Skip to main content
Log in

Osteoprotegerin (OPG) Production by Cells in the Osteoblast Lineage is Regulated by Pulsed Electromagnetic Fields in Cultures Grown on Calcium Phosphate Substrates

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pulsed electromagnetic fields (PEMF) used clinically to stimulate bone formation enhance the osteogenic effects of BMP-2 on human mesenchymal stem cells (MSCs) if the MSCs are grown in osteogenic medium and are cultured on calcium phosphate (CaP) surfaces rather than tissue culture polystyrene plastic (TCPS). This study tested if PEMF’s effects on cells in the osteoblast lineage are substrate dependent and if factors produced by osteoblasts that regulate osteoclastic bone resorption, might also be regulated by PEMF. Human MSCs treated with BMP-2 and human osteoblast-like cells (normal human osteoblasts [NHOst cells], MG63 cells, SaOS-2 cells) were cultured on CaP or TCPS and their response to PEMF (4.5 ms bursts of 20 pulses repeating at 15 Hz for 8 h/day) determined as a function of decoy receptor osteoprotegerin (OPG) and RANK ligand (RANKL) production, both of which are associated with regulation of osteoclast differentiation. The results showed that when osteoblast-like cells were cultured on CaP, PEMF decreased cell number and increased production of paracrine factors associated with reduced bone resorption like OPG. RANKL was unaffected, indicating that the OPG/RANKL ratio was increased, further supporting a surface-dependent osteogenic effect of PEMF. Moreover, effects of estrogen were surface dependent and enhanced by PEMF, demonstrating that PEMF can modulate osteogenic responses to anabolic regulators of osteoblast function. These effects of PEMF would not be evident in models examining cells in traditional culture on plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bannister S. R., C. H. Lohmann, Y. Liu, V. L. Sylvia, D. L. Cochran, D. D. Dean, B. D. Boyan, Z. Schwartz 2002 Shear force modulates osteoblast response to surface roughness. J. Biomed. Mater. Res. 60, 167–174. 10.1002/jbm.10037

    Article  PubMed  CAS  Google Scholar 

  2. Bodamyali T., B. Bhatt, F. J. Hughes, V. R. Winrow, J. M. Kanczler, B. Simon, J. Abbott, D. R. Blake, C. R. Stevens 1998 Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250, 458–461. 10.1006/bbrc.1998.9243

    Article  PubMed  CAS  Google Scholar 

  3. Boyan B. D., D. D. Dean, C. H. Lohmann, D. L. Cochran, V. L. Sylvia, Z. Schwartz 2001 The titanium-bone cell interface in vitro: the role of the surface in promoting osteointegration. In D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen (Eds.) Titanium in Medicine. Berlin/Heidelberg, Germany: Springer-Verlag, pp. 561–585

    Google Scholar 

  4. Boyce B. F., L. Xing 2008 Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 473, 139–146. 10.1016/j.abb.2008.03.018

    Article  PubMed  CAS  Google Scholar 

  5. Chang K., W. H. Chang, S. Huang, S. Huang, C. Shih 2005 Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J. Orthop. Res. 23, 1308–1314

    Article  PubMed  CAS  Google Scholar 

  6. Chang W. H., L. T. Chen, J. S. Sun, F. H. Lin 2004 Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25, 457–465. 10.1002/bem.20016

    Article  PubMed  Google Scholar 

  7. Cheng Y. Y., L. Huang, K. M. Lee, K. Li, S. M. Kumta 2004 Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr. Blood Cancer 42, 410–415. 10.1002/pbc.20019

    Article  PubMed  CAS  Google Scholar 

  8. Cowles E. A., L. L. Brailey, G. A. Gronowicz 2000 Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J. Biomed. Mater. Res. 52, 725–737. doi:10.1002/1097-4636(20001215)52:4<725::AID-JBM18>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  9. Fredericks D. C., J. V. Nepola, J. T. Baker, J. Abbott, B. Simon 2000 Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J. Orthop. Trauma 14, 93–100. 10.1097/00005131-200002000-00004

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert M., C. M. Giachelli, P. S. Stayton 2003 Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J. Biomed. Mater. Res. A 67, 69–77. 10.1002/jbm.a.10053

    Article  PubMed  CAS  Google Scholar 

  11. Gronowicz G., M. B. McCarthy 1996 Response of human osteoblasts to implant materials: integrin-mediated adhesion. J. Orthop. Res. 14, 878–887. 10.1002/jor.1100140606

    Article  PubMed  CAS  Google Scholar 

  12. Guerkov H. H., C. H. Lohmann, Y. Liu, D. D. Dean, B. J. Simon, J. D. Heckman, Z. Schwartz, B. D. Boyan (2001) Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin. Orthop. Relat. Res. 384:265–279. 10.1097/00003086-200103000-00031

    Article  PubMed  Google Scholar 

  13. Hofbauer L. C., F. Gori, B. L. Riggs, D. L. Lacey, C. R. Dunstan, T. C. Spelsberg, S. Khosla 1999 Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382–4389. 10.1210/en.140.10.4382

    Article  PubMed  CAS  Google Scholar 

  14. Keselowsky B. G., L. Wang, Z. Schwartz, A. J. Garcia, B. D. Boyan 2007 Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J. Biomed. Mater. Res. A 80, 700–710. 10.1002/jbm.a.30898

