still can construct usual

postconditions Q′ which hold only after terminated executions, e. g., by setting

Q(tr, σ,X) := σpc ̸∈pc sp −→ Q′(tr, σ,X)

We present our Hoare calculus for stable failures of CUC in Definition 5.22. It contains

three kinds of rules, of which the first two match the kinds of the SF semantics: 1) Single

steps (H-do, H-cbr, H-comm), 2) sequential composition (H-seq), and 3) the rule of

consequence (H-cons).

65

5.4. Hoare Calculus

Definition 5.22: Hoare Calculus for CUC

H-do
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
(
∀σ′. N(σ′) ∧ σ′

pc = ℓ+ 1 ∧ σ′
ds ∈ f(σds)

−→ ∀Y ⊆ Σ. Q(tr, σ′, Y)
)

{P} ℓ : do f {Q}

H-cbr
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
(
∀σ′. (b σds ∧ σ′

pc = m ∨ ¬(b σds) ∧ σ′
pc = n) ∧

N(σ′) ∧ σds = σ′
ds −→ ∀Y ⊆ Σ. Q(tr, σ′, Y)

)
{P} ℓ : cbr b m n {Q}

H-comm
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
((
∀Y ⊆ Σ \ fev (σds). Q(tr, σC , Y)

)
∧(

∀σ′. N(σ′) ∧ σ′
pc = ℓ+ 1 ∧

ev ∈ fev (σds) ∧ σ′
ds = fds(σds , ev)

−→
(
∀Y ⊆ Σ. Q(tr⌢⟨ev⟩, σ′, Y)

)))
{P} ℓ : comm fev fds {Q}

H-seq

{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp1 ∧N(σ)} sp1 {I}
{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp2 ∧N(σ)} sp2 {I}

{I} sp1 ⊕ sp2 {λ(tr, σ,X). I(tr, σ,X) ∧ (N(σ) −→ σpc ̸∈pc sp1 ⊕ sp2)}

H-cons
P −→ P ′ {P ′} sp {Q′} Q′ −→ Q

{P} sp {Q}

66

5.4. Hoare Calculus

The rules H-do, H-cbr and H-comm describe how pre- and postconditions can be

connected for the basic instructions. We define the rules in the “weakest precondition” style,

where the postcondition is general and the precondition is defined as a function of the

postcondition, i. e., the weakest precondition that ensures the postcondition. In contrast to

a traditional Hoare calculus for a high-level language, we do not know, if the considered

instruction is actually to be executed, e. g., if the program counter does not point to the

instruction. Therefore, the preconditions of all three rules consist of a case distinction

capturing whether the state of the considered failure is normal (N(σ)) and points to the

respective instruction (σpc = ℓ) or not. If this is not the case, then the instruction will not

affect the failure and the post condition is required to hold immediately. This is expressed

by the first line in each rule:

¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X)

Otherwise the post condition needs to hold for the successor-failures, which are calcu-

lated according to the stable failures semantics of CUC of the respective instruction (cf.

Definition 5.20).

H-seq relates the pre- and postconditions for the sequential composition ⊕. As the

sequential composition potentially introduces loops, H-seq is based on an invariant I as

in [SU05]. ”Hiding” our invariant in the postcondition allows us to reuse the sequential

composition rule from [SU05] in spite of adding an invariant. The invariant I usually

consists of disjunctions which explicitly reference the program counter. Thus, it describes

an invariance property for each label. The invariant I in H-Seq is restricted by different

program counters at the different positions in the rule. We use λ-functions to restrict the

invariant and define new assertions (which are functions from single CUC failures to true

or false). In the assumptions of the rule, only the part relevant for the respective partial

program needs to be assumed for the precondition of the Hoare triples. In the postcondition

of the Hoare triple in the conclusion of the rule, the invariant is stripped of all possibly

former terminal failures. This enables compositional reasoning without keeping track of all

normal states all the time. For a partial program, the invariant only needs to specify the

normal states of the entry and exit points.

H-cons is the usual rule of consequence. It allows for strengthening of the precondition

and weakening of the postcondition. Apart from its usual application within a proof, we

use the weakening of the postcondition (which is also the invariant) in the next section to

”forget” the states of a CUC program and relate its traces and refusals to those of a CSP

specification.

All rules of the calculus are correct with respect to Definition 5.21 of the Hoare triple.

Theorem 5.3: Soundness of Our Hoare Calculus

Our Hoare calculus is sound with respect to Definition 5.21.

67

5.5. Relating CSP and CUC

We have shown this by structural induction over the structure of an arbitrary CUC program.

The correctness of the Hoare calculus with respect to Definition 5.21 corresponds to partial

correctness for failures with normal states. However, for failures with communication states,

the postcondition holds universally and can, thus, be used as invariant about trace-refusal

pairs (CSP failures). This is important as this enables us to show properties for reactive

systems, i. e., communicating, non-terminating systems.

The Hoare calculus we have presented in this section is sound and facilitates sequentially

compositional reasoning. Although it keeps an invariant for the communication behavior, it

does not require a huge global invariant of all normal states. In the next section, we show

how our Hoare calculus can be applied to relate the stable failures of a CSP specification

and a CUC program.

5.5 Relating CSP and CUC

In this section, we present a workflow for establishing the relation between a specification

in CSP and a low-level implementation in CUC. We assume that a CSP specification Spec

is given, as well as an implementation Impl thereof in CUC. To verify the preservation of

liveness and safety properties from Spec to Impl, we show that Spec ⊑SF Impl holds in the

stable failures model.

Before presenting the workflow, we show that for CUC the notion of stable failures

refinement implies the notion of traces refinement, if we assume divergence freedom of the

CUC program (cf. Assumption 5.7). To this end, we show that every trace in the traces

semantics of a CUC program is also captured by its stable failures semantics.

Lemma 5.1: Traces Imply Stable Failures in CUC

(tr ,) ∈ Tcuc =⇒ ∃X. (tr , , X) ∈ SFcuc

Proof: Lemma 5.1 (Traces Imply Stable Failures in CUC)

In the traces semantics of CUC, only the comm instruction extends the trace. The comm

instruction also creates stable failures (communication failures). Thus, traces are only

extended directly after a stable state. If we assume divergence freedom, i. e., no infinite τ -

loops, then every program either terminates at some point or communicates events forever.

Thus, there is a stable failures after every extension of the trace (either a communication

failure caused the next comm instruction or a terminal failure if the program ends). It

follows that every trace in traces semantics of a CUC program is also captured by its

stable failures semantics.

Lemma 5.1 can be thought of as the inverse of Property SF1, i. e., ensuring that all

behaviors captured by the traces semantics are also captured by the stable failures semantics.

We can now show that the stable failures refinement from a CSP process csp to a CUC

program cuc implies the traces refinement from csp to cuc.

68

5.5. Relating CSP and CUC

CSP Specification Spec

Sufficient Property Spec⊆

CUC Program Impl

construct property

show with Hoare logic

(a) Workflow and Implications

Impl

Spec⊆

Spec

(b) Failures Inclusion Relation

Figure 5.1: Overview of the Workflow

Theorem 5.4: Traces Refinement Implies Stable Failures Refinement for CUC

csp ⊑SF cuc =⇒ csp ⊑T cuc

Proof

Want to show: csp ⊑T cuc :⇐⇒ (tr ,) ∈ Tcuc =⇒ tr ∈ Tcsp

(tr ,) ∈ Tcuc
Lemma 5.1
======⇒ ∃X. (tr , , X) ∈ SFcuc

⊑SF
==⇒ (tr , X) ∈ SFcsp

SF1
==⇒ tr ∈ Tcsp

Theorem 5.4 enables us to consider only the stable failures semantics to show a stable

failures refinement, which usually requires us to also show a traces refinement. However, we

need to assume divergence freedom of CUC programs. Divergence freedom can be shown by

syntax analysis of CUC programs (every possible loop needs to contain a comm instruction).

An alternative to the assumption of divergence freedom is to show the traces refinement in

addition to the stable failures refinement. In this thesis, we assume divergence freedom. In

future work, we envision a failures-divergences semantics for CUC (see Section 8.3).

Assumption 5.7: Divergence Freedom of CUC Programs

All considered CUC programs are assumed to be divergence free, i. e., do not have τ -loops.

Having established that we only need to consider the stable failures semantics to show a

stable failures refinement, we proceed to present our workflow, which is depicted in Figure 5.1a.

It is hard to establish a refinement between Spec and Impl directly, as they are structurally

very different: CSP is structured and unstructured languages (such as CUC) are not. In

structured languages, the control flow is visible in the syntactic structure. This is not the case

for languages with unrestricted jumps. Furthermore, the internal computations of CUC are

69

5.5. Relating CSP and CUC

not reflected in CSP. We use an intermediate sufficient property to connect the specification

and the implementation. The workflow consists of three steps:

1) Manually constructing a sufficient property Spec⊆ from Spec,

2) showing that Spec⊆ is sufficient for Spec, and

3) showing that Spec⊆ holds for Impl.

The property Spec⊆ that is constructed from Spec in step 1) is a predicate on CSP failures

and needs to be at least as strong as Spec, which is shown in step 2). It is formally captured

by

Spec⊆(tr,X) =⇒ (tr,X) ∈ SF(Spec)

Thus, a sufficient property Spec⊆ has to be sufficiently strong to contain only the behaviors

of the CSP specification Spec. At the same time, it has to be weak enough to contain the

behaviors of a concrete CUC program Impl, which is shown in step 3). The inclusion relation

is visualized in Figure 5.1b. The inclusion relation also shows that the weaker Spec⊆ is, the

more CUC implementations can be shown to be a refinement. The ideal property Spec⊆ is

describing exactly the failures of Spec. The complexity of finding an ideal property Spec⊆

is similar to finding an invariant, and as such, there is no automatic way of finding it in

general. For our framework, we just require a proof showing that the failures captured by

Spec⊆ are failures of Spec. We use our formalization in Isabelle/HOL to assure that this

manual process does not introduce errors. We outline alternative approaches in 5.5.2.

In step 3), it needs to be shown that the property Spec⊆ holds for the CUC program

Impl. The Hoare logic presented in the previous section is well-suited for this task. In the

next subsection, we will conduct such a proof for an example consisting of a simple buffer

and its parallel combination. The result of step 3) is formally captured by

(tr, σ,X) ∈ JImplKSF =⇒ Spec⊆(tr,X)

i. e., we show that the failures of Impl fulfill Spec⊆, ignoring the internal state information of

CUC.

After completing all three steps, we get by transitivity that

(tr, σ,X) ∈ JImplKSF =⇒ (tr,X) ∈ SF(Spec)

holds, which is equivalent to our goal Spec ⊑SF Impl.

5.5.1 Example

We demonstrate the workflow as presented above and show that a given CSP specification

Spec for a one place buffer is refined by a given CUC implementation Impl. We have formalized

this example in the Isabelle/HOL formalization in [BBD+19]. The CSP specification and

its CUC implementation are shown in Figure 5.2. The elements that can be stored in the

buffer are of type T. Spec waits for an input on channel in, i. e., synchronizes on any event

{in.x | x ∈ T}, outputs the received value x on channel out, and then starts over. Next, we

70

5.5. Relating CSP and CUC

Spec = in?x : T→ out!x→ Spec

Impl :=
1 : do (λds. {ds [free := True]})

⊕ 2 : comm fev fds where
fev = (λds . {in.x | ds(free) = True ∧ x ∈ T}

∪ {out.x | ds(free) = False ∧ x = ds(buffer)})
fds = (λds ev . case ev of

| in.x ⇒ ds[buffer := x, free := False]
| out.x⇒ ds[free := True])

⊕ 3 : cbr (λds. True) 2 2

Figure 5.2: CSP Specification and CUC Implementation of a One Place Buffer

explain Impl instruction by instruction:

(1:do) – This is the initialization. The boolean free indicates that the buffer is ready to

store data.

(2:comm) – The comm-instruction offers events and changes the state after the communication

happened. The events offered by fev are all values of type T on channel in if the buffer is

free, else only the output event with the value stored in the buffer is offered. According to

the event communicated, it either stores the input value and sets the buffer to not free, or it

frees the buffer.

(3:cbr) – The conditional branch is used in this case to model an unconditional branch and

always jumps back to the comm-instruction at label 2.

Step 1: Manual Extraction of Spec⊆ from Spec

First, we extract a sufficient property Spec⊆, which is only true for the failures of Spec. Let

tr∗ mean tr zero or more times concatenated, where the variable x̃ ∈ T is fresh in every

occurrence of tr . Let F be a single failure and Fempty and Ffull sets of failures. We define

Spec⊆(F) := F ∈ Fempty ∨ F ∈ Ffull where

Fempty :=
{(
⟨in.x̃, out.x̃⟩∗, X

) ⏐⏐⏐ X ⊆ Σ \ {in.y | y ∈ T}
}

Ffull :=
{(
⟨in.x̃, out.x̃⟩∗⌢in.y,X

) ⏐⏐⏐ y ∈ T ∧X ⊆ Σ \ {out.y}
}

This means, we choose pairs of matching inputs and outputs and at most one “free” input

at the end. Initially and after an output, only inputs are possible. After an input only the

matching output is possible.

Step 2: Spec⊆ =⇒ Spec

We prove that Spec⊆ implies Spec, i. e., that Spec⊆ is only satisfied for stable failures of Spec.

In this simple case it is easy to see, as Spec⊆ describes exactly the failures of Spec. We have

Spec⊆(F) =⇒ F ∈ SF(Spec)

71

5.5. Relating CSP and CUC

Step 3: Impl =⇒ Spec⊆

In the next step, we show that Spec⊆ holds for all failures of the program Impl, or more

exactly for all elements of the projection of the failures of Impl onto traces-refusal pairs.

To this end, we define an invariant Inv, which implies Spec⊆ but is effectively stronger as

we need state information such as the current program counter. We also specify the initial

failures with a precondition Pre. As precondition Pre, we assume that the trace is empty

and the state is normal from Assumption 5.6 and, additionally that the state points to the

first instruction.4 In the following, we show {Pre} Impl {Inv}. First, we define Pre and Inv:

Pre(tr, σ,X) :=σpc = 1 ∧ tr = ⟨⟩ ∧N(σ)

Inv :=Pre ∨ I2,3
I2,3(tr, σ,X) := σpc ∈ {2, 3} ∧

((tr,X) ∈ Fempty ∧ σds(free) = True ∨
(tr,X) ∈ Ffull ∧ σds(free) = False

∧ ∃x. σds(buffer) = x ∧ last(tr) = in.x)

We show

(tr, σ,X) ∈ JImplKSF ({(tr′, σ′, X ′) | Pre(tr′, σ′, X ′)}) =⇒ Inv(tr, σ,X) ∧ ¬N(σ)

with our Hoare calculus, i. e., {Pre} Impl {Inv ∧ ¬N} holds. The formula part ¬N(σ) ensures

that the initial failures are no longer present in the stable failures of the program and we

only consider communication failures. For brevity, we denote the instruction by their label

and instruction name, e. g., 1: do. The idea of the Hoare calculus proof is that starting in

Pre, 1: do leads to the loop (2: comm ⊕ 3: cbr) and I2,3 holds. During execution of the loop,

the invariant I2,3 is preserved, thus overall the invariant Inv ≡ Pre ∨ I2,3 holds. As it is an

infinite loop, all normal states, i. e., terminal failures, are removed. As the Invariant Inv

without normal states implies either Fempty or Ffull , it implies the sufficient property Spec⊆:

Inv(tr, s,X) ∧ ¬N(σ) =⇒ Spec⊆(tr,X)

We conclude

(tr, σ,X) ∈ JImplKSF ({(tr′, σ′, X ′) | Pre(tr′, σ′, X ′)}) =⇒ Spec⊆(tr,X)

Conclusion

From step 2) and step 3) we conclude that all trace-refusal pairs of Impl are failures of

Spec, i.e., Spec ⊑SF Impl holds. The relation ⊑SF corresponds to the CSP (stable) failures

refinement. Thus, Impl enjoys all liveness and safety properties of Spec.

4We do not need to assume that the initial state points to the first instruction, but it allows us to not
consider the other cases in the invariant.

72

5.5. Relating CSP and CUC

Concurrency

Thanks to the compositionality of refinement and parallel composition of CSP, we are able

to model, e. g., a two place buffer by connecting two buffers. Still, all safety and liveness

properties are preserved. Consider the following CSP processes:

Spec1 = in?x : T→ mid!x→ Spec1

Spec2 = mid?x : T→ out!x→ Spec2

Spec∥ = Spec1 {mid}∥{mid} Spec2

We can show that two programs Impl1 and Impl2 (similar to the code in Figure 5.2, also

injecting mid as common channel) refine Spec1 and Spec2 respectively. Let

Impl∥ = Impl1 {mid}∥{mid} Impl2

We can immediately follow that Spec∥ ⊑SF Impl∥, which demonstrates the compositionality

of our approach. Observe that it scales well with the number of components: a system with

N components requires only N separate refinement proofs. For homogeneous systems (as

this example), we even can reuse the refinement proof.

5.5.2 Automation Approaches

Currently, the formulation of Spec⊆ and its proof with respect to the CSP specification

are assumed to be performed manually with mechanical assistance in Isabelle/HOL. In a

current Bachelor thesis, we are working on a safe under-approximation of the CSP process

to generate Spec⊆ automatically, while still being weak enough to contain the behaviors of

the CUC implementation.

In a Diploma thesis [MA17], we have extracted CSP processes from a given CUC program

and have used the refinement checker FDR4 to relate the CUC program and the CSP process.

A related approach [KBG+11] uses manual annotations for the extraction of CSP processes,

which are then used with FDR4. In contrast, the approach in [MA17] has the advantage

that CUC uses the same communication mechanism as CSP, thus, theoretically, allowing an

extraction without manual annotation. Practically, we face state space explosion problems

typical to model checking: Firstly, the CSP processes are parametrized by all variables of

the CUC program. However, we think that only variables local to the component need to

be considered. The number of variables required for each (sub-) process could be reduced

in future work with analysis techniques from compiler optimizations (such as live-variable

analysis [NNH99]). Secondly, the data ranges of the variables have to be explicitly checked in

FDR4. Here, another analysis to identify intervals with similar control flow akin to symbolic

execution [BCD+18] would be beneficial with respect to scalability.

Although both approaches are still in the early stages of development, they show that

the manual step of the construction of Spec⊆ and its proof can be supported by tools and

heuristics in the future.

73

5.6. Summary

5.6 Summary

In this chapter, we have defined Communicating Unstructured Code, an unstructured, low-

level language with an abstract communication instruction. It allows us to connect an abstract

specification and a low-level implementation both using abstract communication and, thus,

to close the first half of the verification gap. By including the abstract communication

mechanism of CSP in a low-level language, we achieve compositionality of communicating

low-level components. It also allows us to focus on local low-level programs, for which we

have developed a concise formalization thanks to our generic instruction schemes. Using our

traces and stable failures semantics, the Hoare calculus, and the verification workflow, we

only need to relate single components. For homogeneous components, we only need to show

this relation once for each component type. To ensure the rigorousness of our framework,

especially also for user supplied proofs, we have formalized the results of this chapter in the

theorem prover Isabelle/HOL.5 This concludes the first part out of two of our framework.

In the next chapter, we describe the second part of our framework in which we relate CUC

programs to low-level programs that do not provide abstract communication primitives but

are based on shared variable communication.

5All results apart from the concurrent cases in Theorems 5.1 and 5.2 (Correspondence of Denotational
Semantics and Operational Characterizations) are formalized in Isabelle/HOL. All parts that are required for
the mechanization of proofs that are supplied by users of our framework are formalized. When we developed
the theory for CUC and formalized it in Isabelle/HOL, we focused on single components, as the concurrent
denotational semantics of CUC are the same as the concurrent semantics of CSP and therefore we can use
the concurrent compositionality of CSP refinement for results about concurrent components. We can apply
the concurrent compositionality of CSP refinement also to refinements including CUC, as CUC uses the
communication mechanism of CSP and we have shown the compatibility of CUC to CSP in Section 5.3.5.
This approach still manifests itself in the Hoare calculus in Section 5.4, which we have also only defined for
single components. However, to relate CUC to a low-level language with shared variables in the next chapter,
we require an operational semantics with concurrent execution for CUC. For a uniform representation of
the operational semantics of CUC we extend it with rules for concurrent execution. However, extending the
proof in Isabelle/HOL would be tedious and very time-consuming.

74

Chapter 6

Relating Abstract

Communication to Low-Level

Protocols

Our second step out of two to relate CSP with a low-level language is to focus on the low-level

implementation of abstract communication. To this end, we define the notion of handshake

refinement. It is an implementation relation that allows for the implementation of abstract

communication while preserving safety and liveness properties. It relates CUC and SV, a

generic low-level language we define with communication over shared variables. SV allows

for the implementation of various communication protocols. We use a simple handshake

protocol to implement the synchronous communication of CSP/CUC with the asynchronous

communication instructions provided by SV. Using our notion of handshake refinement, we

show that any SV program, which is obtained from a CUC program using the handshake

protocol, has the same safety and liveness properties as the initial CUC program. We show

this relation in a general theorem for all such pairs of CUC and SV programs. This general

theorem allows us to reduce the proof obligations for the relation from CSP to SV to the

proof obligations for the relation from CSP to CUC, which we can prove compositionally.

In this chapter, we first present our generic low-level language with communication over

shared variables SV in Section 6.1 and then state the handshake protocol in Section 6.2.

In Section 6.3, we derive semantics with events for SV from the structure granted by the

handshake protocol, in particular a stable failures semantics for SV. We define our notion of

handshake refinement in Section 6.4, which allows us to relate the abstract communication

in CUC with implementation over shared variables in SV using the presented handshake

protocol. In Section 6.5, we show that it preserves safety and liveness properties and finally

show that the handshake protocol induces a handshake refinement. As most proofs in this

chapter consist of well-known and easy to reproduce techniques, we give concise proofs

containing the essential ideas. We published the content of this chapter in [BGDG18].

75

6.1. Shared Variables (SV)

6.1 Shared Variables (SV)

In this section, we present our generic language Shared Variables (SV) and give its syntax

and operational semantics. The intent of SV is to have a language with low-level control flow

and low-level communication. SV has a pure interleaving semantics (in contrast to CUC) and

allows us to implement synchronous communication over shared variables. SV contains the

instructions do and cbr just like CUC, but instead of the abstract communication instruction

comm, it contains the instructions needed for the low-level implementation of communication

and synchronization over shared variables: read, write, and cas (compare-and-set). We have

reasoned in Section 5.1 that we decide to use the instruction cas to model multi-processor

synchronization (instead of load-reserve and store-conditional), as it simplifies our proofs and

programs and the semantics is similar enough for our use.

6.1.1 Semantic States and Syntax

Although SV is designed to be a generic low-level language that allows for communication

via shared variables, it is intentionally similar to CUC. This facilitates the comparison of

the semantics of both languages CUC and SV. To allow for shared variable communication,

we extend the concurrent local states (σ ∈ States) with a global shared state Γ. The global

state Γ is modeled as a data store (Γ ∈ DS). Thus, it has the same type as the data stores

σds of the local states.

Definition 6.1: SV State

GStates := DS × States

The language SV consists of five instructions (two of them stemming from CUC and

three new), which we define in Definition 6.2. The first two instructions stem from CUC.

The instruction do (non-deterministically) transforms the local state, and the instruction

cbr conditionally branches to one of two jump targets. Both are as in CUC and restricted

to interactions with the local state. The three new instructions allow for interaction with

the global state: The instructions read and write transfer data from the shared memory to

the local registers and vice versa. The atomic compare-and-set instruction cas allows for

synchronization via shared variables of multiple concurrent components. We use γ to denote

a global variable.

Definition 6.2: Instructions of SV

Instructions := do f f : DS →P(DS)

| cbr b m n b : DS → B, m, n : Labels
| read x γ x, γ : Names

| write γ x γ, x : Names

| cas r γ v1 v2 r, γ : Names , v1, v2 : Values

76

6.1. Shared Variables (SV)

We skip the explanations for do and cbr, as they are already explained in Section 5.2.

They cannot modify or read from the global state. The following three instructions can

modify the global state or read from it.

read x γ reads the value of a shared variable γ into a local register x.

write γ x writes the value of a local register x into a shared variable γ.

cas r γ v1 v2 compares the value of the shared variable γ with the value v1. If they are

equal, then the value v2 is written to the shared variable γ. The result of the comparison, i. e.,

true or false, is written to the local register r. The instruction cas is atomic, i. e., nothing

can (concurrently) happen between the comparison and the possible update of the shared

variable.

As in CUC, we define a local program lp to be a set of labeled instructions (Definition 5.3)

and a concurrent program cp to be a tree of local programs (Definition 5.5). We also require

the uniqueness of labels (Assumption 5.2) and that the tree structure of a concurrent state

matches the tree structure of a program (Assumption 5.3). We omit to redefine this here, as

the definitions and assumptions directly apply. It will be always clear whether we refer to a

CUC or an SV program. We do not define a structuring on SV programs, as we relate the

operational semantics of CUC and SV.

Having defined semantic states and programs for SV, we proceed to define the operational

semantics of SV in the next section.

6.1.2 Semantics

The operational semantics of SV is depicted in Definition 6.3. It contains four kinds

of rules: 1) The single steps concerned only with the local state (do, cbr), 2) the single

steps interacting with the global state (cas-t, cas-f, read, write), 3) the concurrent steps

(interleaving-left, interleaving-right), and 4) those for execution (exec-0, exec).

As in CUC, the operational semantics is defined for local programs lp ∈ LP and concurrent

programs cp ∈ CP , respectively.

The single steps concerned with the local steps (do, cbr) are exactly as in CUC. They

leave the global state Γ unchanged.

The single steps interacting with the global state (cas-t, cas-f, read, write) are used

for shared variable communication. In cas-t, the case where compared values are equal

(Γ(γ) = v1) is defined. The shared variable is updated with v2, and the result of the

comparison (true) is stored in the register r. The case where the compared values are not

equal is defined in cas-f. Here, the global state remains unchanged. In both cases, the

program counter is increased.

77

6.1. Shared Variables (SV)

Definition 6.3: Operational Semantics of SV

(σpc , do f) ∈ lp σ′
ds ∈ f(σds) σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ, σ′)
do

(σpc , cbr b m n) ∈ lp σ′
ds = σds b σ ∧ σ′

pc = m ∨ ¬b σ ∧ σ′
pc = n

(Γ, σ) −−→lp (Γ, σ′)
cbr

(σpc , cas r γ v1 v2) ∈ lp
Γ(γ) = v1 Γ′ = Γ(γ := v2) σ′

ds = σds(r := true) σ′
pc = σpc + 1

(Γ, σ) −−→lp (Γ′, σ′)
cas-t

(σpc , cas r γ v1 v2) ∈ lp Γ(γ) ̸= v1 σ′
ds = σds(r := false) σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ, σ′)
cas-f

(σpc , read x γ) ∈ lp σ′
ds = σds(x := Γ(γ)) σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ, σ′)
read

(σpc , write γ x) ∈ lp Γ′ = Γ(γ := σds(x)) σ′
ds = σds σ′

pc = σpc + 1

(Γ, σ) −−→lp (Γ′, σ′)
write

interleaving-left
(Γ, σ1) −−→cp1

(Γ′, σ′
1)

(Γ, σ1 ∥ σ2) −−→cp1∥cp2
(Γ′, σ′

1 ∥ σ2)

interleaving-right
(Γ, σ2) −−→cp2

(Γ′, σ′
2)

(Γ, σ1 ∥ σ2) −−→cp1∥cp2
(Γ′, σ1 ∥ σ′

2)

(Γ, σ) =⇒cp (Γ, σ)
exec-0

(Γ, σ) =⇒cp (Γ′′, σ′′) (Γ′′, σ′′) −−→cp (Γ′, σ′)

(Γ, σ) =⇒cp (Γ′, σ′)
exec-τ

78

6.2. Handshake Protocol

In read and write, the contents of registers are written from the global state to the local

state and vice versa. In read, the global state remains unchanged, in write, the local state

remains unchanged apart from the program counter. For both instructions, the program

counter is increased.

The concurrent steps in SV (interleaving-left, interleaving-right) realize a pure

interleaving semantics of the concurrent combination of the two (possibly concurrent) pro-

grams cp1 and cp2. Accordingly, interleaving-left and interleaving-right do not

have communication interfaces to consider.

The steps for execution (exec-0, exec-τ) describe the reflexive, transitive hull of all

possible single steps.

The language SV is a suitable model for low-level languages: On one hand, it contains only

low-level instructions in contrast to CUC, which has an abstract communication instruction.

Thus, all instructions of SV can be instantiated in an actual instruction set architecture. On

the other hand, its instructions cover the three groups of low-level instructions as described

in 5.1. Thus, we can model all concepts of low-level languages. The operational semantics

of SV faithfully expresses the synchronization and communication of multiple components

(e. g., threads or processes) on a single processor. Every process can read and write from the

global memory. The true interleaving semantics ensures that only one component can be

active at the same time. In the following, we relate the low-level communication of SV with

the abstract communication mechanism of CSP and CUC.

