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Abstract

The Internet is continuously gaining importance in our society. Indeed, the Internet is slowly turn-
ing into the backbone of the modern world, having impact on all possible aspects, such as politics,
communication, intercultural exchange, and emergency services, to give some examples. As these
aspects are developing, the technical infrastructure around the Internet’s core protocol - IP (Inter-
net Protocol) - is increasingly exposed to various challenges. One of these challenges is given by
the requirement for sophisticated resilience mechanisms that can guarantee the robustness of the
IP infrastructure in case of faults, failures, and natural disasters. This is of paramount importance
for two reasons. First, Internet type of networks are to be deployed in the area of safety critical sys-
tems, such as emergency services (e.g. VoIP emergency services) that will be used in the course of
network recovery after a disaster event (e.g. flooding, acts of terrorism, etc.). Secondly, the more
robust the infrastructure, the higher the services’ availability and correspondingly the revenue for
the service provider. Thus, resilience and robustness turn out also to be desired features beyond
the above mentioned safety use case.

This dissertation aims to develop a new architectural framework for improving the resilience of
network nodes in fixed IP network infrastructures, i.e. IP networks without any mobility and con-
tinuously changing physical topology. The current thesis approaches the topic of resilience from
two different perspectives. First, it is recognized that resilient self-healing mechanisms are already
embedded inside diverse network protocols, as well as in applications and services running on top
of a fixed IP network. Secondly, the importance of network and systems management processes
for the availability of the network and IT infrastructure is also analyzed. This leads to the identifi-
cation of a gap between the resilient features which are intrinsically embedded inside the protocols
and applications, on one hand, and the network and systems management processes, on the other
hand. This gap is constituted by the lack of a framework that runs on top of the protocols and
applications and manages them with respect to incidents, thereby automating aspects of the estab-
lished management standards. In addition, this framework is meant to serve as a layer between the
network/system’s administrator and the networked infrastructure. That is, on one hand, the frame-
work is configured and provided with knowledge by the human experts tweaking and improving
the system. On the other hand, the framework is designed to escalate faulty conditions, which it
is not able to resolve, to the operations personnel, such that responsive managerial actions can be
initiated.

The architectural framework consists of software components that operate in a distributed man-
ner inside the nodes of the networked system in question. These software components are able
to proactively and reactively respond to faulty conditions, i.e. on one hand failures are predicted
and avoided, and on the other hand, an automatic response to already existing faulty conditions
is realized. Correspondingly, existing mechanisms to realize these processes are evaluated, and
where required new algorithms are developed for the proposed framework - for instance scal-
able Markov Chain based Fault-Isolation or efficient self-optimization and action synchronization
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based on mathematical optimization and machine learning techniques.

To evaluate the concepts and mechanisms, a number of case studies are executed. Additionally,
the scalability and overhead (e.g. memory consumption) of the proposed framework are evalu-
ated. Moreover, the required interfaces between the network administrator and the self-healing
system are investigated and defined accordingly. It is ensured that the network administrator has
complete control over the network, can oversee the automated processes, and can even intervene
if required. Furthermore, the framework and algorithms are designed in a way that enables the
realization of real-time self-healing whereby the reaction strategy is always optimized such that
key performance indicators of the networked system are improved.



Zusammenfassung

Das Internet gewinnt in unserer Gesellschaft kontinuierlich an Bedeutung. In der Tat verwandelt
sich das Internet in das Rückgrat der modernen Welt, mit Auswirkungen auf zahlreiche Aspekte
wie Politik, Kommunikation, interkultureller Austausch und Notdienste, um einige Beispiele zu
nennen. Die Weiterentwicklung dieser Bereiche stellt die technische Struktur des Internets - ins-
besondere das Internet Protokoll (IP) - zunehmend vor verschiedene Herausforderungen. Aus
diesen Herausforderungen ergibt sich unter anderem die Notwendigkeit für skalierbare und ef-
fiziente Selbstheilungsmechanismen, die in den darunterliegenden Netzen zu integrieren sind. Das
Ziel dieser Selbstheilungsmechanismen besteht in der Gewährleistung von Robustheit und Wider-
standsfähigkeit der IP-Infrastruktur bei Störungen, Angriffen und Naturkatastrophen. Dies ist
aus zwei Gründen von großer Bedeutung. Erstens, IP-basierte Netzwerke werden zunehmend im
Bereich der sicherheitskritischen Systeme eingesetzt, wie zum Beispiel VoIP-Notdienste, die im
Verlauf der Netzwiederherstellung nach einem Katastrophenereignis (zum Beispiel Überschwem-
mung, Terrorakte) eingesetzt werden. Zweitens, je robuster und widerstandsfähiger die Infras-
truktur desto höher ist die Verfügbarkeit der Dienste und entsprechend die Einnahmen für den
Netzwerk- bzw. Dienstanbieter. Dementsprechend erweisen sich die Widerstandsfähigkeit und
Robustheit von IP-Netzen als notwendige Eigenschaften, auch über die Anforderungen von dem
oben erwähnten Einsatzfeld innerhalb von sicherheitskritischen Systemen hinaus.

Diese Dissertation setzt sich als Ziel, eine Softwarearchitektur zu entwickeln, durch die eine
Verbesserung der Widerstandsfähigkeit von Netzwerkknoten in festen IP-Netzwerkinfrastrukturen
realisiert werden kann, das heißt IP-Netzwerke ohne Mobilität und kontinuierlich wechselnde
physikalische Topologie. Die Dissertation betrachtet das Thema der Widerstandsfähigkeit aus
zwei verschiedenen Perspektiven. Zuerst wird analysiert und festgestellt, dass dynamische Selb-
stheilungsmechanismen bereits in diversen Netzwerkprotokollen sowie in Anwendungen und Di-
ensten, die in einem festen IP-Netzwerk laufen, eingebettet sind. Im Anschluss daran wird die
Bedeutung von etablierten Netzwerk- und Systemmanagementprozessen für die Verfügbarkeit von
Netzwerk- und IT-Infrastruktur analysiert. Dies führt zur Identifizierung einer Lücke zwischen den
dynamischen Selbstheilungs- und Robustheitsmechanismen, die einerseits in den Netzwerkpro-
tokollen und Anwendungen/Diensten und andererseits in den etablierten Netzwerk- und System-
managementprozessen eingebettet/integriert sind. Die Lücke besteht darin, dass es an einer Soft-
warearchitektur fehlt, die on-top der Netzwerkprotokolle und Anwendungen läuft, diese in Bezug
auf Vorfälle verwaltet und damit die Aspekte der etablierten Management-Standards im Sinne
eines Selbstheilungsprozesses automatisiert. Darüber hinaus soll dieses Framework als Zwis-
chenschicht zwischen dem Netzwerk-/Systemadministrator und der Netzwerk-/Dienstinfrastruktur
dienen. Das heißt, einerseits wird das Framework konfiguriert und mit Kenntnissen der Ex-
perten/Administratoren ausgestattet, die das Netzwerk/System ausbauen, pflegen und detailliert
kennen. Andererseits ist die anvisierte Softwarearchitektur so konzipiert, dass sie Störungen, die
sie nicht lösen kann, an die Mitarbeiter des Network Operations Center (NOC) eskaliert. Die
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NOC-Mitarbeiter sind anschließend in der Lage entsprechende Aktivitäten einzuleiten, um das
bestehende Netzwerkproblem zu behandeln, das von dem anvisierten Framework nicht gelöst wer-
den konnte.

Die vorgeschlagene Architektur besteht aus Softwarekomponenten, die in verteilter Weise inner-
halb der Knoten des betreffenden vernetzten Systems arbeiten. Diese Softwarekomponenten sind
in der Lage, proaktiv und reaktiv auf fehlerhafte Zustände zu reagieren, das heißt einerseits wer-
den Ausfälle vorhergesagt und vermieden, während andererseits eine automatische Antwort auf
bereits vorhandene fehlerhafte Bedingungen realisiert wird. Entsprechend werden bestehende
Mechanismen zur Realisierung dieser Prozesse evaluiert, und wo es erforderlich ist, werden neue
Algorithmen für die anvisierte Architektur entwickelt - zum Beispiel skalierbare Markov-Ketten
basierte Fault-Isolation oder effiziente Selbstoptimierung und Action-Synchronisation basierend
auf mathematischer Optimierung und Techniken aus dem Bereich des Maschinellen Lernens.

Zur Bewertung der vorgeschlagenen Konzepte und Mechanismen wird eine Reihe von Fallstudien
durchgeführt. Zusätzlich werden die Skalierbarkeit und der Overhead (z.B. Speicherverbrauch)
der vorgeschlagenen Softwarearchitektur ausgewertet. Darüber hinaus werden die benötigten
Schnittstellen zwischen dem Netzwerkadministrator und dem Selbstheilungssystem entsprechend
untersucht und definiert. Das Gesamtkonzept sieht vor, dass der Netzwerkadministrator die volle
Kontrolle über das Netzwerk behält, die automatisierten Prozesse überwachen kann und bei Be-
darf jederzeit eingreifen kann. Darüber hinaus sind das Framework und die zugehörigen Algorith-
men so konzipiert, dass die Realisierung von Echtzeit-Selbstheilung möglich ist. Dabei wird die
Reaktionsstrategie des Frameworks immer so optimiert, dass wichtige Leistungsindikatoren (Key
Performance Indicators (KPIs)) des vernetzten Systems verbessert werden.
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Chapter 1

Introduction

The Internet is undoubtedly one of the major innovations of the past decades. It significantly
changed people’s lives across the planet and shaped new economic and social dimensions. The
merge of different sub-networks into a common self-organizing network of networks, such as the
Internet, allows for almost unlimited and open communication between arbitrary parties in the
world.

The forms of communication over the Internet and the resulting demands are constantly chang-
ing. It began, among others, with various services for the exchange of messages and data, e.g.
e-mail (SMTP, POP, IMAP, ...), transfer of files (FTP, UUCP), distributed file systems (NFS, AFS,
...), WWW (Apache, CGI, HTTP, HTTPS, ...) and chat (IRC, ICQ, ...). Developments of recent
decades include the communication concepts that have emerged in relation to Web 2.0, such as so-
cial networking (facebook, LinkedIn, twitter ...), blog services, video-sharing platforms (YouTube,
...), and knowledge bases such as Wikipedia. In addition, the rapid emergence of VoIP (Voice over
IP) services and applications, as well as the importance gaining idea of service-oriented software
(e.g. SOAP and WSDL), turn the Internet into a vital communication medium that gains more and
more significance as an industrial and social environment. Some latest developments are given
by concepts and deployments such as "Internet of Things - the linking of any objects like sen-
sors and kitchenware, "Cloud Computing" - software, computing/storage capacity, and network
infrastructure as a shared (mostly) virtualized service, "Mobile Internet" - access to the Internet
from anywhere at any time, and "Interplanetary Internet" - a delay tolerant version of an Internet
infrastructure that facilitates communication in space.

All the above present and future developments inevitably complicate additionally the already chal-
lenging network management processes. Among others, the robustness and reliability of the net-
work infrastructure including routers, switches, hubs, gateways, links and network interface cards
is exposed at risk, since the resolution of a network failure (caused for example by a configura-
tion problem in a router) becomes more complex and expensive. The variety of technologies and
network protocols (e.g. OSPF, BGP, IPv4/v6, MPLS, ATM, Ethernet, Frame Relay, PPP, ...), the
various hardware platforms, and software implementations make the manual troubleshooting of
network problems a difficult to oversee task, which can usually only be accomplished by highly
qualified professionals.

The above considerations clearly indicate that there is a need to introduce and embed the knowl-
edge of the limited number of highly qualified professionals - coping with the network and systems
management challenge - into the managed network elements, in order to achieve a certain degree

21
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of automation with respect to problems of the network, which can be solved by a dedicated piece
of software (e.g. a software agent based framework). Indeed, it should be seen as a fundamental
need to conceptualize required components, which have the capability to handle emerging oper-
ational problems in a distributed manner and increase the robustness and resilience for a fixed IP
network infrastructure. Such fixed IP networks are found in different parts of the Internet, such
as Autonomous Systems (AS) in the Internet backbone, various local area networks (Local Area
Network - LAN) like university and campus networks, corporate networks (enterprise networks)
and home networks.

The required (software) components - to be designed in the scope of this thesis - should be able
to proactively and reactively respond to faulty conditions, i.e. on one hand failures should be pre-
dicted and avoided, and on the other hand, an automatic response to already existing faulty con-
ditions should be realized. Correspondingly, algorithms to realize these processes are required.
Therefore existing mechanisms must be evaluated, and where required new algorithms have to
be specified and developed for the purposes of the emerging software components. Furthermore,
it must be ensured that the proposed software components operate in a scalable manner thereby
keeping the induced overhead (memory consumption, CPU utilization, response times, ...) mini-
mal. Indeed, it is of paramount importance to keep the network administrator in the loop, whilst
in parallel improving the QoS (Quality of Service) of the network by automatic proactive and
reactive operations within the network devices. Hence, by defining suitable interfaces between
the operations personnel and the self-healing system, it has to be ensured that the humans retain
complete control over the network/system in question, and can oversee the automated processes -
however without being intensively required to manually execute traditional Fault-Management and
troubleshooting tasks. These high level thoughts are further motivated and brought to a specific
problem statement within the coming sections.

1.1 Motivation

The Internet impacts the society mainly through the applications and services running on top of the
global network. From the communication networks perspective - different technologies, like ATM
(Asynchronous Transfer Mode), Frame Relay, X.25 and Token Ring - have been deployed and
integrated to interoperate. In order to facilitate the interplay of different networking technologies,
the Internet Protocol (IP) has been standardized in the eighties as the gluing technology to enable
the interoperability and integration of different networks. Subsequently, all applications and ser-
vices can rely on the existence of an IP layer that is able to carry their messages across the world,
regardless of the underlying communication network substrate. To facilitate the understanding and
development of Internet protocols and services, two reference models have been mainly applied
that create frameworks for discussions and further evolution. These frameworks 1 include the ISO
Open Systems Interconnection (OSI) model coming from traditional telecommunications, and the
TCP/IP model that emerged with the development of the Internet. Both models aim at describing
communication networks (including the Internet) in the framework of layers that comprise all as-
pects of communication, starting from the physical network access, and going up to the level of
applications and services.

As IP was facilitating the growth of the Internet throughout the years, there was a clear need for
increased robustness of the Internet fixed infrastructure, including Local and Wide Area Networks

1An illustration of both models and related communication technologies is provided in Figure A.1 within the ap-
pendix of this thesis.
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(LAN and WAN). On one hand, within the network protocols, this was achieved by developing
self-healing stacks [Gre95], embedding recovery and restoration schemes inside the protocols (e.g.
SONET, MPLS and FDDI), providing mechanisms for failure/error notification such as ICMP, and
enabling the transport layer to react to issues like network congestion, e.g. as realized in TCP. On
the other hand, the control plane/layer was extended by routing protocols that are able to automat-
ically recover from link or node failures, and reroute the affected traffic over an alternative path.
Typical protocols of that type are given by OSPF (Open Shortest Path First) and RIP (Routing
Information Protocol).

From the network and systems management perspective: Different protocols were specified within
the management plane/layer to facilitate fast and efficient troubleshooting and network manage-
ment. In that context, traditional network management is understood according to the ITU-T TMN
management standard that defines the FCAPS framework - Fault-, Configuration-, Accounting-,
Performance-, and Security-Management. This includes protocols such as SNMP (Simple Net-
work Management Protocol) which facilitate the monitoring and the management of the network
infrastructure. The output of these protocols is further integrated into Network Management sys-
tems (e.g. Open View [TZ04]). Furthermore, the adoption of scripting has automated many of the
network management tasks. According to dos Santos et. al. [dSBC+10], "Today, it is not uncom-
mon to find situations where management information ends up being integrated through scripts
written by network administrators in a domestic ad hoc way.", even being it any type of mod-
ern Software Defined Networking scripts (including Network Functions Virtualization). However,
this scripting solution is by far not optimal and brings a variety of pitfalls for the goal of building
a sustainable and evolvable network management, and correspondingly Fault-Management and
troubleshooting procedures.

• First of all, the network operations personnel needs to be highly skilled and have both net-
work management knowledge and programming knowledge.

• Secondly, a script programming solution may be extremely difficult to understand and main-
tain by others than its developers.

• This may lead to a situation where know-how is lost leading to disruption in the network
management processes and to a decreased reliability of the network and IT services provided
by an organization.