    PubMed  CAS  Google Scholar 

  15. Kim C. H., L. You, C. E. Yellowley, C. R. Jacobs 2006 Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone 39, 1043–1047. 10.1016/j.bone.2006.05.017

    Article  PubMed  CAS  Google Scholar 

  16. Leisner S., R. Shahar, I. Aizenberg, D. Lichovsky, T. Levin-Harrus 2002 The effect of short-duration, high-intensity electromagnetic pulses on fresh ulnar fractures in rats. J. Vet. Med. A Physiol. Pathol. Clin. Med. 49, 33–37. 10.1046/j.1439-0442.2002.00386.x

    PubMed  CAS  Google Scholar 

  17. Lloyd S. A., Y. Y. Yuan, P. J. Kostenuik, M. S. Ominsky, A. G. Lau, S. Morony, M. Stolina, F. J. Asuncion, T. A. Bateman 2008 Soluble RANKL induces high bone turnover and decreases bone volume, density, and strength in mice. Calcif. Tissue Int. 82, 361–372. 10.1007/s00223-008-9133-6

    Article  PubMed  CAS  Google Scholar 

  18. Lohmann C. H., L. F. Bonewald, M. A. Sisk, V. L. Sylvia, D. L. Cochran, D. D. Dean, B. D. Boyan, Z. Schwartz 2000 Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J. Bone Miner. Res. 15, 1169–1180. 10.1359/jbmr.2000.15.6.1169

    Article  PubMed  CAS  Google Scholar 

  19. Lohmann C. H., Z. Schwartz, Y. Liu, H. Guerkov, D. D. Dean, B. Simon, B. D. Boyan 2000 Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J. Orthop. Res. 18, 637–646. 10.1002/jor.1100180417

    Article  PubMed  CAS  Google Scholar 

  20. MacQuarrie R. A., C. Y. Fang, C. Coles, G. I. Anderson 2004 Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J. Biomed. Mater. Res. B Appl. Biomater. 69, 104–112. 10.1002/jbm.b.20031

    Article  PubMed  CAS  Google Scholar 

  21. Makihira S., Y. Kawahara, L. Yuge, Y. Mine, H. Nikawa (2008) Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell Biol. Int. 32:1176–1181

    Article  PubMed  CAS  Google Scholar 

  22. Midura R. J., M. O. Ibiwoye, K. A. Powell, Y. Sakai, T. Doehring, M. D. Grabiner, T. E. Patterson, M. Zborowski, A. Wolfman 2005 Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J. Orthop. Res. 23, 1035–1046. 10.1016/j.orthres.2005.03.015

    Article  PubMed  Google Scholar 

  23. Oreffo R. O., L. Bonewald, A. Kukita, I. R. Garrett, S. M. Seyedin, D. Rosen, G. R. Mundy 1990 Inhibitory effects of the bone-derived growth factors osteoinductive factor and transforming growth factor-beta on isolated osteoclasts. Endocrinology 126, 3069–3075

    PubMed  CAS  Google Scholar 

  24. Olivares-Navarrete R., P. Raz, G. Zhao, J. Chen, M. Wieland, D. L. Cochran, R. A. Chaudhri, A. Ornoy, B. D. Boyan, Z. Schwartz (2008) Integrin α2β1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc. Soc. Natl. Acad. Sci. USA 105:15767–15772

    Article  CAS  Google Scholar 

  25. Schwartz Z., B. F. Bell, L. Wang, G. Zhao, R. Olivares-Navarrete, B. D. Boyan 2007 Beta-1 integrins mediate substrate dependent effects of 1alpha,25(OH)2D3 on osteoblasts. J. Steroid Biochem. Mol. Biol. 103, 606–609. 10.1016/j.jsbmb.2006.12.083

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz Z., B. J. Simon, M. A. Duran, G. Barabino, R. Chaudhri, B. D. Boyan 2008 Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J. Orthop. Res. 26, 1250–1255. 10.1002/jor.20591

    Article  PubMed  CAS  Google Scholar 

  27. Siebers M. C., X. F. Walboomers, J. van den Dolder, S. C. Leeuwenburgh, J. G. Wolke, J. A. Jansen (2008) The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-beta1 and integrin-beta3. J. Mater. Sci. Mater. Med. 19:861–868. 10.1007/s10856-007-0166-6

    Article  PubMed  CAS  Google Scholar 

  28. Wittrant Y., S. Theoleyre, C. Chipoy, M. Padrines, F. Blanchard, D. Heymann, F. Redini 2004 RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim. Biophys. Acta 1704, 49–57

    Article  PubMed  CAS  Google Scholar 

  29. Zhao G., A. L. Raines, M. Wieland, Z. Schwartz, B. D. Boyan 2007 Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 28, 2821–2829. 10.1016/j.biomaterials.2007.02.024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Biomet Trauma (Parsippany, NJ). Biomet provided the Helmholtz coils used in this study. Dr. Bruce Simon was Director of Research for Biomet Trauma at the time the study was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara D. Boyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, Z., Fisher, M., Lohmann, C.H. et al. Osteoprotegerin (OPG) Production by Cells in the Osteoblast Lineage is Regulated by Pulsed Electromagnetic Fields in Cultures Grown on Calcium Phosphate Substrates. Ann Biomed Eng 37, 437–444 (2009). https://doi.org/10.1007/s10439-008-9628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9628-3

Keywords

Navigation