Observe that the semantics is not labeled, i. e., there are no events or traces attached. In

contrast to CSP and CUC, where the abstract events correspond to a step in the semantics, in

SV a synchronous abstract event can only be obtained by using the structure and information

provided by a communication protocol. To formally relate the labeled semantics of CUC and

the semantics of SV, we introduce a handshake protocol for SV in Subsection 6.2.1, which in

turn allows us to derive a labeled semantics for SV in Subsection 6.2.2.

6.2 Handshake Protocol

In this section, we present a simple handshake protocol to implement abstract synchronous

communication with shared variables. To ensure that the CUC programs allow for the

implementation with the simple handshake protocol, we consider a subset of CUC by

restricting the communication capabilities from multi-way synchronization to unidirectional

communication. In general, many protocols realizing synchronous communication can

be implemented in SV (e. g., unidirectional communication, bidirectional communication,

multi-way synchronization). However, our focus is on the formal implementation relation

which relates the abstract communication with its implementation. To investigate how to

formally verify such a communication protocol ensuring the preservation of safety and liveness

properties, we use a simple handshake protocol to reduce the overhead of the protocol. When

79

6.2. Handshake Protocol

send : 1 : cas hlc mc free id
2 : cbr hlc 3 1
3 : write γc xs

4 : write src ⊤
5 : cas ssc frc ⊤ ⊥
6 : cbr ssc 7 5
7 : write mc free

receive: 1 : cas ssc src ⊤ ⊥
2 : cbr ssc 3 1
3 : read xr γc
4 : write frc ⊤

Figure 6.1: Implementation of the Handshake Protocol: send and receive

defining the handshake refinement in 6.4, we sketch how to apply our approach to other

protocols.

First, we introduce the handshake protocol in Subsection 6.2.1. Second, we present

how to restrict a CUC program to unidirectional communication with two participants in

Subsection 6.2.2.

6.2.1 Description of the Handshake Protocol

The handshake protocol we consider realizes synchronous communication between a sender

and a receiver over a channel . The protocol consists of two parts: a protocol send for the

sender, and a protocol receive for the receiver. The channel c is a “namespace” in the shared

memory. A channel is formed by the following four shared variables: A mutex variable mc

to lock the channel, two signal variables src (start reading) and frc (finished reading) for

synchronization, and a shared variable γc to store the value. Additionally, two local variables

belong to a channel c, which store the results of the cas instructions: hlc (has lock) indicates

whether the sender has locked the mutex. ssc (signal set) indicates whether the signal the

sender or the receiver are waiting for has been set to ⊤.
send and receive are implemented in SV by the constructs shown in Figure 6.1. The

general idea is that send locks the channel c to protect the shared variable, and synchronizes

over signals with receive. The protocol flow is illustrated in detail in Figure 6.2 on page 91

when we define the handshake refinement. We explain the details of the implementations

of the sender and the receiver line by line; line numbers in parenthesis are followed by a

description.

send : (1) The sender checks if the mutex mc is free, and if it is, writes its id to it. The

result is stored in hlc. (2) If it is not free, it checks again (with a busy loop). Otherwise

it proceeds to (3) write the data value to be sent from the local register xs to the shared

variable γc. Afterwards, it realizes a synchronization with the read process: To this end, it

(4) sets the signal src. Then it (5, 6) waits with a busy loop for the signal frc and finally (7)

releases the mutex. It stores the result of the cas instruction in line 5 in ssc.

receive: (1,2) waits with a busy loop for the signal src to be ⊤. If it received the signal, it

(3) reads the value from the shared variable and then (4) sets the signal frc to ⊤.

Observe that deadlocks in abstract synchronous communication, e. g., in CUC that are

due to missing communication partners are implemented as livelocks in SV: send cannot

80

6.2. Handshake Protocol

exit the busy loop (Lines 5, 6) without a receiver on the same channel, and receive cannot

exit the loop (Lines 1, 2) without a sender in the channel. As both, deadlocks and livelocks,

do not provide communication capabilities, we preserve the offered events, and thereby the

liveness properties.

6.2.2 Restriction of CUC

Having introduced the handshake protocol and its implementation in SV, we proceed to

discuss the different models of choices of CUC compared to CSP. CUC has non-determinism

in the form of the instruction do. However, it does not have an internal choice per se. This

stems from the fact that internal choice is an abstract modeling construct, and CUC is very

close to the implementation level, i. e., we assume that non-determinism was resolved on the

CSP level.

CUC has external choice in the form of the abstract communication instruction comm.

The instruction comm can model even so-called mixed choice, offering both input and output

on different channels (see Example 5.3). Synchronous communication where the sender

can choose between several channels to output its communication requires output guards.

Output guards prevent the sender from committing to a channel without a receiver present,

which would block the sender, possibly indefinitely. The same is true for the choice of the

receiver between multiple, synchronous inputs: input guards are needed. The implementation

of guards in general requires that components can register and unregister from a channel.

Only if enough participants are registered, the communication takes place. Until the

communication takes place, all components can unregister from the channel. As mixed choice

offers both choices at the same time, it requires both input and output guards to prevent

blocking, but it also requires breaking of symmetries to avoid the indefinite search for an

available communication partner. The implementation of mixed choice with synchronous

communication is considered e. g., by Bougé [Bou88] in form of the leader election problem.

The simple handshake protocol we consider does not support choices, so it neither needs

input nor output guards. We point out where guards fit in for future extensions of our

formal implementation relation in Section 6.4. The protocol supports synchronous, uni-

directional communication over a channel with two participants: Sending a value over a

channel and synchronizing with any one receiver ready to receive the value. Thus, to use

the handshake protocol as implementation of abstract communication, we need to restrict

the use of the communication of CUC from synchronous, multi-way communication to

synchronous, uni-directional communication over a channel. To this end, we introduce ids

for components, define two instantiations of comm, namely a sender and a receiver, and we

exclude communication with the abstract environment.

We assign each component an identifier id . Let ID be the set of all component ids. As the

tree structures for concurrent states and concurrent programs are the same (Assumption 5.3),

we can define the same function for concurrent states and concurrent programs, which maps

the position in the concurrent tree to an id. We write σid to obtain the id of a local state.

We write σid or cpid to select a specific local state or program with id id from a concurrent

state σ or concurrent program cp. Finally, let ids map from a concurrent (sub-) tree to all

contained ids.

81

6.2. Handshake Protocol

Definition 6.4: Component Identifier

ID (the set of component ids)

σid : LStates → ID

σid : States × ID → LStates

cpid : CP × ID → LP

ids(cp) : CP →P(ID)

We define a sender comms and a receiver commr in CUC as follows.

Definition 6.5: comms and commr

Let c be a channel, xs and xr local registers, and id the component id of the current

component . The event c.s.r.v is composed of the channel name c, the ids of the sender s

and the receiver r, and the transferred data value v of type T. Finally, let val(c.s.r.v) = v

extract the data value of an event.

comms c xs := comm
(
λσ. {c.σid .r.σds(xs) | r ∈ ID ∧ r ̸= σid}

)(
λev σ. σ

)
commr c xr := comm

(
λσ. {c.s.σid .v | s ∈ ID ∧ s ̸= σid ∧ v ∈ T}

)(
λev σ. σ[xr := val(ev)]

)
comms offers events on its channel c, using its own id σid as sender, and all possible ids but

its own as receiver. The data value is the value of its local storage at xs. After successful

communication, the sender does not change its local state. commr offers events on its channel

c, using its own id σid as a receiver, all possible ids but its own as sender, and all possible

data values. After successful communication, the receiver updates its local storage at xr to

the value of the communicated event. By using events that explicitly contain the component

id of the sender or the receiver respectively, we are able to enforce that senders cannot

communicate among one another and the same for receivers.

In contrast to CSP and CUC, there is no environment in low-level shared variable

communication. Thus, a single comm instruction without a communication partner in CUC

should not synchronize with the environment but block. To enforce this in CUC, we only

consider concurrent programs with at least two components that are combined with the

alphabetized parallel operator. Using the communication interfaces of the alphabetized

parallel operator, we ensure that every component may only engage in events that the

component’s id is part of, expressed by s ∈ ids(cpi) ∨ r ∈ ids(cpi) in the communication

interface defined below where s is short for sender and r is short for receiver. Additionally,

each component may not communicate with itself, expressed by s ̸= r. The (maximal)

communication interface of each concurrent program cpi is then given by

αi = {c.s.r.v ∈ Σ | (s ∈ ids(cpi) ∨ r ∈ ids(cpi)) ∧ s ̸= r}.

Assumption 6.1 ensures that only comms and commr are used for communication and that

all concurrent components are combined with the aforementioned communication interfaces

αi. As a single component does not require a concurrent composition (and in turn would

82

6.3. Definitions and SV Semantics with Events

not be restricted by the communication interface), we require that every program consists of

at least two concurrent components. For the rest of this chapter, we assume the following

restrictions to hold for CUC programs.

Assumption 6.1: Restrictions to CUC

(I) All instances of comm are either comms or commr.

(II) All concurrent CUC programs have at least two components and use communication

interfaces that are a subset of the above defined αi.

With the restrictions of CUC and the component ids defined, we can give an alternative

definition of stable states for CUC, which focuses on the instructions instead of the labels.

We define the stable states for SV in a similar way. As the only two instructions in CUC that

produce the event τ are do and cbr, we can define stable states alternatively as states pointing

to comm or outside of the code. The following definition is equivalent to Definition 5.14.

Definition 6.6: Stable States in cuc

A state σ is stable in a CUC program cuc (σ↓cuc) if all components either point outside

the code, to comms, or to commr. Formally:

σ↓cuc:= ∀ id.
(
̸ ∃ ins. (σid

pc , ins) ∈ cucid
)

∨
(
∃ c. (σid

pc , comms id c xs) ∈ cucid

∨ (σid
pc , commr id c xr) ∈ cucid

)
In this section, we have defined a handshake protocol to implement abstract synchronous

communication in our low-level language SV. Furthermore, we have defined restrictions to

CUC to ensure that the CUC programs allow for the implementation with the presented

handshake protocol. The use of the handshake protocol allows us to talk about the concept

of abstract synchronous communication in the context of SV. This enables us to formally

relate CUC and SV. In the next section, we define a labeled semantics for SV and related

constructs based on the handshake protocol.

6.3 Definitions and SV Semantics with Events

In this section, we lay the foundations to relate CUC and SV programs. Based on the

handshake protocol that we defined in the last section, we define several notions to relate

different aspects of a CUC program cuc and an SV program sv where sv results from replacing

the abstract communication in cuc with the handshake protocol. The program label map

(Definition 6.7) relates the syntactic instructions of cuc and sv . Similarity (Definition 6.10)

defines how we relate local states of cuc and sv . Finally, we define a labeled semantics for

SV (Definition 6.12), which allows us to define the operational characterization of traces

and stable failures semantics for SV (Definitions 6.14 and 6.17). Those semantics allow for

comparison of behaviors, especially with respect to safety and liveness properties. All the

83

6.3. Definitions and SV Semantics with Events

concepts defined in this section are used in Section 6.4 to define our notion of handshake

refinement.

To formally capture that a CUC and an SV program are syntactically the same apart

from the implementation of the abstract communication, we define the program label map in

Definition 6.7. Each abstract communication instruction in cuc (comms or commr) is related

to all the instructions of its protocol implementation.

Definition 6.7: Program Label Map

A program label map ψ injectively maps a program label in a CUC program cuc to

a corresponding program label in an SV program sv. The formal requirements, defined

below, state that do in the component id of cuc is in a one-to-one correspondence to do

in the component id of sv . The same holds for cbr. The instruction comms is related

to all instructions of send , which implies that the existence of any instruction of send

implies the existence of the other instructions around it. The same holds true for commr
and receive.

(ℓ, do f) ∈ cucid ⇐⇒
(
ψ(ℓ), do f

)
∈ sv id ∧ ψ(ℓ+ 1) = ψ(ℓ) + 1

(ℓ, cbr b m n) ∈ cucid ⇐⇒
(
ψ(ℓ), cbr b ψ(m) ψ(n)

)
∈ sv id

(ℓ, comms c xs) ∈ cucid ⇐⇒
(
ψ(ℓ) + 0, cas mc free id) ∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 1, cbr hlc (ψ(ℓ) + 2) ψ(ℓ)

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 2, write γc xs

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 3, write src ⊤

)
′′ ⇐⇒

(
ψ(ℓ) + 4, cas frc ⊤ ⊥) ∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 5, cbr ssc (ψ(ℓ) + 6) (ψ(ℓ) + 4)

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 6, write mc free

)
∈ sv id

′′ =⇒ ψ(ℓ+ 1) = ψ(ℓ) + 7

(ℓ, commr c xr) ∈ cucid ⇐⇒
(
ψ(ℓ) + 0, cas src ⊤ ⊥) ∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 1, cbr ssc

(
ψ(ℓ) + 2

)
ψ(ℓ)

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 2, read xr γc

)
∈ sv id

′′ ⇐⇒
(
ψ(ℓ) + 3, write frc ⊤

)
∈ sv id

′′ =⇒ ψ(ℓ+ 1) = ψ(ℓ) + 4

Using the definition of the program label map, we can define when a CUC program and

an SV program fit together.

84

6.3. Definitions and SV Semantics with Events

Definition 6.8: Fitting Program

We say that an SV program sv fits a CUC program cuc, if there is a program label

map ψ, mapping all the instructions from cuc to sv . Furthermore, we require the state

transforming functions f of do f to only modify the variables available in cuc (i. e., not hlc
and ssc). Similarly, the boolean conditions b of cbr instructions in cuc may only depend

on variables present in cuc.

Given a program label map ψ, it can statically be checked by going through both programs

whether two programs cuc and sv are fitting. To relate semantic states of CUC and SV we

consider the local (concurrent) states and ignore variables that were added for bookkeeping

in the handshake protocol. We define the notion of channel constituents to group all variables

that belong to a channel.

Definition 6.9: Channel Constituents

The following local registers belong to a channel c: hlc and ssc. The following shared

variables belong to a channel c: mc, γc src, and frc.

To exclude other components or instructions from changing the values stored in the

channel constituents, we assume in the following that channel constituents are unique for

each channel.

Assumption 6.2: Uniqueness of Channel Constituents

All channel constituents from all channels are unique.

It follows from the uniqueness that in a program sv fitting cuc, channel constituents are

only changed from within send and receive of the channel.

Lemma 6.1: Proper Access to Channel Constituents

All channel constituents of a channel c can only be changed by the send or receive of the

channel c.

Proof

Fitting implies a program label map ψ which only allows instructions mapped to comms or

commr to contain channel constituents.

The registers that belong to a channel are exactly the registers that are present in sv but

not in cuc. Thus, when comparing the local state of cuc and sv , we ignore those registers.

We can now define similarity of local states, which we use to relate CUC states and SV

states.

85

6.3. Definitions and SV Semantics with Events

Definition 6.10: Similarity with Respect to Channel Constituents

Let σ, σ̂ ∈ CStates be concurrent local states of a CUC program and an SV program,

respectively. Let σ =̂ σ̂ denote that σ and σ̂ are equal for all local registers that do not

belong to a channel. This equality also does not include the program counters. We say σ

is similar to σ̂.

Note that =̂ does include the register into which receive writes the value read from the shared

variable. Thus, receiving a value is visible to the =̂ relation.

Our aim is to show that a program sv fitting a program cuc preserves the safety and

liveness properties of cuc. To express safety and liveness properties in SV, we define a

semantics with events, stable states, and refusal sets. To this end, we first define an event

labeling and an operational semantics for SV with events. Then we define traces and stable

failures semantics for SV via an operational characterization. This enables us to show a

stable failures refinement between cuc and sv in the next section. Observe that all definitions

regarding the traces and stable failures semantics are very similar to the respective definitions

of CUC. This facilitates showing the relation between CUC and SV.

The idea of stable states is that communication is offered in a stable way. This is

defined in CSP/CUC as the inability to perform internal steps (τ) as this might disable the

communication capabilities. However, CSP/CUC has abstract communication, thus events

do not need to be “prepared” to occur. Using the handshake protocol in SV, “administrative”

steps happen before and after the visible event occurs. Thus, when labeling the steps of SV,

we use a different label for “administrative” steps than for the usual internal steps. We label

invisible instructions of the implementation of communication with τc. This allows us to

define stable states as the inability to perform internal steps, but allowing the “administrative”

steps of the communication to be enabled. This way, we can define stable states before the

execution of the protocol implementation, but let the refusal sets refer to events during the

execution of the protocol implementation. This enables us to bridge the gap between abstract

synchronous semantics where the event coincides with both the decisions who is the sender

and who is the receiver, and the low-level asynchronous semantics where the event happens

after the sender and the receiver are consecutively decided.

To define a stable failures semantics for SV, we define a labeling function mapping

transitions in sv to events. Transitions are identified by the starting state and the executed

instruction. Only read is mapped to a visible event. The invisible instructions of the

implementation of the communication are mapped to τc. All other instructions (do and cbr)

are invisible and mapped to the usual τ .

86

6.3. Definitions and SV Semantics with Events

Definition 6.11: Event Labeling for sv

Let EL be a function from state, id of the component executing the next instruction, and

its next instruction to events of cuc, τ , or τc.

EL : GStates× ID × Instructions → Σ ∪ {τ, τc}

EL
(
(Γ,), id , read γc

)
:= c.s.r.v where s = Γ(mc), r = id , v = Γ(γc)

EL(, , ins) := τc if ins is part of send or receive (see Fig. 6.1)

EL(, ,) := τ otherwise

Note that the labeling function requires the information about send and receive, which are

directly tied to the abstract communication instructions comms and commr and the handshake

protocol. Using the labeling function EL, we can derive an SV semantics with visible events:

Definition 6.12: SV Semantics with Events

(Γ, σ)
ev−→sv (Γ′, σ′) :⇔ (Γ, σ) −−→sv (Γ′, σ′) ∧

(
∃ id ins . ev = EL

(
(Γ, σ), id , ins

))
Here, the active component id can be determined by the component whose program counter

changed, and ins is the instruction the program counter of the active component points to.

To ensure that every executed instruction changes the program counter, we require that no

cbr instruction jumps to its own label.

Assumption 6.3: No Self Loops

∀ id ℓ b m n. (ℓ, cbr b m n) ∈ cucid ∨ (ℓ, cbr b m n) ∈ sv id =⇒ ℓ ̸= m ∧ ℓ ̸= n

Having labeled single steps, we can now define execution semantics labeled with the

visible trace.

Definition 6.13: Operational Traces Semantics of SV

exec-0

(Γ, σ)
⟨⟩
=⇒cp (Γ, σ)

exec-ev

(Γ, σ)
tr′
=⇒cp (Γ′′, σ′′) (Γ′′, σ′′)

ev−→cp (Γ′, σ′) tr′⌢⟨ev⟩ = tr ev /∈ {τ, τc}

(Γ, σ)
tr
=⇒cp (Γ′, σ′)

exec-τ

(Γ, σ)
tr
=⇒cp (Γ′′, σ′′) (Γ′′, σ′′)

ev−→cp (Γ′, σ′) ev ∈ {τ, τc}

(Γ, σ)
tr
=⇒cp (Γ′, σ′)

87

6.3. Definitions and SV Semantics with Events

The visible traces neither contain τ nor τc. Visible events are appended at the end of traces.

We proceed and define the traces semantics Tsv for SV via an operational characterization.

It captures all traces that are possible, starting in σ.

Definition 6.14: Traces Semantics for SV

tr ∈ Tsv (Γ, σ) := ∃Γ′ σ′. (Γ, σ)
tr
=⇒sv (Γ′, σ′)

Next, we define stable states, refusal sets, and stable failures for sv . The stable states and

failures are similar to the definitions for cuc. The refusal sets differ, as they need to account

for the invisible execution steps of the handshake protocol.

Definition 6.15: Stable States in sv

A state (Γ, σ) is stable in sv ((Γ, σ)↓sv) if all components either point outside the code

or to the first instruction of send or receive. Formally:

(Γ, σ)↓sv := ∀ id .
(
̸ ∃ ins. (σid

pc , ins) ∈ sv id
)

∨
(
∃ c. (σid

pc , cas mc free id) ∈ sv id

∨ (σid
pc , cas src ⊤ ⊥) ∈ sv id

)
The stable states in sv coincide with the stable states in cuc (pointing to comms, commr
or outside of the code). They can neither make a visible event step nor a τ step, but

might be able to make a τc step. As the visible event (labeling read) occurs only in the

middle of the execution of the handshake protocol, a finite number of τc-steps are allowed

before the visible event in order to consider it “enabled”. Assuming fairness, i. e., at any

point for any component, there is a finite number of steps after which the component will

make a step, possible communication happens after a finite number of τc-steps. Conversely,

if communication is not possible, i. e., a deadlock occurs in the synchronous setting, the

implementation of the handshake protocol will stay in a busy loop. Thus, the visible event

is not reachable. In the following definition of refusal sets let
τc−→∗

sv denote zero or more τc
steps.

Definition 6.16: Refusal Set in sv

A state refuses a set of visible events in sv , if they are not reachable after a finite number

of τc steps. Let X ⊆ Σ.

(Γ, σ) refsv X := ∀ a ∈ X. ̸ ∃Γ′ σ′. (Γ, σ)
τc−→∗

sv
a−→sv (Γ′, σ′)

Having defined stable states and refusal sets for SV, we can finally define stable failures

for SV.

88

6.4. Handshake Refinement

Definition 6.17: Stable Failures of SV

A stable failure is a pair of a trace tr and a refusal set X. It denotes that there is a

stable state (Γ′, σ′) which can be reached from the initial state σ via the trace tr and

refuses X.

(tr,X) ∈ SFsv (Γ, σ) := ∃(Γ′, σ′). (Γ, σ)
tr
=⇒sv (Γ′, σ′) ∧ (Γ′, σ′)↓sv ∧ (Γ′, σ′) refsv X

This concludes the definition of the SV semantics with events. In this section, we have

defined which CUC and SV programs to relate to each other (fitting), how states will be

compared (similar), and a stable failures semantics for SV. In the next section, we define our

notion of handshake refinement to formally relate CUC and SV programs. We use the stable

failures semantics to show that the handshake refinement ensures that safety and liveness

properties are preserved.

6.4 Handshake Refinement

In this section, we define our notion of handshake refinement to relate abstract communication

and its low-level implementation with a handshake protocol. The idea of the handshake

refinement is to extend usual behavioral relations of two states or processes (as in bisimulations

or refinements) with a third element (the channel-state X) to track the progress of the protocol

executions for each channel. This enables us to relate SV states at different stages of the

protocol execution to the same CUC state. During the execution of each individual protocol,

as first the sender and then the receiver are determined, the possible events offered by the

SV state may be fewer than those offered by the related CUC state, where neither the sender

nor the receiver are yet determined. The channel-state enables different treatment in the

relation of the same CUC state at different stages of the protocol execution. We use the

channel-state to indicate which possible events of the CUC state need to be answered by

the SV state. The channel-state X is a function from channel names to the states of the

channels. If the channel c is clear from the context, we only talk about “the channel-state”

and omit “of channel c”. Let ⊎ denote a disjoint set union.

X : Channels → {free} ⊎ ID in ⊎ (ID × ID)in ⊎ (ID × ID)un ⊎ IDun

Each channel can be in one of five states: It can be free, a sender or both a sender and

a receiver are in the channel, and after the communication happened, the channel will be

eventually unlocked, first with both a sender and a receiver still in the channel, then only a

sender. The states of the channel-state X (c) for the considered channel c within the protocol

flow are illustrated in Figure 6.2 in the rectangular boxes in the middle column. Figure 6.2

illustrates the protocol flow for a sender and receiver on a single channel. For each channel,

the SV states and possible transitions of send (S, S1 to S6; on the left) and receive (R,

R1 to R3; on the right) are depicted. In the upper right corner, also those of do (D) and

cbr (C) are depicted, as well as those pointing outside the code (O). N (for non-protocol

89

6.4. Handshake Refinement

state) is a placeholder for O, D, C, S, or R, thus, all states which do not occur within1

the execution of the handshake protocol. Dotted lines indicate the boundaries between

channel-states. The dashed line marks the moment where the communication happens, i. e.,

all states above are in a relation to the CUC state before the communication, and those

below to the CUC state after the communication has happened. The arrows over (S1), (S5’),

and (R2) denote whether cbr will jump back to the first label or forward to the second label,

based on the cas instruction before. Note that the transitions of send from S4 to S4’ and S5

to S5’ happen without a step from the sending component, but correspond to the transition

of receive on the same channel from R2 to R3. We define the following shorthands to talk

about ids that do not appear in the channel-state at all and completely free channel-states.

Definition 6.18: id not in the Channel-State

id /∈ X := ∀ c id′.X (c) /∈
{
idin , (id, id

′)in , (id
′, id)in , (id, id

′)un , (id
′, id)un , idun

}
We call a channel-state empty, it if is free for all channels:

X = ∅ := ∀ c. X (c) = free

Having introduced the channel-state X , we define the handshake refinement in Defini-

tion 6.19. It is a relation parametrized over two programs cuc and sv fitting with ψ. The

elements are triplets consisting of a concurrent CUC state σ, a channel-state X , and pair of

global state Γ and concurrent local SV states σ̂. Our handshake refinement consists of two

properties describing the states, and three describing the possible transitions. In each triplet,

the CUC states and the local SV states are similar (as defined in Definition 6.10). Further-

more, they fulfill the protocol constraints Pcuc,sv ,ψ, which constrain the possible SV states

and their relation to CUC states. The protocol constraints Pcuc,sv ,ψ are defined separately

in Definition 6.20 and explained below. The possible transitions within the handshake refine-

ment are described by the down-, up-, and unlocking-simulation. The down-simulation

relates transitions in cuc to one or more transitions in sv . Observe that visible events only

need to be answered if the channel is free. This precludes triplets where the sender in sv is

already decided but the CUC state still could choose a different sender. It is sound to ignore

those SV states in the down-simulation, as we are only interested if the implementation

(as a whole) allows and offers the same events. Although there is no “equivalent” state in

cuc, all other senders that were possible in sv right before this choice of a particular sender

are considered by the down-simulation. Note that we allow any number of “administrative”

events τc even when answering a τ step, although one could think that the internal τ steps

do not require the consideration of the communication protocol. This is necessary, as the τ

steps do not have an associated channel and, thus, the corresponding channel state cannot be

checked if it is free. Therefore, if the event before the τ step was a visible step, it is possible

that the communication protocol for that event is not yet finished, however the related CUC

1We do not treat S and R as states that occur within the execution of the protocol. The idea is that
leaving the state S or R starts the execution of the protocol.

90

6.4. Handshake Refinement

S←−
S1

cas mc = false

cbr

−→
S1

cas mc = true

S2

cbr

S3

write γc

S4

write src

←−
S5

cas frc = false

cbr

R

←−
R1

cas src = false

cbr

−→
R1

cas src = true

R2

cbr

R3

read γc

N

write frc

S4’
←−
S5’

cbr

−→
S5’

cas frc = true

S6

cbr

N

write mc free

X (c) ̸= free

X (c) = free

X (c) = sin

X (c) = (s, r)in

X (c) = (s, r)un

b
ef
or
e
co
m
m
u
n
ic
at
io
n

af
te
r
co
m
m
u
n
ic
at
io
n

X (c) = sun

X (c) = free

O D

N

do

N

do

N

do

C

N

cbr

Figure 6.2: The Flow of the Handshake Protocol

91

6.4. Handshake Refinement

state is already “after communication”. Finishing the communication protocol results in

τc steps that must occur before the considered τ step can happen. The up-simulation

relates transitions in sv to transitions in cuc. The “administrative” event τc is related to

zero transitions in cuc, all other events to one. Finally, the unlocking-simulation ensures

(assuming fairness) that, after the communication has happened, the channel will be freed

eventually. This allows the down-simulation to only consider states where the channel is free.

Definition 6.19: Handshake Refinement Bcuc,sv,ψ

Let a CUC program cuc and an SV program sv be fitting with a program label map
ψ. A handshake refinement is a ternary relation Bcuc,sv,ψ over CUC states (cuc),
channel-states (X), and SV states

(
(Γ, σ̂)

)
, which fulfills the following properties.

∀
(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ. (ev can be visible or τ)

Similar local states: σ =̂ σ̂

Protocol constraints: Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
(see Definition 6.20)

Down-simulation:

∀ ev σ′. ev ̸= τ ∧ X (chan(ev)) = free ∧ σ ev−→cuc σ
′ =⇒ ∃Γ′ σ̂′ ids idr X ′.