In order to resolve such issues, a wave of initiatives was started during the past decade that tried
to introduce self-management capabilities inside or close to the network and services’ architec-
tures. Some of these initiatives looked at the management plane/layer as an unnatural add-on
for the TCP/IP protocol suite, and aimed at redesigning the Internet architecture from scratch.
This includes approaches such as flexible protocol stacks and information channels established
on-demand, spanning over diverse physical network technologies [BJT+10]. This research direc-
tion is known as revolutionary or clean-slate meaning that the existing reference models should be
fully redesigned, in order to enable efficient management of the communications’ and services’ in-
frastructure within an Internet environment. Within this community, it is believed that the redesign
would allow for intrinsically embedding management hooks inside the protocols and the services,
such that they become easily controllable in contrast to traditional solutions that emerged as add-
ons. Indeed, a revolutionary approach would allow for implementing sophisticated resilient self-
healing mechanisms, which can base their operation on collaboration between functional entities
[Cha09]. On the contraty, the vision of an incremental, i.e. evolutionary, development of the Inter-
net is also largely advocated within the research community [Cha08] [DDV+11] [WMR+11]. This
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includes the improvement of existing protocols, including their self-healing features, as well as the
refinement of existing management approaches and their extension into the device architectures
[FFR+11] [BMQS08]. An advanced evolutionary approach from the past years is given by the in-
troduction of Software Defined Networking (SDN) [HPD+15] [NHG+16] and Network Functions
Virtualization (NFV) [NFV12]. Thereby, the devices are meant to offer programmable interfaces,
which can be used to control network nodes and re-configure them on the fly - by so-called net-
work apps developed in legacy programming languages, e.g. Python, C/C++ or Java. Combining
this with the virtualization of the devices and the control on "virtual machine"/hypervisor level
(the scope of NFV) allows for more flexible network control and management.

The ability of a network to employ self-healing mechanisms in order to preserve network func-
tionality in case of failure occurrences or malfunctioning is of great significance. Especially, given
the importance of the Internet, it is a major goal of this scientific work to lay the ground for the
possibility for network operators to instrument a software based self-healing framework across the
nodes of their network, and to utilize this framework, in order to increase reliability, robustness
and QoS. In addition, the self-healing mechanisms of the framework (to be developed in this the-
sis) will enable the network to self-manage and reduce the involvement of the network operations
personnel in some of the critical management tasks. The approach to self-healing, pursued in
this thesis, belongs to the class of evolutionary approaches (refer to the elucidations in the above
paragraph), since it does not advocate for a disruptive redesign of the network protocols and appli-
cations, but rather tries to implement additional components (i.e. a self-healing framework) that
automatically manage and control the corresponding functional entities with respect to incidents.

Figure 1.1: Identifying the Gap where the proposed Framework is required

In line with the above thoughts, the place of the envisioned Framework for Distributed Self-
Healing (FDH) within the management and control hierarchy for communication based systems
(e.g. Internet or telecom networks) is illustrated in Figure 1.1. FDH belongs to the set of control
entities and protocols (also denoted as control plane according to [Gro]) that dynamically react
to changing operational conditions by readjusting parameters of the corresponding protocols, ap-
plications and services. In that context, based on pre-supplied operational models, FDH strives
to automatically resolve certain incidents occurring during the operation of a networked system.
This is best realized by considering the knowledge and experience of the extremely skillful hu-
man experts managing and possessing deep know-how regarding the operation and maintenance
of a particular network. Hence, there is a need to introduce and embed the knowledge of this
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limited number of professionals into the managed network elements, such that a certain degree of
automation is achieved with respect to network and service problems that can be solved by a set
of distrubuted software components/agents.

The introduction of a framework with the FDH characteristics - as outlined above and positioned
in Figure 1.1 - brings in further benefits regarding the economic site and the availability of end
user services and applications. A clear advantage resulting from the adoption of the FDH mecha-
nisms is the reduction of the human involvement, which gives potential for OPEX 2 savings in the
network troubleshooting processes and tasks. Another benefit is that a framework such as FDH
would increase the availability and reliability of the services (e.g. VoIP, video on-demand, ...)
utilizing the network segments in question, because the automated resolution of (some) faults in
the IP layer will inevitably reduce the down-time of the affected network infrastructure and will in
turn affect positively the belonging MTTR (Mean Time To Repair) performance indicators. The
main explanation for these considerations is that the network operators and end users would not
have to wait anymore for human experts to put hands on the network and resolve the underlying
challenges related to the faults that are removable by means of the emerging FDH framework (e.g.
network problems of repetitive nature).

1.1.1 Problem Statement

Relevant survey results [AL10] declare that "Most of the network management problems are repet-
itive in nature", which shows that there is a large potential for the application of automated self-
healing control loop structures to resolve operational problems of a network/system during run
time. The vision, with respect to the emerging framework for self-healing, is that the human
expert’s knowledge that is required to solve (for example) such repetitive problems for specific
network/system in question, should be transferred into a self-healing (software based) framework
running in the node/device architectures. This framework would provide means for automatic
self-healing thereby performing Fault-Detection, Fault-Isolation, and Fault-Removal in an effi-
cient manner. This implies that the involvement of the highly skilled network operations personnel
should be shifted from being the key operational actor in the processes of Fault-Management and
troubleshooting, to supplying knowledge to the FDH self-healing mechanisms in the network and
maintaining, observing and improving the FDH control loop reactions in the long-term operation
of the network.

Problem Statement: The problem, this dissertation deals with, is given by the challenge to

• identify the required FDH software components,

which operate in a distributed manner inside the network elements, and increase the self-healing
capabilities of a fixed IP network infrastructure. Furthermore, the research of this thesis needs
to prove the

• feasibility,

• efficiency and

• scalability

of the FDH framework for distributed self-healing.

2OPEX stands for OPerational EXpenditures
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1.1.2 Research Hypothesis

Based on the above consideration, the following research hypothesis is formulated:

Research Hypothesis: The author of this work claims that it is possible to

1. design and specify a software agent based framework for distributed self-healing in fixed
IP networks

2. select or devise efficient and scalable algorithms for the different tasks within the emerg-
ing self-healing framework

3. design the framework in a way that it optimizes its reactions and operational parameters
(i.e. self-optimization features), in order to continuously improve the QoS of the network

4. design the framework in a way, such that the network operation personnel does not lose
control over the network/system in question, but rather stays in the loop by monitoring
and intervening (if required) in order to resolve problems or improve the operation of
FDH

5. implement the proposed FDH framework for distributed self-healing

6. show that FDH can increase the availability of fixed IP networks

7. show that FDH can scale its operations with a growing size of relevant parameters (e.g.
number of incidents)

8. show that FDH operates efficiently with minimal overhead (e.g. memory consumption
and CPU utilization) within the network devices

The work presented from here on is meant to prove the claims of the above research hypothesis.

1.2 Objectives

The main objective of the current thesis is to derive the concepts, design principles and algorithms
required to realize scalable and efficient distributed self-healing with self-optimization features
in fixed IP Networks, i.e. the above discussed FDH framework. The challenge in designing an
integrated architecture for self-healing (such as FDH) is to accommodate the variety of embedded
resilient mechanisms of the existing network entities into an architectural framework targeting
the goal to oversee and control the network/system in question, thereby reacting to erroneous
states without interfering with the intrinsic resilient behaviors of existing protocols and services.
Hence, the main objective of the current thesis translates into the need to develop such an architec-
ture/framework by identifying the design principles and the major components that nodes/devices
inside an FDH controlled network must be equipped with. This requires various components
and interfaces, e.g. interfaces to monitoring entities, components facilitating the sharing of al-
arm/incident information and modules and methods for Fault-Isolation (i.e. root cause analysis).
While striving to achieve the automated removal of faults (i.e. root causes for malfunctioning), the
FDH components are naturally supposed to execute some Fault-Masking/Mitigation behaviors, in
order to sustain basic network functionality and an acceptable network performance. At the same
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time, the emerging framework should be equipped with a feedback mechanism that notifies/identi-
fies on whether FDH can successfully cope with the challenges to the network/system, and should
result in informing (i.e. escalating to) the network operation personnel in case of irresolvable
issues.

1.2.1 Expected Scientific Output

The expected scientific output of this dissertation is the identification of software components,
which operate in a distributed manner inside the network nodes, and increase the self-
healing capabilities of routers and end systems within a fixed IP network infrastructure.
The software components to be designed should be able to proactively and reactively respond to
faulty conditions, i.e. on one hand failures should be predicted and avoided, and on the other hand,
an automatic response to already existing faulty conditions should be realized. Correspondingly,
algorithms to realize these processes are required. The expected scientific output includes the
evaluation of existing mechanisms, and where required, it is expected that new algorithms
will be developed for the emerging framework. For the selected or designed methods/algo-
rithms/concepts, extensive theoretical and experimental evaluation is expected to prove their
effectiveness with respect to self-healing, self-optimization as well as scalability and overhead
(e.g. CPU utilization or memory consumption) in the network elements. Furthermore, it is
expected to experimentally show that the framework as a whole can function and successfully
increase the QoS of a network/system. For that purpose a prototype should be implemented
which should be consequently used to perform experiments based on various case studies of
industrial and scientific relevance.

As a result of this dissertation, the scientific investigation of a series of concepts is provided,
which have the potential to improve the reliability of significant parts of the Internet. More-
over, the expected results promise that traditional Fault-Management processes can be sim-
plified for the network operations personnel, and correspondingly an OPEX (operational
expenditure) reduction achieved. Furthermore, the framework and belonging algorithms are
supposed to be designed in a way that enables the realization of real-time self-healing behaviors
whereby the reaction strategy is always optimized in a way that key performance indicators of
the networked system in question are improved. That is, the proposed architectural framework
should incorporate self-optimization features.

1.2.2 Validation Strategy

To evaluate the proposed concepts and mechanisms, a number of case studies are executed. Ad-
ditionally, the scalability and overhead (e.g. memory consumption, CPU utilization, and response
times) of the proposed framework are evaluated through extensive experiments with large data/

models/networks. In order to realize these two aspects, a prototype of the FDH framework is im-
plemented and deployed in a testbed, which was worked out in the scope of a large scale EU FP7
project. Subsequently, the case studies are executed, first only for a specific component/module/al-
gorithm/process, and second for the framework as a whole as it operates in the above mentioned
testbed. Thereby, the effectiveness of the framework and its single components is evaluated by
measuring the network/system operation improvement, which is achieved through the FDH con-
trol/management activities for the network in question. Moreover, based on the case studies, key
single components/modules/algorithms/processes are tested by pushing key input parameters ( e.g.
network size or input data size) to the extreme, in order to experimentally evaluate the scalability,
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overhead and performance of the FDH mechanisms. In cases where appropriate and required, dis-
crete event simulation and network simulation is used to verify certain properties of the designed
FDH behavior/process/algorithm/component/module.

1.3 Structure of the Thesis

The current thesis is organized as follows: Chapter 1 is the present introductory chapter containing
the motivation aspects and the objectives of the intended research activities. The following chap-
ter 2 sets the context for the planned scientific work by laying down the basic terminology and
reviewing a large amount of ongoing research/development activities and standards. The chapters
3 and 4 introduce the various views and understandings of Self-Healing and Self-Optimization,
which are at the heart of this thesis. Thereby, a suitable definition of both terms is selected which
is subsequently used in the up-coming chapters. Chapter 5 handles the aspects of research require-
ments analysis by defining the basic directions for the scientific work on the emerging framework
for self-healing with self-optimization features. Based on the identified requirements, chapter 6
proceeds with the FDH framework specification by devising key node components and specifying
the dynamic aspects (i.e. interaction flows) among nodes and components towards realizing the
scalable and efficient self-healing with self-optimization features. Chapter 7 deals with the design
and specification of the self-healing processes within the emerging framework thereby selecting
and deriving innovative algorithms and interaction schemes towards achieving resilient behaviors.
Similarly, chapter 8 defines a scalable and efficient framework for self-optimization with respect
to the tentative actions from the various involved agents. Thereby, techniques from the domains of
Machine Learning and Mathematical Optimization are utilized in order to improve the speed, over-
head and effectiveness of the proposed algorithms. The following chapter 9 deals with the network
operations personnel view on the emerging self-healing framework and elaborates on aspects such
as the configuration of operational models and the escalation of faulty conditions - which are not
resolvable by the self-healing mechanisms - to the network administrators. The following chapters
10 and 11 deal with the research prototype that was implemented in the scope of the current thesis
and its integration into the testbed of a large scale European project. Based on these two chap-
ters, the next chapters 12 and chapter 13 present a thorough scalability and overhead analysis of
the proposed FDH framework, combined with a number of case studies that demonstrate the ap-
plicability of the derived components and illustrate the way self-healing with self-optimization is
achieved, based on the presented research requirements and designs. Finally, chapter 14 concludes
the thesis, relates the presented work to modern trends in networking and distributed systems, and
outlines future research directions.
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Chapter 2

Setting the Context

This chapter sets the overall context and terminology, which are required to follow the presenta-
tion and contents of the research efforts elaborated in the current thesis. Initially, some basic terms
are clarified and explained thereby preparing the background and foundation for the following
discussions. Subsequently, a state-of-the-art analysis presents related research and development
initiatives of the past years, in order to prepare the reader for the following conceptual and exper-
imentation activities, as well as discussions and descriptions.

2.1 Background

Right at the beginning, some basic concepts should be clarified that are required for developing
the theoretical aspects of the work presented in the current thesis. This is imperative because
there seems to be different perceptions on some of the key terms related to Fault-Management,
Resilience, Survivability and self-healing for networked systems.

Within this thesis, Fault-Management is similarly understood and handled as in the FCAPS ap-
proach, which is part of the TMN standard [ITU00]. That is, Fault-Management is perceived to
consist of, and to be dealing with, the following functions: Fault-Detection, Fault-Diagnosis (also
referred as Fault-Localization or Fault-Isolation), and Fault-Removal1.

Dealing with incidents (faults/errors/failures) and alarms is the main objective of Fault-
Management. The semantics of these terms lead again to substantial confusion [Wal09], as within
different domains and standards there seems to be various understandings, or at least multiple
perceptions relating to these key aspects. Hence, a simple and clear terminology needs to be
adopted that can serve as the base for introducing self-healing with self-optimization features as
envisioned by FDH. In this line of thought, the relations between faults/errors/failures and alarms
need to be clearly defined and established. There exist two stable and consistent models (as
elaborated in [Wer07]), which are to be taken into account - the Failure-Fault-model of Kopetz
[Kop82] and the model of Laprie [LAK92] [Lap92]. The Failure-Fault-model of Kopetz [Kop82]
defines a Fault and a Failure as being the event of malfunctioning (Fault) and the state of mal-

1To be precise: [ITU00] states following function groups as the core parts of Fault-Management. (1) RAS (Re-
liability, Availability and Survivability) Quality Assurance, (2) Alarm Surveillance, (3) Fault Localization, (4) Fault
Correction, (5) Testing, and (6) Trouble Administration. In order to establish a straight link to self-healing, the func-
tions above are simplified, the most important ones are picked, and the overall process is presented as consisting of
Fault-Detection, Fault-Diagnosis, and Fault-Removal.
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functioning (Failure) of a system. The model of Laprie [LAK92] [Lap92] is a more complex one
and provides additional structures by involving the concepts of fault, error, and failure. Thereby,
the fault is seen as the root cause of the malfunctioning, the error as the state of malfunctioning,
and the failure stands for the fact that certain components fail to deliver their services, which is
observable at the belonging interfaces. Hence, aligned to the sophisticated model of Laprie, this
thesis adopts an approach to the fault/error/failure/alarm/incident-understanding as defined by
[ITU00][ALRL04] and referred by [SS04a] [Ran00]. The adopted approach can be summarized
as follows:

• fault - a root cause for the malfunctioning of a system/network. That is, it constitutes a
structural, configurational or bahvioural cause for an erroneous state. Faults can further
propagate as one or more errors.

• error - a behavioral or computational deviation from correct pre-specified behaviors, values
or conditions. An error is either a direct consequence of a fault or of another error, and
propagates as a failure or as an additional error.

• failure - an error, which is observable at service/interface level. That is, a failure is a devia-
tion between the expected result at a service/interface and the delivered/obtained result.

• incident - in the following, faults/errors/failures are often referred by the term incident.

• alarm - Alarms are understood as warning notifications concerning detected deviations from
normal operational states and conditions. An alarm may or may not represent a fault/error/
failure. For example, an alarm might be generated in case a particular threshold is being ap-
proached, which would constitute a proactive warning for a future fault activation - however
the fault has not occurred at the time of alarm generation.

Coming back to the above discussion that Fault-Management consists of Fault-Detection, Fault-
Isolation, and Fault-Removal: Fault-Management can be easily explained by relating its processes
to the above definition of faults/errors/failures/alarms.

• Fault-Detection - stands for the process of detecting that a fault has been activated. In that
sense, normally a failure would be detected by a monitoring component, which would indi-
cate that a fault has occurred within the network/system in question. It is also possible that
an alarm is generated and observed as a result of fault occurrences within the corresponding
network/system.

• Fault-Isolation - stands for the process which is responsible for correlating the amount of
detected incidents and generated alarms, and localizing the fault (root cause) for the experi-
enced erroneous state (detected within the Fault-Detection process).

• Fault-Removal - stands for the process of removing and resolving the faults, which are iso-
lated in the course of the Fault-Isolation task.