(Γ, σ̂)
τc−→∗

sv
ev−→sv (Γ

′, σ̂′) ∧ X ′(chan(ev)) = (ids, idr)un ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀σ′. σ
τ−→cuc σ

′ =⇒ ∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv
τ−→sv (Γ

′, σ̂′) ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Up-simulation:

∀(Γ′, σ̂′). (Γ, σ̂)
τc−→sv (Γ

′, σ̂′) =⇒ ∃X ′.
(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀ ev (Γ′, σ̂′). (Γ, σ̂)
ev−→sv (Γ

′, σ̂′) =⇒ ∃σ′ X ′. σ
ev−→cuc σ

′ ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Unlocking-simulation:

∃ c ids. X (c) = (ids)un ∨
(
∃ idr. X (c) = (ids, idr)un

)
=⇒

∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv (Γ
′, σ̂′) ∧ X ′ = X [c := free] ∧

(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

In Definition 6.20 we define the protocol constraints Pcuc,sv ,ψ, which are specific to

the handshake protocol at hand. The protocol constraints ensure a) that only SV states

reachable by the execution of the handshake protocol execution are included, and b) that the

channel-state reflects the current progress of the protocol execution. The overall definition is

that for every channel, if the channel-state is free, the belonging signals must be ⊥, and for

each component with id id the disjunction Pidcuc,sv ,ψ, which is also defined in Definition 6.20,

must hold. The disjuncts of Pidcuc,sv ,ψ (O, D, . . . , R3) correspond to the states with the

same names in the protocol flow in Figure 6.2. The disjuncts describe triplets (cuc,X , sv),

92

6.4. Handshake Refinement

Definition 6.20: Protocol Restrictions

Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
:=
(
∀ c.X (c) = free =⇒ ¬Γ(src) ∧ ¬Γ(frc)

)
∧ ∀ id.Pidcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
Pidcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
:= O∨D∨C∨S∨S1∨S2∨S3∨S4∨S5∨S4′∨S5′∨S6∨R∨R1∨R2∨R3

O, D, C Have a direct counterpart in CUC, channel variables are not a concern, id /∈ X
D do f instruction

C cbr

S At the beginning of send , id /∈ X
S1 Branch according to result of cas in S. If the component now has the mutex, than

also the signals must be inactive.

S2 From now on in this execution of the protocol, the id of the component is stored in
the mutex of the channel and in the channel-state.

S3 The data value to be communicated is stored in the shared variable.

S4 The first row of the following formula ensures that the SV state is mapped to a
CUC state where the pc points to the appropriate comm. The second row ensures
that mutex is locked by the considered component, the value of the shared variable
is the value to be sent, and the signal indicating that reading is finished (frc) is not
set. The third row describes the signal src and the channel-state. Start reading was
set to ⊤ from S3 to S4. If the receiver did start reading, then start reading will
remain ⊥ from now on. In the first case the channel-state only contains the sender,
in the second also the receiver.

(σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧ ψ(σidpc) + 4 = σ̂idpc
∧ Γ(mc) = id ∧ Γ(γc) = σ̂idds(xs) ∧ ¬Γ(frc)
∧
(
Γ(src) ∧ X (c) = idin ∨ ¬Γ(src) ∧ (∃ idr.X (c) = (id, idr)in)

)
S5 Branch back to S4, as the communication has not happened yet.

S4’ From now on, the communication already has happened. The channel-state is now
set to unlocking. Observe that now the SV state is in a relation with the CUC state
that occurs after the communication. Therefore we need to subtract 1 from the
program counter of the SV state, to map with ψ to comm.

(σidpc −1, comms id c xs) ∈cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧ ψ(σidpc −1) + 4 = σ̂idpc
∧ Γ(mc) = id ∧ ¬Γ(src)
∧
(
Γ(frc) ∧ X (c) = idun ∨ ¬Γ(frc) ∧ (∃ idr.X (c) = (id, idr)un)

)
S5’ Branch according to the result of cas in S4’.

S6 The signals are ⊥, in the next step the mutex and the channel-state will be free.

R At the beginning of receive, id /∈ X
R1 Branch according to result of cas in R. If the component is now a receiver, both

sender and receiver ids are in the channel-state of the channel. The state of
the signals is already fixed in the disjunct of the sender where both are in the
channel-state.

R2 The channel-state contains the sender and the receiver about to communicate.

R3 The channel-state still contains the sender and the receiver, but is now about to
unlock the channel. The SV state is now in a relation with the CUC state after the
communication.

93

6.5. Preservation of Safety and Liveness Properties

consisting of a CUC state cuc, a channel-state X , and an SV state sv . They provide sufficient

conditions to the SV state to be reachable by the execution of the protocol. They constrain

the program counters and channel related variables, and thereby relate the SV state via the

program label map ψ with the CUC state and the appropriate channel-state. In Pidcuc,sv ,ψ,
the channel-state also “synchronizes” the different components, i. e., excludes illegal state

combinations of different components, e. g., two components having a lock on the same

channel. It follows a description of the disjuncts, from which we provide two formally. A

complete formal definition of the protocol constraints can be found in the Appendix A.4 in

Definition A.1.

Although we have presented our method for a concrete (handshake) protocol, it provides

the foundation for a more generalized notion of relations between abstract synchronous

and concrete asynchronous communication based on other communication/synchronization

protocols. The presented protocol can be divided into four phases (which match with the four

non-FREE channel-states): 1) registration, 2) before communication, 3) after communication,

4) unregistration. This is also the structure the handshake refinement relies upon. As the

presented handshake protocol is intentionally simple, the phases are very short. Our approach

can be extended to other protocols that fit in those four phases, e. g., to verify a protocol

which supports a “selection on channels” (external choice in CSP). This “selection”, i. e.,

finding a channel with a present communication partner, would happen in Phase 1. This

way, input and output guards could be supported.

In this section, we have presented our notion of handshake refinement. It is an asymmetric

implementation relation. The focus of our handshake refinement is on the implementation of

abstract communication. Outside of the implementation of abstract communication, it is

defined like a strong bisimulation. In the next section, we show that our notion of handshake

refinement implies a stable failures refinement. Thus, the handshake refinement preserves

safety and liveness properties.

6.5 Preservation of Safety and Liveness Properties

In this section, we prove that every SV program sv fitting a CUC program cuc preserves

all safety and liveness properties of cuc. To this end, we first show that the handshake

refinement relation preserves safety and liveness properties. Second, we show that all pairs

of fitting CUC and SV programs are in a handshake refinement relation.

6.5.1 Handshake Refinement preserves Safety and Liveness Prop-

erties

In this subsection, we first show the preservation of safety properties, and then the preservation

of liveness properties.

We capture safety properties using the traces semantics. To show the preservation of

safety properties, we show that every trace of sv is also a trace of cuc. To this end, we

show that starting with a triplet
(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ, every trace in T (Γ0, σ̂0)sv leads

94

6.5. Preservation of Safety and Liveness Properties

to a triplet in Bcuc,sv,ψ and the same trace is in T (σ0)cuc leading to the same triplet:

Lemma 6.2: All sv Traces and Their cuc Counterparts are in Bcuc,sv,ψ

(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ ∧ (Γ0, σ̂0)

tr
=⇒sv (Γ, σ̂)

=⇒ ∃σ X ′.
(
σ,X ′, (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ σ0

tr
=⇒cuc σ

Proof

Using induction of the up-simulation.

We can directly conclude the preservation of safety properties: All traces of sv are also traces

of cuc.

Theorem 6.1: Preservation of Safety Properties

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ =⇒ T (Γ, σ̂)sv ⊆ T (σ)cuc

Proof

Using the Definitions 5.13 and 6.14 of the operational characterizations of the traces

semantics of CUC and SV, respectively, and Lemma 6.2.

Having shown that our handshake refinement preserves safety properties, we proceed

to show that it also preserves liveness properties. We capture liveness properties using the

notion of stable failures. To this end, we show that the stable failures of sv are included in

the stable failures of cuc. Thus, all liveness properties from cuc are preserved in sv . To show

the preservation of liveness properties, we first show two lemmas: Lemma 6.3 shows that

stable states in sv imply stable states in cuc. Lemma 6.4 shows that refusals of sv imply

refusals of cuc.

Lemma 6.3: Stable States in sv Imply Stable States in cuc and X = ∅

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ σ↓cuc ∧ X = ∅

Proof

As Bcuc,sv,ψ is a handshake refinement, Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
holds. In Pcuc,sv ,ψ the cases

where (Γ, σ̂)↓sv holds imply σ↓cuc and X = ∅.

95

6.5. Preservation of Safety and Liveness Properties

The key lemma to prove the theorem of preservation of liveness states that in a triplet in a

handshake refinement, if the sv state is stable, then any events the sv state can refuse can

also be refused by the cuc state.

Lemma 6.4: Refusals in sv Imply Refusals in cuc

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Proof

Using Lemma 6.3, we have X = ∅ and can apply the down-simulation. The down-

simulation ensures that the SV program sv has at least the communication capabilities of

the CUC program cuc. It follows that the refusals of sv are included in the refusals of

cuc. A more technical proof is in the Appendix A.6.

Now, we can show the preservation of liveness properties, i. e., the inclusion of stable failures.

Theorem 6.2: Preservation of Liveness Properties

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ =⇒ SFsv(Γ, σ̂) ⊆ SFcuc(σ)

Proof

To show SFsv(Γ, σ̂) ⊆ SFcuc(σ), fix a stable failure in sv and find it in cuc, i. e., find the

same pair of trace tr and refusal set X. We show (tr,X) ∈ SFsv(Γ, σ̂) is also a stable

failure of cuc, i. e., (tr,X) ∈ SFcuc(σ), with the previous lemmas: A trace of sv implies a

trace of cuc (Lemma 6.2), the stable states in sv imply stable states in cuc (Lemma 6.3),

and the refusal sets of sv imply refusal sets of cuc (Lemma 6.4).

Having shown that the handshake refinement preserves safety and liveness properties, we

show that we need the information about the sender, which is stored in the mutex, only

for the proofs. It does not affect the semantics of the programs. To demonstrate this, we

consider a slightly different program sv ′, and show that it has the same properties. The

program sv ′ differs from sv in that it does not store the id of the component which has the

lock in the mutex, but only that the lock is taken. Figure 6.3 shows the program sv ′. In sv ,

we store the information about the sender in the mutex to reconstruct the sender at the time

of reading the shared variable. This information is only needed for the labeling and the proof.

However, the execution of the (concurrent) program sv only depends on the information

whether the mutex was taken, not by whom. Thus, sv ′ has exactly the same executions as

sv and the following corollary holds.

96

6.5. Preservation of Safety and Liveness Properties

send : 1 : cas hlc mc free taken
2 : cbr hlc 3 1
3 : write γc xs

4 : write src ⊤
5 : cas ssc frc ⊤ ⊥
6 : cbr ssc 7 5
7 : write mc free

receive: 1 : cas ssc src ⊤ ⊥
2 : cbr ssc 3 1
3 : read xr γc
4 : write frc ⊤

Figure 6.3: Alternative Implementation of the Handshake Protocol Without Sender Identifier
in the Mutex

Corollary 6.1: Liveness Properties Without Sender Identifier

An adaption of the handshake protocol given in Figure 6.3, where in the mutex only

taken is stored instead of the sender id, also preserves all safety and liveness properties.

In this subsection, we have shown that the handshake refinement implies a stable failures

refinement, and as such, preserves safety and liveness properties. In the next subsection,

we show that when replacing all instances of comms and commr in a CUC program cuc

with send and receive according to the handshake protocol, the resulting SV program sv

is in a handshake refinement relation with cuc, and, thus, has the same safety and liveness

properties.

6.5.2 Fitting Programs preserve Safety and Liveness Properties

In this subsection, we show that any cuc program and fitting sv program are in a handshake

refinement relation. More specifically, we show that all sensible initial states (as defined in

Theorem 6.3) are in a handshake refinement relation. The resulting theorem allows for a

scalable approach to the verification of shared variable communication, as we show it once

for all fitting programs.

Theorem 6.3: Fitting Implies Handshake Refinement

Let sv be a program fitting cuc with the program label map ψ. Then, there is a handshake

refinement Bcuc,sv,ψ containing all initial pairs, i. e., similar CUC and SV states where the

program counters of each component match with ψ, all mutexes in Γ are free, and all

signals are inactive.

σ =̂ σ̂ ∧
(
∀ id . σ̂id

pc = ψ(σid
pc)
)
∧
(
∀ c. Γ(mc) = free ∧ ¬Γ(src) ∧ ¬Γ(frc)

)
=⇒

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ

Proof: Idea

The proof can be found in Appendix A.5 and is similar to bisimilarity proofs: all possible

transitions of one part can be answered by its counterpart. An important difference is

97

6.6. Summary

Proof: Idea

that the down-simulation needs to be shown (answer visible events) only in stable states.

As the handshake refinement implies preservation of safety (Theorem 6.1) and liveness

properties (Theorem 6.2), we can now conclude with Theorem 6.3 that all fitting programs

share the same safety and liveness properties.

Theorem 6.4: Fitting Implies Preservation

Let sv be a program fitting cuc with ψ. Then all safety and liveness properties from cuc

are preserved to sv .

Proof

Follows from Theorem 6.3 and Theorems 6.1 and 6.2.

In this section, we have shown that every pair of CUC and SV programs cuc and sv , where

sv can be obtained by replacing the abstract communication in cuc with the handshake

protocol, has the same safety and liveness properties. The generality of Theorem 6.4 allows

for scalability of showing the preservation of safety and liveness properties. The next section

concludes this chapter.

6.6 Summary

In this chapter, we have presented a method to relate abstract synchronous communication

with an asynchronous handshake implementation using shared variable communication

and have proven that this method preserves safety and liveness properties. To this end,

we have defined our generic low-level language SV that allows for the implementation of

communication protocols using shared variables. The language SV can be instantiated to

current instruction set architectures. We have defined traces and stables failures semantics

for SV to formalize the preservation of safety and liveness properties. To this end, we have

introduced our novel notion of handshake refinement, which is similar to strong bisimulation,

apart from the protocol implementation, which is a refinement. It explicitly captures the state

of progression through the executions of the implementations of the protocol. Moreover, we

have proven in the general Theorem 6.4 that all pairs of CUC and SV programs, where the SV

program results from the CUC program by replacing the abstract communication instructions

with their handshake implementation, have the same safety and liveness properties. The

generality of the theorem makes it independent of the number of components. Together

with our compositional method to show the preservation of safety and liveness properties

from CSP to CUC in the previous chapter, we have a compositional framework to prove the

preservation of safety and liveness properties from abstract specifications in CSP down to

low-level code, including asynchronous communication mechanisms. While the handshake

98

6.6. Summary

refinement, and especially the protocol constraints (Pcuc,sv ,ψ), depends on the protocol used

for the implementation, it is easy to integrate other protocols. We have given pointers how

to adapt the definition for use with other protocols in Section 6.4. In the next chapter,

we demonstrate the application of our framework using an example with n clients and an

arbitrary but fixed number of servers.

99

Chapter 7

Evaluation & Case Study

In this chapter, we illustrate the application of our framework. The main advantages of our

framework are its scalability with respect to the number of components, the verification of not

only safety, but also liveness properties, the verification of non-terminating systems, and the

rigorousness of the verification from abstract specification down to low-level code. To demon-

strate this, especially the scalability with the number of components, we consider the example

of redundant m-servers-n-clients. It is a system with n client processes, which delegate com-

plex computations to m1 server processes. They request the same computation/information

from m server processes for redundancy. Redundant sensors or computations are usual in

safety critical systems to decrease the reliability on individual sensors or results. Our focus

in this example is on the communication between the components. The example is suitable

to demonstrate the application of our approach, as it is concurrent, communicating, and

non-terminating. Due to the compositionality of our approach, we do not need to consider

all processes at once. We can refine a single client and a single server separately, and obtain

directly the preservation of safety and liveness properties for systems with arbitrarily many

clients.

First, we specify the system and its components in CSP in Section 7.1. We implement

the specification in CUC in Section 7.4 and show that it is a stable failures refinement of the

specification, using the first part of our framework: In Section 7.2, we define the connecting

property and in Section 7.5 we prove the refinement from CSP to CUC using the Hoare

calculus. Finally, we replace the abstract communication with the handshake protocol and

obtain an implementation in SV in Section 7.6, using the second part of our framework. In

Theorem 6.4 we have shown that this implies also a stable failures refinement between CUC

and SV. By transitivity, we obtain that all safety and liveness properties from the abstract

specification in CSP are preserved in the low-level implementation with communication over

shared variables in SV.

1The degree of redundancy, i. e., the number of servers, is arbitrary but fixed. For simplicity of this
example, and as it is required for most safety critical systems, we choose a degree of redundancy of 3. With
an arbitrary number m, we would need to consider processes and programs of variable length, which does not
help the understanding of the example. The processes and proofs are easily adaptable to other instantiations
of m.

100

7.1. Specification in CSP

7.1 Specification in CSP

In the following, we present the specification of our system in CSP. We have n homogeneous

client components, which send an input for a computation consecutively to three redundant

server components, which perform the requested computation (in our example modeled by

the function f). The client then waits for the results of the computations. As our example is

focused on the communication aspect, the client then finishes. In an actual system, the client

would process the data, determine, e. g., via voting, which data to accept, and continue its

execution depending on the accepted data. Once the servers have sent back the computed

value they are ready for new input. For the simplicity of this example, we choose not to let

the client start over when it is finished. Apart from even longer formulas, the proof would

not get more complicated.

We first introduce a more abstract version of the specification (called Clientsimple and

Server simple), and then we introduce a version, which conforms to the restrictions defined

in Section 6.2 in Assumption 6.1, i. e., all components are combined with the alphabetized

parallel operator and use communication interface that ensure that every event has distinct

senders and receivers. This conformity allows us to later apply Theorem 6.4 that shows that

all fitting programs have the same safety and liveness properties. We consider six channels

a1, a2, a3, b1, b2, b3, one to receive and one to send for each server. The server is parametrized

with an id, which determines the channels assigned to the server.

Clientsimple = ⊓
v∈T

a1!v → a2!v → a3!v → b1?y1 → b2?y2 → b3?y3 → STOP

Server simple
i = ai?x→ bi!f(x)→ Server simple

i

We specify the whole system as follows, where 9 is the interleaving operator, which only

allows interleaving steps and no synchronization.

Clientssimple(n) = |||
n

Clientsimple

Serverssimple = |||
i∈{1,2,3}

Server simple
i

Systemsimple(n) = Clientssimple(n) {a1,a2,a3,b1,b2,b3}∥{a1,a2,a3,b1,b2,b3} Serverssimple

To comply with the restrictions from Assumption 6.1 for our handshake protocol in SV,

which we describe in the following, we transform the specification to use the communication

as described in 6.2. That means, we embed the sender and receiver id into the events to

obtain purely unidirectional communication. We also replace all events to be sent with an

external choice over all possible receivers. Thus, we make the receivers explicit. Like in CSP,

the restriction to send to a certain receiver is ensured by the use of a special event structure,

101

7.1. Specification in CSP

facilitated by the dot-notation of CSP. In addition to a channel name, we also use the id of

the sender and of the receiver. As introduced in Section 6.2, we use events a.c.idout.v that

consist of four parts. Let a be the channel name, c the id of the client, ID the set of all ids,

and v the value to be sent. We use the following replacement for sending a value (a!v):

a!v → P ↝ □
idout∈ID\{c}

a.c.idout.v → P

Note the use of external choice (□). The receiver needs to be able to choose its idout from

all offered events. We allow all ids but c as the id of the potential receiver. We perform a

similar replacement for receiving of event (a?x).

a?x→ P (x) ↝ □
id in∈ID\{c}

a.id in.c?x→ P (x)

When applied to the server, we get the following result. Let si for i ∈ {1, 2, 3} be the ids of

the servers. All operators are right-associative.

Server i = □
id in∈ID\{si}

ai.id
in.si?x→ □

idout∈ID\{si}
bi.si.id

out.f(x)→ Server i

As we can model the internal choice over the value of v with a non-deterministic do (think

sensor read), we can keep the internal choice for the client and implement it in CUC.

Additionally, we would have two options to handle internal choice: Either we refine it to a

deterministic choice within CSP, or refine it to a deterministic choice in the refinement to

CUC. When applying the replacements to the client, we get the following result. Let c be

the id of the client.

Clientc =

⊓
v∈T

(
□

idout
1 ∈ID\{c}

a1.c.id
out
1 .v → □

idout
2 ∈ID\{c}

a2.c.id
out
2 .v → □

idout
3 ∈ID\{c}

a3.c.id
out
3 .v →

□
id in

1∈ID\{c}

b1.id
in
1 .c?y1 → □

id in
2∈ID\{c}

b2.id
in
2 .c?y2 → □

id in
3∈ID\{c}

b3.id
in
3 .c?y3 →

STOP

)

The constraints in Section 6.2 do not allow for the interleaving operator (9), as the

definition of communication interfaces is not included. We replace it with an alphabetized

parallel operator (∥) where we do not allow the ids of the other component as senders or

receivers in the communication interface.

cpi 9 cpj ↝ cpi αi∥αj cpj

αi =
{
a.s.r.v ∈ Σ |

(
s ∈ ids(cpi) ∨ r ∈ ids(cpi)

)
∧ r, s /∈ ids(cpj)

}
.

102

7.2. Sufficient Property: Specification as an Assertion

As a result, we get the following overall system:

Clients(n) :=
((

Clientc1 βc1
\βc2
∥βc2

\βc1
Clientc2

)
(βc1

∪βc2
)\βc3
∥βc3

\(βc1
∪βc2

) . . .

. . .
)

(βc1
∪...∪βcn−1

)\βcn
∥βcn\(βc1

∪...∪βcn−1
) Clientcn

Servers :=
(
(Server1 βs1\βs2

∥βs2\βs1
Server2) (βs1∪βs2)\βs3

∥βs3\(βs1∪βs2)
Server3

)
System(n) := Clients βc1∪...∪βcn

∥βs1∪βs2∪βs3
Servers

where we use the following shorthand for the communication interfaces. The set βid
describes all events as defined below, where the component with id id is either the sender or

the receiver.

βid = {a.s.r.v ∈ Σ | (s = id ∨ r = id) ∧ s ̸= r}.

Using FDR4, we have validated for concrete instances of n and f that Systemsimple(n)

and System(n) are stable failures equivalent (using n = 3 and f(x) = ((x)%N) + 1). Having

specified the system in CSP, we formulate the sufficient property, which captures the failures

of the specification as an assertion. Later, we use the Hoare calculus to show that the

sufficient property holds for the CUC implementation of the system.

7.2 Sufficient Property: Specification as an Assertion

The sufficient property is a (possibly stronger) reformulation of the CSP process as an

assertion on trace-refusal pairs. It is sufficient for the CSP process in the sense that all

behaviors described by the sufficient property are also behaviors of the CSP process. In

contrast to the CSP process, the sufficient property can be used as an assertion in our Hoare

calculus. When showing later in Section 7.5 the sufficient property for the CUC program, we

enrich the sufficient property with information about the states. In this section, we define

the sufficient properties for the server and the client. In the next section, we show that they

are indeed sufficient, i. e., they only capture stable failures of the respective CSP process

A systematic way to formulate a sufficient property is to identify possible loops, describe

their recurring traces, and then formulate failures for each prefix of the loop(s). The server

has a loop with a trace length of 2, and we describe the two prefixes separately. The failures

with an even trace length where the server is waiting for the next input are captured by Fidle
i .

The failures with an odd trace length where the server is going to perform its calculation are

captured by Fbusy
i . Let ⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗ be the concatenation of zero or more

103

7.3. Correctness Proof of the Sufficient Property

times ⟨ai.id in
∗ .si.x∗, bi.si.id

out
∗ .f(x∗)⟩ where id in

∗ , id
out
∗ , x∗ can be different for every repetition.

S⊆
i (F) :=F ∈ Fidle

i ∨ F ∈ Fbusy
i where

Fidle
i :=

{(
⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗, X

)⏐⏐⏐X ⊆ Σ \ {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}
}

Fbusy
i :=

{(
⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗⌢⟨ai.id in.si.v⟩, X

)⏐⏐⏐X ⊆ Σ \
{
bi.si.id

out.f(v)
⏐⏐ idout∈ ID \ {si}

}
∧ id in∈ ID \ {si} ∧ v ∈ T

}
Note the difference of the set comprehension (“quantification”) over id in/idout and v. In

the definition of Fidle
i they appear in the complement of the maximal refusal set. In the

definition of Fbusy
i they appear after the maximal refusal set, thus, the suffix ⟨ai.id in.si.v⟩

can occur for any sender id in and any value v.

We formulate the sufficient property for the client in Figure 7.1. It does not have a loop.

We describe the possible prefixes grouped by length.

7.3 Correctness Proof of the Sufficient Property

We prove for both sufficient properties that they describe at most the failures of the respective

CSP processes. In both cases, it is a simple case analysis. We give the full proof for the

server in Appendix A.7.1.

Lemma 7.1: Both Sufficient Properties are Correct

C⊆
c (F) =⇒F ∈ SF(Clientc)

S⊆
i (F) =⇒F ∈ SF(Server i)

7.4 Implementation in CUC

We define the system in CUC. To this end, we define a client and a server. Both are depicted

in Figure 7.2. The client non-deterministically generates a value, which it sends over three

channels. It collects the three results and then terminates. The server receives a value

and performs its computation modeled as the application of the function f . Afterwards,

the server sends the computed values and is ready to accept new input. For these short

programs it is easy to see that both programs do not diverge and, thus, fulfill Assumption 5.7

(Divergence Freedom of CUC Programs).

104

7.4. Implementation in CUC

C⊆
c (F) := F ∈{(
⟨⟩, X

) ⏐⏐⏐X ⊆ Σ \
{
a1.c.id

out
1 .v

⏐⏐ idout
1 ∈ ID \ {c}

}
∧ v ∈ T

}
∪{(

⟨a1.c.idout
1 .v⟩, X

)⏐⏐⏐X ⊆ Σ \
{
a2.c.id

out
2 .v

⏐⏐ idout
2 ∈ ID \ {c}

}
∧ idout

1 ∈ ID \ {c} ∧ v ∈ T
}
∪{(

⟨a1.c.idout
1 .v, a2.c.id

out
2 .v⟩, X

)⏐⏐⏐X ⊆ Σ \
{
a3.c.id

out
3 .v

⏐⏐ idout
3 ∈ ID \ {c}

}
∧ idout

1 , idout
2 ∈ ID \ {c} ∧ v ∈ T

}
∪{(

⟨a1.c.idout
1 .v, a2.c.id

out
2 .v, a3.c.id

out
3 .v⟩, X

)⏐⏐⏐X ⊆ Σ \
{
b1.id

in
1 .c.y1

⏐⏐ id in
1 ∈ ID \ {c} ∧ y1 ∈ T

}
∧

idout
1 , idout

2 , idout
3 ∈ ID \ {c} ∧ v ∈ T

}
∪{(

⟨a1.c.idout
1 .v, a2.c.id

out
2 .v, a3.c.id

out
3 .v, b1.id

in
1 .c.y1⟩, X

)⏐⏐⏐X ⊆ Σ \
{
b2.id

in
2 .c.y2

⏐⏐ id in
2 ∈ ID \ {c} ∧ y2 ∈ T

}
∧

idout
1 , idout

2 , idout
3 , id in

1 ∈ ID \ {c} ∧ v, y1 ∈ T
}
∪{(

⟨a1.c.idout
1 .v, a2.c.id

out
2 .v, a3.c.id

out
3 .v, b1.id

in
1 .c.y1, b2.id

in
2 .c.y2⟩, X

)⏐⏐⏐X ⊆ Σ \
{
b3.id

in
3 .c.y3

⏐⏐ id in
3 ∈ ID \ {c} ∧ y3 ∈ T

}
∧

idout
1 , idout

2 , idout
3 , id in

1 , id
in
2 ∈ ID \ {c} ∧ v, y1, y2 ∈ T

}
∪{(

⟨a1.c.idout
1 .v, a2.c.id

out
2 .v, a3.c.id

out
3 .v, b1.id

in
1 .c.y1, b2.id

in
2 .c.y2, b3.id

in
3 .c.y3⟩, X

)⏐⏐⏐X ⊆ Σ ∧ idout
1 , idout

2 , idout
3 , id in

1 , id
in
2 , id

in
3 ∈ ID \ {c} ∧ v, y1, y2, y3 ∈ T

}
Figure 7.1: Sufficient Property for the Client

Client :=
1 : do (λds. {ds[x := v] | v ∈ T})
2 : comms a1 x
3 : comms a2 x
4 : comms a3 x
5 : commr b1 y1
6 : commr b2 y2
7 : commr b3 y3

Server i :=
1 : commr ai x
2 : do (λds. {ds[y := f(ds(x))]})
3 : comms bi y
4 : cbr (λds. True) 1 1

Figure 7.2: Client and Server in CUC

105

7.5. The CUC Programs fulfills the Sufficient Property

7.5 The CUC Programs fulfills the Sufficient Property

We use the Hoare calculus to show that the failures of the CUC programs fulfill the sufficient

properties. We require a structured version of the program as the Hoare calculus is defined

for the stable failures semantics of CUC, which is defined on structural programs. Due to

the correspondence of the operational and denotational semantics (Theorems 5.1 and 5.2),

we can consider structured versions of the programs. We sketch the proof for the server. We

consider a structured version s⊕i of the server.2 We show that all failures of the program s⊕i
fulfill S⊆

i . The initial precondition requires a normal state (N(σ)) at the first instruction

(σpc = 1) and no previously observed behavior (tr = ⟨⟩). We do not specify the refusal sets,

as everything can be refused in a normal state3 as also captured by Assumption 5.6 about

the initial failures of a CUC program. We show the following Hoare triple:

Lemma 7.2: The CUC Server Fulfills its Sufficient Property

{σpc = 1 ∧N(σ) ∧ tr = ⟨⟩} s⊕i

{
λtr σ X. S⊆

i (tr , X)
}

In Figure 7.3, we show the outline of the proof using the Hoare calculus. We use circled

line numbers as in, e. g., ((1 ⊕ 2) ⊕ 3) ⊕ 4 as a shorthand to describe (parts of) the

considered program. We use Prei and Post i as shorthand for the pre- and postcondition

of the individual instruction i . The full proof for the server with definitions and detailed

explanations is given in the Appendix A.7.2. The proof for the client is similar.

Using the Hoare calculus, we have shown for both the client and the server that the

failures of the CUC programs fulfill the sufficient properties, which in turn imply that the

failures also belong to the CSP specification. Thus, we have shown a stable failures refinement

for the single components. Due to the compositionality of the stable failures refinement

of CSP, which we have extended to CUC, we can combine the refinement results for the

individual components and obtain the refinement results for the entire system.

7.6 Implementation in SV

The application of the second part of the framework is automatic, if we have a CUC program

that complies to the constraints for the application of the handshake protocol. As we

constructed a concurrent CUC program that complies to the constraints, we generate fitting

SV programs and then apply Theorem 6.4 to obtain that the SV program preserves all

safety and liveness properties of the CUC program. By transitivity and the first part of

this example, the SV program also preserves all safety and liveness properties of the CSP

specification.

2According to Corollary 5.1 (Invariance Under Structure), we can pick any structure on the Server i
program we like. They all have the same semantics.

3In CUC, communication is only offered while the comm instruction is executed. Thus, before any instruction,
everything can be refused. This enables the distinction of states whose program counter only points to a
comm instruction and states where the comm instruction is actually executed. This distinction is captured by
the normal states and the communication states defined in Definition 5.17 (Communication States).

106

7.6. Implementation in SV

H-comm

{Pre1} 1 : commr {Post1}
··

H-do

{Pre2} 2 : do {Post2}
··

{· · · } 1 ⊕ 2 {· · · }
H-seq

···········

H-comm

{Pre3} 3 : comms {Post3}
··

{· · · } (1 ⊕ 2)⊕ 3) {· · · }
H-seq

···········

H-cbr

{Pre4} 4 : cbr {Post4}
··

{· · · } ((1 ⊕ 2)⊕ 3)⊕ 4

{
σpc = 1 ∧ ¬N(σ) ∧ (tr , X) ∈ Feveni ∨
σpc = 3 ∧ ¬N(σ) ∧ (tr , X) ∈ Foddi

} H-seq

{σpc = 1 ∧N(σ) ∧ tr = ⟨⟩} ((1 ⊕ 2)⊕ 3)⊕ 4

{
λtr σ X. S⊆

i (tr , X)
} H-cons

Figure 7.3: Proof Outline of the Hoare Calculus Proof for the Server

To generate SV programs from CUC programs, which only use the instantiation comms and

commr of comm, we replace comms and commr with send and receive, respectively. Figure 7.4

shows the client and Figure 7.5 shows the server. In both figures, the CUC program is on the

left side and the resulting SV program on the right side. In the middle, the program label

map ψ is given. We only consider the sequential programs as components. The concurrent

structure is the same in SV as in CUC. By construction, the SV programs of the client

and the server are fitting with the given ψ to their CUC counterparts. This enables the

application of Theorem 6.4.

We can now combine the single steps and obtain by transitivity that the SV implementation

is a stable failures refinement of the CSP specification.

• Every stable failure of the SV implementation is a stable failure of the CUC implemen-

tation as shown in this section.

• All stable failures of the components of the CUC implementation satisfy their respective

sufficient properties as shown in Section 7.5.

• All stable failures satisfying the sufficient properties are stable failures of the respective

CSP specifications as shown in Section 7.3. This implies that all CUC components are

stable failures refinements of their CSP specifications.

• Because the stable failures semantics of both CSP and CUC are compositional with

respect to concurrent composition, the stable failures refinement is compositional as

well. We have shown the compatibility of CUC to CSP in Section 5.5. Thus, the entire

CUC implementation consisting of all components is a stable failures refinement of the

CSP specification.

107

7.6. Implementation in SV

do (λds. {ds [x := v] | v ∈ T})1: do (λds. {ds[x := v] | v ∈ T})1:ψ(1) = 1

comms a1 x2:

cas hla1 ma1 free taken2:

cbr hla1 2 43:

write γa1 x4:

write sra1 ⊤5:

cas ssa1 fra1 ⊤ ⊥6:

cbr ssa1 6 87:

write ma1 free8:

ψ(2) = 2

comms a2 x3:

cas hla2 ma2 free taken9:

cbr hla2 9 1110:

write γa2 x11:

write sra2 ⊤12:

cas ssa2 fra2 ⊤ ⊥13:

cbr ssa2 13 1514:

write ma2 free15:

ψ(3) = 9

comms a3 x4:

cas hla3 ma3 free taken16:

cbr hla3 16 1817:

write γa3 x18:

write sra3 ⊤19:

cas ssa3 fra3 ⊤ ⊥20:

cbr ssa3 20 2221:

write ma3 free22:

ψ(4) = 16

commr b1 y15:

cas ssb1 srb1 ⊤ ⊥23:

cbr ssb1 23 2524:

read y1 srb125:

write frb1 ⊤26:

ψ(5) = 23

commr b2 y26:

cas ssb2 srb2 ⊤ ⊥27:

cbr ssb2 27 2928:

read y2 srb229:

write frb2 ⊤30:

ψ(6) = 27

commr b3 y37:

cas ssb3 srb3 ⊤ ⊥31:

cbr ssb3 31 3332:

read y3 srb333:

write frb3 ⊤34:

ψ(7) = 31

Figure 7.4: The Client in CUC and in SV

108

7.7. Summary

commr ai x1:

cas ssai srai ⊤ ⊥1:

cbr ssai 1 32:

read x srai3:

write frai ⊤4:

ψ(1) = 1

do (λds. {ds [y := f(x)]})2: do (λds . {ds[y := f(x)]})5:ψ(2) = 5

comms bi y3:

cas hlbi mbi free taken6:

cbr hlbi 6 87:

write γbi y8:

write srbi ⊤9:

cas ssbi frbi ⊤ ⊥10:

cbr ssbi 10 1211:

write mbi free12:

ψ(3) = 6

cbr (λds. True) 1 14: cbr (λds. True) 1 113:ψ(4) = 13

Figure 7.5: The Server in CUC and in SV

7.7 Summary

In this chapter, we have shown that the SV implementation of our system of n clients and

three servers preserves all safety and liveness properties of the specification of the system in

CSP. Our example system is concurrent, communicating and non-terminating. In particular,

our approach scales well with the number of homogeneous or parametrizable components. We

can refine each component individually, and only need to refine every component scheme once.

The independence of the number of similar components allows for a parametric formulation

of the overall system with an arbitrary number n of clients. Thanks to the use of the verified

handshake protocol (using Theorem 6.4), we do not need to consider the non-compositionality

of communication via shared variables. The application of the second part of our approach

was fully automatic. We handle non-termination gracefully with our Hoare calculus on

top of the denotational semantics for the low-level language CUC. In conclusion, we have

demonstrated with a small example that our approach can handle parametrized systems, i. e.,

systems with an arbitrary number of components, and that it enables the rigorous verification

of the preservation of properties from abstract specifications down to executable low-level

code. In the next chapter, we give pointers for future work and summarize and discuss the

presented approach and the contributions.

109

Chapter 8

Conclusion

In this chapter, we summarize and discuss our results. In Section 8.1, we summarize our

contributions on the formal relation of an abstract specification and low-level code while

preserving safety and liveness properties and point out the main advantages of our framework.

In Section 8.2, we discuss our results with respect to the objectives given in the Introduction

(Chapter 1). We close this chapter with outlines of ideas for future work in Section 8.3.

8.1 Results

In this thesis, we have presented a rigorous framework for the verification of low-level code.

With our approach, it is possible to verify that a program in low-level code conforms to

its Communicating Sequential Processes (CSP) specification, i. e., all safety and liveness

properties are preserved. To this end, we have transferred the notion of CSP refinement to

low-level code and thereby have extended the CSP refinement from CSP-only to also cover

low-level code. Our formalization in a theorem prover enables user proofs to be mechanized

and reusable. Together with the compositionality of our approach, this makes it possible to

provide rigorous guarantees of concurrent low-level programs in a way that scales with the

number of components.

In the first part of our framework, the calculation refinement part, the abstract specification

in CSP is related to our intermediate low-level language Communicating Unstructured

Code (CUC). CUC combines local low-level computing with abstract communication. The

language CUC consists of three instruction schemes (do, cbr, comm). The generic state

transformation instruction do can be instantiated to almost any instructions of a realistic

instruction set, e. g., RISC-V [Wat16], ARM [Lim18], MIPS [Kan88] or the Intel family [Cor18].

Only two groups of instructions are not covered by the state transformation do: Branches and

multi-processor synchronization instructions (e. g., compare-and-set, compare-and-swap or

load-reserved and store-conditional). The unconditional and conditional branches are covered

by CUC’s conditional branch instruction cbr. Computed jumps are discussed in Future Work

(Section 8.3). Communication between different components and synchronization of different

components is achieved in CUC by its abstract communication instruction comm, which

implements synchronous message passing. The multi-processor synchronization is covered in

110

8.1. Results

the second part of our framework. As CUC uses the same communication mechanism as CSP

and the same concurrent combination operator as CSP, we can extend the CSP refinement to

CUC and inherit its concurrent compositionality. Thus, we can combine refinement results for

single components into the refinement of the whole system. To show the relation between a

component of the CSP specification and a component of the CUC program we first construct

a sufficient property, which is a (possibly stronger) reformulation of the behaviors specified by

the CSP process for the component. In contrast to the CSP process, the sufficient property

is an assertion on failures using set theory. We enrich the sufficient property with state

informations and use our Hoare calculus to prove that the sufficient property holds for all

failures of the component of the CUC program. With this, we have proven that the CUC

program is indeed an implementation of the CSP specification, preserving all safety and

liveness properties.

In the second part of our framework, the communication refinement part, we relate

the intermediate low-level program with abstract communication in CUC with a low-level

program in our language Shared Variables (SV). SV is a low-level language that allows for

the implementation of communication protocols over shared variables. Similar to CUC, it

has a generic state transformation instruction scheme and a conditional branch instruction.

In contrast to CUC, SV does not have an abstract communication instruction. To achieve

synchronization of multiple components, SV has a synchronization primitive cas (compare-

and-set). We have formalized and verified a simple handshake protocol using our notion of

handshake refinement. From a concurrent CUC program that complies to the handshake

protocol, we can generate a concurrent SV program that preserves all safety and liveness

properties of the CUC program. As the formalization and the verification of the handshake

protocol are once-and-for-all, the application of the second part of our framework reduces to

a provably correct code generation for the user.

Our framework has four major advantages: compositionality, support for liveness properties,

genericity and mechanized rigorous verification.

Our framework is compositional, i. e., it is sufficient to verify individual components.

Due to the comprehensive logical nature of our approach, it is very easy to parametrize

components, reducing the verification effort even further. This allows also for infinite or

very large state spaces to be formalized and reasoned about. The compositionality and easy

parametrization make our approach scalable in the number of concurrent components.

Our framework has the capability to prove the preservation of not only safety, but

additionally liveness properties. Especially in embedded systems in safety critical applications,

reactivity or responsiveness (which is a liveness property) is often a mission-critical property

and, thus, must be verified.

Our framework is generic. As the instruction schemes can be instantiated, it is applicable

for a wide range of realistic instruction sets. Similarly, the memory model can be chosen

to fit the target architecture and other communication protocols can be easily integrated

into the framework. Thus, our approach is applicable to other languages, architectures and

protocols and our framework can be adapted to carry out the verification.

Finally, our framework allows for rigorous verification and the user-interactive part

is mechanized, which prevents the introduction of manual errors and allows for (semi-)

automation.

111

8.2. Discussion

8.2 Discussion

In this section, we discuss the achievements and limitations of our approach grouped by

criteria we have established in Chapter 1.

Model-based design: Our approach allows for a model-based design process. Our frame-

work naturally extends existing design processes using CSP. In CSP, abstract models can

be formalized and verified with respect to desired properties. Within CSP, the models

can be refined: more abstract models and more concrete models can be related based on

formal (traces and stable failures) refinement. Depending on the refinement model, different

types of properties, e. g., safety or liveness, are preserved from the more abstract model

to the more concrete model. Both the verification of properties on models as well as the

proof of the refinement relation between models can be carried out in FDR4 [GABR14],

an automatic refinement checker. Traditionally, the refinement notions of CSP can only

relate CSP processes and cannot relates CSP processes with constructs in other languages or

formalisms. Our framework extends this model-based design approach from CSP-only to

also cover low-level code, with the same guarantees of preservation of properties. Thus, the

use of our framework enables a model-based design approach from abstract models in CSP

down to executable low-level code.

Low-level code: The instruction schemes of our low-level languages CUC and SV can be

instantiated to cover almost any instruction of realistic instruction sets such as RISC-V [WA17].

Only one sub-category of instructions is not covered by SV: Computed jumps. While

our framework currently does not support computed jumps, we discuss in Future Work

(Section 8.3) how computed jumps can be integrated into the framework. The only reasons

to not include computed jumps into our framework are a) simplicity and b) the possibility

for static analysis. The semantics of CUC and SV can be easily extended with computed

jumps and the Hoare calculus can also handle computed jumps.

Our framework allows for the verification of shared variable communication, which is

commonly used for low-level synchronization and data transfer, as part of a communication

protocol. Protection of shared resources is realized in SV with the help of a compare-and-set

instruction cas. With respect to multi-processor synchronization in RISC-V specifically,

we do not model load-reserved and store-conditional as those instructions rely on specific

scheduling properties to avoid livelocks. However, the way we use cas (i. e., to lock a variable)

it can be easily replaced by a load-reserved and directly followed by a store-conditional.

Our generic function for the “register store” can be instantiated with a memory model

suitable for the target architecture; usually with appropriate instantiations of do to access

different parts of the memory (e. g., load and store instructions). An example for such

a memory model for an early precursor of CUC/SV without communication is presented

in [BG11].

Preservation of safety and liveness properties: Our approach extends the traces and

stable failures models and refinements of CSP to CUC and, with the handshake refinement,

also to SV. Thereby, it ensures the preservation of all safety and liveness properties. The safety

properties are modeled and ensured in the traces model: unwanted behavior is excluded. The

112

8.2. Discussion

liveness properties are modeled and ensured in the stable failures model: When no internal

transitions are possible, the communication capabilities are ensured. While divergences

(i. e., infinite chains of internal transitions) are neither covered by the traces nor the stable

failures model, we can ensure divergences freedom in CUC programs for special cases with

statical analysis (as we only have conditional branches), e. g., that every loop contains a

comm instruction. Regarding the relation between CUC and SV programs, the handshake

refinement is a strong bisimulation outside of the communication protocol implementation.

As such, it preserves divergences (or their absence). The unlocking simulation ensures that

the implementation of the communication protocol terminates for successful communication.

The only additional divergences in SV programs correspond to deadlocks due to unsuccessful

abstract communication, which is the busy-wait pendant to a blocking component. In

Section 8.3, we discuss the inclusion of the failures-divergences model of CSP into our

framework. This would enable us to talk about divergences directly in the semantics and in

the refinements.

Verification of concurrent and communicating systems: Our framework allows for

the scalable verification of concurrent and communicating systems: The first part of our

framework covers the communication and concurrency aspects of CSP. The second part of

our framework also covers the same parts of CSP. However, it currently only covers one

verified communication protocol. Thanks to our generic and reusable formalization (and

proofs), other communication protocols can be formally captured and verified.

Both parts of our framework scale well with respect to the number of concurrent compo-

nents. The first part of our framework, where we show a refinement from a CSP process

to a CUC program, is compositional. We achieve the compositionality by designing CUC

and especially its concurrent composition similar to the concurrent composition of CSP. For

homogeneous or parametrized components, it is even sufficient to refine only one instance of

each type.

In the second part of our framework, we have shown the preservation of all safety and

liveness properties for fitting programs once and for all with the general Theorem 6.4 (Fitting

Implies Preservation), as the results of the theorem hold for all systems that comply with

the restrictions, i. e., use the given communication protocol. The effort involved to formalize

and verify another communication protocol is one-time and upfront.

Non-termination and infinite or very large state spaces: Our approach copes with

traces of arbitrary lengths and also states that are parametrized over infinite or very large

data types, arising, e. g., from counting occurrences of specific events, tracking time, or

uncontrollable input such as reading from a sensor. This is in contrast to approaches like

model checking, which rely on the automatic exploration of the state space. The entire

framework supports this.

Rigorousness: Our entire framework is based on formal semantics and all results are

formally proven. Additionally, to preclude the manual introduction of errors by users of

the framework, we have formalized the first part, where the user needs to supply proofs,

in the theorem prover Isabelle/HOL [NPW02]. In Isabelle/HOL, user supplied proofs

113

8.3. Future Work

are mechanically checked by the logical inference system of Isabelle. This helps avoiding

overlooking of corner cases and other human errors.

Reusability: The generic nature of our framework makes it reusable for various architec-

tures. The main source of reusability are the instruction schemes of both CUC and SV that

can be instantiated according to different target architectures. The function modeling the

memory (a simple register store in the bare version of the framework) can also be instantiated

according to the target architecture.

For the second part of our framework, we have exemplarily verified a simple handshake

protocol as a blueprint. Other protocols can be verified and integrated into our framework:

Our language SV allows for the implementation of many realistic communication protocols,

illustrated by the fact that the instruction schemes of SV can be instantiated to realistic

instruction sets such as RISC-V. Our notion of handshake refinement is adaptable to other

protocols (see pointers in Section 6.4). In the second part of our framework, the commu-

nication mechanism can also be changed for a different communication mechanism other

than shared variables, e. g., communication over networks. While this would require modified

semantics for the low-level model (SV) and the handshake refinement, the first part of the

framework does not need to be modified for this.

Our formalization of the first part of the framework in the theorem prover Isabelle/HOL

allows for the formulation of custom theorems and proof procedures (e. g., specific to an

instantiation of the instruction schemes for a concrete architecture). These theorems and

proof procedures can be reused for different programs for the same architecture. More general

theorems and proof procedures can be reused across multiple architectures, as to be expected

from a model-based design approach.

8.3 Future Work

In this section, we discuss opportunities for future work based on our approach. We first

investigate the inclusion of semantics that can capture divergences into our framework. This

would enable our framework to directly reason about divergences instead of assuming the

absence of divergences. We then outline how computed jumps can be included into the

framework. This would allow us to verify a broader range of low-level programs. We proceed

to point out interesting communication protocols to verify and include in the framework. This

would allow us to verify low-level programs that use other synchronization or communication

mechanisms. Finally, we propose to integrate data refinements into our approach, which

would allow for the additional refinement of abstract data structures such as sets into their

low-level implementations.

Divergences: In our framework, we focus on liveness in the sense of stable failures, i. e.,

which events can be offered for communication in stable states. Divergences additionally

capture livelocks, i. e., “unstable” behaviors. Divergences are captured in the failures-

divergences semantics of CSP, which like all semantical models of CSP are used for a

model-based design approach. Capturing divergences consists mainly in tracking a set of

reachable divergent states. In low-level languages, every block of code may contain a loop.

114

8.3. Future Work

Thus, reachability in low-level programs is shown by proving termination of loops or total

correctness for a Hoare calculus. The techniques we presented previously in [BJ14] can

be used to reason about termination of parts in between communication events in a CUC

program. As the handshake refinement is a strong bisimulation outside of the implementation

of the communication protocol, related CUC and SV programs have the same divergences,

apart from the livelocks in an SV program, which correspond to a deadlock due to unsuccessful

communication in the CUC program. With the formalization of divergences, we could obtain

even stronger guarantees about communication capabilities right within our framework.

Computed jumps: Computed jumps are part of low-level programs, e. g., for functions

calls or addressing of continuous memory such as arrays. Currently, our framework supports

only conditional jumps, as “raw” computed jumps prevent many useful static analyses.

From a theoretical point of view, conditional jumps allow for the same expressiveness

as computed jumps (considering that the entire program is known beforehand). From our

point of view, jump targets should be known at compile time, especially in the area of safety

critical systems. In practice, computed jumps are used, but often with a limited sets of

jump targets in mind, e.g. entry points of functions. This intention can be instrumentalized

using the concept of Control Flow Integrity (CFI) [ABEL05]. CFI originates in the field of

computer security. It was designed to counter control flow altering attacks and basically

prefixes every computed jump with a check if the computed jump target is in a list of allowed

jump targets. CFI is integrated in current compiler suites, such as LLVM [LA04], and is

lately even used in consumer products such as the kernel of the Android operating system.

For a recent survey of CFI techniques in production compilers, see [BCN+17]. Our semantics

can easily be extended with computed jumps. Our results requiring knowledge of jump

targets, e. g., preventing jumps into the middle of a communication protocol, can be preserved

when computed jumps are combined with CFI techniques. With the integration of computed

jumps into our framework, we would expand the applicability of our framework to a wider

range of programs.

Communication protocols: For the second part of our framework, we have verified

exemplarily a simple handshake protocol. This covers the common communication scheme of

two components communication via a channel at a time. Two other communication protocols

would be of special interest, which we discuss in the following. In Section 6.2, we have given

pointers on how to adapt our handshake refinement to other protocols. The verification of

the protocols themselves belongs to the field of distributed systems, and implementations

and proofs can be found there (see, e. g., [Pet12] as a starting point).

The first protocol is often called select. It enables a component to concurrently monitor

multiple channels. Depending on the implementation, it allows for a program to wait to

synchronously send on one channel and at the same time to wait to synchronously receive

on another channel (which is called mixed choice in process calculi). The select protocol is

supported in CSP via external choice, and implemented in languages with first class support

for communication over channels, such as Ada [TDB+13], which is used in safety-critical

areas such as avionics and automotive, or Go [DK15], which is developed by Google and

used for large scale server applications.

115

8.3. Future Work

The second protocol is the multi-way synchronization of CSP. It is a form of barrier

synchronization of multiple components, which is used in distributed algorithms using shared

resources, e. g., matrix multiplications. As inspiration for the formalization of the multi-way

synchronization protocol see [PS92]. In a Bachelor’s thesis [Sac15], we have implemented multi-

way synchronization for CUC in LLVM using the pthreads library [NBF96] for concurrency

and synchronization.

Formalizing the mentioned communication protocols would enable a greater flexibility in

implementing high-level specifications while still preserving safety and liveness properties.

Data refinement approaches: Refinements relate abstract and concrete versions of

different aspects of a model:

a) They can resolve non-determinisms as in CSP.

b) They can implement abstract actions with more concrete actions. This is often called

action refinement and overviews of different approaches can be found in [GR01, BvW98].

c) They can refine abstract data structures into the data structures actually needed

(bounded integers instead of all integers) or the actual implementation (lists instead of

sets). This is often called data refinement and an overview can be found in [RE08].

The resolution of non-determinism (a) is the core idea of the CSP refinements. To split up the

abstract communication instructions into the multiple instruction forming the communication

protocol, we used an idea similar to action refinement (b) from [RG97]. So far, we have not

integrated data refinements (c) into our framework.

The combination or integration of data refinements with our framework would close the

final gap between abstract specifications and concrete implementations: In the specification

mathematically convenient data types such as integers or sets could be used, and in the

implementation their low-level equivalent, while providing formal means to justify the change

of data type.

116

Appendix

A.1 Correspondence Proofs

In this section, we prove the concurrent case of correspondence theorems between the

operational semantics and each of the traces and the stable failures semantics. We first show

the concurrent case of the theorem concerning the traces semantics of CUC in Subsection A.1.1

and then extend the proof for the theorem concerning the stable failures semantics of CUC

in Subsection A.1.2.

A.1.1 Proof: Concurrent Case of Correspondence of Traces

In this section, we prove the concurrent case of correspondence theorems between the

operational semantics and each of the traces and the stable failures semantics. For convenience,

we recall the Theorem 5.1:

Theorem 5.1: Correspondence Between Operational Characterization and Traces Semantics

tr ∈ TU(scp)(σ)⇔ ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

) ∗

The overall proof of Theorem 5.1 is an induction on the structure of scp. The (syntactically

simplified version of the) structure of scp is depicted in the following.

scp = do | cbr | comm | sp1 ⊕ sp2 | scp1 α1
∥α2

scp2

There are five cases for the proof: Three for the single instructions do, cbr, and comm, one for

the sequential composition ⊕ and one for the concurrent composition ∥. Here, we consider

the concurrent case. We have proven the other cases in Isabelle/HOL. For convenience, we

recall the relevant definitions of the concurrent cases in Figure A.1. Definition 5.13 of the

operational characterization of the traces semantics of CUC allows us to use the operational

semantics and the operational characterization of the trace semantics of CUC interchangeably.

We prove both implications (necessary =⇒ and sufficient ⇐=) of the equivalence separately

and start with the necessary implication.

Proof: tr ∈ TU(scp)(σ) =⇒ ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

)
Assumptions:

The concurrent structure of the program is given by the overall induction on the structure

of scp (I). From the same tree structure of programs and states (Assumption 5.3), we can

assume the components of the state (II). From the induction we can assume the hypothesis

for the components scp1 and scp2, i. e., III) and IV). From the hypothesis to show, we

117

A.1. Correspondence Proofs

sync

σ1
ev−→cp1 σ

′
1 σ2

ev−→cp2 σ
′
2 ev ∈ α1 ∩ α2

σ1 ∥ σ2
ev−→(

cp1α1
∥α2

cp2

) σ′
1 ∥ σ′

2

exec-ev

σ
tr′
=⇒cp σ

′′ σ′′ ev−→cp σ
′ tr′⌢⟨ev⟩ = tr

σ
tr
=⇒cp σ

′

interleaving-left

σ1
ev−→cp1 σ

′
1 ev ∈ (α1 ∪ {τ}) \ α2

σ1 ∥ σ2
ev−→(

cp1α1
∥α2

cp2

) σ′
1 ∥ σ2

interleaving-right

σ2
ev−→cp2 σ

′
2 ev ∈ (α2 ∪ {τ}) \ α1

σ1 ∥ σ2
ev−→(

cp1α1
∥α2

cp2

) σ1 ∥ σ′
2

T -par
Jscp1 α1

∥α2
scp2K

T (S) =
{
(tr, σ′

1 ∥ σ′
2)
⏐⏐ (⟨⟩, σ1 ∥ σ2) ∈ S ∧

(tr |̀ α1, σ
′
1) ∈ Jscp1K

T ({(⟨⟩, σ1)}) ∧
(tr |̀ α2, σ

′
2) ∈ Jscp2K

T ({(⟨⟩, σ2)}) ∧
set(tr) ⊆ (α1 ∪ α2)

}
Figure A.1: Relevant Definitions for the Concurrent Cases

Proof: tr ∈ TU(scp)(σ) =⇒ ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

)
can assume the premise (V).

I) scp = scp1 α1∥α2 scp2

II) σ = σ1 ∥ σ2
III) ∀ tr1. tr1 ∈ TU(scp1)

(σ1) −→ ∃σ′
1. (tr1, σ

′
1) ∈ Jscp1KT

(
{(⟨⟩, σ1)}

)
IV) ∀ tr2. tr2 ∈ TU(scp2)

(σ2) −→ ∃σ′
2. (tr2, σ

′
2) ∈ Jscp2KT

(
{(⟨⟩, σ2)}

)
V) tr ∈ TU(scp)(σ)

Want to show (goal):

∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

)
Proof:

Using I) and T -par we can reformulate the goal:

∃σ′. (tr, σ′) ∈
{
(tr, σ′

1 ∥ σ′
2)
⏐⏐
(⟨⟩, σ1 ∥ σ2) ∈ {(⟨⟩, σ)} ∧ (T.1)
(tr |̀ α1, σ

′
1) ∈ Jscp1K

T ({(⟨⟩, σ1)}) ∧ (T.2)
(tr |̀ α2, σ

′
2) ∈ Jscp2K

T ({(⟨⟩, σ2)}) ∧ (T.3)
set(tr) ⊆ (α1 ∪ α2)

}
(T.4)

We show the four properties. T.1 is directly satisfied by II).

T.2:
We show tr |̀ α1 ∈ TU(scp1)

(σ1). That lets us apply III) which yields us T.2.

118

A.1. Correspondence Proofs

Proof: tr ∈ TU(scp)(σ) =⇒ ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

)
We show this by induction on the trace tr .

T.2.base tr = ⟨⟩: According to Property T1, all traces semantics contain the empty trace.