The combination of the above processes yields the automated self-healing in the long-term oper-
ation of the network/system, which is one of the key functions of the emerging FDH framework
as elaborated in the coming chapters. This concept is analog to the concept of Autonomic Fault-
Management as presented in [Cha09] - i.e. the automated detection of faults, followed by the
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automated Fault-Isolation and Fault-Removal. Furthermore, [Cha09] gives some additional ideas
that have been considered to some extend within the emerging FDH design, especially the state-
ments in the following quote saying that Autonomic Fault-Management involves "cooperative and
collaborative mechanisms implemented in nodes and the network as a whole, to automatically de-
tect incidents, share knowledge about incidents, diagnose/localize the root cause of the observed
incidents, and finally remove the fault (root cause), throughout the operation lifetime of a node
and the network as a whole" [Cha09].
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Resilience 

Proactive  

Resilience 

Fault-Masking 

Automated Fault-Management based  

Self-Healing in the long-term Operation  

of the Network/System 
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Figure 2.1: Relations between Fault-Management, Resilience, and Survivability

The concepts and terminology presented hitherto are in direct connection to the basic network
functions of Resilience and Survivability. The relations and interplay among the overall set of
notions and concepts is illustrated in Figure 2.1. Relating to Figure 2.1, Resilience is perceived
as the ability of the network to automatically recover from some undesirable state (e.g. malfunc-
tioning), or different faulty conditions/states, and to "provide and maintain an acceptable level of
service in the face of various faults and challenges to normal operation" [Res17]. The concept of
Resilience can be additionally zoomed in and structured into Reactive and Proactive Resilience. A
network/system providing Reactive Resilience has the capability to react to the presence of a fault
by employing some Fault-Masking and/or remediation techniques [RMD05]. Obviously, given
the above understanding, the self-healing based on automated Fault-Management2 - including
Fault-Detection, Fault-Isolation and Fault-Removal - can be seen as a means to achieving Reac-
tive Resilience in the long-term operation of the network/system. To complement the picture on
Resilience in Figure 2.1: a component/protocol/service/network/system with Proactive Resilience
features tries to predict and adapt to future fault activations in the network/system [RMD05].

Focusing further on Survivability in Figure 2.1: Survivability is defined as "the ability of a net-
work to recover the traffic in the event of failure, causing few or no consequences for the user"
[VPD04]. Survivability is also understood as "the capability of a system to fulfill its mission, in

2This type of self-healing is also sometimes referred to as Autonomic Fault-Management.
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a timely manner, in the presence of attacks, failures, or accidents" [FLL+97]. As described in
Figure 2.1, Survivability is as a subset of Resilience. Especially, it stands out as the aspect of
Resilience that tries to sustain the performance of the network in the presence of failures and to
hide the disruptions below the service level from the user. To summarize: various concepts such as
Fault, error, failure, incident and alarm were laid down, being the notions which build the base for
the functions and processes of Resilience, Survivability and Fault-Management. Based on these
understandings, the FDH framework for distributed self-healing with self-optimization features is
specified and designed in the coming chapters.

2.2 Related Work

Having discussed and clarified the basic concepts and terms that relate to the emerging FDH frame-
work, the following sections represent a state-of-the-art review of related work and adjacent areas
to the self-healing aspects, which are at the heart of this thesis. The first topic that is handled deals
with the overall network resilience and related standards and research efforts. Subsequently, an
insight in network disaster recovery is given, i.e. into the techniques as well as implemented mech-
anisms and processes for reestablishing a network after a major disaster (e.g. earthquake, flooding,
terror act ...). Afterwards, the area of Network Management is looked into thereby elaborating on
legacy standards and practices from this vital topic for modern and future networks. The topic
of Autonomic Computing and Networking is the next one to be handled in a row. Autonomic
Computing/Networking was one of the key topics and large hopes of the past decades regard-
ing the challenge of stabilizing networks and computer based systems (in general) by increasing
their reliability and reducing the belonging management overhead (through the introduction of
adaptive self-X type of behaviors within the corresponding software components). The following
reviews of Control Theory approaches and Policy based Network Management techniques are in
close relation to the topic of autonomics and self-adaptations for networks and systems. The last
three sections focus on the topics of Dependable Systems, Agent Systems, and Software Defined
Networking and Network Functions Visualization. These three topics are closely related to the
emerging FDH framework as they incorporate different reliability aspects as well as the notion of
entities/components that can exercise network control functions and can improve the operations
of a network/system.

2.2.1 Network Resilience

Research in the area of Network Resilience has a long history in the world of telecommunications,
networking and distributed systems. In general, Network Resilience is targeted as a property that is
integrated in the network components/entities. There are various approaches to implementing Re-
silience in current networks including mechanisms for protection and restoration, e.g. (G)MPLS
[Man13], SONET/SDH [TEL09], FDDI [AJ94], and Token Ring [LS98]. Further mechanisms can
be intrinsically implemented in the protocol modules, for example as a reaction to ICMP [Pos81]
notification of errors along a path (e.g. in the case of PMTU [MD90] discovery), or link/node fail-
ure detection and automated adaptation of routing and the FIB (Forwarding Information Base) of
involved routers in the case of OSPF [Moy98]. The Resilience of intra- und inter-domain Routing
was reviewed in [LRS+05] [RMD05] with respect to different known issues, thereby discussing
on typical reactive and proactive approaches.

As one can observe, Network Resilience can be implemented on various layers within the proto-
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col stack, such as Layer-2 in the case of FDDI and Token Ring, Layer-2.5 in the case of MPLS,
Layer-3 in the case of ICMP and its error codes, and L4 in the case of TCP resilient mechanisms
and reaction to errors (e.g. PMTU and CWND3 adaptation schemes). Research such as [TH01]
and [SS04c] handle the concept of Multi-layer Resilience in telecommunications including IP net-
works, which is a key topic to be taken into account when constructing a framework for distributed
self-healing such as FDH.

On the level of public entities, various resilience aspects are addressed by European and national
agencies like ENISA [ENI17] and BSI [BSI17]. Thereby, especially the aspects of cyber-security
as well as protection of information and data privacy are thoroughly addressed. Furthermore,
the resilience and security of critical infrastructures (energy and mobility networks, telecom and
public networks ...) are subjects of high relevance for such public entities and their related activ-
ities, including workshops, security indicators, certification processes and assessments, technical
recommendations and protection profiles.

Focusing on some recent research activities, it can be observed that Network Resilience is sub-
stantially prepared during the phase of network design. This includes on one hand the topology
of the network nodes, and on the other hand the choice of protocols, algorithms and restoration
schemes for the network system in question. [TDM16] distinguishes between design for robust-
ness and design for resilience. Design for robustness is understood as the approach to construct
a system/network with the capability to sustain unexpected challenges and perturbations thereby
mainly relying on redundancy and overdimensioning, in order to facilitate the handling of critical
situations. Design for resilience stands for extending the capabilities of the involved compo-
nents such that they can adapt to erroneous states and can keep up a certain level of performance.
Eventhough this understanding differs from the wide perception hitherto, the authors of [TDM16]
acknowledge, that resilience is also widely understood as the adaptation and survivability capa-
bilities of single or multiple components as well as the overall design and (over)dimensioning of
networks/system, in order to prepare them for challenging conditions. Based on the introduced
distinguishment between robustness and resilience, the authors of [TDM16] elucidate on both as-
pects in the context of systems-of-systems (SoS), which is perceived as "large-scale integrated
systems which are heterogeneous and independently operable on their own, but are networked
together for a common goal" according to [Jam08]. Thereby, the goal is to provide a framework
that allows to estimate the cost of both approaches for an SoS design undertaking. The framework
comprises a formal model and a set of metrics that allow to judge on which approach is more suit-
able for a particular SoS. The applicability of the proposed framework is shown on a case study
utilizing simulations relating to command-and-control in UAV missions and scale free networks.
Moreover, [MMMS16] deals with the topic of realizing network resilience via self-healing within
smart grid environments. Thereby self-healing refers to the recovery of network connectivity over
redundant links in case of link/node/infrastructure failures. Therefore, a theoretical framework is
devised that allows to calculate the ratio of served nodes given a certain level of network damage.
Hence, the proposed approach constitutes a mix between network planning - in terms of backup
links/paths - and distributed routing protocols, such as OSPF, RIP, and IS-IS. Indeed, the research
in [MMMS16] supports the network planning in the sense of infrastructure and software compo-
nents, in order to increase the resilience of a smart grid environment. Another exciting research is
given by the elucidations in [PRS16]. [PRS16] approaches the topic of network resilience on the
level of efficiently configuring traditional link-state routing protocols (such as OSPF and IS-IS), in
order to establish a resilient IP-network layer routing topology. The resulting mathematical prob-
lem is based on different resiliency related constraints - e.g. various routing protocol parameters

3TCP Congestion Window
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such as link weight or routing area size - and turns out to be NP-hard, incorporating various graph
based artifacts and belonging matrix representations. Correspondingly, a multi- objective opti-
mization procedure is applied, in order to automatically generate link-state routing configurations
that increase the network resilience in turn. The automatically obtained configurations aim at real-
izing a robust network service (i.e. packet routing/forwarding) in the face of link and node failures,
thereby reducing and even avoiding traffic congestion after rerouting has been accomplished.

Network Resilience with respect to Information-Centric-Networking (ICN) is at the core of
[RPNR17]. ICN is a paradigm that was researched in the past years and constitutes a view on the
network infrastructure as a vehicle for transmitting information and not just packets. Hence, the
focus is set on indexing, tagging (e.g. by assigning IP addresses) and naming pieces/chunks of
information and not only network hosts, as in the case of traditional host-to-host communication
oriented networking. In this line of thought, resilience is understood not only as enabling the
network nodes to forward and deliver packets, but as facilitating the network as a whole to meet
user demands with respect to various types of information. In that scope, [RPNR17] reviews
multiple reasons for network impairments (e.g. human errors, cascading failures, large scale
disasters ...) and elucidates on different methods for increasing the resilience of communication
oriented networks, as well as describes the relation between these methods with the goal to
provide robust network services. Furthermore, ICN is put in close relation to P2P-networking
and fundamental named data routing principles are presented and discussed, thereby putting
emphasis on data routing on top of overlay networks (such as the widely researched P2P models).
Finally, the proposed resilience approach with respect to named data and overlay routing is
described: this approach to resilience is based on SDN4 and is a modern concept for network
control and management, which is presented later on in section 2.2.9. Network resilience in
conjunction with an SDN based control plane is also the main topic in [BDRG17]. The SDN
control plane is an extra substrate, which is separate from the data plane - solely responsible for
simple traffic forwarding - in the scope of SDN5. Thereby, the control plane contains special
components (SDN controllers) that steer a number of network elements with respect to a variety
of networking functions, such as routing, QoS, security, mobility etc. Given the fact that SDN is
of paramount importance for trends such as 5G, Mobile Broadband, (Mission-critical) IoT/M2M
and further, the network planning regarding the SDN controller components is of key relevance
for future resilient networks. Thereby, the placement of the controllers - i.e. which controllers
are responsible for which nodes and functions - is paramount for increasing the resilience of the
production network, also denoted as data plane in SDN. The SDN controller placement plays
a vital role when it comes to aspects such as latency for the communication between network
elements and controllers, reliability, scalability, and overall network performance. [BDRG17]
formally defines the controller placement problem (CPP) in relation to a set of metrics specified
within the same work. Subsequently, [BDRG17] applies optimization algorithms for the solution
of CPP with the goal of identifying solutions which can provide SDN controller placements
with maximal reliability and resilience awareness. Another modern resilience solution based on
SDN and NFV6 is given by the ANSWer7 framework for combining NFV and SDN for Network
Resilience strategies [MGSF16]. Thereby, a feedback (autonomic) control loop is realized
through the utilization of network virtualization and SDN controllers that steer the virtualized
network components. In that scope, ANSWer implements different monitoring procedures that

4SDN stands for Software Defined Networking
5More details on SDN are given in section 2.2.9.
6NFV stands for Network Functions Virtualization and is described in conjunction with SDN in 2.2.9
7ANSWer stands for Architecture for combined Network functions virtualization and SoftWarE-defined netwoRking

features
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gather statistics for numerical distributions with respect to relevant key performance indicators. In
case a particular threshold - with respect to the expected value and standard deviation of the KPI
distribution - is exceeded, ANSWer undertakes different mitigation actions which are realizable
based on SDN and NFV principles, e.g. different security/IDS/IPS/firewall types of actions to
handle a symptomatic erroneous state. Corresponding actions and strategies are elaborated in
detail in [MGSF16]. As a final exciting research reviewed in the selected sample: the resilience
of enterprise networks is the main focus of [Sam16]. Thereby, key resilience relevant parameters
of an enterprise network are steered and optimized based on corresponding utility functions and
algorithms utilizing biological principles as observed in the scope of aunt colony behaviors.
The main optimization activity relates to the dynamic reorganization of the enterprise network
infrastructures in logical clusters, which are further connected over a backbone network, with the
goal to improve the overall network resilience and influence aspects such as traffic congestion and
latency. Having reviewed various research efforts relating to Network Resilience, the following
section moves on with the topic of Network Disaster Recovery dealing with the reestablishment
of a network infrastructure after a catastrophic event.

2.2.2 Network Disaster Recovery

The topic of Network Disaster Recovery deals with methods and processes for restoring network
infrastructures following catastrophic events, such as terror attacks, earthquakes, flooding, war
situations etc. In such cases, the physical infrastructure is normally damaged to an extent that re-
quires the network operator to undertake immediate actions as to enroll some temporary resilient
solutions and connect the catastrophic area to nearest access to the global Internet/telecommunica-
tion network(s). The connection establishment is extremely important in order to restore commu-
nication capabilities and facilitate the emergency response teams in their vital work. Publications
such as [AMBK+07] [Mor11] [OWM11] [Ran11] describe the network operator’s view and es-
tablished processes with respect to Network Disaster Recovery. Thereby, [AMBK+07] describes
a 911-network on wheels solutions (911-NOW) that is intended to restore network connectivity
through wireless communication after a catastrophic event. Thereby, the network on wheels in-
corporates different types of technology, such as base station routers (BSR) not requiring any pre-
existing infrastructure combined with the deployment of various technologies on different ISO/OSI
layers, such as Mobile IP, Proxy Mobile IP, WiFi, WiMAX, and potentially Software Defined Ra-
dio (SDR), with the goal to provide capacity and coverage on-demand. Thereby, the BSRs and
the attached infrastructure are intended to have auto-configuration capabilities for aspects such as
addressing, routing and mobility. Furthermore, key challenges such as the network management
for a "network on wheels" providing a single-cell ad-hoc solution is elaborated, focusing on the
auto-configuration as a vital issue. Furthermore, [Mor11] describes the network emergency man-
agement procedures of AT&T8 aiming at fast and efficient Network Disaster Recovery. Indeed, the
AT&T implements a so-called network emergency management and business continuity program
that defines and supports the implementation of the network recovery procedures. This includes
sophisticated strategies realized during the network planning phase including network architec-
tures that support diverse network paths and automated rerouting for fast reactions to cable cuts or
node failures. In case of entire central office (or Network Operation Center) damages, special trail-
ers are instrumented which are operated by full-time and volunteer employes of AT&T. Indeed,
the AT&T Network Disaster Recovery fleet consists of various types of vehicles such as portable
COLTs (Cell On Light Truck), special vehicles for reestablishing network telephony functions

8AT&T is a large US network provider.
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such as PBX, or more comprehensive COW (Cell On Wheels) trucks. A remarkable deployment
of the AT&T fleet is given by the network damage response after the September 2001 World Trade
Center Disaster in New York, where a complete Network Operation Center was destroyed in one of
the WTC towers. The reaction processes are described in [Mor11] providing valuable insights with
respect to real world large scale Network Disaster Recovery. In addition, the emergency recovery
plans and procedures of Verizon9 are the topic of [OWM11]. [OWM11] provides fundamental
criteria for an efficient Network Disaster Recovery plan upon which the currently implemented
Verizon approach has been realized. This includes the definition of relevant KPIs with respect to
different areas such as financial implications as well as stakeholder and customer impact. The gen-
eral plan involves continuous management processes such as risk identification, risk mitigation,
risk elimination, business impact analysis and strategy and plan development/adaptation. All these
aspects are accommodated in a specially defined Emergency Operations Center (EOC) that can be
viewed as a separate function or functional unit within a network provider. It is also possible that
particular Network Operation Centers take over the role of an EOC for a corresponding damaged
area. The EOC is then responsible for coordinating the various mobile equipment carrying vehi-
cles (such as trailers, COLT, COW ...) towards the reestablishment of network connectivity and
services. Further items, which require to be managed (tracked) are given by the need for efficient
information distribution among the involved teams like expenditures and statistics related to the
recovery procedures. That implies the need for data management tools but also for real time com-
munication facilities such as conferencing systems etc. Moreover, [OWM11] elaborates on the
role of governmental institutions and the required collaborations between network operators and
public entities in the course of network recovery after a catastrophic event. In line with these valu-
able reports, [Ran11] analyzes the efforts and actions undertaken by Chinese telecom providers
and authorities after the devastating Wenchuan earthquake in 2008. Thereby, the priority was
initially set on restoring PSTN services in conjunction with the provisioning of wireless commu-
nication links, such that rescue teams can approach and coordinate over the large and severely
devastated earthquake area. The first challenge was to ensure the timely power and fuel supply
for the network and to remediate the network congestion resulting from traffic rerouting after the
experienced network damage. Afterwards, a three phase stage process was implemented: the first
stage being the restoration of communication services from the disaster areas to the outside world,
the second second being the reestablishing the communication on county level, and the third stage
being the complete restoration of the communication within the catastrophic area and the initia-
tion of network rebuilding processes. Thereby, the emergency equipment was delivered by army
helicopters, sometimes brought on vehicles or even by foot in order to establish communications
at the foremost edge of rescue operations. A couple of research areas are identified - as of 2011
based on the Wenchuan experiences - and are related to aspects such as information exchange, in-
formation processing, Software Defined Radio, sensor data, Machine-to-Machine communication
and further, which were addressed in the past years.