=⇒ ⟨⟩ |̀ α1 = ⟨⟩ ∈ TU(scp1)
(σ1)

T.2.step tr = t̃r⌢⟨ev⟩:
t̃r |̀ α1 ∈ TU(scp1)

(σ1) holds by induction hypothesis.

We consider two cases for ev . ev /∈ α1 ∨ ev ∈ α1.

T.2.step.1 ev /∈ α1: ev is removed by the projection.

=⇒ t̃r⌢⟨ev⟩ |̀ α1 = t̃r |̀ α1 ∈ TU(scp1)
(σ1)

T.2.step.2 ev ∈ α1: Either ev ∈ α2 ∨ ev /∈ α2 holds. In both cases, we obtain a semantical

step in U(scp1) that is labeled with ev (from V) and the rule sync or interleaving-left,

respectively. Using rule exec-ev, we can append ev to t̃r |̀ α1. By the Definition 5.13 of

T that implies (t̃r |̀ α1)⌢⟨ev⟩ ∈ TU(scp1)
(σ1). As ev /∈ α1, we can move ev on either side

of the projection.

(t̃r |̀ α1)⌢⟨ev⟩ ∈ TU(scp1)
(σ1) =⇒ t̃r⌢⟨ev⟩ |̀ α1 ∈ TU(scp1)

(σ1)

T.3: Analogous to T.2.

T.4: Similar to the proof for T.2 we can show with an induction on the trace tr that all its

elements are from α1 ∪ α2.

We can now instantiate σ′ = σ′
1 ∥ σ′

2 with σ′
1, σ

′
2 obtained in the proofs for T.2 and

T.3, respectively. Thus, all traces that occur in the operationally characterized traces

semantics of the concurrent combination of two components occur also in the denotational

traces semantics of the combined components.

We continue and show the sufficient implication.

Proof: ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

)
=⇒ tr ∈ TU(scp)(σ)

Assumptions:

The concurrent structure of the program is given by the overall induction on the structure

of scp (I). From the same tree structure of programs and states (Assumption 5.3), we can

assume the components of the state (II). From the induction we can assume the hypothesis

for the components scp1 and scp2, i. e., III) and IV). From the hypothesis to show, we

can assume the premise, which gives us V)-VII) from T -par.
I) scp = scp1 α1∥α2 scp2

II) σ = σ1 ∥ σ2
III) ∀ tr1. ∃σ′

1. (tr1, σ
′
1) ∈ Jscp1KT

(
{(⟨⟩, σ1)}

)
=⇒ tr1 ∈ TU(scp1)

(σ1)

IV) ∀ tr2. ∃σ′
2. (tr2, σ

′
2) ∈ Jscp2KT

(
{(⟨⟩, σ2)}

)
=⇒ tr2 ∈ TU(scp2)

(σ2)

V) (tr |̀ α1, σ
′
1) ∈ Jscp1KT

({
(⟨⟩, σ1)

})
VI) (tr |̀ α2, σ

′
2) ∈ Jscp2KT

({
(⟨⟩, σ2)

})
VII) set(tr) ⊆ (α1 ∪ α2)

119

A.1. Correspondence Proofs

Proof: ∃σ′. (tr, σ′) ∈ JscpKT
(
{(⟨⟩, σ)}

)
=⇒ tr ∈ TU(scp)(σ)

Want to show (goal):

tr ∈ TU(scp)(σ)

Proof:

We show the goal by induction on the trace tr .

Base tr = ⟨⟩: According to Property T1, all traces semantics contain the empty trace.

=⇒ ⟨⟩ ∈ TU(scp)(σ)

Step tr = t̃r⌢⟨ev⟩:
t̃r ∈ TU(scp)(σ) holds by induction hypothesis.

With VII) we have set(t̃r⌢⟨ev⟩) = set(tr) ⊆ (α1 ∪ α2) =⇒ ev ∈ (α1 ∪ α2)

We consider three cases for ev . ev ∈ α1 \ α2 ∨ ev ∈ α2 \ α1 ∨ ev ∈ α1 ∩ α2.

Step.1 ev ∈ α1 \ α2:

From ev ∈ α1 we have (t̃r |̀ α1)⌢⟨ev⟩ = (t̃r⌢⟨ev⟩) |̀ α1.

From V) and III) we have (tr |̀ α1) ∈ TU(scp1)
(σ1).

With both facts, we obtain (t̃r |̀ α1)⌢⟨ev⟩ ∈ TU(scp1)
(σ1).

That gives us an ev -step in scp1 after the trace t̃r |̀ α1. That lets us apply rule

interleaving-left after the trace t̃r , which in turn yields t̃r⌢⟨ev⟩ ∈ TU(scp)(σ)

Step.2 ev ∈ α2 \ α1: Analogous to Step.1.

Step.3 ev ∈ α1 ∩ α2: Similar to Step.1 and Step.2. However this time we have ev -steps in

both scp1 and scp2 and apply rule sync.

Thus, all traces that occur in the denotational traces semantics of the concurrent combi-

nation of two components occur also in the operationally characterized traces semantics

of the combined components.

Together, the necessary and the sufficient implications show the correspondence between

the operationally characterized traces semantics and the denotational traces semantics. In the

next subsection, we extend the proof and show the correspondence between the operationally

characterized stable failures semantics and the denotational stable failures semantics.

A.1.2 Proof: Concurrent Case of Correspondence of Stable Failures

In this subsection, we prove the concurrent case of Theorem 5.2. For convenience, we recall

Theorem 5.2:

Theorem 5.2: Correspondence Between Operational Characterization and Stable Failures

Semantics

(tr , X) ∈ SFU(scp)(σ)⇔ ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
∗

120

A.1. Correspondence Proofs

The proof extends the proof of the correspondence between the two different traces

semantics of CUC from the previous subsection. Here, we consider the concurrent case. We

have proven the other cases in Isabelle/HOL. The main difference between the proof for the

correspondence of the traces and the correspondence of the stable failures is the treatment

of the refusal sets. We refer back to the proof in the last subsection for common proof

steps and focus on the new proof obligations. For convenience, we recall Definition 5.16

of the operational characterization of the stable failures semantics and the SF-par rule in

Figure A.2.

Definition 5.16: Operational Characterization of the Stable Failures of CUC

A stable failure of a CUC program cuc is a pair of a trace tr and a refusal set X. It

denotes that there is a stable state σ′ which can be reached from the initial state σ via

the trace tr and refuses X.

(tr , X) ∈ SFcuc(σ) := ∃σ′. σ
tr
=⇒cuc σ

′ ∧ σ′↓cuc ∧ σ′ refcuc X

SF-par
Jscp1 α1

∥α2
scp2K

SF (S) =
{
(tr, σ′

1 ∥ σ′
2, X)

⏐⏐ ∃X1 X2. (⟨⟩, σ1 ∥ σ2,) ∈ S ∧
X ∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2) ∧
(tr |̀ α1, σ

′
1, X1) ∈ Jscp1K

SF({(⟨⟩, σ1,)
})
∧

(tr |̀ α2, σ
′
2, X2) ∈ Jscp2K

SF({(⟨⟩, σ2,)
})
∧

set(tr) ⊆ (α1 ∪ α2)
}

Figure A.2: Recall the Concurrent Combination of SF

We prove both implications (necessary =⇒ and sufficient⇐=) of the equivalence separately.

Before we start with the necessary implication, we show a lemma about the relation of refusal

sets of the components and the refusal sets of the combination of the components, which we

need in the following proof.

Lemma A.1: Relation of Refusal Sets of the Components and the Combination

(σ1 ∥ σ2) ref(cp1α1
∥α2

cp2)
X

⇔ ∃X1 X2. σ1 refcp1
X1 ∧ σ2 refcp2

X2 ∧X ∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2)

Proof: Relation of Refusal Sets of the Components and the Combination

We first show a version that is more intuitive to prove and then use set theory to conclude

the lemma.

121

A.1. Correspondence Proofs

Proof: Relation of Refusal Sets of the Components and the Combination

Want to show (goal):

1) (σ1 ∥ σ2) ref(cp1α1
∥α2

cp2)
X

⇔ ∃X1 X2. σ1 refcp1
X1 ∧ σ2 refcp2

X2 ∧
X ∩ (α1 ∪ α2) =

(
X1 \ α2 ∪X2 \ α1 ∪ (X1 ∪X2) ∩ (α1 ∩ α2)

)
∩ (α1 ∪ α2)

2)
(
X1 \ α2 ∪X2 \ α1 ∪ (X1 ∪X2) ∩ (α1 ∩ α2)

)
∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2)

1) ⇒:

Consider ev ∈ X. We show that we can choose X1, X2 with σ1 refcp1
X1 and σ2 refcp2

X2

satisfying

X ⊆ X1 \ α2 ∪X2 \ α1 ∪ (X1 ∪X2) ∩ (α1 ∩ α2)

Containment (⊆) is enough, as refusal sets are subset-closed (Property SF3), so we can

always choose smaller X1, X2 to obtain equality.

As the combination σ1 ∥ σ2 refuses ev , none of the three rules interleaving-left,

interleaving-right and sync may apply. We use this to show that every ev ∈ X must

also be an element of the right-hand side.

interleaving-left:

The combination can refuse any event that is not in the communication interface of the

right component (ev /∈ α2) and refused by the left (ev ∈ X1).

=⇒ ev ∈ X1 \ α2

interleaving-right:

Analogous to interleaving-left.

=⇒ ev ∈ X2 \ α1

sync:

The combination can refuse any event that is in both communication interface ev ∈
(α1 ∩ α2). The components can refuse events from their respective refusal sets, i. e.,

ev ∈ (X1 ∪X2).

=⇒ ev ∈ (X1 ∪X2) ∩ (α1 ∩ α2)

We can choose X1, X2 small enough, so that ⊆ becomes = according to Property SF3 and

we can cut both sides with α1 ∪ α2.

1) ⇐:

Consider X1, X2 with σ1 refcp1
X1 and σ2 refcp2

X2. Let X with

X ∩ (α1 ∪ α2) =
(
X1 \ α2 ∪X2 \ α1 ∪ (X1 ∪X2) ∩ (α1 ∩ α2)

)
∩ (α1 ∪ α2)

and ev ∈ X. We use a case distinction on ev to show that none of the rules interleaving-

left, interleaving-right and sync may be applied, i. e., (σ1 ∥ σ2) ref(cp1α1
∥α2

cp2)
X.

ev ∈ (α1 ∪ α2):

122

A.1. Correspondence Proofs

Proof: Relation of Refusal Sets of the Components and the Combination

Refusal sets never contain the invisible event τ . Thus, ev ̸= τ . None of the concurrent

rules apply. =⇒ (σ1 ∥ σ2) ref(cp1α1∥α2cp2)
{ev}

ev ∈ X1 \ α2:

Only the rule interleaving-left could be applied. As the left component refuses ev ,

the combination refuses ev , too. =⇒ (σ1 ∥ σ2) ref(cp1α1∥α2cp2)
{ev}

ev ∈ X2 \ α1:

Analogous to the previous case.

ev ∈ (X1 ∪X2) ∩ (α1 ∩ α2):

Only rule sync could be applied. As one of the components refuses ev , the combination

refuses ev , too. =⇒ (σ1 ∥ σ2) ref(cp1α1
∥α2

cp2)
{ev}

As we have (σ1 ∥ σ2) ref(cp1α1∥α2cp2)
{ev} for all ev ∈ X, we can conclude (σ1 ∥

σ2) ref(cp1α1
∥α2

cp2)
X.

2):

We use set equalities to show 2).(
X1 \ α2 ∪ X2 \ α1 ∪ (X1 ∪X2) ∩ (α1 ∩ α2)

)
∩ (α1 ∪ α2)

= (X1 \ α2) ∩ (α1 ∪ α2) ∪ (X2 \ α1) ∩ (α1 ∪ α2) ∪
(
(X1 ∪X2) ∩ (α1 ∩ α2)

)
∩ (α1 ∪ α2)

= (X1 \ α2) ∩ α1 ∪ (X2 \ α1) ∩ α2 ∪ (X1 ∪X2) ∩ (α1 ∩ α2)

= (X1 \ α2) ∩ α1 ∪ (X2 \ α1) ∩ α2 ∪ X1 ∩ (α1 ∩ α2) ∪X2 ∩ (α1 ∩ α2)

= (X1 \ α2) ∩ α1 ∪X1 ∩ (α1 ∩ α2) ∪ (X2 \ α1) ∩ α2 ∪X2 ∩ (α1 ∩ α2)

= (X1 ∩ α1) ∪ (X2 ∩ α2)

From 1) and 2) we conclude Lemma A.1.

Having established the relationship of refusal sets of the components and the combination,

we can prove the necessary implication of the correspondence proof for the stable failure

semantics.

Proof: (tr , X) ∈ SFU(scp)(σ) =⇒ ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
Assumptions:

The concurrent structure of the program is given by the overall induction on the structure

of scp (I). From the same tree structure of programs and states (Assumption 5.3), we can

assume the components of the state (II). From the induction we can assume the hypothesis

for the components scp1 and scp2, i. e., III) and IV). From the hypothesis to show, we

123

A.1. Correspondence Proofs

Proof: (tr , X) ∈ SFU(scp)(σ) =⇒ ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
can assume the premise (V). Unfolding Definition 5.16, we get VI).

I) scp = scp1 α1
∥α2

scp2

II) σ = σ1 ∥ σ2
III) ∀ tr1 X1. (tr1, X1) ∈ SFU(scp1)

(σ1)

=⇒ ∃σ′
1. (tr1, σ

′
1, X1) ∈ Jscp1KSF

(
{(⟨⟩, σ1, Y) | Y ⊆ Σ}

)
IV) ∀ tr2 X2. (tr2, X2) ∈ SFU(scp2)

(σ2)

=⇒ ∃σ′
2. (tr2, σ

′
2, X2) ∈ Jscp2KSF

(
{(⟨⟩, σ2, Y) | Y ⊆ Σ}

)
V) (tr , X) ∈ SFU(scp)(σ)

VI) ∃σ′. σ
tr
=⇒U(scp) σ

′ ∧ σ′↓U(scp) ∧ σ′ refU(scp) X

Want to show (goal):

∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
Proof:

Using I) and SF-par we can reformulate the goal:

∃σ′. (tr, σ′, X) ∈
{
(tr, σ′

1 ∥ σ′
2, X)

⏐⏐ ∃X1 X2.

(⟨⟩, σ1 ∥ σ2,) ∈ {(⟨⟩, σ, Y) | Y ⊆ Σ} ∧ (SF.1)
X ∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2) ∧ (SF.2)
(tr |̀ α1, σ

′
1, X1) ∈ Jscp1K

SF({(⟨⟩, σ1,)
})
∧ (SF.3)

(tr |̀ α2, σ
′
2, X2) ∈ Jscp2K

SF({(⟨⟩, σ2,)
})
∧ (SF.4)

set(tr) ⊆ (α1 ∪ α2)
}

(SF.5)

We show the five properties.

SF.1:
is directly satisfied by II) as refusal sets are always a subset of Σ.

SF.2:
From VI) we have (σ′

1 ∥ σ′
2) ref(scp1α1

∥α2
scp2)

X. Using Lemma A.1, we show SF.2 and

get σ′
1 refscp1

X1 and σ′
2 refscp2

X2.

Strictly speaking, we obtain σ′
1, σ

′
2 in the proof of SF.3 and this proof needs to be a part

of it. But for the sake of readability and to prove the goals in order, we prepone the

argument for SF.2.

SF.3:
We show (tr |̀ α1, X1) ∈ SFU(scp1)

(σ1). This yields, together with the Assumption 5.6

about initial failures that lets us apply III), SF.3.
According to Definition 5.16, we have to show:

∃σ′
1. σ1

tr |̀ α1
=⇒ U(scp1)

σ′
1 ∧ σ′

1↓U(scp1)
∧ σ′

1 refU(scp1)
X1.

124

A.1. Correspondence Proofs

Proof: (tr , X) ∈ SFU(scp)(σ) =⇒ ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
σ1

tr |̀ α1
=⇒ U(scp1)

σ′
1:

Similar to the proof for T.2 in the previous subsection.

σ′
1↓U(scp1)

:

If the combination is stable, thus, cannot engage in τ events, neither of the component

can engage in τ events. Thus, the components are also stable themselves.

σ′
1 refU(scp1)

X1:

We obtained this in the proof of SF.2 from Lemma A.1.

SF.4: Analogous to SF.3.

SF.5: Similar to the proof for SF.3, we can show with an induction on the trace tr

that all its elements are from (α1 ∪ α2).

We can now instantiate σ′ = σ′
1 ∥ σ′

2 with σ′
1, σ

′
2 obtained in the proofs for SF.3 and SF.4,

respectively. Thus, all stable failures that occur in the operationally characterized stable

failures semantics of the concurrent combination of two components occur also in the

denotational stable failures semantics of the combined components.

We continue and show the sufficient implication.

Proof: ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
=⇒ (tr , X) ∈ SFU(scp)(σ)

Assumptions:

The concurrent structure of the program is given by the overall induction on the structure

of scp (I). From the same tree structure of programs and states (Assumption 5.3), we can

assume the components of the state (II). From the induction we can assume the hypothesis

for the components scp1 and scp2, i. e., III) and IV). From the hypothesis to show, we

can assume the premise, which gives us the V)-VIII) from SF-par.
I) scp = scp1 α1

∥α2
scp2

II) σ = σ1 ∥ σ2
III) ∀ tr1. ∃σ′

1. (tr1, σ
′
1, X1) ∈ Jscp1KSF

(
{(⟨⟩, σ1, Y) | Y ⊆ Σ}

)
=⇒ (tr1, X1) ∈ SFU(scp1)

(σ1)

IV) ∀ tr2. ∃σ′
2. (tr2, σ

′
2, X2) ∈ Jscp2KSF

(
{(⟨⟩, σ2, Y) | Y ⊆ Σ}

)
=⇒ (tr2, X2) ∈ SFU(scp2)

(σ2)

V) X ∩ (α1 ∪ α2) = (X1 ∩ α1) ∪ (X2 ∩ α2)

VI) (tr |̀ α1, σ
′
1, X1) ∈ Jscp1KSF

({
(⟨⟩, σ1,)

})
VII) (tr |̀ α2, σ

′
2, X2) ∈ Jscp2KSF

({
(⟨⟩, σ2,)

})
VIII) set(tr) ⊆ (α1 ∪ α2)

Want to show (goal):

(tr , X) ∈ SFU(scp)(σ)

125

A.1. Correspondence Proofs

Proof: ∃σ′. (tr, σ′, X) ∈ JscpKSF
(
{(⟨⟩, σ, Y) | Y ⊆ Σ}

)
=⇒ (tr , X) ∈ SFU(scp)(σ)

Proof:

Using Definition 5.16, we can reformulate the goal:

∃σ′. σ
tr
=⇒scp σ

′ ∧ σ′↓scp ∧ σ′ refscp X

We show the three parts separately. Before that, we use VI) and III) as well as VII)

and IV) to obtain (tr1, X1) ∈ SFU(scp1)
(σ1) and (tr2, X2) ∈ SFU(scp2)

(σ2), respectively.

Using Definition 5.16, we get the following for the components

IX) ∃σ′
1. σ1

tr1=⇒scp1
σ′
1 ∧ σ′

1↓scp1
∧ σ′

1 refscp1
X

X) ∃σ′
2. σ2

tr2=⇒scp2
σ′
2 ∧ σ′

2↓scp2
∧ σ′

2 refscp2
X

σ
tr
=⇒scp σ

′:

The proof is similar to the sufficient condition of the proof of correspondence of the traces

semantics in the previous subsection. It uses all assumptions but V).

σ′↓scp :
From IX) and X) we have σ′

1↓scp1
and σ′

2↓scp2
.

When the components are stable, the combination is stable, too.

σ′ refscp X:

From IX) and X) we have σ′
1 refscp1

X and σ′
2 refscp2

X.

Using Lemma A.1 and V), we obtain σ′ refscp X

Thus, all stable failures that occur in the denotational stable failures semantics of the

concurrent combination of two components occur also in the operationally characterized

stable failures semantics of the combined components.

Together, the necessary and the sufficient implications show the correspondence between

the operationally characterized stable failures semantics and the denotational stable failures

semantics.

126

A.2. Proofs of T1 to SF4 for CUC

A.2 Proofs of T1 to SF4 for CUC

In this section, we prove that the adapted version of the essential properties for denotational

semantics of CSP also hold for the denotational semantics of CUC. Before we prove the

properties to hold, we prove a lemma that the input sets to J·KT are also contained in its

output sets. One could say that J·KT is “non-destructive”.

Lemma A.2: Input Preservation

S ⊆ JspKT (S) (I)(
∀ s ∈ S. s = (⟨⟩,)

)
=⇒S ⊆ JscpKT (S) (II)

Proof: Input Preservation

(I) holds, as all non-parallel rules contain “S ∪”.
(II) holds by induction on the concurrent structure of the states. The base-step

(⟨⟩, σi) ∈ JspiKT
(
{(⟨⟩, σi)}

)
holds due to (I).

We now prove the six properties T1 to SF4. For each property, we first restate the

property and then give the proof.

Property T1

⟨⟩ ∈ Tcuc(σ)

The empty trace must always be contained. Any program can be observed to do nothing.

Proof: T1 holds for CUC

By Assumption 5.5 (Empty Initial Traces), all initial traces are empty, i. e.,(
∀ s ∈ S. s = (⟨⟩,)

)
.

We use structural induction over SCP , i. e., we go through the rules of Tcuc and use

Lemma A.2 to show that those initial traces are preserved.

Property T2

∀ tr tr ′. tr ′ ≤ tr ∧ tr ∈ Tcuc(σ) =⇒ tr ′ ∈ Tcuc(σ)

T is prefix closed. All partial behaviors can be observed.

127

A.2. Proofs of T1 to SF4 for CUC

Proof: T2 holds for CUC

Induction over the length of traces.

The only rule changing the trace is T -comm. The new traces added are extending existing

traces by one event.

By Lemma A.2 (I), the existing traces are also in T.

By Assumption 5.5, we always start with empty traces.

Thus, by induction hypothesis, all prefixes of the new traces are in T .

Property SF1

(tr , X) ∈ SFcuc(σ) =⇒ tr ∈ Tcuc(σ)

All trace-state pairs are included in the traces semantics. This property ensures that the

stable failures semantics “acts” within the boundaries of the traces semantics.

Proof: SF1 holds for CUC

It holds as we extended the traces semantics in a safe way: The semantics are very similar,

we only discard failures (and with that trace-state pairs) that are not stable.

Property SF2

(tr , X) ∈ SFcuc(σ) ∧X ′ ⊆ X =⇒ (tr , X ′) ∈ SFcuc(σ)

Refusal sets are subset closed.

Proof: SF2 holds for CUC

This holds by Assumption 5.6 (Initial Failures) and by construction, as we always add all

subsets of a maximal refusal set.

Property SF3

(tr , X) ∈ SFcuc(σ) ∧ ∀ a ∈ X ′. tr⌢⟨a⟩ ̸∈ Tcuc(σ) =⇒ (tr , X ∪X ′) ∈ SFcuc(σ)

All events that can be refused occur in a refusal set. More specifically, the refusal sets

can be augmented with refused events. This is the crucial property ensuring that the

stable failures are “enough” refusals to show liveness properties, because it ensures that

all events that can be refused are contained in the stable failures semantics.

128

A.2. Proofs of T1 to SF4 for CUC

Proof: SF3 holds for CUC

As for SF2, this holds by Assumption 5.6 (Initial Failures) and by construction, as we

always add all subsets of a maximal refusal set.

Property SF4

σ
tr
=⇒cuc σ

′ ∧ σ′
pc ̸∈pc code =⇒ ∃X. (tr , X) ∈ SFcuc(σ)

Terminal failures are stable.

Although the equivalence ∃σ′. σ
tr
=⇒cuc σ

′ ⇔ tr ∈ Tcuc(σ) holds, we choose not to use T
as in the CSP version of SF4, as we need to talk about the reached state σ′ explicitly to

model terminal behavior.

Proof: SF4 holds for CUC

This also holds by construction: After the execution of each instruction, a failure is

inserted, which is terminal at that moment. The maximal refusal set for those inserted

failures is Σ, i. e., all possible (visible) events can be refused. In the sequential composition

rule (SF-seq), all former terminal failures are removed, i. e., all failures whose state has a

program counter that points into the code. The failures whose state’s program counter

does not point into the code remain. Thus, traces that reach states whose program counter

does not point into the code are captured by the stable failures semantics and can refuse

anything.

129

A.3. Mapping to the Isabelle/HOL Formalization

A.3 Mapping to the Isabelle/HOL Formalization

In this section, we give an overview of how the results from Chapter 5 are formalized

in Isabelle/HOL. The Isabelle/HOL formalization accompanying this thesis is published

separately in a technical report [BBD+19]. The content of this section corresponds to the

content of the technical report. The advantage of reading the technical report in its source

form (which is an Isabelle theory file) in a suitable Isabelle IDE is that all referenced entities

(definitions, lemmas, theory files, etc.) are links to the respective sections in the Isabelle/HOL

formalization. This enables easy navigation within the formalization.

The intention of this section is to give a mapping from Chapter 5 to the Isabelle/HOL

formalization. For a tutorial on Isabelle/HOL see [NK14]. Due to technical implementation

reasons and because the Isabelle/HOL formalization is a bit older than the formalization in

this thesis, which has evolved since, there is not a one-to-one mapping from the formalization

in this thesis to the formalization in Isabelle/HOL. Most notably, the operational semantics

of CUC is not concurrent. The reasoning (why it is sufficient to consider single components)

is explained in Section 5.6. The concurrent cases of the correspondence proofs between the

operational and denotational semantics that are missing in the Isabelle/HOL formalization

are given in Appendix A.1.

Section 5.2 (Syntax and Semantic States)

Definition 5.1 (Basic Data Types): The local states (LStates) are defined by the record

’data store definitions.state. It is parametrized by the type ’data store of the data

store (formerly register store) R. It contains the data store and a program counter of type

definitions.label.

Concurrent states are defined in ’state denotational parallel.parallelState.

Events can be of any type ’e definitions.event. The set of all events can be fixed within

a locale, for example in the locale stable failures.SFsemSigma.

Definition 5.2 (Instructions of CUC): The instructions of CUC are formalized with

the datatype (’state, ’event) instr and are parametrized over the type of the state and

the type of events.

Assumption 5.1 (At Least One Successor State): We assume this assumption im-

plicitly by only using functions f that map to non-empty sets for do f.

Definition 5.3 (Local Program lp): The local programs are of the type (’state,

’event) labeled instruction set.

Assumption 5.2 (Uniqueness of Labels): The uniqueness of labels is required in the

respective lemmas. The notion of uniqueness of labels for unstructured programs is captured

as an assumption of the locale liSet. The notion of uniqueness of labels for structured

programs is captured by the definition sc wellformed.

130

A.3. Mapping to the Isabelle/HOL Formalization

Definition 5.4 (Labels of a Program labels): To extract the labels of an unstructured

program, we use the definition indom.

Definition 5.5 (Concurrent Program cp): We do not define unstructured concurrent

programs in the Isabelle/HOL formalization. This is due to the fact that our main goal

for the Isabelle/HOL formalization was to relate structured concurrent programs to CSP

processes. The type of structured concurrent programs is defined by (’state, ’event)

structured code parallel.

Assumption 5.3 (Same Tree Structure): This is defined in the directly in the semantics,

e.g., see denotational parallel.densemp: We define successor states only for states whose

tree structure matches the tree structure of the code.

Definition 5.6 (Structured Program sp): The type used for structured code is (’state,

’event) structured code which is actually just a wrapper around the definition ’code

structured code base which builds a tree with single lines of labeled instruction as leaves.

Definition 5.7 (Unstructuring Function, U): To obtain the unstructured code from

structured code we use the function sc inj.

Definition 5.8 (Labels of a Structured Program labels): The labels of a structured

program are extracted directly in the formalization via dom.

Assumption 5.4 (Uniqueness of Labels for sp): As for the uniqueness of labels of

unstructured code, we require this property in the locales. For the uniqueness of labels of

structured code, we use the function sc wellformed.

Definition 5.9 (Structured Concurrent Program scp): The type of structured con-

current programs is defined by (’state, ’event) structured code parallel .

Section 5.3 (Semantics)

Subsection 5.3.1 (Operational Semantics)

Definition 5.10 (Operational Semantics of CUC): The operational semantics of CUC

are distributed over several definitions. The smallstep semantics of CUC are defined by

smallstep, which is an inductively defined set of (’state, ’event) trace state pairs,

describing trace-state pairs before and after the execution of an instruction, i.e., the transitions.

smallstep is parametrized by a labeled instruction set. To require the wellformedness

assumptions on unstructured programs (uniqueness of labels), we defined a wrapper named

Smallstep (observe the capital ‘S’) small step.liSet.Smallstep inside a locale.

The concurrent operational semantics are not formalized. See Section 5.6 for the explana-

tion. The concurrent denotational semantics are formalized.

131

A.3. Mapping to the Isabelle/HOL Formalization

The reflexive transitive hull of small step is defined in small step.liSet.multistep.