Looking at general scientific activities regarding network disaster recovery: various methods for
design and deployment of networks and services in emergency areas have been the topic of re-
search during the past years. [MSW16] deals with the aspect of requirements management and
selection for the design of a recovery capable networks and classes of applications/services.This
includes the description of a process for requirements handling and querying as well as the belong-
ing user interface to enable the requirements identification for Network Disaster Recovery, based
on the specifics of the particular network in question. In addition, [PLG+16] deals with the process
of virtual network embedding for efficient recovery of networks and services after a large scale dis-

9Verizon is another large scale US network service provider.
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aster. Since many applications and services are migrating to virtualized cloud infrastructure, there
is a need for smart deployment process for the belonging network structures and virtualized com-
ponents, such that a successful restoration strategy can be implemented. The intelligent placing of
virtualized components/links/services/apps and resulting recovery schemes are summarized under
the term Progressive Recovery [PLG+16]. [PLG+16] proposes belonging algorithms for data cen-
ters and networks in general and provides a proof of concept based on OPNET++ simulations.
A closely related approach is presented in [HGK16] where a method for deploying an emergency
service on a disaster recovery site is presented. This deployment is again guided by principles of
virtualization and auto-configuration, which are captured in a corresponding process. The goal is
to enable a resilient deployment of vital infrastructure for a potential catastrophic area.

Another interesting approach to Network Disaster Recovery is given by the idea to use mobile
phones in the catastrophic area for the purpose of establishing connectivity to a certain network
access point. Examples for research activities in this area are given by [PMT16] [LCP16] and
[MSBY16]. [PMT16] presents a model for establishing ad-hoc wireless networks (using on-site
mobile devices) and routing optimizations, which builds on a spanning tree multi-path routing
topology and load balancing, in order to avoid wireless link overloads whilst maximizing the
chance of traffic to successfully leave the catastrophic area. The proposed model leads to a linear
optimization problem which is correspondingly solved to achieve optimal routing configuration.
The model is validated and its feasibility shown in the scope of Matlab simulations. Moreover,
[LCP16] investigates on how different mobile devices can be automatically connected in order to
span the gap between a disaster area and a telecommunication network. For that reason, a system
called TeamPhone is proposed and prototyped consisting of two main components: 1) a messag-
ing systems taking care of basic connectivity in terms of ad-hoc networking thereby enabling the
communication across rescue teams, and 2) an emergency system called self-rescue that enables
the communication between rescue workers and trapped survivors that need to be dug out and/or
aided. In that line of thought, an architecture for on-site auto-configuration of mobile devices in
the scope of network disaster recovery is proposed in [MSBY16]. It includes various abstrac-
tions of stratums (i.e. communication layers) for the on-the-fly utilization of mobile devices and
wireless visualization techniques to establish required virtual wireless networks towards a network
access point. The key abstractions are referred to as WMCA (Wireless Multihop Communication
Abstraction) and TDRAN (Tree-based Disaster Recovery Access Network). The main goals of
the proposed architecture are given by the need to efficiently reestablish Internet connectivity, the
utilization of commodity mobile devices, and the need for easy to apply mechanisms to extend
an existing wireless network. Corresponding existing protocols (e.g. for auto-configuration or
routing) are reviewed and mapped to the layers and artifacts of the proposed framework. Further-
more, various required interaction flows are captured in the form of sequence diagrams towards
the provisioning of ad-hoc wireless communication infrastructure for rescue teams and survivors.

2.2.3 Network Management

Traditionally, network management deals with various configuration and monitoring aspects of a
network node/element as well as the network as a whole. Thereby, the management of specific (e.g.
coming from one vendor) network nodes/elements/devices is handled by so-called EMS (Element
Management Systems), whilst the management of the overall network is dealt with by Network
Management Systems (NMS) overseeing the overall infrastructure and normally integrating the
underlying EMS instances. In addition, different services and business aspects of a telecommu-
nication infrastructure are considered and managed on top of the EMS and NMS level. Thereby,
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the pure management systems are often denoted as Operation Support Systems (OSS) whilst the
business related activities are handled within the scope of so-called Business Management Sys-
tems (BSS). These concepts are mainly introduced and discussed within various standardization
and international fora, such as the Telecommunication Management Forum (TMF) [TMF17] with
its eTOM Bussines Process Framework [eTO17] and ITU-T [ITU17] with the belonging Telecom-
munication Management Network (TMN) standard [ITU00]. Thereby, as previously mentioned,
the TMN standard specifies the main goals of network management as handling the processes of
Fault-, Configuration-, Accounting-, Performance-, and Security-Management - some of which
are further discussed and developed across the current thesis. In addition, the ISO20000 based
ITIL [ISO11] standard for the management of IT systems should be mentioned. It defines a va-
riety of procedures and reports on best practices relating to Service Design, Service Operation,
Change Management and Incident Management, to give some examples. Typical protocols imple-
menting different aspects of the above discussed management architectures are given by SNMP
[Sta98], Remote Network MONitoring (RMON) [Sta98], Common Management Information Pro-
tocol (CMIP) [Bla94], and the Network Configuration Protocol (NETCONF) [EBBS11], to name
some of the most prominent examples. Furthermore, the topic of network monitoring plays an
important role in enabling the implementation of the variety of management architectures and ap-
proaches. Prominent protocols are given by SNMP and belonging MIBs [Sta98], NetFlow [Cla04],
IPFix [Cla08], and the PCAP (Packet Capture library) [PCA17].

Beyond the above listed traditional network management standards and protocols, the concept of
In-Network Management has been developed in the scope of different European projects, such as
FP7 4WARD [4WA17], FP7 AutoI [Aut17a] and FP7 UniverSelf [Uni17]. Thereby, the idea of
In-Network Management is closely related to the topic of Autonomic Computing and Autonomic
Network Management as reviewed in section 2.2.4. The basic idea is to enable the integration of
different management components, mechanisms, and protocols, including management modules
(e.g. agents) inside the devices. Based on this integration, it is intended to provide an in-built man-
agement functionality across multiple levels that extends into the OSS/BSS architectures, thereby
increasing the level of self-management and reducing OPEX, whilst meeting pre-defined Service
Level Agreements at the same time. Thus, autonomic concepts such as feedback control loops
can be utilized and various aspects like self-healing and self-configuration (e.g. Plug-and-Play
for network devices) realized in the scope of In-Network Management. All these considerations
have close relation to research domains such as distributed network management, as reviewed
in the coming paragraphs. In addition, architectures and design concepts like 4D [GHM+05],
"Knowledge Plane for the Internet" [CPRW03] and CONMan (Complexity Oblivious Network
Management) [BF06] aim at defining design principles for network protocols and components
that increase the level of manageability and control for distributed architectures. Thereby, these
approaches define different information sharing principles (e.g. Dissemination Plane [GHM+05]
or Knowledge Plane [CPRW03]) and various decision points where intelligent and integrated sys-
tem management is to be implemented - for instance based on cognitive systems [CPRW03].

Recent development in network management very often move towards accelerating and simpli-
fying involved aspects and processes. [CLCG15] describes a network management system im-
plementing the concept of auto-configuration for various heterogeneous devices. This includes
the identification of new devices once brought into the system as well as the determination of
management aspects for these devices, which are to be handled by the belonging network/systems
management infrastructure. These processes encompass tasks such as the discovery of relevant
characteristics of the network nodes (e.g. processor type, deployed software, NIC types ...) and
the subsequent download of relevant management policies based on the discovered characteris-
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tics. [LCCG17] constitutes a similar approach for the management of various types and classes
of network and application/service topologies, including traditional TCP/IP networks as well as
domain specific networks (e.g. field buses such as SCADA, CAN, ...). Thereby, the devices in
question have the possibility to be part of an auto-discovery procedure which is in turn concluded
by the download and application of required management policies to special network management
nodes, from which the network is monitored and steered.

The usage of mobile agents10 to perform network management tasks is one of the traditional
research topics in the area of network management with [BPW98], [KX02] and [DLC03] pro-
viding typical examples. [BPW98] discusses the application areas of mobile agents for network
management. Thereby, special properties of software agents are pointed out and a so-called nav-
igation model is proposed that determines the mobile agents’ behavior whilst conducting its as-
signed tasks. The usage of mobile agents is elucidated in the light of the FCAPS framework and
the application to each of the frameworks’ domains correspondingly discussed. Thereby, differ-
ent technologies are considered for tackling tasks related to Fault-Management, Configuration-
Management etc. For instance, the usage of SNMP [Sta98] and Corba/IDL. [KX02] constitutes
another classical architecture utilizing mobile agents with the goal to increase the scalability of
network management processes, mainly SNMP based centralized approaches. Hence, the so-
called MAN - Mobile Agent Network Management framework - is devised. The MAN combines
SNMP with a distributed mobile agent based approach. The main idea is as follows: instead of pe-
riodically querying a node from a centralized location, mobile agents are prepared/pre-configured
and sent to the node in question, in order to locally gather and analyze information. Thereby,
they interact with the local SNMP agent and can implement different filters, analysis algorithms
or even re-configuration schemes for the local device. Subsequently, the results from the local
activities (e.g. monitoring information) are communicated back to the Network Management Sys-
tem and made available to the network operations personnel. [DLC03] provides an overview of
the usage of mobile agents for distributed network management, again with goal to remediate the
scalability issues of centralized network management with the growing number of network seg-
ments to be managed. The mobile agents approach is meant to: 1) conserve network bandwidth by
2) reducing network management traffic and 3) increase management efficiency by bringing the
management activities as close as possible to the devices whilst implementing aspects like data ag-
gregation or network analysis within the local mobile agents. The utilized technologies are given
by SNMP and RMON [Sta98], whereby the SNMP MIBs are grouped and hierarchically analyzed
for an improved handling in the scope of distributed network management. Another version of
distributed network management is given by the utilization of P2P infrastructures as described
in [BTadG+05]. Thereby, DHTs (Distributed Hash Tables) are used in a P2P-overlay in order
to store management information and enable the indexing and localization of pre-configured net-
work management agents. DHTs are self-organizing overlays spanning over the physical network
and in that case facilitate the coordination between agents, in order to perform different moni-
toring tasks, e.g. related to Fault- or Performance-Management. Again, the goal is to overcome
the limitations of centralized network management by providing a flexible machinery addressing
various tasks (especially monitoring) for the FCAPS areas. Examples of monitoring agents and
tasks are given by the gathering of NIC-status information, DHCP-status information, connection
status, DNS configurations etc. Finally, [KF13] represents a new wave of approaches to network
management, which utilize aspects from the area of Software Defined Networking (elaborated in
detail later in this chapter). Thereby, [KF13] elaborates on the challenges to traditional network
management and argues that the vendor specific configurations of devices and fast changes of

10A detailed classification of the various types of mobile agents is given in section 2.2.8
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networking conditions are among the largest challenges. Hence, the SDN concept could be used
to quickly react to network condition changes whilst at the same time provide a unified interface
for management policies which are to be supplied by the network operations personnel. Indeed,
[KF13] elucidates on the role of different layers and planes in the scope of network management
and proposes a high-level policy language to utilize in that context. Having presented different
research and development activities in the area of network management, the next section proceeds
with the closely related topics of Autonomic Computing and Networking.

2.2.4 Autonomic Computing and Networking

The vision of Autonomic Computing and Networking has been strongly pursued in the first decade
of the 21st century. Indeed, a number of research activities including large scale scientific pro-
grams were launched as to improve the self-manageability of emerging systems and networks
through the introduction of autonomic entities and protocols implementing feedback control loops.
Thereby, the IBM white paper [ibm05] on autonomics can be seen as one of the starting points for
research and development in the are of Autonomic Computing and Networking. [ibm05] defines
a four self-* features which should be implemented by an autonomic system, i.e. self-healing,
self-optimization, self-configuration and self-protection (relating to security aspects). Indeed, the
aspects of self-healing and self-optimization are at the heart of the current thesis and are thoroughly
reviewed in the coming chapter 3 on self-healing and chapter 4 on self-optimization. In order to
achieve these properties of an autonomic system, feedback control loops are proposed as the main
ingredient to implementing behaviors regulating a variety of system/network operational aspects.
Thereby, [ibm05] proposes a generic feedback control loop model for autonomic systems, which
is presented in Figure 2.2. The model basically describes the phases of a control loop implemented
by an Autonomic Manager that steers the operations of a Managed Element (e.g. a network pro-
tocol). To achieve this, the Autonomic Manager uses so-called Sensors in order to monitor the
Managed Element. Subsequently, the monitored data is analyzed and a plan is obtained as to how
to adjust relevant parameters of the Managed Resources. Finally, the planned actions are executed
on the Managed Element over an Effectors interface, in order to complete the feedback control loop
structure. Thereby, different types of Knowledge are at the heart of the proposed control structure
in Figure 2.2. This might include various operational artifacts such as Fault-Propagation Models,
Causality Models, Dependability Models and others, which are handled in the scope of the current
thesis. Further aspects of the IBM MAPE control loop are discussed on various occasions across
the thesis.

Based on the above presented initial considerations of [ibm05], a number of conceptual works
[SAL06] [DDF+06] [KC03] [ea06] [CAS16] [DAS09] [BJT+10] discussed and derived ap-
proaches to achieving autonomic network and systems’ management. In general, these works
define the self-* features which they perceive an autonomic system should provide (i.e. self-
optimization, self-healing ...) and characterize those. Furthermore, the corresponding control loop
phases are presented and defined in a specific manner thereby mapping different technologies
to the feedback control steps - e.g. policies [SAL06] [DAS09] or executable plans [ea06]
[CAS16]. Moreover, various layers of control loop interactions are often specified as in the case
of [SAL06]. In addition, approaches such as the Autonomic Network Architecture [BJT+10]
aim at re-designing and extending traditional protocols and network infrastructures with intrinsic
interfaces and hooks (e.g. sensor and effector interfaces - see Figure 2.2) as to facilitate increased
manageability and correspondingly the implementation of autonomic behaviors. Many of these
research and development concepts emerged in the scope of relevant fora and standardization
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Figure 2.2: The MAPE Control Loop for Autonomic Computing as defined by IBM and intro-
duced in [ibm05]

activities such as the Autonomic Communication Forum [DPF+08].

The ETSI GANA approach [MCR+16] is another standardization activity that aims at providing
a unified framework for implementing autonomic behaviors and autonomic network management
in general. Thereby, the key elements are given by the concept of a Decision Element (DE) and
a Management Entity (ME). A DE is an entity implementing a feedback control loop in a similar
fashion as mandated by the IBM MAPE control loop thereby managing an assigned ME. The DEs
are structured in a number of layers spanning across the node and network architecture as a whole.
These layers are named as follows: 1) Protocol Level - control loops embedded within protocol
entities (e.g. as in the case of OSPF), 2) Function Level - containing Decision Elements managing
specific functions within a node, e.g. Routing DE, Forwarding DE, Mobility DE ..., 3) Node Level
- contains a single Node Level Decision Element overseeing the overall node on top of the Func-
tion Level DEs, and 4) Network Level DEs - centralized DEs or decentralized overlays of DEs
that manage the overall network with respect to required networking functions. Inline with these
layers, the ETSI GANA approach [MCR+16] explores ways of integrating Autonomic Network
Management with Software Defined Networking and Network Functions Virtualization.

The following paragraph presents examples of applying Autonomic Computing and Networking
principles to the emerging 5G mobile network technology as well as to wireless network in general.
The GogNet architecture for Network Management featuring cognitive capabilities is designed in
[XAY+16]. GogNet is meant to boost the management and control of 5G mobile networks where
large amounts of traffic are expected, since periodic sensor data is also expected to play a role in
addition to traditional human-to-human communication. This will be supplemented by enabling
the connectivity of large number of devices reaching high levels of complexity and traffic volume.
Hence, the work of the accompanying CogNet H2020 project aims at mastering the complexity of
emerging 5G networks by introducing autonomic mechanisms with respect to organization, config-
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uration, security, and optimization issues. This is achieved by introducing autonomic mechanisms
in the scope of NFV and SDN, which are described in the coming sections. The mechanisms are
based on policies - i.e. a Policy Manager component is in place, a Data Collector, and a CogNet
Smart Engine providing possibilities to apply different machine learning algorithms in order to
optimize the applied mechanisms and policies. It is worth mentioning that the whole machinery
is implemented within the ETSI NFV architectural framework [NFV12]. [NCC+16] is another
approach to Autonomic Management for 5G network by exploiting the power of the NFV/SDN
trends as described in section 2.2.9.The resulting reference architecture is called SELFNET and
is divided into Infrastructure Layer, Virtualized Network Layer, SON Control Layer, SON Auto-
nomic Layer, NFV Orchestration & Management Layer, and Access Layer. The layers are devised
taking into account the basic NFV principles as presented in [NFV12] and aim at reducing OPEX
and CAPEX for the emerging 5G infrastructure, which is meant to facilitate advanced scenarios
such as self-driving cars, 3D video, Machine-2-Machine (M2M) communication and further.The
autonomic management of wireless networks is at the heart of [KT16]. The proposition is to
implement autonomic network management and policy execution for wireless environments by
decomposing the network in a number of layers - i.e. policy, cluster, cell and user layers. A hy-
brid self-learning procedure is presented that uses learning algorithms on the various levels of the
network architecture. Thereby, the learning algorithms on different layers influence each other,
in order to achieve a global optimum of the undertaken optimization of different KPIs. Indeed,
principles from the domain of game theory are applied for that purpose such that an equilibrium
of the overall system can be achieved.