For historical reasons (see the next definition) multistep is defined by prepending to the

execution traces. Which is in contrast to Definition 5.10, where it is defined by appending.

Definition 5.11 (Terminating Execution): Terminating executions are defined by

small step.liSet.Exec, which is similar to multistep. The difference is that the “fi-

nal empty step” is only allowed in exec, if the program counter points outside of the code,

i.e., the execution has terminated.

Subsection 5.3.2 (Defining Denotational Semantics with Fixpoints)

We use the existing Isabelle/HOL library Complete Partial Order.ccpo class, which

provides most notably a fixpoint induction scheme.

Subsection 5.3.3 (Traces Semantics)

Definition 5.12 (Traces Semantics of CUC): The sequential part of the traces seman-

tics is defined in denotational.densem. The concurrent part of the traces semantics is

defined in denotational parallel.densemp.

Definition 5.13 (Operational Characterization of the Traces of CUC): This is

not defined explicitly in the Isabelle/HOL formalization. The operational and the traces

semantics are related directly in a lemma. See the correspondence theorem for traces below

(Theorem 5.1).

Assumption 5.5 (Empty Initial Traces): The assumption is only implicit in that

instantiations only use an empty trace initially. See for example the preconditon in the

example concurrent buffer example.SingleBuffer.TPre.

Theorem 5.1 (Correspondence Between Operational Characterization and Traces

Semantics): The correspondence between the operational semantics and the traces seman-

tics is captured by theorems, one for each direction:

• denotational.liSet.densem implies multistep and

• denotational.liSet.multistep implies densem

Corollary 5.1 (Invariance Under Structure): In the formalization, the independence

of the denotational semantics from a particular structure on the unstructured code is proven

as a step towards the proof of the previous theorem (in contrast to being a corollary of it).

Definition 5.3.4 (Stable Failures Semantics)

Definition 5.14 (CSP-like Stable States of CUC): The definition of stable states

is implicit in the definition of stable failures stable failures.SFsemSigma.sfsem. Only

stable states are included in the semantics. That the stable failure semantics works as

expected is shown in the theory file stable failures traces conformant by proving SF1

to SF4.

132

A.3. Mapping to the Isabelle/HOL Formalization

Definition 5.15 (Refusal Set of CUC): As for the stable states, the refusal sets are

defined implicitly in the definition of stable failures.

Definition 5.16 (Operational Characterization of the Stable Failures of CUC):

This is not defined explicitly in the formalization. The operational and the stable failures

semantics are related directly in a lemma. See the correspondence theorem for stable failures

below (Theorem 5.2).

Definition 5.17 (Communication States): The communication and normal states are

defined in ’state NCstate. In the formalization we use a sum datatype with explicit

constructors. Thus, we do not need to append “×{c}”. The tree of concurrent NCStates

(named CNCStates) is defined in ’state parallelState.

Definition 5.18 (Test for Normal State and Conversions to Communication State,

N(·), ·C): The test for normal state is defined by N. The conversion from normal state to

communication is implemented by NCC.

Assumption 5.6 (Initial Failures): We usually generate initial failures from traces

using the following function which generates refusal sets according to the assumption:

stable failures traces conformant.SFsemSigma.trace state set to failure set

Definition 5.19 (Removal of Former Terminal Failures, \(·)): The former terminal

failures are removed by SClean.

Definition 5.20 (Stable Failures Semantics of CUC): The sequential part of the

traces semantics is defined in stable failures.SFsemSigma.sfsem The concurrent part of

the traces semantics is defined in stable failures parallel.sfsemp.

Theorem 5.2 (Correspondence Between Operational Characterization and Stable

Failures Semantics): The correspondence between the operational semantics and the

stable failures semantics is captured by theorems, one for each direction.

• stable failures.SFsemSigma.sfsem implies multistep

• Observe that due to the implicit definition of stable states and refusal sets, the direction

from multistep to failures is split in two theorems: One for terminating executions

and one for non-terminating executions.

– stable failures.SFsemSigma.Exec implies sfsem

– stable failures.SFsemSigma.multistep trace implies comm failure

Subsection 5.3.5 (Compatibility to CSP)

We did not show T1 and T2 explicitly.

T1: If we assume that the initial traces are empty, we can use denotational.densem super

id element to follow that the traces semantics also contains a trace-state pair with the

empty trace.

133

A.3. Mapping to the Isabelle/HOL Formalization

T2: We have shown that multistep is prefix closed in small step.liSet.multistep prefix

closed.

Using the correspondence between multistep and the traces semantics, we conclude that

the traces semantics is also prefix closed.

The properties SF1 to SF4 are shown in the following theory files. First for the sequential

case, then for the concurrent case.

• stable failures traces conformance parallel.thy

• stable failures traces conformant.thy

Definition 5.4 (Hoare Calculus)

Definition 5.21 (Hoare Triple for CUC):

The Hoare triple is defined in hoare.SFsemSigma.hoare valid.

Definition 5.22 (Hoare Calculus for CUC):

The Hoare calculus itself is defined in hoare.SFsemSigma.hoare.

Theorem 5.3 (Soundness of Our Hoare Calculus): We have proven the soundness of

our Hoare Calculus in hoare.SFsemSigma.hsem soundness

Section 5.5 (Relating CSP and CUC)

Lemma 5.1 (Traces Imply Stable Failures in CUC): When we only consider diver-

gence free CUC programs, then all traces appear also in the stable failures semantics:

stable failures traces conformant.SFsemSigma.tr of T will be in SF

The lemma talks about successors of starting states, as we allow arbitrary traces for initial

trace-state pairs.

Theorem 5.4 (Traces Refinement Implies Stable Failures Refinement for CUC):

Again, this theorem only holds for divergence free programs.

stable failures traces conformant.SFsemSigma.

sfsem no divergencies imp sf refinement implies traces refinement

Assumption 5.7 (Divergence Freedom of CUC Programs): We assume divergence

freedom directly in lemmas and theorems (see the theorems above). For our (quite simple)

examples we used static code analysis, to ensure that every instruction will either be followed

by a comm instruction (and thus produce a visible event) or will lead to termination. The

definitions and lemmas can be found in the theory file static code analysis.

Subsection 5.5.1 (Example)

Reminder: For the formalization of CSP, we use the CSP Prover library [IR05] by Yoshinao

Isobe and Markus Roggenbach.

In the theory file concurrent buffer example we have formalized the example from

Subsection 5.5.1. The major difference in the structure is that we first show that the

134

A.3. Mapping to the Isabelle/HOL Formalization

code fulfills the sufficient property, and afterwards that the sufficient property implies

the specification. In contrast to the example in Subsection 5.5.1, in the Isabelle/HOL

formalization we need many more fine grained definitions and lemmas.

The CUC program is defined in concurrent buffer example.SingleBuffer.LIS.

The CSP specification is defined in the assumptions of the lemmas that use it, e.g.

concurrent buffer example.SingleBuffer.Conn Imp Spec

It is defined in fixpoint notation

"(([[$spec]]Ff [[PN]]Ffix)::(nat × nat) domF) =

[[(% x . (TIn, x)) ? k -> (TOut, k) -> $spec]]Ff [[PN]]Ffix"

First, we give the name of the process ($spec), and then apply a fixpoint to all process

names (PN; to handle possible mutual recursion). After the “=” sign, we see the almost

CSP like syntax. In CSP syntax, the process would look like the following: Spec = in?k →
out!k → Spec

The sufficient property is defined via its two disjuncts, Fempty and Ffull , which are named

F-even and F-odd in the Isabelle/HOL formalization. The sufficient property is called

“connecting property” or “conn”.

That the sufficient property implies the CSP specification is proven in the lemma:

concurrent buffer example.SingleBuffer.Conn Imp Spec

That the sufficient property holds for all stable failures of the CUC program is proven in

the lemma: concurrent buffer example.SingleBuffer.TSeq123 Imp Conn

Finally, the conclusion that the CUC program refines the CSP process is shown in:

concurrent buffer example.SingleBuffer.Spec SF Refinement Impl

We have proven the properties about the single buffer inside a locale:

concurrent buffer example.SingleBuffer.

We can now instantiate this locale for each homogeneous component to reason about their

parallel composition. The refinement of the concurrent versions is shown in the lemma

concurrent buffer example.Buffer SF Parallel refinement.

135

A.4. Protocol Constraints

A.4 Protocol Constraints

Definition A.1 gives the complete formal definition of the protocol constraints Pcuc,sv ,ψ. We

describe here the differences to Definition 6.20, where we have used mostly natural language

for the definition.

In each disjunct, the program counters, the instructions they point to, and their relation

via ψ are described, e. g., in (D):

(σidpc, do f) ∈ cucid ∧ (σ̂idpc, do f) ∈ sv id ∧ ψ(σidpc) = σ̂idpc

This information corresponds to the information from Definition 6.8 of a fitting program

label map, and is written in gray in Definition A.1. Observe that for disjuncts, where the

communication has already happened (S4’, S5’, S6, R3), we need to consider the instruction

of the previous CUC state (σidpc − 1), as ψ always maps comms and commr to their entire

implementations send and receive, respectively, regardless whether the communication has

already happened. As we only consider σidpc − 1 in parts of the implementation of send and

receive after the communication has already happened and comms and commr increase the

program counter by one, we know that the previous instruction indeed was a comms or commr
by the definition of the program label map ψ.

The conditions in black cover the channel-state and the global state, e. g., in (S2)

X (c) = idin ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc)

The channel-state X appears in each disjunct. It also “synchronizes’ the different components,

i. e., for each component we only need to describe local information and the channel the

component is currently using. As the conditions for every component are only concerned

with whether the component itself occurs in the channel-state (and where applicable also a

communication partner), the condition for free channels (that both signals need to be ⊥)
needs to occur at the top level (see the first line of the figure).

The states of the mutex (mc), the signals (src and frc), the return registers of the cas

instructions (has lock hlc and signal set ssc), as well as the data value of the shared variable

γc are also described where necessary. Due to the “synchronization” of the components via

the channel-state X , most conditions only need to be specified in one place, either the sender

or the receiver – we chose the sender, as it comes first.

Finally, the symbol ⊻ denotes an exclusive or. a ⊻ b := a ∨ b ∧ ¬(a ∧ b)

136

A.4. Protocol Constraints

Definition A.1: Protocol Constraints (Full)

Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
:=
(
∀ c.X (c) = free =⇒ ¬Γ(src) ∧ ¬Γ(frc)

)
∧ ∀ id.Pidcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
Pidcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
:=

Out of code:(
̸ ∃ ins. (σidpc, ins) ∈ cucid

)
∧
(
̸ ∃ ins. (σ̂idpc, ins) ∈ sv id

)
∧ψ(σidpc) = σ̂idpc ∧ id /∈ X (O)

do f:

∨ (σidpc, do f) ∈ cucid ∧ (σ̂idpc, do f) ∈ sv id ∧ ψ(σidpc) = σ̂idpc ∧ id /∈ X (D)

cbr:

∨
(
(σidpc, cbr bmn) ∈ cucid∧(σ̂idpc, cbr b ψ(m)ψ(n)) ∈ sv id∧ψ(σidpc) = σ̂idpc ∧ id /∈ X (C)

send :

∨ (σidpc, comms id c xs)∈cucid∧(σ̂idpc, cas hlcmc free id)∈sv id∧ψ(σidpc) = σ̂idpc ∧ id /∈ X (S)

∨ (σidpc, comms id c xs) ∈ cucid ∧ ψ(σidpc) + 1 = σ̂idpc ∧(
σ̂idpc, cbr hlc

(
ψ(σidpc) + 2

)
ψ(σidpc)

)
∈ sv id ∧

(
¬σ̂idds(hlc) ∧ id /∈ X ∨

σ̂idds(hlc) ∧ X (c) = idin ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc)
)

(S1)

∨ (σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, write γc xs) ∈ sv id ∧ ψ(σidpc) + 2 = σ̂idpc

∧ X (c) = idin ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc) (S2)

∨ (σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, write src ⊤) ∈ sv id ∧ ψ(σidpc) + 3 = σ̂idpc

∧ X (c) = idin ∧ Γ(mc) = id ∧ Γ(γc) = σ̂idds(xs) ∧ ¬Γ(src) ∧ ¬Γ(frc) (S3)

∨ (σidpc, comms id c xs) ∈ cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧ ψ(σidpc) + 4 = σ̂idpc

∧ Γ(mc) = id ∧ Γ(γc) = σ̂idds(xs) ∧ ¬Γ(frc)∧(
Γ(src) ∧ X (c) = idin ∨ ¬Γ(src) ∧ (∃ idr.X (c) = (id, idr)in)

)
(S4)

∨ (σidpc, comms id c xs)∈cucid∧
(
σ̂idpc, cbr ssc

(
ψ(σidpc) + 6

) (
ψ(σidpc) + 4

))
∈ sv id∧

ψ(σidpc) + 5 = σ̂idpc ∧ Γ(mc) = id ∧ ¬Γ(frc) ∧ Γ(γc) = σ̂idds(xs) ∧ ¬σ̂idds(ssc)∧(
Γ(src) ∧ X (c) = idin ∨ ¬Γ(src) ∧ (∃ idr.X (c) = (id, idr)in)

)
(S5)

∨ (σidpc − 1, comms id c xs) ∈ cucid ∧ (σ̂idpc, cas ssc frc⊤⊥) ∈ sv id ∧
ψ(σidpc − 1) + 4 = σ̂idpc ∧ Γ(mc) = id ∧ ¬Γ(src)∧(
Γ(frc) ∧ X (c) = idun ∨ ¬Γ(frc) ∧ (∃ idr.X (c) = (id, idr)un)

)
(S4’)

∨ (σidpc − 1, comms id c xs) ∈ cucid ∧ ψ(σidpc − 1) + 5 = σ̂idpc ∧ Γ(mc) = id ∧ ¬Γ(src)(
σ̂idpc, cbr ssc

(
ψ(σidpc − 1) + 6

)(
ψ(σidpc − 1) + 4

))
∈ sv id ∧

(
(Γ(frc) ⊻ σ̂

id
ds(ssc))

∧ X (c) = idun ∨ ¬Γ(frc) ∧ ¬σ̂idds(ssc) ∧ (∃ idr.X (c) = (id, idr)un)
)

(S5’)

137

A.4. Protocol Constraints

Definition A.1: Protocol Constraints (Full)

∨ (σidpc − 1, comms id c xs) ∈ cucid∧(σ̂idpc, writemc free) ∈ sv id ∧ ψ(σidpc − 1) + 6 = σ̂idpc

∧ X (c) = idun ∧ Γ(mc) = id ∧ ¬Γ(src) ∧ ¬Γ(frc) (S6)

receive:

∨ (σidpc, commr id c xr)∈cucid∧(σ̂idpc, cas ssc src⊤⊥) ∈ sv id∧ ψ(σidpc) = σ̂idpc ∧ id /∈ X (R)

∨ (σidpc, commr id c xr) ∈ cucid ∧ (σ̂idpc, cbr ssc src⊤⊥) ∈ sv id ∧ ψ(σidpc) + 1 = σ̂idpc ∧(
σ̂idds(ssc) ∧

(
∃ ids.X (c) = (ids, id)in

)
∨ ¬σ̂idds(ssc) ∧ id /∈ X

)
(R1)

∨ (σidpc, commr id c xr) ∈ cucid ∧ (σ̂idpc, readxr γc) ∈ sv id ∧ ψ(σidpc) + 2 = σ̂idpc ∧(
∃ ids.X (c) = (ids, id)in

)
(R2)

∨ (σidpc − 1, commr id c xr) ∈ cucid ∧ (σ̂idpc, write frc⊤) ∈ sv id ∧ ψ(σidpc − 1) + 3 = σ̂idpc ∧(
∃ ids.X (c) = (ids, id)un

)
(R3)

138

A.5. Proof: Fitting Implies Handshake Refinement

A.5 Proof: Fitting Implies Handshake Refinement

In this section, we prove that all fitting pairs of CUC and SV programs are in a handshake

refinement relation. First, we restate Theorem 6.3 and recall the flow of the protocol, as it

indicates the transitions between the disjuncts of Pidcuc,sv ,ψ. Finally, we restate Definition 6.19

of the handshake refinement and prove the theorem.

Theorem 6.3: Fitting Implies Handshake Refinement

Let sv be a program fitting cuc with the program label map ψ. Then, there is a handshake

refinement Bcuc,sv,ψ containing all initial pairs, i. e., similar CUC and SV states where the

program counters of each component match with ψ, all mutexes in Γ are free, and all

signals are inactive.

σ =̂ σ̂ ∧
(
∀ id . σ̂id

pc = ψ(σid
pc)
)
∧
(
∀ c. Γ(mc) = free ∧ ¬Γ(src) ∧ ¬Γ(frc)

)
=⇒

(
σ, ∅, (Γ, σ̂)

)
∈ Bcuc,sv,ψ

In Figure A.3, we depict the labeled transitions of the protocol. In contrast to Figure 6.2,

which also depicts the flow of the protocol, we show the events as labels and not the

instructions. The figure is helpful to visualize how a component passed the disjuncts of

the protocol constraints Pidcuc,sv ,ψ. We recall that (N) is the disjunction of (O), (D), (C),

(S), and (R) from the definition of Pidcuc,sv ,ψ. In (N), the beginning of next instruction

implementation, the program counters match with ψ and the current id does not occur in

the lockstate (cf. Definition A.1). The arrows over (S1), (S5’), and (R1) denote whether cbr

will jump back to the first label or forward to the second label, based on the cas instruction

before. Note that send cannot progress until the end, until the receive reads the value. The

dotted transitions from (S4) to (S4’) and from (S5) to (S5’) indicate that the applying/valid

disjuncts change for the sender component, when the receiver component takes the transition

from (R2) to (R3).

O D

N

τ

N

τ

N

τ

C

N

τ

R

←−
R1

τcτc

−→
R1

τc
R2

τc
R3

a
N

τc

S

←−
S1

τcτc

−→
S1

τc
S2

τc
S3

τc
S4

τc

S5

τc
τc

S4’

←−
S5’

a

a

τc τc

−→
S5’

τc
S6

τc
N

τc

Figure A.3: sv Transitions Between the Disjuncts of Pidcuc,sv ,ψ

139

A.5. Proof: Fitting Implies Handshake Refinement

Definition 6.19: Handshake Refinement Bcuc,sv,ψ

Let a CUC program cuc and an SV program sv be fitting with a program label map

ψ. A handshake refinement is a ternary relation Bcuc,sv,ψ over CUC states (cuc),

channel-states (X), and SV states
(
(Γ, σ̂)

)
, which fulfills the following properties.

∀
(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ. (ev can be visible or τ)

Similar local states: σ =̂ σ̂

Protocol constraints: Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
(see Definition 6.20)

Down-simulation:

∀ ev σ′. ev ̸= τ ∧ X (chan(ev)) = free ∧ σ ev−→cuc σ
′ =⇒ ∃Γ′ σ̂′ ids idr X ′.

(Γ, σ̂)
τc−→∗

sv
ev−→sv (Γ

′, σ̂′) ∧ X ′(chan(ev)) = (ids, idr)un ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀σ′. σ
τ−→cuc σ

′ =⇒ ∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv
τ−→sv (Γ

′, σ̂′) ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Up-simulation:

∀(Γ′, σ̂′). (Γ, σ̂)
τc−→sv (Γ

′, σ̂′) =⇒ ∃X ′.
(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

∀ ev (Γ′, σ̂′). (Γ, σ̂)
ev−→sv (Γ

′, σ̂′) =⇒ ∃σ′ X ′. σ
ev−→cuc σ

′ ∧
(
σ′,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Unlocking-simulation:

∃ c ids. X (c) = (ids)un ∨
(
∃ idr. X (c) = (ids, idr)un

)
=⇒

∃Γ′ σ̂′ X ′. (Γ, σ̂)
τc−→∗

sv (Γ
′, σ̂′) ∧ X ′ = X [c := free] ∧

(
σ,X ′, (Γ′, σ̂′)

)
∈ Bcuc,sv,ψ

Proof: Theorem 6.3 (Fitting Implies Handshake Refinement)

To prove Theorem 6.3, we define a relation B, show that it contains
(
σ,X , (Γ, σ̂)

)
, and

show that it is a handshake refinement (even the largest). We use

I
(
σ,X , (Γ, σ̂)

)
:= σ =̂ σ̂ ∧ Pcuc,sv ,ψ

(
σ,X , (Γ, σ̂)

)
B :=

{(
σ,X , (Γ, σ̂)

) ⏐⏐⏐ I(σ,X , (Γ, σ̂))}
as an invariant and induction hypothesis. The proof consists of two parts:

1) We show that the initial states are in B.

2) We show that B is a handshake refinement, i. e., every triplet in B also satisfies the

down-, up-, and unlocking-simulations, i. e., the possible successor triplets are again

140

A.5. Proof: Fitting Implies Handshake Refinement

Proof: Theorem 6.3 (Fitting Implies Handshake Refinement)

in B.

1)
(
σ, ∅, (Γ, σ̂)

)
∈ B:

Assumptions:

I) σ =̂ σ̂

II)
(
∀ id . σ̂id

pc = ψ(σid
pc)
)

III)
(
∀ c. Γ(mc) = free ∧ ¬Γ(src) ∧ ¬Γ(frc)

)
Want to show (goal):

I
(
σ, ∅, (Γ, σ̂)

)
, i. e., σ =̂ σ̂ ∧ Pcuc,sv ,ψ

(
σ, ∅, (Γ, σ̂)

)
Proof:

σ =̂ σ̂ holds by I).

To show that Pcuc,sv ,ψ

(
σ, ∅, (Γ, σ̂)

)
holds, we have ¬Γ(src) ∧ ¬Γ(frc) from III) and show

Pidcuc,sv ,ψ
(
σ, ∅, (Γ, σ̂)

)
for an arbitrary but fixed id .

From X = ∅ we have id /∈ X .
Together with II) we conclude that (N) holds by case distinction over the definition of

Pidcuc,sv ,ψ.

So our initial triplet
(
σ, ∅, (Γ, σ̂)

)
is an element of B.

2) B is a handshake refinement:

Want to show (goal):

B fulfills the definitions of the down-, up-, and unlocking-simulation.

Proof:

We fix a component and its id and go through all cases of Pidcuc,sv ,ψ. To be able to look

at each component individually, we ensure that we only write to our own local state

and that we only assign our id to X (c) if it was free, or add it as a receiver. Also,

we may only set X (c) to unlocking, if we were assigned as a receiver. Furthermore, we

may never write to a mutex that is not free (ensured by using cas), and never write

to a shared variable without having the mutex (ensured by X (c) = own id). All these

properties follow from Definition A.1. By doing so, we ensure that no other Pid′cuc,sv ,ψ with

id′ ̸= id is changed, unless mentioned. We show, where applicable that the down-, up-,

and unlocking-simulations are satisfied, i. e., that the successor triplets again satisfy I,
and are thereby in B. For the up- and the down-simulation, we consider in detail that the

141

A.5. Proof: Fitting Implies Handshake Refinement

Proof: Theorem 6.3 (Fitting Implies Handshake Refinement)

same event can be communicated.

The up-simulation applies in every disjunct of Pcuc,sv ,ψ. Most cases are simple

applications of the SV semantics. Only in (R2) we need additionally that X (c)=(ids,)in
implies that there is a sender waiting, i. e., a component for which (S4) or (S5) holds, to

show that cuc can communicate the same event.

We prove that cuc can communicate the same event:

We consider the receiver, thus, let idr := id.

In (R2) sv communicates the event ev = c.Γ(mc).idr.Γ(γc), according to the event labeling

function (cf. Definition 6.11).

By case analysis of the induction hypothesis I, we show that X (c) = (ids,) implies that

there exists a sender ids for which (S4) or (S5) holds, and in particular Γ(γc) = σ̂ids(xs)

and
(
σidspc , comms ids c xs

)
∈ cucids .

Together with
(
σidrpc , commr idr c xr

)
∈ cucidr , we have that cuc can synchronize on the

event c.ids.idr.σ
ids(xs).

With Γ(γc) = σ̂ids(xs) from (S4) ∨ (S5) and σ =̂ σ̂ we have Γ(γc) = σids(xs).

Together with Γ(mc) = ids from (R2), we show c.Γ(mc).idr.Γ(γc) = c.ids.idr.σ
ids(xs).

Thus, σ can perform the same event as σ̂.

After the transition, (R3) holds for the receiver and (S4’) or (S5’) holds for the sender,

i. e.,, the successor state satisfies I and is in B.

The down-simulation applies only where (N) holds. In case of the visible event (read),

as both a sender ids and a receiver idr are ready, we are free to pick an execution of the

protocol, e. g., passing (S), (S1), (S2), (S3), (S4) for ids, and then (R), (R1), (R2), (R3)

for idr.

We prove that sv can communicate the same event:

From the facts that cuc communicates ev = c.ids.idr.σ
ids(xs) and the assumption X (c) =

free from the down-simulation, we conclude that (S) holds for ids as well as (R) for idr.

Furthermore, from X (c) = free we know that the channel is free. Thus, we are free to

pick an execution of the protocol until we communicate the event. The execution passes

the disjuncts in the following sequence: (S), (S1), (S2), (S3), (S4) for ids, and then (R),

(R1), (R2), (R3) for idr. As the communication of the event transitions (S4) to (S4’), we

end up with (S4) for ids and (R2) for idr right before the event is communicated and

(S4’) and (R3) for the successor triplet. As in the up-simulation in the case of (R2), we

can show that the events communicated in sv and cuc are the same and the successor

state satisfies I and is in B.

The unlocking-simulation applies only after the visible event was communicated, i. e.,

in (S4’), (S5’), (S6), (R3). Again, we are free to pick an execution of the protocol. The

transition from (R3) to (N) should be taken first.

142

A.6. Refusals imply Refusals

A.6 Refusals imply Refusals

Lemma 6.4: Refusals in sv Imply Refusals in cuc

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Proof: Lemma 6.4 (Refusals in sv Imply Refusals in cuc)

(
σ,X , (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂)↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Want to show: (Γ, σ̂) refsv X =⇒ σ refcuc X

Unfold refsv/cuc : ∀ a ∈ X. ¬
(
(Γ, σ̂)

τc−→∗
sv

a−→sv

)
=⇒ ∀ a ∈ X. ¬

(
σ

a−→cuc

)
If X = {}, this is true. Assume X ̸= {}.
Pick a ∈ X, insert in assumption: ¬

(
(Γ, σ̂)

τc−→∗
sv

a−→sv

)
=⇒ ¬

(
σ

a−→cuc

)
Negation: σ

a−→cuc=⇒ (Γ, σ̂)
τc−→∗

sv
a−→sv

This is implied by the down-simulation, as we have X = ∅ from Lemma 6.3.

143

A.7. Proofs from the Evaluation

A.7 Proofs from the Evaluation

A.7.1 Proof of Correctness of the Sufficient Property of the Server

In this subsection, we prove the correctness of the sufficient property of the server component

from Chapter 7 (Evaluation & Case Study). We first recall the relevant definitions of the

server component i (Server i) and its sufficient property (S⊆
i). Then, we restate Lemma 7.1

and give the proof for the case of the server component.

Server i = □
id in∈ID\{si}

ai.id
in.si?x→ □

idout∈ID\{si}
bi.si.id

out.f(x)→ Server i

S⊆
i (F) :=F ∈ Fidle

i ∨ F ∈ Fbusy
i where

Fidle
i :=

{(
⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗, X

)⏐⏐⏐X ⊆ Σ \ {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}
}

Fbusy
i :=

{(
⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗⌢⟨ai.id in.si.v⟩, X

)⏐⏐⏐X ⊆ Σ \
{
bi.si.id

out.f(v)
⏐⏐ idout∈ ID \ {si}

}
∧ id in∈ ID \ {si} ∧ v ∈ T

}

Lemma 7.1: Both Sufficient Properties are Correct

C⊆
c (F) =⇒F ∈ SF(Clientc)

S⊆
i (F) =⇒F ∈ SF(Server i)

Proof: S⊆
i (tr , X) =⇒ (tr , X) ∈ SF(Server i)

Consider (tr , X) with S⊆
i (tr , X).

Want to show (goal):

(tr , X) ∈ SF(Server i)

We show this by case distinction whether the failure (tr , X) is in Fidle
i or Fbusy

i .

(tr , X) ∈ Fidle
i :

We have tr = ⟨ai.id in
∗ .si.x∗, bi.si.id

out
∗ .f(x∗)⟩∗ and

X ⊆ Σ \ {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}.
We show (tr , X) ∈ SF(Server i).
After any number of times of the trace ⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩, the process Server i

behaves again as Server i.

The process Server i offers the events {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}. Thus, it can

144

A.7. Proofs from the Evaluation

Proof: S⊆
i (tr , X) =⇒ (tr , X) ∈ SF(Server i)

refuse any event not in {ai.id in.si.v | id in∈ ID \ {wi} ∧ v ∈ T}.
Thus, all failures described by Fidle

i are stable failures of the processServer i.