Finally, [SC15] reviews approaches to Autonomic Resource Management for cloud computing
providers. The paper reviews the historical aspects of Autonomic Computing and advocates for
autonomic mechanisms based on the strong usage of virtualization techniques on different layers
of the cloud computing stack, i.e. IaaS, PaaS and SaaS. The reviewed techniques for autonomic
resource management relate to learning mechanisms combined with resource provisioning and
scheduling techniques. The main objective is to introduce autonomic functionalities - i.e. self-
configuration, self-optimization, self-healing, and self-protection - in order to support a cloud
computing provider in meeting its contractual Service Level Agreements. Thereby, different life-
cycle phases of a cloud computing services are analyzed - ranging from Application Design, Work-
load Scheduling, Ressource Allocation, (QoS parameters) Monitoring, and Self-Management on
various cloud computing stack layers. For each of the phases different publications and approaches
are listed and referred.

2.2.5 Control Theory

Traditional control theory aims at defining a mathematical model that allows to control a (contin-
uous) dynamic system [HDPT04]. Key constructs are given by the concept of a closed control
loop that uses sensors to obtain and communicate measurement data to a controller, which in
turn computes some required corrections in order to reasonably regulate the system parameters
in question. Thereby, the computation within the controller is based on a so-called transfer func-
tion [HDPT04]. Various models can be used as transfer functions, e.g. computational paradigms
from the area of statistical/machine learning such as Support Vector Machines, Neural Networks
or Markov Decision Processes. In many traditional cases, control loops based on simply regulat-
ing the difference between measured and desired system parameter values can be quite effective.
When regulating this difference, the history of previous measurements and regulative control ac-
tions can be taken into account resulting in integral type of transfer functions, such as the pro-
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portional–integral–derivative controller (PID controller) [HDPT04]. Furthermore, based on such
continuous integral based functions, it is possible to apply Laplace transformations and handle the
transfer functions in a mathematic space where various control loop properties can be easily cal-
culated and analyzed. Typical control loop properties of interest are given by Stability, Accuracy,
Settling Time - time for reaching the required parameter values after a regulative influence - and
maximum Overshoot for a targeted value after a control loop regulation [HDPT04]. In addition,
various tools are available for modeling feedback control loops in terms of traditional control the-
ory and simulating those, in order to examine the above properties. Well-known tool platforms
are given by Modelica [TDW+14], Matlab Simulink [MAT16] and Octave [OCT16]. Research
such as [TDW+14] deals with the seamless integration of such tools towards enabling the possi-
bility to efficiently model and simulate the dynamic system in question (e.g. car cruise controller).
Traditional control theory is reviewed and relevant concepts adopted for key components of the
emerging FDH framework throughout this thesis.

In the following paragraph, a number of recent approaches to control systems’ design are re-
viewed. [Kaw17] introduces a method to controlling dynamic systems based on uniformly hyper-
bolic control theory. Thereby, the uniformly hyperbolic control concept from the mathematical
area of non-linear dynamics optimization is combined with traditional control theory, in order to
increase the controllability, robustness and practical stabilization features for networked control
loops. In that context, a uniformly hyperbolic system - operating in discrete time - is character-
ized by the split of a complex non-linear system in linear operators with belonging stable and
unstable components. This separation allows for better understanding of the dynamic system in
question and allows for addressing particular pain points whilst adapting the controller model and
improving its overall quality. The book [SPS00] elucidates on optimal control theory that aims
to achieve certain goals (i.e. optimize utility functions) whilst at the same time regulating the
dynamics of the controlled system. The presentation includes a summary of the main character-
istics of traditional and optimal control theory and their generic application to dynamic systems
that evolve over time. These systems can be described by different models including continuous
time models (i.e. differential equations) as well as discrete time models (i.e. difference/recurrence
equations). In addition the different possible constraints, whilst exercising optimal control, are
discussed together with the strongly related topic of control stability and correspondingly stabil-
ity of the overall dynamic system. All these aspects are presented in the light of applying the
reviewed concepts to various domains of importance, including production, finance, economics,
marketing and of course computer science. In [FMA+15], the synergies between the domains
of software engineering and traditional control theory are investigated. Hence, the authors ar-
gue that the software engineering community has proposed various ways to enable software to
monitor itself and undertake belonging actions depending on the monitored values. Beyond this,
the authors of [FMA+15] argue that concepts from the area of traditional control theory should
be extensively used within MAPE types of control loops, in order to extract and design suitable
controllers for autonomic entities. Thereby, the reader is guided through the process of controller
design and analysis based on steps such as transfer function design, stability analysis, overshoot
and settling time goals. Within this scope, different tools from both domains - control theory and
software engineering - are combined such as discrete Markov Chains, Linear Regression Analysis,
and Event-Condition-Action rules. [CXG17] constitutes a typical research of applying concepts
from the mathematical area of non-linear optimization for achieving optimal control of dynamic
systems. In [CXG17], a switched non-linear system controller is derived based on a class of func-
tions, called Lyaponov functions. These are special functions with well-defined properties (such
as being continuous, having continuous derivatives ...) that - when used for modeling systems of
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differential equations for a dynamic system - guarantee the stability of the overall set of differen-
tial equations. Hence, [CXG17] models dynamic systems by splitting the overall challenge into
smaller ones and switching between different Lyaponov function based models for the smaller
parts of the system. [BBM98] proposes a generic framework for deriving systems based on hy-
brid optimal control principles. Again, in this approach continuous control loops are wrapped in
logical decision programs in the sense that a hierarchy of control loops is implemented - a higher
level containing a state machine type of model and a lower level controlling the actual entities in
place through a continuous loop. Hence, an interacting collection of dynamical systems emerges
in such a setup. As a result, a theory for synthesizing such hybrid multi-layer collaborative con-
trol loops is introduced. The effort boils down to a generic mathematical model encompassing
different sets containing artifacts of relevance, such as states, continuous control models, jump re-
lations between different states and continuous models etc. The proposed framework can capture
a variety of mathematical constructs of relevance, such as differential equations, Petri nets, Tur-
ing machines etc. A control scheme based on synergetic control mixed with discrete-time linear
variation is researched on in [RASM17], in order to cope with potential unexpected disturbances
during a control loop operation. An abstract understanding of synergetic control explains it as an
interdisciplinary field related to non-equilibrium systems, which are influenced in a way as to in-
crease their robustness and stability. Hence, [RASM17] combines recurrence difference equations
(i.e. a form of discrete time "differential equations") with synergetic control and applies those to
control operational aspects of rotary electrical machines and the temperature of a continuous flow
stirred-tank reactor. The application of special online machine learning techniques in the scope of
an advanced controller behavior is at the heart of [XHLH13]. The main idea is to utilize online
learning approaches from machine learning - such as special types of neural networks or Markov
Decision processes - and combine those with sparse kernels. Sparse Kernels are a technique for
influencing the preprocessing of the involved data in a way that it is projected in suitable dimen-
sions/spaces thereby minimizing the computational complexity/effort for the preprocessing (i.e.
sparse). Indeed, reinforcement learning and Markov Decision processes are used as mathematical
models to cope with non-linear control problems using these enhancements.

2.2.6 Policy Based Network Management

In the current section, various available policy management frameworks are reviewed, which are
potentially relevant for different components of the emerging self-healing framework. The result-
ing insights are utilized later on (in the design and specification chapters), in order to specify and
implement an applicable policy handling module to be employed for the belonging tasks of the
FDH self-healing framework.

CIM : The Common Information Model (CIM) [CIM16] is discussed, developed and standardized
at the Distributed Management Task Force (DMTF) [DMT17]. CIM is worked on and enhanced
with the ambition to turn into a common standard for the management of ICT based systems. It is
intended to provide the means for establishing a unified, vendor and platform independent interface
for handling distributed systems and applications. Thereby, CIM addresses the fields of network,
system and service/application management. The CIM data model is described in the DTMF’s
specific Managed Object Format, which is based on the IDL (Interface Description Language)
[OMG04] associated with CORBA [HS15]. Beyond these generic considerations, with respect to
policies, CIM offers a specially designed policy language called CIM-SPL (CIM Simplified Policy
Language) [CIM09], which is intended to provide an easy-to-use basis for the specification and
management of whole policy sets. Similar to the overall CIM model, the goal of CIMP-SPL is to
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offer a tool for the efficient management of distributed systems, in that case with the focus on pol-
icy based management (e.g. automatic reactions, filter rules, resource access regulation ...). The
core aspect of CIM-SPL is constituted by the possibility to define if-condition-then-action types of
policies towards handling various operational challenges in networks and distributed systems (e.g.
access control and packet filters). Thereby, during the emergence of CIM, different concepts and
understandings were considered, which have already been discussed and established in the scope
of IETF. For example, common definitions are taken into account which relate to relevant termi-
nology elucidated by belonging IETF standards [WSS+01]. Thereby, a policy is elaborated as "A
definite goal, course or method of action to guide and determine present and future decisions", to
mention the concept at the heart of the current discussion.

The information model that embeds CIM-SPL is given by artifacts, which are contained in the ex-
isting CIM Policy Model. The latter implies that CIM-SPL related concepts and classes constitute
specifications (inheritances) from existing CIM concepts. Indeed, a policy rule in the scope of
CIM-SPL is derived from the class CIM PolicyRule and is called CIM SPL PolicyRule [CIM09]
The CIM SPL PolicyRule contains a string attribute, which is denoted as PolicyString and stores
a policy that is defined in CIM-SPL. Beyond the above considerations, the management of poli-
cies within CIM embeds aspects such as Policy Sets, Policy Groups, PolicyTimePeriodConditions
etc. These concepts are essential for organizing and managing the overall set of policies for a
system/network.

The resulting framework of CIM based classes together with CIM-SPL facilitates the definition
of policies using a (CIM-SPL based) language for boolean expressions and constraints. These are
evaluated according to the specifics and properties of a particular context/situation. The evaluation
of the boolean constraints results in a decision leading to the execution of management activities
on the system/network in question. For more details on the CIM-SPL grammar, the reader is
referred to [CIM09].

IETF Policy Core Information Model : The IETF Policy Core Information Model is defined in
[MESW01]. It aims at capturing the basic concepts for the definition of policies and specifies
an extensive policy model, which can be used for implementing a policy based network manage-
ment solution. Indeed, the model in [MESW01] is an extension of the CIM-Policy Model, which
was discussed above.

[MESW01] provides a number of definitions and diagrams with corresponding relations among
the involved concepts, which constitute the IETF Policy Core Information Model as a whole.
Thereby, concepts such as Policy Rules, Policy Conditions, Time Periods, Policy Actions as well
as means for grouping, organizing and managing policies are introduced. Furthermore, other im-
portant aspects such as Policy Decision Points (PDP) and Policy Enforcement Points (PEP) are
introduced. Thereby, a PDP stands for a point where a policy is evaluated and a decision is taken,
whilst the PEP constitutes the location at which the resulting action is executed, resulting in the
enforcement of the policy. Thereby, a PDP and PEP might be residing in the same device, but
can also be physically separated, in order to delegate the resource consuming process of policy
evaluation to a more powerful node that is not concerned or involved in vital network functions
like routing or forwarding of packets. The aspects of PDP and PEP, along with the concept of a
Policy Repository, are paramount for the application and deployment of policies for policy based
network and systems’ management.

ACL : ACL [Shi07] stands for Access Control Lists and constitutes a software based approach to
managing and regulating the access to IT and network resources. The aspects of resource access
are determined by the usage of policies, which can be defined via different policy languages/frame-
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works (e.g. Ponder that is presented later on in this chapter). Examples for resources requiring
access regulations/restrictions are typically given by entries/files stored in a file system, databases,
as well as packet forwarding rules of a router. For instance, within Cisco routers, it is possible to
employ ACL concepts [ACL17], in order to block/restrict and regulate the forwarding and routing
of (IP-)packets depending on some high level security considerations, which were analyzed in the
scope of the management processes for the network/system in question.

COPS: COPS [Her00] is an abbreviation for Common Open Policy Service and is an IETF based
framework for implementing Quality of Service, e.g. on top of best-effort11 networks like Internet
Autonomous Systems, thereby efficiently distributing [HRM+01] and enabling the instrumentation
of additional QoS policies across the network. In this line of thought, COPS defines the signaling
mechanisms and the involved components towards the deployment and steering of a QoS ma-
chinery in packet based networks. Key designated COPS components are given by the PEP -
Policy Enforcement Point - and the PDP - Policy Decision Point, which generally acts as a Policy
Server storing the policies and evaluating them according to the current conditions and requests.
Thereby, COPS utilizes the traditional client-server model whereby the PEP acts as a client and
the PDP as a server being requested to evaluate particular policies (e.g. admission control rules
and constraints in the scope of RSVP12-Integrated Services13 ). For instance, in the RSVP context
the PEP is given by the RSPV-Router. Furthermore, efforts - e.g. [BJP05] and [AMB02] - were
in place to facilitate the usage of COPS with DiffServ [WCW+98], which is the alternative IETF
QoS technology to Integrated Services. In the scope of DiffServ, the routers decide on the QoS
prioritization of an IP-packet based on information carried in the IP packet header, i.e. there is no
pre-reservation of network resources for serving the needs of currently running applications. The
integration of DiffServ and COPS typically requires the consumption of monitoring information
and the adaptation of the COPS-policies for the involved routers [AMB02].

DEN-ng: DEN-ng is another framework for policy based network management which is applied
in the area of network and systems management [Str02] [BDJS10] [Str03a]. DEN-ng stands for
Directory Enabled Networks- new generation and provides an information model and a policy
model addressing various topics relating to the management of networks and systems - e.g. con-
figuration aspects. As presented in [Str02], DEN-ng comes with the following understanding of
the term policy - "a definite goal, course, or method of action to guide and determine present and
future decisions. Policies are implemented or executed within a particular context". [Str02]. Fur-
thermore, additional aspects of a policy are elucidated as "A policy condition is a representation
of the necessary state and/or prerequisites that define whether a policy rule’s actions should be
performed. A policy action defines what is to be done to enforce a policy rule when its condi-
tions are met." [Str02]. Correspondingly, DEN-ng provides the possibility to specify sophisticated
Event- Condition-Action policies for the management of IT and network resources. This involves
for example the usage and instrumentation of a variety of context information as well as timing
constraints such as time periods.

Another important aspect that comes with DEN-ng is the idea of the so-called policy continuum
[DJS07] allowing for different views on the management policies for a network. The DEN-ng
policy continuum is illustrated in Figure 2.3 with its different views including Service Level Agree-

11Best-effort relates to networks without any or with only minimal intrinsic QoS instrumentation
12RSVP [BZB+97] stands for Resource ReSerVation Protocol and is a QoS protocol for guaranteeing traffic and

service quality based on the pre-allocation of resources in service provider networks
13Integrated Services or IntServ [Wro97] is an IETF QoS framework that defines the principles for resource reserva-

tion across a network with the goal to provide guaranteed network characteristics for particular classes of applications
and services
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ments, Guidelines and Goals within the Business View, and boiling down to the instance specific
policy considerations on the lowest level (i.e. the Instance View) in Figure 2.3 , which are con-
cerned with aspects such as device specific MIBs (Monitoring Information Bases), CLIs (Com-
mand Line Interfaces) and PIBs (Policy Information Bases)14. The policy continuum provides a
conceptual framework for the understanding of the term policies on different organizational and
technical levels of network management. Furthermore, research efforts such as [DJS07] aim at
formalizing these views and providing the possibility to manage, author and efficiently analyze
policies on different levels.

Figure 2.3: The DEN-ng Policy Continuum as depicted in [DJS07]

DEN-ng is strongly related and has largely influenced the SID (Shared Information & Data Model)
[SID17b] [SID17a] initiative of the Telecommunications Management Forum [TMF17]. SID and
DEN-ng are both based on UML, which implies that the incorporated policy related concepts are
UML compliant too.

Finally, it should be noticed that DEN-ng is at the heart of the FOCALE [SAL06] architecture for
autonomic networking, which was presented and discussed on in section 2.2.4. More detailed in-
formation on DEN-ng can be found in the diverse literature on policy based network management
such as [Str03b].

iptables : The next selected framework to present - embedding policy alike concepts - is given by
the iptables [NET17] tool, which is available within Linux. iptables is constituted by a standard
Linux program running in user space - i.e. on top of the kernel/core operating system software
- and facilitating the definition of filters and chains of rules which can be applied and influence
different phases of the packet processing. Key packet processing phases are given by: PREROUT-
ING - all packets in a network element/device have to pass this phase that allows for implementing
policies before a packet gets dispatched on its way - i.e. before a routing decision for a network
interface card, FORWARD - this phase is relevant for applying policies to all packets which are
forwarded through a device (a router) in the sense that they arrive over a NIC and are pushed to an-
other NIC after a routing decision has been made15, INPUT - the phase facilitates the application

14PIBs [SM03] serve as a policy storage entity for the clients in a COPS policy provisioning environment.
15This characterization actually implies that packets passing through this phase cannot originate from device local
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of policies on packets as soon as they have arrived on a device over a network interface, OUTPUT
- the phase enables to influence (through iptables policy rules) packets which are leaving the de-
vice/node, and POSTROUTING - all packets in a network element/device pass through this phase
after a routing decision has been made. At these phases different actions can be configured for
traffic matched by specific filters. Key possible actions are given by ACCEPT - a packet can pass,
REJECT - a packet is to be rejected and an error packet should be sent out, LOG - a log entry is
created (typically using the syslog [SYS17] daemon of the operating system), DROP - a packet
is ignored and no response is further sent, REDIRECT - the destination address of the packet is
manipulated as to redirect it according to the requirements of a policy, and MASQUERADE - the
source address of a packet is changed before the packet leaving the device/node16. The variety of
the phases and the possible actions allows for introducing a large diversity of packet processing
chains and functionality based on packet/flow policy rules. These aspects can play a significant
role in the implementation and provisioning of UTM- boxes17 as well as for functions like NAT
(Network Address Translation ) [ES01].

XACML : The eXtensible Access Control Markup Language (XACML) [OAS17] is another policy
description language which is used for access control regulation. It is developed and standardized
within the OASIS18 consortium. XACML is constituted by an XML/XSD scheme that facilitates
the definition and processing of authorization policies. XACML aims at establishing common ter-
minology and understanding with respect to access control, as well as common open interfaces,
which would positively influence the interoperability of implementations of access control mod-
ules. In general, XACML relates to the insights and terminology which is laid down in [VCF+00].
[VCF+00] defines an authorization framework where key relevant aspects are elucidated as fol-
lows "A policy is retrieved by a Policy Retrieval Point (PRP) from a Policy Repository, evaluated
at a Policy Decision Point (PDP) or Policy Consumer, and enforced at a Policy Enforcement Point
(PEP) or Policy Target." [VCF+00]. XACML is received as being a suitable framework for im-
plementing the flexible ABAC (Attribute Based Access Control) [HFK+14] method [LZGC08].
ABAC implies that various attributes (small pieces of data) are attached to objects of interest/rel-
evance (e.g. user profile, action specification or resources). These attributes are correspondingly
used to determine whether a user has the right to access particular resources or to execute an action.
Based on ABAC principles, other access control methods such as RBAC (Role Based Access Con-
trol) [RBA10] can be realized by using XACML policy descriptions [LZGC08] [AHCBCD06].

In addition to the above described aspects of access control realization, various deployments and
research initiatives demonstrate the utilization of XACML in the scope of different domains. For
instance, [She09] discusses on the application of XACML for protecting Web Services. Further-
more, XACML is used for Access Control in Enterprise Networks [CDL+10] based on the TNC
(Trusted Network Connect) architecture of the Trusted Computing Group (TCG) [TCG17]. The
utilization of XACML towards the Policy Obligation based protection of distributed application-
s/services in the scope of Grid (Computing) and networking security is elucidated in [DKdLS08].
Thereby, the term Policy Obligation stands for and is understood as the fact that an "XACML policy
can also specify the Obligations as actions that must be taken on positive or negative authoriza-
tion decisions" [DKdLS08], thereby connecting the evaluation result of a policy to the consequent
execution of a required action. A final interesting example is given by the application of XACML

processes,
16This option can be used to implement NAT functionality within a router node.
17UTM stands for Unified Threat Management - a concept which implies the implementation of various intrusion

detection and prevention mechanisms in one box protecting a network infrastructure from external attacks.
18OASIS stands for Organization for the Advancement of Structured Information Standards and is a non-profit orga-

nization that standardizes and maintains various open formats (e.g. OpenDocument und DocBook).
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for the purpose of implementing QoS in (best-effort) IP networks. Thus, the QoS is implemented
using the principles of Integrated Services (i.e. IntServ) by utilizing the RSVP [BZB+97] proto-
col for that purpose. Thereby, the previously presented framework of COPS is used as a baseline
architecture within which XACML plays the role of a format for exchanging QoS and admission
control policies.

To round up the presentation of XACML related aspects: various frameworks for handling
XACML policies have been implemented and are currently available. Examples are given by
OpenAz [Ope17a], XEngine [XEn12] and the Enterprise Java XACML [ent12], to mention some
of the available XACML frameworks.

Ponder : Ponder [DDLS01] constitutes a language for specifying policies, which was developed
over a number of years at the Department of Computing of the Imperial College in London. In
addition to the policy description language, tools and services were developed that support the
Ponder based definition, analysis (e.g. in terms of consistency and conflicts) and deployment of
policies. As of the majority of the presented and available frameworks, one of the main goals
of Ponder is to provide a powerful and efficient framework for the provisioning of access control
rules/policies, e.g. for firewalls, file systems and data storage resources, as well as in the scope
of programming languages and execution environments such as the Java virtual machine. Ponder
achieves these aspects in a similar way as the other presented frameworks - by providing means
for specifying event triggered policies which issue actions based on some contextual/environmen-
tal conditions. Thereby, the evaluation of a policy implies the execution of an action, which was
already denoted above as a Policy Obligation.In the scope of Ponder, the understanding regarding
Policy Obligations is similar to the one in XACML and is described as policies that "...specify
the actions that must be performed by managers within the system when certain events occur and
provide the ability to respond to changing circumstances." [DDLS01]. As elucidated in [Pil04],
Ponder policies are "specified at a high-level of abstraction, then broken down internally into
simple rules. Finally, the policies are compiled and mapped to rules for the network devices".
Thereby, the compiled output embeds the specific features/aspects of a device, which are related
to policy obligation and action execution, e.g. specific SNMP MIBs or Command Line Interfaces.

Focusing further, beyond the general application of Ponder to access control and to the manage-
ment of networks and distributed systems, its developers intend for Ponder supporting the moni-
toring of particular security trends/violations and facilitating the analysis of significant observed/-
monitoring information for security purposes. Beyond the basic event-condition-action aspects,
other substantial features are for example given by the possibility to group policies depending on
their scope, target, or the role of the action executing entity, involved through the policy obligation
concept. In that scope, it is also possible to define and group policies in a way such that they pro-
vide a kind of library in terms of artifacts, which can be reused in various scenarios, situations and
network/system configurations. This enables Ponder to scale up in terms of the size and properties
of the managed network /system.

A Ponder2 toolkit [Pon17] was developed as a successor of the original one thereby using the expe-
riences and redesigning large parts of the initial software components of Ponder19. Thereby, Pon-
der2 claims to extend the scope beyond network and systems’ management by providing means
for implementing policies that can be used " at different levels of scale from small, embedded
devices to complex services and Virtual Organisations." [Pon17]. Additional interesting topics
around Ponder are for instance given by the fact that different policy models are implementable
through the use of the Ponder concepts. For instance, the work presented in [WS04] shows how

19In that case, the initial toolkit implementation is meant, which is not any more supported.
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the previously presented CIM-Policy Model can be realized by using Ponder.

PBR : Policy based Routing (PBR) [Bra89] denotes the concept of distributing policies across a
network, in order to facilitate the control of traffic flows. Such policies can be either employed
at the level of inter- as well as on the level of intra-domain routing. Thereby, it is possible to dy-
namically select the best Internet Autonomous System (AS) to which particular traffic should be
forwarded or to steer the traffic load within a particular AS network, in order to optimally utilize
the available resources (i.e. routers, switches, gateways, ...). There exist languages for PBR, such
as RPSL (Routing Policy Specification Language) [KBA+99], which allow the implementation
of rules for the above outlined dynamical steering of traffic. Examples for the implementation of
policy based routing are given by the PBR framework [PBR17], which is implemented in Cisco
routers, and by the corresponding Unix based tools (e.g. ipfw [IPF16]).

2.2.7 Dependable Systems

The concept of dependability and dependable systems has been the topic of many discussions
[Ran98] [Lap92] [ALRL04] [LAK92] [Wer07] [Ran98] within the research community. Many
of the core concepts (such as fault, error, failure, alarm ..) that the current thesis builds on have
been extensively discussed within the dependable systems community over the past years. [Ran98]
provides a comprehensive illustration of the key aspects related to dependability and to the topic
of this thesis. These key aspects are depicted in Figure 2.4 and provide an overall picture of the
various items related to the dependability of computing systems. Clearly, the current thesis deals
with a limited scope in comparison to the one depicted in Figure 2.4. Thereby, the scope excludes
to a large extent the aspects of Safety20 and Confidentiality, whilst at the same time dealing with
the rest of the topics in Figure 2.4, as discussed in section 2.1.
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Figure 2.4: The unifying Concept of Dependability as proposed by [Ran98]

Next, a comprehensive overview is provided, related to the topic of dependable systems. In
[YFN+14], the modeling of software reliability based on high-order Markov Chains is researched

20 Safety is mainly perceived as the safety of the persons dealing with a computing system.
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on. The authors provide a framework for describing different software components with their reli-
ability aspects as well as the probabilities for single module failures and the implication on related
system components. As mentioned above, the framework is based on Markov Chains of various
orders, i.e. number of failures or component failures influencing directly the failure of another
component or of the software in question as a whole. Indeed, the proposed approach allows for
theoretically evaluating the performance of a complex software system. The research presented
in [HDF16] deals with dependability aspects in the scope of the emerging and widely accepted
Software Defined Networks21. Thereby, the authors argue that eventough SDN allows for flexi-
ble network control and that way contributes to an increased dependability, the dependability of
the corresponding SDN controllers itself might become an issue for the overall network or sys-
tem. Therefore, a framework for assessing the criticality of a variety of involved SDN entities
is proposed with belonging models and algorithms for calculating and evaluating their reliability
in an SDN context. Indeed, the framework builds strongly on the fact that SDN based networks
are mostly virtualized and embeds various entities from the virtual machines domain into the
emerging models, such as virtual NIC,Open vSwitch and VM Instance in addition to traditional
non-virtualized entities like physical NIC, Linux Bridge and further. Correspondingly, the rela-
tions between the above entities are modeled within appropriate mathematical frameworks, such as
graphs and graph entropy setups, thereby executing relevant algorithms (such as PageRank [BP98]
algorithms of google) and evaluating the overall SDN dependability, e.g. with respect to the im-
portance/criticality of single entities and the overall system design. In the spirit of dependability
modeling, [NBM15] presents a recent development related to the concept of Fault-Tree-Analysis
(FTA) towards system dependability description and evaluation. The work encompasses the de-
velopment of an extended version of FTAs, which is also suitable for dynamic systems. In that
context, the term dynamic systems stands for systems where the components can have multiple
intertwined states (e.g. degradation, overload, ...). Hence, the components are not only in failed
or not failed state but exhibit different states and levels of operations. Indeed, [NBM15] extends
the FTA concept by such levels of operations and allows the corresponding dependability assess-
ments. These assessments/evaluations are realized based on suitable mathematical models such as
Colored Petri networks22. Moreover, [TGSB15] proposes the usage of Continuous Markov Chains
for evaluating the dependability of power networks. Based on carefully considered properties of
the power line and belonging maintenance procedures, different indicators of interest can be math-
ematically derived based on the underlying Markov Chain model - e.g. expected time spent in
system failure state or expected number of paths/transitions (can be also seen as a possible sce-
nario) leading to an error state. Such indicators allow evaluating the dependability of the power
network in question.

Complementing the above elucidations, the authors of [SWLVH13] present a software based ap-
proach for increasing the dependability of production automation systems thereby utilizing so-
called soft-sensors. Soft-sensors are virtual sensors taking into account different measured values
(from real physical sensors), in order to obtain/extrapolate the value of a further KPI. Thereby,
the goal is to enable production automation systems to reasonably react to sensor faults along the
production line. Typically, production lines are shut down for maintenance in the face of sensor
faults and questionable sensor values leading to outages and revenue loss in the production pro-
cess. Hence, carefully designed soft-sensors and belonging reconfigurations in case of malicious
physical sensors bear the potential to decrease downtime and increase revenue at the same time.

21Further details on Software Defined Networks and related concepts are given in section 2.2.9
22Traditional FTA approaches are based on Markov Chains for evaluating the overall system dependability with

respect to the captured fault-tree and belonging relations among the components.
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Therefore, [SWLVH13] proposes a model based approach to the design of soft-sensors considering
different aspects such as the analytical dependencies between physical sensors, process/machin-
ery constraints, as well as the precision of the involved physical sensor devices. The dependability
of Industrial Control Systems in terms of security is discussed in [KvdHK+14]. [KvdHK+14]
deals with the definition of the research direction and challenges’ identification as a whole. The
main insight is that industrial control systems focused mainly on safety hitherto, whilst the topic
of security was largely neglected. Just recently, the relevant industry and research community
realized that industrial automation is increasingly being realized by highly distributed architec-
tures often connected using traditional Internet type of communication technology. Hence, typi-
cal dependability and security issues emerge relating to aspects such as cyber security, integrity,
confidentiality, availability, the need for reliable and secure update processes as well as typical
management processes/tasks such as Fault-Management (e.g. inline with incident response). In
a similar scope, [EBG+15] deals with the dependability of wireless sensor nodes, which are used
for proactive maintenance and monitoring in industrial systems. In this line of thought, different
issues related to WSN are handled and reviewed followed by a discussion on typical techniques
for WSN based health management in industrial systems. Thereby, the health management is
highly dependent on the dependability of the WSN and the possible issues which can emerge and
need to be handled, such as timing problems (w.r.t. to sensors and measurements), security is-
sues (e.g. DDoS attacks, Man-in-the-Middle, Physical Attacks ...), operational challenges such
as battery lifetime optimization and further. In order to minimize the effect of such challenges
and properly analyze them, different techniques are reviewed and brought to the reader’s attention,
such as statistical approaches, Hidden Markov Models, model-based approaches and further. The
general dependability of embedded systems is at the heart of [GFN15]. Thereby, the aspects of
security and data privacy/protection are addressed along with classical aspects of dependability,
such as MTTR (Mean Time To Repair) and MTTF (Mean Time To Failure). Indeed, a methodol-
ogy is developed that incorporates the utilization of various metrics (i.e. multi-metrics approach)
for the overall system evaluation during the design phase and run-time as well. Privacy, security
and dependability metrics of relevance are defined and taken into account, e.g. on code, function
and system levels, or users’ location privacy. The multi-metrics approach allows for prioritizing
different aspects, in order to specify the desired form of dependability for the system in question.
[EdAG15] argues that the improved hardware design for embedded systems (achieved in the re-
cent years) brings a variety of new features such as logic density, reduced power consumption and
increased processing power. However, this comes at the cost of increased sensitivity of the logic
circuits and leads to so-called fugacious23 faults, which can be seen as an indication of imminent
failures of an embedded system (e.g. due to hardware issues). In response to that, [EdAG15]
proposes a VLSI design scheme for early detection of such faults towards increasing the depend-
ability of modern embedded systems. Thereby, various VLSI code artifacts are proposed in order
to detect corresponding faults as close as possible to the level of logical circuits. The design of
the dOSEK dependability-oriented kernel for a real time embedded operating system is the main
topic of [HLDL15] and [SBD+17]. dOSEK is aligned to the OSEK/AUTOSAR [AUT17b] stan-
dard from the automotive domain. dOSEK is in its core a software based concept/component for
reliable computing on top of unreliable hardware. The unreliability of the hardware may arise due
to various specifics of modern designs, such as shrinking sizes and operating voltages (more such
aspects were mentioned above), leading to transient failures, e.g. due to bit flips caused by the
chip structure and belonging magnetic fields. Hence, an operating system kernel such as dOSEK
would try to detect and avoid such type of hardware failures. Thereby, a special type of fault

23The fugacious faults in that sense stand for short disturbances in electric/magnetic signals.
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avoidance is realized, which is encoded in the dOSEK kernel (on top of a particular hardware
platform) during the software development process. Therefore, some key design/coding principles
are established such as "Minimize the time spent in system calls and the amount of volatile state,
especially of global state that is alive across system calls" [HLDL15], "Avoid indirections in the
code and data flow." [HLDL15], and "Assess the actual impact of any dependability measure early
and often." [HLDL15]. These basic principles are complemented by a continuous integration with
fault-injection testing for various HW specific problems as well with a completely static design
(e.g. well-known size of objects at compile time).