=⇒ (tr , X) ∈ SF(Server i)

(tr , X) ∈ Fbusy
i :

We have tr = ⟨ai.id in
∗ .si.x∗, bi.si.id

out
∗ .f(x∗)⟩∗⌢⟨ai.id in.si.v⟩ and

X ⊆ Σ \
{
bi.si.id

out.f(v)
⏐⏐ idout∈ ID \ {si}

}
.

We show (tr , X) ∈ SF(Server i).
As in the first case, after any number of times of the trace ⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗,

the process Server i behaves again as Server i. After the event ai.id
in.si.v, the process

Server i behaves as □
idout∈ID\{si}

bi.si.id
out.f(v)→ Server i.

The process □
idout∈ID\{si}

bi.si.id
out.f(v)→ Server i offers the events{

bi.si.id
out.f(v)

⏐⏐ idout∈ ID \ {si}
}
. Thus, it can refuse any event not in{

bi.si.id
out.f(v)

⏐⏐ idout∈ ID \ {si}
}
.

Thus, all failures described by Fbusy
i are stable failures of the processServer i.

=⇒ (tr , X) ∈ SF(Server i)

In both cases, the failures described by S⊆
i are stable failures of the process Server i.

145

A.7. Proofs from the Evaluation

A.7.2 Proof that the CUC Program for the Server satisfies its Suf-

ficient Property

In this section, we show that the CUC program Server i satisfies the sufficient property S⊆
i ,

i. e., we give the proof for Lemma 7.2.

Lemma 7.2: The CUC Server Fulfills its Sufficient Property

{σpc = 1 ∧N(σ) ∧ tr = ⟨⟩} s⊕i

{
λtr σ X. S⊆

i (tr , X)
}

To this end, we use our Hoare calculus. The sufficient property S⊆
i describes only the

desired communication behavior. To use it as an invariant, we extend it with information

about the state. The state information is only required intermittently to know which

instruction is to be executed next (program counter) and to relate processed data (data

store).

The general idea of the proof is to formulate pre- and postconditions for each instruction,

and then combine the proofs for every component to a proof for an initial precondition and

an overall postcondition, which includes an invariant on the communication capabilities, i. e.,

the sufficient property. We first recall the CUC program for the server and the sufficient

property S⊆
i . Then, we present the overall structure and proof tree, and afterwards consider

the different parts of the proof tree in detail.

Server i :=
1 : commr ai x
2 : do (λds. {ds[y := f(ds(x))]})
3 : comms bi y
4 : cbr (λds. True) 1 1

We use the circled line numbers 1 , 2 , 3 , and 4 as shorthands for the instructions.

The structured version s⊕i of the server has the structure ((1 ⊕ 2)⊕ 3)⊕ 4 . The sufficient

property for the server is defined as:

S⊆
i (F) :=F ∈ Fidle

i ∨ F ∈ Fbusy
i where

Fidle
i :=

{(
⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗, X

)⏐⏐⏐X ⊆ Σ \ {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}
}

Fbusy
i :=

{(
⟨ai.id in

∗ .si.x∗, bi.si.id
out
∗ .f(x∗)⟩∗⌢⟨ai.id in.si.v⟩, X

)⏐⏐⏐X ⊆ Σ \
{
bi.si.id

out.f(v)
⏐⏐ idout∈ ID \ {si}

}
∧ id in∈ ID \ {si} ∧ v ∈ T

}
For the proof using the Hoare calculus, we require pre- and postconditions for each

instruction. We consider pre- and postconditions, where the broad idea is that, e. g., Post1
implies Pre2, as we expect linear execution of the program (apart from the loop back from

146

A.7. Proofs from the Evaluation

4 to 1).

{Pre1} 1 {Post1} {Pre2} 2 {Post2} {Pre3} 3 {Post3} {Pre4} 4 {Post4}

The communication failures, which belong to the invariant, are taken care of in the sequential

composition rule. Also, as the program is looping, Post4 implies Pre1. Figure A.4 shows the

complete outline of the proof tree using our Hoare calculus (all shorthands for assertions

will be defined in the respective parts). We start at the leaves of the proof tree (the single

instructions) and work our way to the root (the assertion to prove). At the beginning of

each part, we recall the associated Hoare calculus rule.

Proof: 1 – 1 : commr ai x

H-comm
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
((
∀Y ⊆ Σ \ fev (σds). Q(tr, σC , Y)

)
∧(

∀σ′. N(σ′) ∧ σ′
pc = ℓ+ 1 ∧

ev ∈ fev (σds) ∧ σ′
ds = fds(σds , ev)

−→
(
∀Y ⊆ Σ. Q(tr⌢⟨ev⟩, σ′, Y)

)))
{P} ℓ : comm fev fds {Q}

We unfold the definition of commr to be able to apply H-comm. We obtain the definitions

of fev and fds .

commr ai x := comm fev fds with

fev := λσds . {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}
fds := λσds ev . σds [x := val(ev)]

We first define the pre- and postcondition Pre1 and Post1 that we want to show and

then derive P1 and Q1, which we will plug into H-comm. The precondition Pre1 matches

with the overall precondition ((⟨⟩, X ∈ Fidle
i for some X), as we are considering the

first instruction to be executed. The postcondition Post1 describes the communication

failures and terminal failures resulting form the execution. The communication failures

have a communication state (¬N(σ)) and the same program counter as the initial states

(σpc = 1). As the program is now offering events, it cannot refuse everything, thus, both the

considered trace trand the considered refusal set X are as a pair in Fidle
i ((tr , X) ∈ Fidle

i).

The terminal failures have a normal state (N(σ)), the program counter is increased

by one (σpc = 2), and the data store is updated to reflect the reception of the event(
σds(x) = val

(
last(tr)

))
. The trace tr was extended by the communicated event and is

now in Fbusy
i ((tr ,) ∈ Fbusy

i). As we only consider one instruction, the failures after the

147

A.7. Proofs from the Evaluation

H
-c
o
m
m

{P
1
}
1
:
c
o
m
m
r
a
i
x
{Q

1
}

{P
re

1
}

1
{P

o
st

1
}

H
-c
o
n
s

{ I1 1
2

} 1
{I

1
2
}

H
-c
o
n
s

H
-d

o

{P
2
}
2
:
d
o
(λ
d
s.
{d

s[
y
: =
f
(d
s(
x
))
]}
)
{Q

2
}

{P
re

2
}

2
{P

o
st

2
}

H
-c
o
n
s

{ I2 1
2

} 2
{I

1
2
}

H
-c
o
n
s

· ·
{I

1
2
}
(

1
⊕

2
)
{ Ict 1

2

}
H
-s
e
q

{ I12 1
2
3

} (1
⊕

2
)
{I

1
2
3
}
H
-c
o
n
s

H
-c
o
m
m

{P
3
}
3
:
c
o
m
m
s
b i
y
{Q

3
}

{P
re

3
}

3
{P

o
st

3
}

H
-c
o
n
s

{ I3 1
2
3

} 3
{I

1
2
3
}

H
-c
o
n
s

· · · · · · · · · · · · ·
{I

1
2
3
}
(

1
⊕

2
)
⊕

3
{ Ict 1

2
3

}
H
-s
e
q

{ I12
3

1
3
4

} (1
⊕

2
)
⊕

3
{I

1
3
4
}

H
-c
o
n
s

H
-c
b
r

{P
4
}
4
:
c
b
r
(λ
d
s.
tr
u
e
)
1
1
{Q

4
}

{P
re

4
}

4
{P

o
st

4
}

H
-c
o
n
s

{ I4 1
3
4

} 4
{I

1
3
4
}

H
-c
o
n
s

· · · ·
{I

1
3
4
}
((

1
⊕

2
)
⊕

3
)
⊕

4
{ Ict 1

3
4

}
H
-s
e
q

{σ
p
c
=

1
∧
N
(σ
)
∧
tr

=
⟨⟩
}
((

1
⊕

2
)
⊕

3
)
⊕

4

{ λ
tr
σ
X
.
S
⊆ i
(t
r
,X

)} H
-s
e
q

F
ig
u
re

A
.4
:
C
om

p
le
te

P
ro
o
f
O
u
tl
in
e
o
f
th
e
H
o
a
re

C
a
lc
u
lu
s
P
ro
o
f
fo
r
th
e
S
er
ve
r

148

A.7. Proofs from the Evaluation

Proof: 1 – 1 : commr ai x

execution of the instruction is terminal, so we can refuse all events (X ⊆ Σ).

Pre1(tr , σ,X) := N(σ) ∧ σpc = 1 ∧ (tr ,) ∈ Fidle
i ∧X ⊆ Σ

Post1(tr , σ,X) := ¬N(σ) ∧ σpc = 1 ∧ (tr , X) ∈ Fidle
i ∨

N(σ) ∧ σpc = 2 ∧ (tr ,) ∈ Fbusy
i ∧ σds(x) = val

(
last(tr)

)
∧X ⊆ Σ

We directly use the postcondition Post1 that we have defined as the postcondition Q1 in the

rule H-comm. We derive P1 from the rule H-comm and Q1. We have designed pre1 such

that Pre1 =⇒ P1 holds. The main difference between P1 and Pre1 is that P1 additionally

accounts for the case that the instruction will not be executed (¬(N(σ) ∧ σpc = 1)).

Q1(tr , σ,X) := Post1(tr , σ,X)

P1(tr , σ,X) := ¬(N(σ) ∧ σpc = 1) −→ Q1(tr , σ,X) ∧
N(σ) ∧ σpc = 1 −→((
∀Y ⊆ Σ \ {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}. Q1(tr, σ

C , Y)
)
∧(

∀σ′. N(σ′) ∧ σ′
pc = 2 ∧ σ′

ds = σds [x := val(ev)] ∧
ev ∈ {ai.id in.si.v | id in∈ ID \ {si} ∧ v ∈ T}

−→
(
∀Y ⊆ Σ. Q1(tr⌢⟨ev⟩, σ′, Y)

)))
We recall the rule of consequence of our Hoare calculus.

H-cons
P −→ P ′ {P ′} sp {Q′} Q′ −→ Q

{P} sp {Q}

We can now apply the rules H-comm and H-cons to prove

{Pre1} 1 : commr ai x {Post1} .

Below we show the excerpt we have proven of the overall proof tree.

H-comm

{P1} 1 : commr ai x {Q1}
{Pre1} 1 {Post1}

H-cons

··

149

A.7. Proofs from the Evaluation

Proof: 2 – 2 : do (λds. {ds[y := f(ds(x))]})

H-do
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
(
∀σ′. N(σ′) ∧ σ′

pc = ℓ+ 1 ∧ σ′
ds ∈ f(σds)

−→ ∀Y ⊆ Σ. Q(tr, σ′, Y)
)

{P} ℓ : do f {Q}

We first define the pre- and postcondition Pre2 and Post2 that we want to show and

then derive P2 and Q2, which we will plug into H-do. The precondition Pre2 keeps the

communication invariant in form of (tr ,) ∈ Fbusy
i and ensure that the communicated

value is stored in x
(
σds(x) = val

(
last(tr)

))
. The postcondition Post2 describes only

terminal failures resulting form the execution, as do does not offer communication. The

trace is not changed, so we keep (tr ,) ∈ Fbusy
i . However, we now ensure that the result

of the computation is stored in y

(
σds(y) = f

(
val
(
last(tr)

)))
.

Pre2(tr , σ,X) := N(σ) ∧ σpc = 2 ∧ (tr ,) ∈ Fbusy
i ∧ σds(x) = val

(
last(tr)

)
∧X ⊆ Σ

Post2(tr , σ,X) := N(σ) ∧ σpc = 3 ∧ (tr ,) ∈ Fbusy
i ∧ σds(y) = f

(
val
(
last(tr)

))
∧X ⊆ Σ

We directly use the postcondition Post2 that we have defined as the postcondition Q2 in

the rule H-do. We derive P2 from the rule H-do and Q2. We have designed pre2 such that

Pre2 =⇒ P2 holds. Again, the main difference between P2 and Pre2 is that P2 additionally

accounts for the case that the instruction will not be executed (¬(N(σ) ∧ σpc = 2)).

Q2(tr , σ,X) := Post2(tr , σ,X)

P2(tr , σ,X) := ¬(N(σ) ∧ σpc = 2) −→ Q2(tr , σ,X) ∧

N(σ) ∧ σpc = 2 −→
(
∀σ′. N(σ′) ∧ σ′

pc = 3 ∧ σ′
ds ∈

{
σds [x := val(ev)]

}
−→

(
∀Y ⊆ Σ. Q2(tr, σ

′, Y)
))

We can now apply the rules H-do and H-cons to prove

{Pre2} 2 : do (λds. {ds[y := f(ds(x))]}) {Post2}

Below we show the excerpt we have proven of the overall proof tree.

H-do

{P2} 2 : do (λds. {ds [y := f(ds(x))]}) {Q2}
{Pre2} 2 {Post2}

H-cons

··

150

A.7. Proofs from the Evaluation

Proof: 1 ⊕ 2 – 1 : commr ai x⊕ 2 : do (λds. {ds[y := f(ds(x))]})

H-seq

{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp1 ∧N(σ)} sp1 {I}
{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp2 ∧N(σ)} sp2 {I}

{I} sp1 ⊕ sp2 {λ(tr, σ,X). I(tr, σ,X) ∧ (N(σ) −→ σpc ̸∈pc sp1 ⊕ sp2)}

We first construct the invariant I12 that we will use in the rule H-seq. Then, we

demonstrate how parts of the invariant I12 are related to the pre- and postconditions of

the two instructions. The invariant I12 is a disjunction of the pre- and postconditions of

the two instructions.

I12(tr , σ,X) := Pre1(tr , σ,X) ∨ Post1(tr , σ,X) ∨ Pre2(tr , σ,X) ∨ Post2(tr , σ,X)

We select parts of the invariant by combining it with, e. g., an assertion about the program

counter. To be able to apply the rule H-cons in the following, it is crucial that the

postcondition of the first instruction agrees with the precondition of the second instruction

of normal failures, i. e.,

Post1(tr , σ,X) ∧N(σ) ∧ pc = 2 =⇒ Pre2(tr , σ,X) ∧N(σ) ∧ pc = 2

We demonstrate the relation of the invariant I12 and the pre- and postconditions. The

last version of the invariant only contains the communication and terminal failures (all

former terminal failures are removed).

I112 := I12(tr , σ,X) ∧ σpc = 1 ∧N(σ) ≡ Pre1(tr , σ,X)

I212 := I12(tr , σ,X) ∧ σpc = 2 ∧N(σ) ≡ Pre2(tr , σ,X) ≡ Post1(tr , σ,X) ∧ σpc = 2 ∧N(σ)

Ict12 := I12(tr , σ,X) ∧ (N(σ) −→ σpc /∈ {1, 2}) ≡ Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post2(tr , σ,X)

We can now apply the rule H-cons to show the premises of the rule H-seq and then

apply the rule H-seq to prove

{I12} 1 ⊕ 2
{
Ict12
}
.

Below we show the excerpt we have proven of the overall proof tree.

...

{Pre1} 1 {Post1}
H-cons{

I112
}

1 {I12}
H-cons

...

{Pre2} 2 {Post2}
H-cons{

I212
}

2 {I12}
H-cons

{I12} 1 ⊕ 2
{
Ict12
} H-seq

··

151

A.7. Proofs from the Evaluation

Proof: 3 – 3 : comms bi y

H-comm
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
((
∀Y ⊆ Σ \ fev (σds). Q(tr, σC , Y)

)
∧(

∀σ′. N(σ′) ∧ σ′
pc = ℓ+ 1 ∧

ev ∈ fev (σds) ∧ σ′
ds = fds(σds , ev)

−→
(
∀Y ⊆ Σ. Q(tr⌢⟨ev⟩, σ′, Y)

)))
{P} ℓ : comm fev fds {Q}

We unfold the definition of comms to be able to apply H-comm. We obtain the definitions

of fev and fds .

comms ai y := comm fev fds with

fev := λσds .
{
bi.si.id

out.σds(y) | idout∈ ID \ {si}
}

fds := λσds ev . σds

We first define the pre- and postcondition Pre3 and Post3 that we want to show and then

derive P3 and Q3, which we will plug into H-comm. The precondition Pre3 matches with

the normal part of the postcondition Post2 of the previous instruction. As for 1 , the

postcondition Post3 describes the communication failures and terminal failures resulting

form the execution. The communication failures have a communication state (¬N(σ))

and the same program counter as the initial states (σpc = 3). As the instruction is

offering events, it cannot refuse everything and, thus, both the considered trace trand the

considered refusal set X are as a pair in Fbusy
i ((tr , X) ∈ Fbusy

i). The terminal failures

have a normal state (N(σ)), the program counter is increased by one (σpc = 4). The data

store remains unchanged. The relation between the received value v and sent value f(v) is

now captured in the trace (ensured by Fidle
i), so we do not need to additionally record it.

Pre3(tr , σ,X) := N(σ) ∧ σpc = 3 ∧ (tr ,) ∈ Fbusy
i ∧ σds(y) = f

(
val
(
last(tr)

))
∧X ⊆ Σ

Post3(tr , σ,X) := ¬N(σ) ∧ σpc = 3 ∧ (tr , X) ∈ Fbusy
i ∨

N(σ) ∧ σpc = 4 ∧ (tr ,) ∈ Fidle
i ∧X ⊆ Σ

We directly use the postcondition Post3 that we have defined as the postcondition Q3 in

the rule H-comm. We derive P3 from the rule H-comm and Q3. We have designed pre3

152

A.7. Proofs from the Evaluation

Proof: 3 – 3 : comms bi y

such that Pre3 =⇒ P3 holds.

Q3(tr , σ,X) := Post3(tr , σ,X)

P3(tr , σ,X) := ¬(N(σ) ∧ σpc = 3) −→ Q3(tr , σ,X) ∧
N(σ) ∧ σpc = 3 −→((
∀Y ⊆ Σ \

{
bi.si.id

out.σds(y) | idout∈ ID \ {si}
}
. Q3(tr, σ

C , Y)
)
∧(

∀σ′. N(σ′) ∧ σ′
pc = 4 ∧ σ′

ds = σds ∧
ev ∈

{
bi.si.id

out.σds(y) | idout∈ ID \ {si}
}

−→
(
∀Y ⊆ Σ. Q3(tr⌢⟨ev⟩, σ′, Y)

)))
We can now apply the rules H-comm and H-cons to prove

{Pre3} 1 : comms bi y {Post3} .

Below we show the excerpt we have proven of the overall proof tree.

H-comm

{P3} 3 : comms bi y {Q3}
{Pre3} 3 {Post3}

H-cons

··

Proof: (1 ⊕ 2)⊕ 3

H-seq

{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp1 ∧N(σ)} sp1 {I}
{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp2 ∧N(σ)} sp2 {I}

{I} sp1 ⊕ sp2 {λ(tr, σ,X). I(tr, σ,X) ∧ (N(σ) −→ σpc ̸∈pc sp1 ⊕ sp2)}

Similar to the case 1 ⊕ 2 , we first construct the invariant I123 that we will use in the

rule H-seq. Then, we demonstrate how parts of the invariant I123 are related to the pre-

and postconditions of the three instructions. The invariant I123 is a disjunction of the pre-

and postconditions of the three instructions. The precondition Pre1 serves as precondition

for the component 1 ⊕ 2 . The communication part of the postcondition Post1 (which

we obtain by writing Post1(tr , σ,X) ∧ ¬N(σ)) describes the communication capabilities

of the component 1 ⊕ 2 . As postcondition for the component 1 ⊕ 2 we use only Post2.

The pre- and postcondition of instruction 3 are simply the pre- and postcondition of

153

A.7. Proofs from the Evaluation

Proof: (1 ⊕ 2)⊕ 3

instruction 3 .

I123(tr , σ,X) := Pre1(tr , σ,X) ∨ Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post2(tr , σ,X) ∨
Pre3(tr , σ,X) ∨ Post3(tr , σ,X)

We demonstrate the relation of the invariant I123 and the individual pre- and postconditions.

The last version of the invariant only contains the communication and terminal failures

(all former terminal failures are removed).

I12123 := I123(tr , σ,X) ∧ σpc ∈ {1, 2} ∧N(σ) ≡ Pre1(tr , σ,X)

I3123 := I123(tr , σ,X) ∧ σpc = 3 ∧N(σ) ≡ Pre3(tr , σ,X) ≡ Post2(tr , σ,X)

Ict123 := I123(tr , σ,X) ∧ (N(σ) −→ σpc /∈ {1, 2, 3})
≡Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post3(tr , σ,X)

We can now apply the rule H-cons to show the premises of the rule H-seq and then apply

the rule H-seq to prove {I123} (1 ⊕ 2)⊕ 3 {Ict123}. First, we recall the definitions of

I12 and Ict12:

I12(tr , σ,X) := Pre1(tr , σ,X) ∨ Post1(tr , σ,X) ∨ Pre2(tr , σ,X) ∨ Post2(tr , σ,X)

Ict12 := I12(tr , σ,X) ∧ (N(σ) −→ σpc /∈ {1, 2})
≡Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post2(tr , σ,X)

Below we show the excerpt we have proven of the overall proof tree.

...

{I12} (1 ⊕ 2)
{
Ict12
} H-seq{

I12123
}

(1 ⊕ 2) {I123}
H-cons

...

{Pre3} 3 {Post3}
H-cons{

I3123
}

3 {I123}
H-cons

{I123} (1 ⊕ 2)⊕ 3
{
Ict123

} H-seq

··

Proof: 4 – 4 : cbr (λds. true) 1 1

H-cbr
P (tr, σ,X) ≡¬(N(σ) ∧ σpc = ℓ) −→ Q(tr, σ,X) ∧

N(σ) ∧ σpc = ℓ −→
(
∀σ′. (b σds ∧ σ′

pc = m ∨ ¬(b σds) ∧ σ′
pc = n) ∧

N(σ′) ∧ σds = σ′
ds −→ ∀Y ⊆ Σ. Q(tr, σ′, Y)

)
{P} ℓ : cbr b m n {Q}

154

A.7. Proofs from the Evaluation

Proof: 4 – 4 : cbr (λds. true) 1 1

We first define the pre- and postcondition Pre4 and Post4 that we want to show and then

derive P4 and Q4, which we will plug into H-cbr. As we use instruction 4 to construct a

loop, the postcondition Post4 coincides with the precondition Pre1 of instruction 1 .

Pre4(tr , σ,X) := N(σ) ∧ σpc = 4 ∧ (tr ,) ∈ Fidle
i ∧X ⊆ Σ

Post4(tr , σ,X) := N(σ) ∧ σpc = 1 ∧ (tr ,) ∈ Fidle
i ∧X ⊆ Σ ≡ Pre1(tr , σ,X)

We directly use the postcondition Post4 that we have defined as the postcondition Q4 in

the rule H-cbr. We derive P4 from the rule H-cbr and Q4. We have designed pre4 such

that Pre4 =⇒ P4 holds.

Q4(tr , σ,X) := Post4(tr , σ,X) ≡ Pre1(tr , σ,X)

P4(tr , σ,X) := ¬(N(σ) ∧ σpc = 4) −→ Q4(tr , σ,X) ∧

N(σ) ∧ σpc = 4 −→
(
∀σ′. N(σ′) ∧ σ′

pc = 1 ∧ σ′
ds = σds

−→
(
∀Y ⊆ Σ. Q4(tr, σ

′, Y)
))

We can now apply the rules H-cbr and H-cons to prove

{Pre4} 4 : cbr (λds . true) 1 1 {Post4} .

Below we show the excerpt we have proven of the overall proof tree.

H-cbr

{P4} 4 : cbr (λds. true) 1 1 {Q4}
{Pre4} 4 {Post4}

H-cons

··

Proof: ((1 ⊕ 2)⊕ 3)⊕ 4

H-seq

{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp1 ∧N(σ)} sp1 {I}
{λ(tr, σ,X). I(tr, σ,X) ∧ σpc ∈pc sp2 ∧N(σ)} sp2 {I}

{I} sp1 ⊕ sp2 {λ(tr, σ,X). I(tr, σ,X) ∧ (N(σ) −→ σpc ̸∈pc sp1 ⊕ sp2)}

Similar to the previous applications of the rule H-seq, we first construct the invariant

I134. Then, we demonstrate how parts of the invariant I134 are related to the pre- and

postconditions of the four instructions. The invariant I134 is a disjunction of some of the

pre- and postconditions of the four instructions. Note that the invariant does only require

the pre- and postcondition of both components (think glue points) and the assertions

155

A.7. Proofs from the Evaluation

Proof: ((1 ⊕ 2)⊕ 3)⊕ 4

about the communication behavior. The precondition Pre1 serves as precondition for

the Component (1 ⊕ 2) ⊕ 3 . The communication part of the postconditions Post1
and Post3 describes the communication capabilities of the Component (1 ⊕ 2) ⊕ 3 .

The normal part of the postcondition Post3 serves as a postcondition for the Component

(1 ⊕ 2)⊕ 3 . The precondition of the component consisting of Instruction 4 is simply

the precondition of Instruction 4 . We omit the postcondition Post4 as it is equivalent to

the precondition Pre1 of Instruction 1 .

I134(tr , σ,X) := Pre1(tr , σ,X) ∨ Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post3(tr , σ,X) ∨
Pre4(tr , σ,X)

We demonstrate the relation of the invariant I134 and the individual pre- and postconditions.

The last version of the invariant only contains the communication failures. As the program

is looping, there are no terminal failures anymore.

I123134 := I134(tr , σ,X) ∧ σpc ∈ {1, 2, 3} ∧N(σ) ≡ Pre1(tr , σ,X)

I4134 := I134(tr , σ,X) ∧ σpc = 4 ∧N(σ) ≡ Pre4(tr , σ,X) ≡ Post3(tr , σ,X) ∧N(σ)

Ict134 := I134(tr , σ,X) ∧ (N(σ) −→ σpc /∈ {1, 2, 3, 4})
≡¬N(σ) ∧

(
Post1(tr , σ,X) ∨ Post3(tr , σ,X)

)
We can now apply the rule H-cons to show the premises of the rule H-seq and then

apply the rule H-seq to prove {I134} commr {Ict134}. First, we recall the definitions of I123
and Ict123:

I123(tr , σ,X) := Pre1(tr , σ,X) ∨ Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post2(tr , σ,X) ∨
Pre3(tr , σ,X) ∨ Post3(tr , σ,X)

Ict123 := I123(tr , σ,X) ∧ (N(σ) −→ σpc /∈ {1, 2, 3})
≡Post1(tr , σ,X) ∧ ¬N(σ) ∨ Post3(tr , σ,X)

We apply the rule H-cons one last time to prove the desired Hoare tripel

{σpc = 1 ∧N(σ) ∧ tr = ⟨⟩} ((1⊕ 2)⊕ 3)⊕ 4
{
λtr σ X. S⊆

i (tr , X)
}
.

σpc = 1 ∧N(σ) ∧ tr = ⟨⟩ implies I134 by definition of Pre1 and Fidle
i .

From Ict134 we can conclude S⊆
i , as the following implication hold by the definition Post1

and Post3:

¬N(σ) ∧ Post1(tr , σ,X) =⇒ Fidle
i (tr , σ,X)

¬N(σ) ∧ Post3(tr , σ,X) =⇒ Fbusy
i (tr , σ,X)

156

A.7. Proofs from the Evaluation

Proof: ((1 ⊕ 2)⊕ 3)⊕ 4

We obtain the root of the overall proof tree.

...

{I123} (1 ⊕ 2)⊕ 3
{
Ict123

} H-seq{
I123134

}
(1 ⊕ 2)⊕ 3 {I134}

H-cons

...

{Pre4} 4 {Post4}
H-cons{

I4134
}

4 {I134}
H-cons

{I134} ((1 ⊕ 2)⊕ 3)⊕ 4
{
Ict134

} H-seq

{σpc = 1 ∧N(σ) ∧ tr = ⟨⟩} ((1 ⊕ 2)⊕ 3)⊕ 4

{
λtr σ X. S⊆

i (tr , X)
} H-seq

This concludes the proof for Lemma 7.2.

157

List of Definitions

2.1 Labeled Transition System . 8

2.2 Simulation . 9

2.3 Weak Simulation . 9

2.4 Bisimulation . 9

2.5 Weak Bisimulation . 10

2.6 Grammar of CSP Processes . 11

2.7 Traces . 15

2.8 Operational Characterization of the Traces Semantics of CSP 15

2.9 Traces Semantics of CSP . 16

2.10 Traces Refinement . 17

2.11 Trace Equivalence . 18

2.12 Stable Process . 18

2.13 Refusal Set . 19

2.14 Operational Characterization of the Stable Failures Semantics of CSP 19

2.15 Stable Failures Semantics of CSP . 20

2.16 Stable Failures Refinement . 21

3.1 Emulation . 30

3.2 Coupled Simulation . 33

5.1 Basic Data Types . 44

5.2 Instructions of CUC . 44

5.3 Local Program lp . 45

5.4 Labels of a Program labels . 46

5.5 Concurrent Program cp . 46

5.6 Structured Program sp . 47

5.7 Unstructuring Function, U . 48

5.8 Labels of a Structured Program labels . 48

5.9 Structured Concurrent Program scp . 48

5.10 Operational Semantics of CUC . 50

5.11 Terminating Execution . 51

5.13 Operational Characterization of the Traces of CUC 53

5.12 Traces Semantics of CUC . 54

5.14 CSP-like Stable States of CUC . 58

158

List of Definitions

5.15 Refusal Set of CUC . 58

5.16 Operational Characterization of the Stable Failures of CUC 58

5.17 Communication States . 59

5.18 Test for Normal State and Conversions to Communication State, N(·), ·C . . 59

5.19 Removal of Former Terminal Failures, \(·) . 60

5.20 Stable Failures Semantics of CUC . 60

5.21 Hoare Triple for CUC . 65

5.22 Hoare Calculus for CUC . 66

6.1 SV State . 76

6.2 Instructions of SV . 76

6.3 Operational Semantics of SV . 78

6.4 Component Identifier . 82

6.5 comms and commr . 82

6.6 Stable States in cuc . 83

6.7 Program Label Map . 84

6.8 Fitting Program . 85

6.9 Channel Constituents . 85

6.10 Similarity with Respect to Channel Constituents 86

6.11 Event Labeling for sv . 87

6.12 SV Semantics with Events . 87

6.13 Operational Traces Semantics of SV . 87

6.14 Traces Semantics for SV . 88

6.15 Stable States in sv . 88

6.16 Refusal Set in sv . 88

6.17 Stable Failures of SV . 89

6.18 id not in the Channel-State . 90

6.19 Handshake Refinement Bcuc,sv,ψ . 92

6.20 Protocol Restrictions . 93

A.1 Protocol Constraints (Full) . 137

159

List of Theorems and

Assumptions

5.1 (Assumption) At Least One Successor State 44

5.2 (Assumption) Uniqueness of Labels . 46

5.3 (Assumption) Same Tree Structure . 47

5.4 (Assumption) Uniqueness of Labels for sp . 48

5.5 (Assumption) Empty Initial Traces . 55

5.1 (Theorem) Correspondence Between Operational Characterization and Traces

Semantics . 57

5.1 (Corollary) Invariance Under Structure . 57

5.6 (Assumption) Initial Failures . 59

5.2 (Theorem) Correspondence Between Operational Characterization and Stable

Failures Semantics . 63

5.3 (Theorem) Soundness of Our Hoare Calculus 67

5.1 (Lemma) Traces Imply Stable Failures in CUC 68

5.4 (Theorem) Traces Refinement Implies Stable Failures Refinement for CUC . . 69

5.7 (Assumption) Divergence Freedom of CUC Programs 69

6.1 (Assumption) Restrictions to CUC . 83

6.2 (Assumption) Uniqueness of Channel Constituents 85

6.1 (Lemma) Proper Access to Channel Constituents 85

6.3 (Assumption) No Self Loops . 87

6.2 (Lemma) All sv Traces and Their cuc Counterparts are in Bcuc,sv,ψ 95

6.1 (Theorem) Preservation of Safety Properties 95

6.3 (Lemma) Stable States in sv Imply Stable States in cuc and X = ∅ 95

6.4 (Lemma) Refusals in sv Imply Refusals in cuc 96

6.2 (Theorem) Preservation of Liveness Properties 96

6.1 (Corollary) Liveness Properties Without Sender Identifier 97

6.3 (Theorem) Fitting Implies Handshake Refinement 97

6.4 (Theorem) Fitting Implies Preservation . 98

7.1 (Lemma) Both Sufficient Properties are Correct 104

7.2 (Lemma) The CUC Server Fulfills its Sufficient Property 106

A.1 (Lemma) Relation of Refusal Sets of the Components and the Combination . 121

160

List of Theorems and Assumptions

A.2 (Lemma) Input Preservation . 127

161

List of Examples

2.1 Synchronizing Two “Senders” . 12

2.2 Counter Process . 13

2.3 Traces of a Recursive CSP Process . 16

2.4 Safety Property as Process . 17

2.5 External and Internal Choice Cannot be Differentiated by the Traces Semantics 18

2.6 Stable Failures of a Recursive CSP Process 20

2.7 Resolution of Non-Determinism . 21

2.8 Liveness Property as a Process . 22

5.1 Instantiations of do f . 44

5.2 Instantiations of cbr b m n . 45

5.3 Instantiations of comm fev fds . 45

5.4 Local Program lpex . 46

5.5 Labels of a Program . 46

5.6 Concurrent Program cpex . 47

5.7 Structured Program spex . 47

5.8 Structured Concurrent Program scpex . 48

5.9 Operational Semantics of cpex . 52

5.10 T -seq and T -ext . 56

5.11 T -do and \(·) . 61

5.12 SF-comm, SF-seq and SF-ext . 62

162

List of Figures

1.1 Overview . 3

2.1 Example Program in Machine Code: Addition of Two Values from Memory . 7

3.1 Simultaneous Decisions and Their Split-up Implementations 31

4.1 Overview . 37

5.1 Workflow Overview . 69

5.2 CSP Specification and CUC Implementation of a One Place Buffer 71

6.1 Implementation of the Handshake Protocol: send and receive 80

6.2 The Flow of the Handshake Protocol . 91

6.3 Alternative Implementation of the Handshake Protocol 97

7.1 Sufficient Property for the Client . 105

7.2 Client and Server in CUC . 105

7.3 Proof Outline of the Hoare Calculus Proof for the Server 107

7.4 The Client in CUC and in SV . 108

7.5 The Server in CUC and in SV . 109

A.1 Relevant Definitions for the Concurrent Cases 118

A.2 Recall the Concurrent Combination of SF 121

A.3 sv Transitions Between the Disjuncts of Pidcuc,sv ,ψ 139

A.4 Complete Proof Outline of the Hoare Calculus Proof for the Server 148

163

Bibliography

[ABEL05] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-

flow integrity. In Vijay Atluri, Catherine A. Meadows, and Ari Juels, edi-

tors, Proceedings of the 12th ACM Conference on Computer and Communica-

tions Security, CCS 2005, Alexandria, VA, USA, November 7-11, 2005, pages

340–353. ACM, 2005. URL: http://doi.acm.org/10.1145/1102120.1102165,

doi:10.1145/1102120.1102165.

[BBD+19] Nils Berg, Björn Bartels, Armin Danziger, Guilherme Grochau Azzi, and Matthias

Bentert. Formal Verification of Low-Level Code in a Model-Based Refinement

Process (Technical Report: Isabelle/HOL Formalization). Technical report,

Technische Universität Berlin, 2019. doi:10.14279/depositonce-8636.

[BBO12] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for ver-

ification of asynchronously communicating systems. In Viktor Kuncak and

Andrey Rybalchenko, editors, Verification, Model Checking, and Abstract In-

terpretation - 13th International Conference, VMCAI 2012, Philadelphia, PA,

USA, January 22-24, 2012. Proceedings, volume 7148 of Lecture Notes in Com-

puter Science, pages 56–71. Springer, 2012. URL: http://dx.doi.org/10.1007/

978-3-642-27940-9_5, doi:10.1007/978-3-642-27940-9_5.

[BCD+18] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and

Irene Finocchi. A survey of symbolic execution techniques. ACM Comput. Surv.,

51(3), 2018.

[BCN+17] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan

Brunthaler, and Mathias Payer. Control-flow integrity: Precision, security,

and performance. ACM Comput. Surv., 50(1):16:1–16:33, 2017. URL: http:

//doi.acm.org/10.1145/3054924, doi:10.1145/3054924.

[BG11] B. Bartels and S. Glesner. Verification of distributed embedded real-time systems

and their low-level implementation using Timed CSP. In T. Dan Thu and

K. Leung, editors, Proceedings of the 18th Asia Pacific Software Engineering

Conference (APSEC 2011), pages 195–202. IEEE Computer Society, 2011. doi:

10.1109/APSEC.2011.52.

[BGDG18] Nils Berg, Thomas Göthel, Armin Danziger, and Sabine Glesner. Preserving live-

ness guarantees from synchronous communication to asynchronous unstructured

164

http://doi.acm.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.14279/depositonce-8636
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://doi.acm.org/10.1145/3054924
http://doi.acm.org/10.1145/3054924
http://dx.doi.org/10.1145/3054924
http://dx.doi.org/10.1109/APSEC.2011.52
http://dx.doi.org/10.1109/APSEC.2011.52

Bibliography

low-level languages. In Jing Sun and Meng Sun, editors, Formal Methods and

Software Engineering - 20th International Conference on Formal Engineering

Methods, ICFEM 2018, Gold Coast, QLD, Australia, November 12-16, 2018,

Proceedings, volume 11232 of Lecture Notes in Computer Science, pages 303–

319. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-02450-5_18,

doi:10.1007/978-3-030-02450-5_18.

[BJ14] Björn Bartels and Nils Jähnig. Mechanized, compositional verification of low-level

code. In Julia M. Badger and Kristin Yvonne Rozier, editors, NASA Formal

Methods, volume 8430 of LNCS, pages 98–112. Springer International Publishing,

2014. doi:10.1007/978-3-319-06200-6_8.

[BO01] Manfred Broy and Ernst-Rüdiger Olderog. Chapter 2 - trace-oriented mod-

els of concurrency. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,

Handbook of Process Algebra, pages 101 – 195. Elsevier Science, Amster-

dam, 2001. URL: https://www.sciencedirect.com/science/article/pii/

B9780444828309500205, doi:https://doi.org/10.1016/B978-044482830-9/

50020-5.

[Bou88] Luc Bougé. On the existence of symmetric algorithms to find leaders in networks

of communicating sequential processes. Acta Inf., 25(2):179–201, 1988. URL:

https://doi.org/10.1007/BF00263584, doi:10.1007/BF00263584.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A Systematic

Introduction. Graduate Texts in Computer Science. Springer, 1998. URL: https:

//doi.org/10.1007/978-1-4612-1674-2, doi:10.1007/978-1-4612-1674-2.

[Cho18] Hyungmin Cho. Impact of microarchitectural differences of RISC-V processor

cores on soft error effects. IEEE Access, 6:41302–41313, 2018. URL: https://doi.

org/10.1109/ACCESS.2018.2858773, doi:10.1109/ACCESS.2018.2858773.

[Cor18] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer Manual,

2018. URL: https://software.intel.com/en-us/articles/intel-sdm [cited

07.12.2018].

[dFG06] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Process equivalences as

global bisimulations. J. UCS, 12(11):1521–1550, 2006. URL: http://dx.doi.

org/10.3217/jucs-012-11-1521, doi:10.3217/jucs-012-11-1521.

[DK15] Alan A. A. Donovan and Brian W. Kernighan. The Go Programming Language

(Addison-Wesley Professional Computing Series). Addison-Wesley Professional,

2015. URL: http://www.gopl.io.

[FRC+18] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent

Rotenberg, and Luca Benini. GAP-8: A RISC-V soc for AI at the edge of the iot. In

29th IEEE International Conference on Application-specific Systems, Architectures

and Processors, ASAP 2018, Milano, Italy, July 10-12, 2018, pages 1–4. IEEE

Computer Society, 2018. URL: https://doi.org/10.1109/ASAP.2018.8445101,

doi:10.1109/ASAP.2018.8445101.

165

https://doi.org/10.1007/978-3-030-02450-5_18
http://dx.doi.org/10.1007/978-3-030-02450-5_18
http://dx.doi.org/10.1007/978-3-319-06200-6_8
https://www.sciencedirect.com/science/article/pii/B9780444828309500205
https://www.sciencedirect.com/science/article/pii/B9780444828309500205
http://dx.doi.org/https://doi.org/10.1016/B978-044482830-9/50020-5
http://dx.doi.org/https://doi.org/10.1016/B978-044482830-9/50020-5
https://doi.org/10.1007/BF00263584
http://dx.doi.org/10.1007/BF00263584
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
http://dx.doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1109/ACCESS.2018.2858773
https://doi.org/10.1109/ACCESS.2018.2858773
http://dx.doi.org/10.1109/ACCESS.2018.2858773
https://software.intel.com/en-us/articles/intel-sdm
http://dx.doi.org/10.3217/jucs-012-11-1521
http://dx.doi.org/10.3217/jucs-012-11-1521
http://dx.doi.org/10.3217/jucs-012-11-1521
http://www.gopl.io
https://doi.org/10.1109/ASAP.2018.8445101
http://dx.doi.org/10.1109/ASAP.2018.8445101

Bibliography

[GABR14] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov, and A. W.

Roscoe. FDR3 - A modern refinement checker for CSP. In Tools and Algorithms

for the Construction and Analysis of Systems - 20th International Conference,

TACAS 2014, pages 187–201, 2014. doi:10.1007/978-3-642-54862-8_13.

[Gar03] William B. Gardner. Bridging CSP and C++ with selective formalism and

executable specifications. In 1st ACM & IEEE International Conference

on Formal Methods and Models for Co-Design (MEMOCODE 2003), 24-26

June 2003, Mont Saint-Michel, France, Proceedings, page 237. IEEE Com-

puter Society, 2003. URL: http://dx.doi.org/10.1109/MEMCOD.2003.1210108,

doi:10.1109/MEMCOD.2003.1210108.

[GR01] Roberto Gorrieri and Arend Rensink. Action refinement. In J.A. Bergstra,

A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages 1047–

1147. Elsevier, 2001.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–

677, August 1978. doi:10.1145/359576.359585.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantita-

tive Approach, 6th Edition. Morgan Kaufmann, 2017.

[IR05] Yoshinao Isobe and Markus Roggenbach. A generic theorem prover of csp

refinement. In Nicolas Halbwachs and LenoreD. Zuck, editors, Tools and

Algorithms for the Construction and Analysis of Systems, volume 3440 of

Lecture Notes in Computer Science, pages 108–123. Springer Berlin Heidel-

berg, 2005. URL: http://dx.doi.org/10.1007/978-3-540-31980-1_8, doi:

10.1007/978-3-540-31980-1_8.

[ISO09] ISO. ISO/DIS 26262 - Road Vehicles - Functional Safety. Technical report,

International Organization for Standardization, Geneva, Switzerland, 7 2009.

[JGG15] Nils Jähnig, Thomas Göthel, and Sabine Glesner. A denotational semantics for

communicating unstructured code. In Bara Buhnova, Lucia Happe, and Jan

Kofron, editors, Proceedings 12th International Workshop on Formal Engineering

approaches to Software Components and Architectures, FESCA 2015, London,

United Kingdom, April 12th, 2015., volume 178 of EPTCS, pages 9–21, 2015. URL:

http://dx.doi.org/10.4204/EPTCS.178.2, doi:10.4204/EPTCS.178.2.

[JGG16] Nils Jähnig, Thomas Göthel, and Sabine Glesner. Refinement-based verification of

communicating unstructured code. In Software Engineering and Formal Methods -

14th International Conference, SEFM 2016, Held as Part of STAF 2016, Vienna,

Austria, July 4-8, 2016, Proceedings, pages 61–75, 2016. URL: http://dx.doi.

org/10.1007/978-3-319-41591-8_5, doi:10.1007/978-3-319-41591-8_5.

[Jon81] Cliff B. Jones. Developing methods for computer programs including a notion of

interference. PhD thesis, University of Oxford, UK, 1981. URL: http://ethos.

bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064.

166

http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1109/MEMCOD.2003.1210108
http://dx.doi.org/10.1109/MEMCOD.2003.1210108
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1007/978-3-540-31980-1_8
http://dx.doi.org/10.1007/978-3-540-31980-1_8
http://dx.doi.org/10.1007/978-3-540-31980-1_8
http://dx.doi.org/10.4204/EPTCS.178.2
http://dx.doi.org/10.4204/EPTCS.178.2
http://dx.doi.org/10.1007/978-3-319-41591-8_5
http://dx.doi.org/10.1007/978-3-319-41591-8_5
http://dx.doi.org/10.1007/978-3-319-41591-8_5
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259064

Bibliography

[Kan88] Gerry Kane. MIPS RISC Architecture. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1988.

[KBG+11] Moritz Kleine, Björn Bartels, Thomas Göthel, Steffen Helke, and Dirk Prenzel.

LLVM2CSP : Extracting CSP models from concurrent programs. In Mihaela Ghe-

orghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors,

NASA Formal Methods - Third International Symposium, NFM 2011, Pasadena,

CA, USA, April 18-20, 2011. Proceedings, volume 6617 of Lecture Notes in Com-

puter Science, pages 500–505. Springer, 2011. URL: https://doi.org/10.1007/

978-3-642-20398-5_39, doi:10.1007/978-3-642-20398-5_39.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In 2nd IEEE / ACM International Symposium

on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San

Jose, CA, USA, pages 75–88. IEEE Computer Society, 2004. URL: https:

//doi.org/10.1109/CGO.2004.1281665, doi:10.1109/CGO.2004.1281665.

[Ler09] Xavier Leroy. Formal verification of a realistic compiler. Communications of the

ACM, 52(7):107–115, 2009. URL: http://gallium.inria.fr/~xleroy/publi/

compcert-CACM.pdf.

[Lim18] ARM Limited. ARM Architecture Reference Manual, 2018. URL: https://

developer.arm.com/docs/ddi0487/latest/ [cited 07.12.2018].

[LNTY17] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing off

go: liveness and safety for channel-based programming. In Giuseppe Castagna and

Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages, POPL 2017, Paris, France, January

18-20, 2017, pages 748–761. ACM, 2017. URL: http://dl.acm.org/citation.

cfm?id=3009847.

[MA17] Nima Mansube Astaneh. Extracting csp processes from communicating unstruc-

tured code. Diploma thesis, Technische Universität Berlin, 2017.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980. URL: https://doi.org/10.1007/

3-540-10235-3, doi:10.1007/3-540-10235-3.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci.,

25:267–310, 1983. URL: https://doi.org/10.1016/0304-3975(83)90114-7,

doi:10.1016/0304-3975(83)90114-7.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer science.

Prentice Hall, 1989.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Pro-

gramming. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

167

https://doi.org/10.1007/978-3-642-20398-5_39
https://doi.org/10.1007/978-3-642-20398-5_39
http://dx.doi.org/10.1007/978-3-642-20398-5_39
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
https://developer.arm.com/docs/ddi0487/latest/
https://developer.arm.com/docs/ddi0487/latest/
http://dl.acm.org/citation.cfm?id=3009847
http://dl.acm.org/citation.cfm?id=3009847
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(83)90114-7
http://dx.doi.org/10.1016/0304-3975(83)90114-7

Bibliography

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL.

Springer, 2014. URL: http://www.concrete-semantics.org, doi:10.1007/

978-3-319-10542-0.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles

of program analysis. Springer, 1999. URL: https://doi.org/10.1007/

978-3-662-03811-6, doi:10.1007/978-3-662-03811-6.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

doi:10.1007/3-540-45949-9.

[Pag09] Daniel Page. A Practical Introduction to Computer Architecture. Springer

Publishing Company, Incorporated, 1st edition, 2009.

[Pee04] Ad M. G. Peeters. Implementation of handshake components. In Ali E. Abdallah,

Cliff B. Jones, and Jeff W. Sanders, editors, Communicating Sequential Processes:

The First 25 Years, Symposium on the Occasion of 25 Years of CSP, London,

UK, July 7-8, 2004, Revised Invited Papers, volume 3525 of Lecture Notes in

Computer Science, pages 98–132. Springer, 2004. URL: http://dx.doi.org/10.

1007/11423348_7, doi:10.1007/11423348_7.

[Pet12] Kirstin Peters. Translational Expressiveness. Comparing Process Calculi using

Encodings. PhD thesis, Berlin Institute of Technology, 2012. URL: http://opus.

kobv.de/tuberlin/volltexte/2012/3749/.

[PKND18] Karyofyllis Patsidis, Dimitris Konstantinou, Chrysostomos Nicopoulos, and

Giorgos Dimitrakopoulos. A low-cost synthesizable RISC-V dual-issue pro-

cessor core leveraging the compressed instruction set extension. Micropro-

cessors and Microsystems - Embedded Hardware Design, 61:1–10, 2018. doi:

10.1016/j.micpro.2018.05.007.

[PS92] Joachim Parrow and Peter Sjödin. Multiway synchrinizaton verified with coupled

simulation. In Rance Cleaveland, editor, CONCUR ’92, Third International

Conference on Concurrency Theory, Stony Brook, NY, USA, August 24-27,

1992, Proceedings, volume 630 of Lecture Notes in Computer Science, pages

518–533. Springer, 1992. URL: https://doi.org/10.1007/BFb0084813, doi:

10.1007/BFb0084813.

[RE08] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and Their Comparison. Cambridge University Press, New York,

NY, USA, 1st edition, 2008.

[RG97] Arend Rensink and Roberto Gorrieri. Action refinement as an implementa-

tion relation. In Michel Bidoit and Max Dauchet, editors, TAPSOFT’97:

Theory and Practice of Software Development, 7th International Joint Con-

ference CAAP/FASE, Lille, France, April 14-18, 1997, Proceedings, volume 1214

of Lecture Notes in Computer Science, pages 772–786. Springer, 1997. URL:

https://doi.org/10.1007/BFb0030640, doi:10.1007/BFb0030640.

168

http://www.concrete-semantics.org
http://dx.doi.org/10.1007/978-3-319-10542-0
http://dx.doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/11423348_7
http://dx.doi.org/10.1007/11423348_7
http://dx.doi.org/10.1007/11423348_7
http://opus.kobv.de/tuberlin/volltexte/2012/3749/
http://opus.kobv.de/tuberlin/volltexte/2012/3749/
http://dx.doi.org/10.1016/j.micpro.2018.05.007
http://dx.doi.org/10.1016/j.micpro.2018.05.007
https://doi.org/10.1007/BFb0084813
http://dx.doi.org/10.1007/BFb0084813
http://dx.doi.org/10.1007/BFb0084813
https://doi.org/10.1007/BFb0030640
http://dx.doi.org/10.1007/BFb0030640

Bibliography

[Rid10] Tom Ridge. A rely-guarantee proof system for x86-tso. In Gary T. Leavens,

Peter W. O’Hearn, and Sriram K. Rajamani, editors, Verified Software: Theories,

Tools, Experiments, Third International Conference, VSTTE 2010, Edinburgh,

UK, August 16-19, 2010. Proceedings, volume 6217 of Lecture Notes in Com-

puter Science, pages 55–70. Springer, 2010. URL: https://doi.org/10.1007/

978-3-642-15057-9_4, doi:10.1007/978-3-642-15057-9_4.

[Ros10] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.

Springer, 2010. URL: https://doi.org/10.1007/978-1-84882-258-0, doi:

10.1007/978-1-84882-258-0.

[Ros18] Jothy Rosenberg. Risc-v: All hype or real hope for the processor market?, Septem-

ber 2018. URL: https://www.allaboutcircuits.com/industry-articles/

risc-v-all-hype-or-real-hope-for-the-processor-market/ [cited

22.11.2018].

[Sac15] Florian Sachse. Implementation of multiway synchronization for communicating

unstructured code. Bachelor’s thesis, Technische Universität Berlin, 2015.

[Sch99] Steve Schneider. Concurrent and Real Time Systems: The CSP Approach. John

Wiley & Sons, Inc., New York, NY, USA, 1999. URL: http://www.computing.

surrey.ac.uk/personal/st/S.Schneider/books/CRTS.pdf.

[SU05] Ando Saabas and Tarmo Uustalu. A compositional natural semantics and hoare

logic for low-level languages. In Proceedings of the Second Workshop on Structured

Operational Semantics, pages 151–168. Elsevier, 2005. doi:10.1016/j.entcs.

2005.09.031.

[TDB+13] S. Tucker Taft, Robert A. Duff, Randall Brukardt, Erhard Plödereder, Pascal

Leroy, and Edmond Schonberg. Ada 2012 Reference Manual. Language and

Standard Libraries - International Standard ISO/IEC 8652/2012 (E), volume

8339 of Lecture Notes in Computer Science. Springer, 2013. URL: https:

//doi.org/10.1007/978-3-642-45419-6, doi:10.1007/978-3-642-45419-6.

[Tew04] Hendrik Tews. Verifying duff’s device: A simple compositional denotational

semantics for goto and computed jumps. Technical report, Technische Universität

Dresden, 2004. URL: http://askra.de/papers.html.de.

[WA17] Editors Andrew Waterman and Krste Asanović. The RISC-V Instruction Set

Manual, Volume I: User-Level ISA, Document Version 2.2. RISC-V Foundation,

May 2017.

[Wat16] Andrew Waterman. Design of the RISC-V Instruction Set Architecture. PhD

thesis, EECS Department, University of California, Berkeley, Jan 2016. URL:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-

tion. MIT Press, Cambridge, MA, USA, 1993.

169

https://doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1007/978-3-642-15057-9_4
http://dx.doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-1-84882-258-0
https://www.allaboutcircuits.com/industry-articles/risc-v-all-hype-or-real-hope-for-the-processor-market/
https://www.allaboutcircuits.com/industry-articles/risc-v-all-hype-or-real-hope-for-the-processor-market/
http://www.computing.surrey.ac.uk/personal/st/S.Schneider/books/CRTS.pdf
http://www.computing.surrey.ac.uk/personal/st/S.Schneider/books/CRTS.pdf
http://dx.doi.org/10.1016/j.entcs.2005.09.031
http://dx.doi.org/10.1016/j.entcs.2005.09.031
https://doi.org/10.1007/978-3-642-45419-6
https://doi.org/10.1007/978-3-642-45419-6
http://dx.doi.org/10.1007/978-3-642-45419-6
http://askra.de/papers.html.de
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

Bibliography

[Zwi89] J. Zwiers. Compositionality, Concurrency, and Partial Correctness: Proof The-

ories for Networks of Processes, and Their Relationship, volume 321 of LNCS.

Springer, 1989.

170

	Titlepage
	Abstract
	Zusammenfassung
	Acknowledgment
	Contents
	1 Introduction
	2 Background
	2.1 Low-Level Code
	2.2 Simulations and Bisimulations
	2.3 CSP
	2.3.1 Syntax and Operational Semantics
	2.3.2 Traces Semantics
	2.3.3 Stable Failures Semantics
	2.3.4 Failures-Divergences Semantics
	2.3.5 Properties
	2.3.6 Failures-Divergences Refinement Checker (FDR4)

	2.4 Isabelle/HOL
	2.5 Summary

	3 Related Work
	3.1 Formalizations of Low-Level Languages Geared Towards Compositional Verification
	3.2 Compositional Proof Calculi for Concurrent Systems
	3.3 Relating Synchrony and Asynchrony
	3.4 Liveness-Preserving Implementation Relations
	3.4.1 Vertical Bisimulation
	3.4.2 Coupled Simulation
	3.4.3 Global Bisimulation

	3.5 Implementing Synchronous Communication

	4 Approach
	5 Communicating Unstructured Code (CUC)
	5.1 Low-Level Code Model
	5.2 Syntax and Semantic States
	5.3 Semantics
	5.3.1 Operational Semantics
	5.3.2 Defining Denotational Semantics with Fixpoints
	5.3.3 Traces Semantics
	5.3.4 Stable Failures Semantics
	5.3.5 Compatibility to CSP

	5.4 Hoare Calculus
	5.5 Relating CSP and CUC
	5.5.1 Example
	5.5.2 Automation Approaches

	5.6 Summary

	6 Relating Abstract Communication to Low-Level Protocols
	6.1 Shared Variables (SV)
	6.1.1 Semantic States and Syntax
	6.1.2 Semantics

	6.2 Handshake Protocol
	6.2.1 Description of the Handshake Protocol
	6.2.2 Restriction of CUC

	6.3 Definitions and SV Semantics with Events
	6.4 Handshake Refinement
	6.5 Preservation of Safety and Liveness Properties
	6.5.1 Handshake Refinement preserves Safety and Liveness Properties
	6.5.2 Fitting Programs preserve Safety and Liveness Properties

	6.6 Summary

	7 Evaluation & Case Study
	7.1 Specification in CSP
	7.2 Sufficient Property: Specification as an Assertion
	7.3 Correctness Proof of the Sufficient Property
	7.4 Implementation in CUC
	7.5 The CUC Programs fulfills the Sufficient Property
	7.6 Implementation in SV
	7.7 Summary

	8 Conclusion
	8.1 Results
	8.2 Discussion
	8.3 Future Work

	A Appendix
	A.1 Correspondence Proofs
	A.1.1 Proof: Concurrent Case of Correspondence of Traces
	A.1.2 Proof: Concurrent Case of Correspondence of Stable Failures

	A.2 Proofs of T1 to SF4 for CUC
	A.3 Mapping to the Isabelle/HOL Formalization
	A.4 Protocol Constraints
	A.5 Proof: Fitting Implies Handshake Refinement
	A.6 Refusals imply Refusals
	A.7 Proofs from the Evaluation
	A.7.1 Proof of Correctness of the Sufficient Property of the Server
	A.7.2 Proof that the CUC Program for the Server satisfies its Sufficient Property

	Lists
	List of Definitions
	List of Theorems and Assumptions
	List of Examples
	List of Figures
	Bibliography