With respect to quality assurance, tools and processes for dependable systems design; [MMS+17]
presents the Mercury modeling environment that is especially focused on the topics of dependabil-
ity and performance of general systems. It allows for creating models - related to dependability
features - of systems and subsequently evaluating their dependability based on the derived models.
The mathematical foundations of the deployed models are given by a variety of mathematical/al-
gorithmic frameworks such as Stochastic Petri nets, Continuous Time Markov Chains, and Energy
Flow Models, to give some examples. The research presented in [GKT13] constitutes another ex-
citing work related to the topic of systematic fault-injection testing, in order to evaluate systems’
dependability. Thereby, the EDFI tool24 for designing effective general purpose fault-injection ex-
periments is presented. The authors argue that existing techniques and static presumptions applied
in the course of traditional code instrumentation - such as presuming static memory locations or
random fault-injection - constitute shortcomings that must be overcome. One possible approach
is to facilitate fault-injection during the run-time execution and inject the faults in an event driven
manner, which goes beyond the usual relying on code instrumentation but influences the execution
behavior with its underlying specifics as a whole. Moreover, [TÇE17] investigates the usage of
Colored Time Petri nets for modeling FTAs and evaluating the dependability of systems consist-
ing of multiple autonomous agents. Based on the required collaboration of the involved agents
towards the completion of a complex goal, the different tasks of the agents are modeled by col-
ored tokens in Petri networks with a time measurement extension, such that the overall system can
be simulated and its dependability improved. A survey on dependability assessment and testing
techniques based on fault-injection is provided in [NCM16]. The goal of [NCM16] is to support
research, development and industry in selecting an appropriate technique whilst striving to test and
ensure various dependability aspects of networks and systems in general. Some of the techniques
which are elucidated and compared in [NCM16] are given by: mutation testing, state models,
Markov Chains, FTAs, dependability benchmarking, architectural approaches to fault-injection
as well as various types of faults, which are to be introduced for dependability testing, such as
pointer errors, initialization errors, bit flips, code changes, interface or error injection. The re-
search in [SMTZ13] deals with the dependability of cloud computing system deployments in case
of natural disasters. Therefore, a highly dependable cloud infrastructure is to be deployed in mul-
tiple geographically distributed data centers. This implies that aspects such as state/information
or VM migration need to be modeled and evaluated in order to assess the overall dependability
subject to times/delays and distances among the involved data centers. The proposed modeling
and evaluation approach [SMTZ13] incorporates modularly composed dependability description-
s/models - based on so-called RBDs (Realiability Block Diagram) - which are evaluated using
Stochastic Petri nets.

In [cL08], the European ReSIST Network of Excellence presented its view on Resilience and its
relation to the concept of dependability. The elucidations are in line with the views presented in
this thesis. Thereby, key properties and relations among dependability and Resilience are estab-

24EDFI stands for Execution-Driven Fault Injection.
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lished by requirements such as the "persistence of service delivery that can be justifiably trusted,
when facing challenges" [cL08], the proactive avoidance of imminent failures, as well as the "per-
sistence of dependability, when facing challenges" [cL08]. In order to fulfill these requirements,
different design principles are proposed for achieving Resilience, e.g. adaptivity, evolvability
(i.e. the capability to deal with various types of long-term changes), and assessability in terms
of offline/pre-deployment verification and evaluation. [HBZ+14] proposes the concept of Multi-
Layer Dependability and correspondingly advocates for designing dependable systems based on a
cross-layer approach throughout the utilized hardware and software stacks. Thereby, the idea is to
adapt the different hardware and software layers to each other such that error propagation across
various layers and components can be avoided and erroneous states can be contained before lead-
ing to a large scale damage. In this line of thought, various layers are conceptualized and taken
into account such as Device and Circuit Layer, Compiler and Synthesis Layer as well as Runtime
System Layer, to name a few important layers.

The realization of dependability features through semi-automatic feedback control loops is the
topic of [FHH14]. Thereby, the semi-automatic aspect is especially addressed in [FHH14] by pro-
viding a "human in the loop" framework with comprehensive user interfaces that allows to involve
the operators of large scale software landscapes in the required maintenance routines and reactions
of the software components towards increased overall dependability. Furthermore, [PvHG14]
comes up with an approach to dependability (for component based software systems) by utilizing
online Failure-Prediction. For that purpose, different types of models are considered and designed,
such as an architectural model of the involved hardware and software components capturing the
dependability among them, a prediction model for each component containing the component’s
state and probability for a failure, as well as a prediction model for the overall system in ques-
tion. Hence, Continuous Markov Chains are utilized as an underlying mathematical model for
online failure management and prediction. The publication [CdLL+17] deals with robustness and
dependability for self-adaptive software systems, i.e. software systems implementing autonomic
control loops such as IBM MAPE. The goal of the proposed methodology is to detect design faults
whilst evaluating the robustness of the control loop in question. For that purpose, mutated input
probes are used as input for the control loop in a simulated environment. This leads to a robustness
testing framework for autonomic control loops (of software systems), which is applied on a case
study related to server load-balancing in data centers.The authors of [GVCR17] initiate a discus-
sion on open problems and corresponding solutions for software based dependability in distributed
systems25. In that scope, the focus is set on real-time aspects, security and software forensics, as
well as adaptive cyber-physical systems. Some of the identified problems and solutions are given
by the need for high quality system models, techniques for verification and validation, techniques
for secure real-time operation, as well as the management of inherent dynamic behaviours, to
name a few.

2.2.8 Agent Systems

A great deal of research was conducted in the area of agent based systems during the past decades.
Thereby, the initial idea was that software agents will dominate every aspect of our digital society
and will be as present as the WWW in people’s everyday life. Therefore, different application
domains and various types of agents were investigated, which has led to a large amount of con-
cepts and definitions as well as scenario identifications for agent based systems. For instance,
[JW96] discusses on different application areas for software agents, including Personal Informa-

25The discussion is based on contributions to a special issue of the Elsvier Journal of Systems Architecture.
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tion Management, Electronic Commerce, and Business Process Management. In order to fit to
the envisioned domains, different key properties are required for the concept of a software agent.
Indeed, an agent is viewed in many ways, e.g. as a permanent software component that establishes
human-like relations with other agents/humans thereby simply conducting tasks, which a human
might fulfill for another human. In that context, software agents are dedicated to a specific task
and are able to control their own decision making and acting by monitoring their environment/si-
tuation and trying to achieve some pre-defined objectives. Furthermore, the software agents are
classified as gopher agents, service performing agents, and predictive agents [JW96]. The go-
pher agents execute simple straightforward tasks based on pre-defined policies. Moreover, the
service performing agents execute more complex tasks in a narrowed domain, which constitute a
service for humans or other agents. Finally, the proactive agents perform various services with-
out being explicitly asked and proactively deliver results to other agents or to involved humans.
Thereby, the software agents are required to posses two characteristics based on their task or
type, i.e. Responsiveness and Proactiveness, which are both at the heart of an agent’s behavior.
A wide overview of the taxonomy of autonomous agents is also provided in [FG97]. Thereby,
eleven definitions of the agent concept are cited coming from different research and commercial
initiatives, including companies such as IBM. The commonality between all these definition is
that an agent is an entity that can observe its surrounding environment and can proactively act or
undertake adjustments upon environmental changes based on pre-supplied goals. According to
[FG97], to describe an agent five aspects of its operation need to be captured: 1) environment,
2) sensing capabilities, 3) actions, 4) drives or preferences also encoded in the agent’s goals, and
5) action selection procedures. Especially for autonomous agents, it is important to emphasize
that they execute concept behaviors based on their own agenda without any human intervention
during the operational phase. Furthermore, an interesting classification of agents is provided in-
cluding reactive, autonomous, goal-oriented, learning, and mobile agents to name some of the
most prominent classes. In the course of this, it is important to mention that one agent can com-
ply to multiple classes at the same time, i.e. it can be reactive, autonomous and learning whilst
striving to achieve its goals. In addition, the author of [Jen00] discusses on various advantages
of agent-based software engineering. Hence, different definitions of the software agent concept
are reviewed and a suitable one is selected and embedded into a canonical view of an agent based
system. The selected definition mainly establishes an agent as a software entity that can be placed
in an environment and can react in a flexible autonomous way towards achieving its pre-defined
objectives. The belonging canonical view of an agent based system frames the environment, in
which the agents operate, and their peering and hierarchical relationships, including organizational
grouping and interactions. Furthermore, the spheres of visibility and influence (i.e. domains of
operation) are defined as a concept, which is of great importance for the design of agent based
systems. Moreover, different advantages and disadvantages of agent based software engineering
are identified [Jen00]. Some main advantages are given by the agent oriented decomposition of
complex systems and the separation of complex tasks into multiple goals linked to the above ar-
eas of visibility and influence, as well as by the possibility to implement flexible management of
changing organizational structures among the involved agents. The main downside is provided by
the inherent unpredictability of agent based software systems, given the possibility for emerging
chaotic behaviors of such systems. Hence, one of the main challenges for agent based systems is
to ensure the overall stability despite disturbances and potential chaotic reactions of the involved
agents. This challenge is also addressed for the emerging self-healing framework in the course if
the current thesis.

The communication between software agents is one the key aspects when designing an agent
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based system. Different communication paradigms and protocols were used within various com-
munication and technological stacks - e.g. special control protocols such as ICMP or different
types of TLV26 encoded messages (as within SNMP). In that context, the pioneer research work
[GK94] discusses some general considerations and proposes belonging principles regarding an
Agent Communication Language. Thereby, agents are again considered as larger software enti-
ties running in different threads (however in the same memory space) or in different operating
system processes (i.e. in different memory spaces). The proposed concepts include components
and intermediate agents such as Wrapper, Transducer and Rewrite modules that enable the ex-
change between federated clusters of agents. The exemplified communication is captured in tex-
tual form following some formal grammar rules, which enable the parsing and interpretation of the
exchanged messages. [QMSW17] provides a survey relating to achieving consensus among the
involved agents in a distributed multi-agent system. Indeed, different types of consensus set-ups
might be occurring, like consensus based on environmental constraints (e.g. actuator saturation or
erroneous states), event based consensus where the agents need to converge to a common strategy
after being triggered by events, set-ups in which the involved agents can be either cooperative or
competitive by design, consensus among heterogeneous agents operating based on different con-
troller models, as well as consensus according to different economic goals and constraints. For
each of these consensus set-ups, appropriate (mathematical) models are reviewed and selected that
provide a framework for converging to a common behavioral strategy given that the agents have
been accordingly designed, as to follow the communication rules of the corresponding model. The
models have strong relation to the area of traditional control theory as described in [HDPT04]. In
a similar scope, [DL13] investigates the topic of multi-agent hybrid control for smart microgrids.
Thereby, the goal is to maintain the required voltages for an optimal operation with respect to eco-
nomical and environmental aspects. The involved agents are organized in three layers: 1) lower
level unit control agents - controlling the operation of involved energy sources and grid distribution
elements, 2) middle level coordinated control agents - establishing cooperative behaviors among
the lower level unit control agents, and 3) an upper level energy management agent - taking care
of higher level energy optimization strategies. Indeed, the different layers utilize various types of
models, in order to achieve their goal thereby implementing a hybrid control approach with re-
spect to the overall system. Traditional control theory is applied to the lower level unit controlling
agents, whilst the upper layers employ Petri nets (middle layer) and multi-objective optimization
for selecting the optimal energy optimization strategy within the upper level management agent.
The event-triggered hybrid control of an energy smart grid - utilizing the Internet for control sig-
naling messages - is at the heart of [DYHG17]. The main goal in that context is to reliably meet the
load demand with appropriate quality thereby dispatching energy according to the dynamics of the
energy network. Indeed, the increasing utilization of renewable energy sources can only be suc-
cessful, if appropriate load balancing and belonging required communication is implemented. A
possible realization on top of the global Internet is provided in [DYHG17] based on a multi-layer
architecture encompassing various agents operating based on hybrid control principles. Therefore,
Petri nets are again utilized for the automata and communication/collaboration part of the system,
whilst the agents underneath implement multiple cascading optimization control loops that are
triggered upon an event communication related to shifts in the energy load balance.

Regarding advanced agent based technologies and applications; [Pas16] introduces the Provalets
mobile agents. which constitute a new paradigm for rule based software agents that access data
based on pre-defined constraints, and further conduct semantic processing and inference based on
the Prova rule language [PRO13] and belonging processing engine. Thereby, the Provalets are

26TLV stands for Type-Length-Value.
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dynamically deployed as micro services into container environments such as OSGi and Docker.
[BCE+16] uses agents for implementing autonomic network management by utilizing MAPE con-
trol loops on top of a semantic infrastructure, i.e. a set of ontologies allowing for reasoning and
decision making. Furthermore, the ontological approach is combined with machine learning tech-
niques - to improve the ontological models - and with SDN/NFV27 control structures, in order
to efficiently realize the autonomic control functions. The authors of [GL16] implement a multi-
agent based system for supply chain management, which utilizes and processes large amounts of
information (i.e. data analytics is correspondingly applied). Thereby, the system is meant to act
similarly as traditional decision support systems that fuse large amounts of information and ex-
tract and propose corrective actions. Therefore, the focused supply chains need to be agile and
adhere to certain principles such as flexibility and responsiveness. In that scope, different agents
are responsible for managing aspects such as orders, procurement, production planing and further.
The extracted actions can be either suggested to the humans managing the supply management,
or can be automatically triggered when possible and appropriate, e.g. additional orders can be
automatically issued. Finally, an interesting application of multi-agent systems is given by the
utilization of agents for large scale distributed simulations of real world problems as researched
on in [RHLP16]. The authors of [RHLP16] argue that the dynamic systems’ simulation based
on differential equations (and/or difference equations) does not always explain the system in the
desired detail, given that the underlying differential equation models are not capable of capturing
every aspect in detail. Hence, a more detailed approach is possible if software agents are made
responsible for the simulation of a minimal part of the overall system thereby behaving according
to some basic rule of relevance for that system part. In addition, the results of the agents are com-
bined as to extrapolate and simulate the behavior of the overall system in the belonging situations.
[RHLP16] provides a comprehensive survey of the variety of agent based simulation platforms,
e.g. D-MASON [DMA16], Jade [JAD17], and Flames [FLA13].

2.2.9 Software Defined Networking and Network Functions Virtualization

The following sections describe the development and research efforts from the domains of Soft-
ware Defined Networking and Network Functions Virtualization. The flow is initiated by present-
ing the concepts and technologies around the topic of Software Defined Networking, including
aspects as Open Flow, network apps, programming languages, and quality assurance for Soft-
ware Defined Networking. Subsequently, the key topic of Network Functions Virtualization is
presented, and its combination and synergies with the idea of Software Defined Networking is
discussed in more detail.

2.2.9.1 Software Defined Networking

As a consequence of the above described efforts to improve network and systems’ management
and control, the concept of Software Defined Networking (SDN) has drawn the attention of in-
dustry and research during the past years. The cornerstone of SDN is given by the notion to have
an abstract architecture where the data traffic (i.e. data plane) - passing through (or reaching) a
network node - is separated from the control traffic and functions (i.e. from the control plane)
[ONF12]. The ONF (Open Networking Foundation) [ONF17] white paper [ONF12] discusses on
key characteristics of Software Defined Networking. The ONF abstract view on SDN is depicted
in Figure 2.5 that was adopted from the corresponding white paper [ONF12]. On the bottom

27The SDN/NFV concepts are discussed in the coming section.
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part of Figure 2.5, a set of network devices/nodes are depicted that belong to the infrastructure
layer, responsible for forwarding and routing of data traffic. These network devices/nodes pro-
vide standardized interfaces, which can be utilized in order to re-program and/or re-configure the
nodes/devices (and correspondingly the network segment) based on logic implemented within the
entities in the above control layer. The control layer can accommodate a large variety of SDN
based control modules for realizing different network functions. This may include functions such
as routing, QoS management, access control, security, packet inspection, etc. The disruptive ap-
proach - as compared to traditional networking - is constituted by the fact that within SDN the
control logic is not any more placed inside the network elements, but is instead delegated to a log-
ically centralized component, which oversees the overall network segment and exercises control
over all the nodes in question. This is indeed a substantial change as compared to legacy network
elements/nodes/devices, where functions such as routing (e.g. OSPF, RIP, ISIS, BGP ...) or QoS
(e.g. IntServ or DiffServ) are realized within the devices in a vendor specific manner.

Business Applications 

Network Device 

Network Device 

Network Device 

Network Device 

INFRASTRUCTURE LAYER 

CONTROL LAYER 

APPLICATION LAYER 

SDN Control Software 

Network Services 

API API API 

Control Data Plane Interface 
(e.g. OpenFlow) 

Figure 2.5: Abstracted Software Defined Networking Architecture as presented in [ONF12]

As mentioned above for the legacy approach to network management/control, the networking
functions (e.g. routing, QoS, traffic shaping, security ...) are normally realized in a vendor intrin-
sic interpretation of relevant standards. This becomes a circumstance when one tries to manage
these functions in association with different vendor’s devices. Thereby, the management inter-
faces (e.g. CLIs, SNMP MIBs/OIDs, NETCONF, REST, Remote Procedure Calls, ...) are so
diverse that difficulties and interoperability issues easily emerge. With the goal to improve the sit-
uation around above cumbersome circumstances, SDN requires the network devices to be simple
forwarding nodes, which provide standard unified interfaces/APIs. By using this APIs different
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networking functions can be programmed/implemented and realized by SDN controllers - i.e. by
so-called networking apps. Hence, the control functions - routing, QoS etc. - are delegated and
outsourced to a logically centralized layer on top of the infrastructure layer in Figure 2.5. This
setup facilitates the fast implementation and introduction of new network services and business
applications - refer to the application layer on top of the control layer in Figure 2.5. Indeed, in the
scope of SDN it should ideally only be required to implement the logic of the particular network
service and application on top of the abstracted API of the involved network nodes. The layered
illustration in Figure 2.5 outlines an ecosystem of SDN control software packages and business
applications thereby establishing parallels to the concept of apps, which has enabled massive in-
novations in the area of web and mobile computing.

In recent years, OpenFlow [Ope17b] has emerged as a first standard towards the implementation
of the above described SDN concepts. OpenFlow is being worked on in the scope of activities at
the Open Networking Foundation [ONF17] and has been first proposed by researchers that were
looking for possibilities to test experimental network architectures and behaviors in real world
network environments. Thereby, the initial proposition for a clean separation between data and
control planes was made as an enabler for handling the experimental traffic (for research trials)
separately from the production traffic of real university campus networks [MAB+08].This can be
easily realized based on SDN concepts where a controller would look for the experimental traf-
fic passing a router, analyze it and let it pass, whilst the real user packets remain untouched and
the network can continue serving its purposes. The basis for the proposed OpenFlow architecture
and approach was given by concepts, which were initially laid down in the scope of the Ethane
[CFP+07] network architecture for the efficient management of Ethernet switches in enterprise net-
works. Ethane can be seen as a first step towards SDN and increased programmability of network
devices and networks as a whole, thereby establishing a centralized layer that steers the overall set
of Ethernet switches in question. Coming back to OpenFlow, it facilitates the dynamic control of
different facets of packet forwarding, e.g. path setup through the network, packets dropping ac-
cording to particular policies, etc. In addition, a reference implementation [Ope11] of OpenFlow
is in place, which is provided by the Stanford University in the USA. With respect to combining
virtualization and SDN, the Open vSwitch (Open Virtual Switch) project [Ope16] has developed
a platform for establishing virtualized programmable networks thereby using different hypervisor
technologies such as KVM, VirtualBox etc. These OpenFlow implementations provide a solid set
of tools for experiments and trials with open source Linux based routers.

As OpenFlow was evolving and maturing as a standard during the years, a number of key vendors
(e.g. Cisco, HP, Huawei ...) started providing OpenFlow interfaces within their devices. This
automatically reveals and leads to the potential for developing different types of SDN control soft-
ware (see Figure 2.5). Such SDN controller software normally comes with a framework/libraries
for the fast implementation of OpenFlow based network services. Thereby, the SDN control soft-
ware facilitates the interaction with the OpenFlow interfaces of the network devices by providing
client side APIs. These controller frameworks enable the realization of services in different stan-
dard programming languages. The NOX SDN [GKP+08] [NOX17] framework provides means
for implementing C/C++ based controllers thereby utilizing the OpenFlow interfaces of a network
device. POX [POX17] is a Python derivative of NOX and is based on the core components of the
NOX implementation, in order to facilitate the development of platform agnostic SDN controllers.
The Trema [SJ17] [Tre17] OpenFlow framework allows for implementing OpenFlow based net-
work services/applications in C and Ruby. The Beacon SDN Controller [Eri13] [Bea17] software
constitutes a platform for the Java based implementation of OpenFlow controllers. Floodlight
[MA17] [Flo17] stands for another advanced SDN Java based controller, which can be utilized
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to exploit OpenFlow interfaces in conjunction with Open vSwitch, as well as to steer a variety of
non-virtualized ( i.e. physical) industrial devices. A further Java based SDN controller software
is given by Maestro [Cai12] [Mae17] - an SDN platform which is optimized to exploit parallelism
thereby improving the traffic handling on the level of single traffic flows. It is worth mentioning
that Maestro is especially optimized to run on multi-core systems, in order to efficiently control
the flows within an OpenFlow network. Finally, an example of a remarkable network service
based on the NOX SDN controller framework is constituted by RouteFlow [Rou17] [NRS+11].
RouteFlow realizes various traditional routing protocols on top of an OpenFlow network. There-
fore, the topology of the network in question is emulated in a MiniNet [MA17] [Min17] [LO15]
emulation environment. Furthermore, the traditional routing protocols (e.g. BGP, OSPF, RIP ..)
are setup to run in the emulated copy of the real network. In addition, the events and decisions of
the routing protocols from the emulation are intercepted and used to setup the forwarding tables of
the network devices in the real network, controlled by an OpenFlow service/app interacting with
the MiniNet based emulation and the real devices at the same time. The application of OpenFlow
to wireless mesh networks (among others) constitutes the main research activity of [DKB11] and
is also reviewed in [JK14]. Thereby, NOX is used to realize an OpenFlow based mobility solution
for the migration of IP addresses in case a client changes its position with respect to the mesh
access/entry point. Furthermore, [KAMH17] presents various approaches to the application of
SDN concepts and technologies to wireless sensor networks. Thereby a number of aspects such as
architectural considerations, protocols/standards, applications and security are discussed on and
challenges such as interoperability, routing, energy, mobility and localization are put into focus.
In the course of the discussion, a special emphasis is set on the specific role of SDN for improv-
ing the performance and management of wireless sensor networks. Next, various research efforts
are presented which are related to the design, specification, quality assurance and testing of SDN
based networks and services.

With respect to approaches to SDN controller design, specification and development:
[FGR+13],[MHFv16] and [FKM+16] elucidate on and propose different features for a pro-
gramming language to facilitate the efficient programming of SDN controllers utilizing OpenFlow
interfaces. The major factors to be considered are given by aspects such as traffic monitoring,
forwarding policies/behaviors/rules and corresponding updates in case of changes in the network
environment. These considerations result in the design of special languages for SDN, which
constitutes the main goal of the Frenetic project [Fre17]. Furthermore, the utilization of logic pro-
gramming for the development of OpenFlow controllers is researched on in [LWN+15][KRW12].
These discussions lead to the proposition of a programming language called Flog, which
facilitates the description of decision making strategies based on dynamically received events
from the data plane of an OpenFlow network. The challenge of implementing modular SDN
controllers is the main topic of [MRF+13]. Based on the Python programing language, the Pyretic
domain specific language for building modularized SDN controllers is proposed. Hence, the
dynamic composition of controllers based on various abstractions is possible. Such abstractions
are given for instance by an abstract packet model or topology, which a specific SDN module has
the capability to operate on. [SLBK13] deals with the application of OpenFlow and SDN for the
purposes of Cyber-Physical Systems. Indeed, the main contribution of [SLBK13] is constituted
by the investigation of approaches to the verification of various critical aspects of SDN and
OpenFlow controllers. This verification is achieved by the design and utilization of a specification
language called VML (Verificare Modeling Language), which is based on a combination of
different formal modeling techniques towards the design of verifiable OpenFlow controllers.

With respect to approaches to quality assurance for SDN controllers: [CVP+12] presents and pro-
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poses a framework - called NICE [NIC15] - for OpenFlow controllers testing. Thereby, NICE
utilizes methods from the domain of model checking, e.g. state space exploration in combination
with the execution of the controller code augmented by additional data (e.g. debug data inserted
during compile time), in order to test and find potential errors in an SDN controller. The methods
are applied in the scope of NOX based controllers and turn out to effectively increase the con-
troller quality within the experimental setup. The non-functional requirements of consistency and
scalability - mainly for SDN controllers updating the forwarding rules/policies across a network
- are the topic of [RFR+12], [RFRW11] and [HMR+15]. Thereby, the forwarding rules’ consis-
tency is guaranteed on packet and flow level, i.e. models are designed which ensure that whilst
the forwarding rules/policies are updated across the network, each packet is handled by only one
enclosed/self-contained set of rules within the whole network. Finally, Hedera [AFRR+10] is
another impressive research effort related to the design and implementation of an OpenFlow con-
troller for data centers. Hedera explicitly deals with the specific operational constraints that are
present within a data center. This includes topics such as energy consumption and special traffic
patterns resulting from common data center software/services.

2.2.9.2 SDN in combination with Network Functions Virtualization

Given the basis of SDN as described above, it is a natural extension to apply SDN in conjunc-
tion with the virtualization of network nodes and links, i.e. with virtualized networks as a whole.
Thereby, the community has introduced the term Network Functions Virtualization (NVF) for the
concept of providing network functions such as routing, QoS, mobility, NAT, IDS, IPS etc. in the
form of virtual machines/appliances. Once being virtualized, these functions are often referred to
as Virtual Network Functions (VNF) whereby the implementation is based on using a combination
of SDN with the power of hypervisor virtualization platforms. [HGJL15] discusses on key aspects
of NFV and reveals the potentials for innovation, as well as the challenges which emerge with
the extensive application of virtualization and NFV. Thereby, [HGJL15] summarizes the fact that
NFV decouples the software aspects of a networking function from the underlying hardware and
enables the dynamic composition of customer tackled network segments and services. Potential
use cases are identified including the virtualization of home and mobile core networks, e.g. the
Evolved Packet Core (EPC). The key technical requirements and challenges to the NFV approach
are listed thereby encompassing aspects such as performance, manageability, security, reliabil-
ity and stability. Further research and innovation challenges - related to the identified technical
requirements for NFV- are constituted by need for efficient methods for calculating an optimal
embedding/placement of VNFs and virtual networks on top of the physical hardware, the migra-
tion of virtual appliances in case of hardware malfunctioning, and the outsourcing of VNFs to
third parties. The reliability challenge for NFV is researched on in [CSI+14]. Given the fact that
the "softwarization" of networking functions naturally leads to reliability discussions similar to
those in traditional software and distributed systems approaches, [CSI+14] strives to develop a re-
liability assessment framework for NFV. The main focus is set on understanding the risks related
to NFV reliability and the possible mitigation strategies for containing the impact of faults spe-
cific to the virtualization technology in question. In that line of thought, the NFV ISG [NFV12]
of ETSI with its NFV Infrastructure (NFVI) ecosystem is presented and key architectural artifacts
are introduced, such as Virtual Network Container Interfaces - enabling the network virtualization
on top of the underlying hardware, or Compute Container Interfaces - the interfaces for virtualiz-
ing the computing power of the underlying hardware. Hence, various reliability requirements and
challenges - e.g. hardware faults - for these architectural artifacts are identified and fault-injection
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techniques for reliability testing and assessment are proposed. The emerging set of techniques
is evaluated in an industrial project involving a telecom infrastructure. Moreover, the authors of
[WRH+15] investigate and provide a solution for the NFV issue of performance. This is con-
ducted in the scope of a system called SDNFV, which is proposed by the authors, and constitutes
an effort for seamless integration of SDN and NFV principles28. The main tools - proposed by
[WRH+15] - for improving the performance of virtualized networks are given by zero-copy pro-
cedures for packet transfer between real hardware and the virtual machines, utilizing non-uniform
memory access (NUMA) for efficient process scheduling, exploiting multi-core CPU features as
well as the advantages of modern network interfaces with optimizations for hypervisors (e.g. with
respect to zero-copy procedures). Another approach for improving NFV performance is given by
[GLD+14]. Thereby, the focus is on middleboxes providing functions such as NAT, DPI, IPS/IDS
etc. The performance improvement is achieved through a consolidated framework that integrates
the hypervisor (OpenStack, KVM ..) with an FPGA (i.e. hardware) based approach to implement-
ing the required VNF for the middlebox in question. The overall approach is based on the above
mentioned NFVI architecture of ETSI.

In the previous paragraphs and sections, a number of standardization activities were mentioned.
[CMS+14] is an approach to bridging the various activities in the areas of autonomic networking,
SDN and NFV towards a unified framework for Autonomic Network Management and Control.
Thereby, the goal is to take the feedback control loops and architectures from the area of Auto-
nomic Networking (e.g. the ETSI AFI GANA architecture [MCR+16]) and to migrate and extend
them by mechanisms and architectural artifacts from the domains of NFV and SDN. Furthermore,
[CMS+14] strives to identify synergies with other cross-domain research areas, such as Model-
Driven-Engineering (MDE) for network controllers, as well as the utilization of advanced IPv6
mechanisms (e.g. addressing, routing, ICMPv6 based signaling ...) for the network layer.

A number of interesting surveys on SDN and NFV have been completed the last years giving a
nice overview of the sheer amount of research and development activities in this area. [LC15]
[MSG+16] [RPR16] are examples of such surveys providing a comprehensice overview. [LC15]
elucidates on important research and standardization efforts related to SDN and NFV, e.g. the ETSI
NFVI architecture. Furthermore, the relationships between SDN and NFV are presented including
a historical view of the evolution of these two technologies and their application to the domain of
middleboxes (e.g. NAT boxes). This includes examples for available middlebox solutions - such
as ClickOS [MAR+14] [MARH13], DPDK [DPD17], and NetVM [HRW15] - and their devel-
opment over the years. Furthermore, various applications are reviewed and elaborated with the
most notable being: Cloud Computing and Data Centers, Mobile Networks, and Enterprise Net-
works. [MSG+16] largely summarizes the survey results of the previous NFV and SDN reviews,
thereby adding some valuable information on possible business models in the emerging ecosys-
tem, including the possibilities for telecommunication service providers, infrastructure providers
(e.g. in the data center context), VNF providers and further. In addition, [MSG+16] reviews the
variety of standardization activities linked to NFV, such as IETF/IRTF groups [IET17a] [IET17b].
Finally, [RPR16] provides another exciting survey on the application of NFV and SDN in mobile
core networks, thereby combining these approaches with the long-term topic of SDR (Software
Defined Radio)29. Furthermore, [RPR16] describes the various SDN/NFV/SDR scenarios for a

28The SDNFV is once again based on previous authors’ work related to network virtualization and resulting in the
NetVM virtual server platform for network services.

29SDR stands for the idea to implement in software many of the hardware components which are in-place during
radio communication. This leads to interesting possibilities such as dynamic spectrum allocation for improved radio
frequency sharing.
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mobile network, such as C-RAN (Centralized Radio Access Network), V-RAN (Virtual Radio
Access Network), H-RAN (Heterogeneous Radio Access Network), and finally S-RAN (SDR Ac-
cess Network). Moreover, besides the survey aspects, an architecture is proposed that enables
the integration of SDN, SDR and NFV by utilizing and switching among different control/man-
agement protocols (XMPP, MIP, OpenFlow ...) depending on the specific task. A similar goal is
pursued in [SKGR15] where NFV, SDN and SDR are being integrated in a common framework
for improved controllability of 4G/5G network infrastructures.
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Chapter 3

The Self-Healing Function

This chapter aims at elaborating the self-healing function which is a key property and vision of
the proposed architectural framework. Thereby, the elaboration starts with presenting different
existing understandings of the term "self-healing function" and proceeds with describing the way
self-healing is realized in the scope of the current thesis.

3.1 Existing Understanding of Self-Healing

Self-healing is the key function of the technical framework proposed within this work. Therefore,
it is imperative to gain an impression of how self-healing was defined and perceived by various
research efforts and initiatives, including standardization and industrial activities.

Self-healing was defined as one of the key aspects of Autonomic Computing as introduced by the
belonging IBM white paper [ibm05] that pushed for various research efforts related to autonomics.
This research includes aspects of traditional IT management as well as Network Management of
Internet and telecom type of networks. As previously elaborated, the core concept of this white pa-
per is given by the MAPE (Monitor→Analyze→Plan→Execute) control loop that constitutes the
conceptual framework for implementing autonomic behaviors in that context. Correspondingly,
the IBM autonomics white paper defines self-healing as "To discover, diagnose, and act to pre-
vent disruptions." [ibm05], which is to be realized through corresponding MAPE control loops.
Drilling down beyond self-healing, [ibm05] defines the property of self-protection of a system.
This is formulated as "To anticipate, detect, identify, and protect against threats". This property
relates mainly to security issues regarding a network/system. Indeed, the framework proposed in
the current thesis is also meant to deal with security problems, which can be addressed by agent
based reactive and proactive mechanisms, i.e. the proposed framework can embed various tech-
niques and flows for Intrusion Detection or Intrusion Prevention. This means that the proposed
framework would offer the means to detect in a distributed manner anomalies that might indicate
a security attack, would correlate these symptoms and initiate a response as to protect the sys-
tem/network against the upcoming attack (e.g. DDoS). To tie up the link between self-healing
and self-protection as defined in [ibm05], the distributed framework proposed in this thesis fulfills
the self-healing as well as the self-protection definition from the IBM white paper [ibm05] on
Autonomic Computing.

Another basic research publication regarding Autonomic Computing - "The vision of autonomic
computing" by Kephart et. al. [KC03] - refers to self-healing as follows: "Autonomic comput-
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ing systems will detect, diagnose, and repair localized problems resulting from bugs or failures
in software and hardware, perhaps through a regression tester" [KC03] and further states that
an autonomic system operates and "... automatically detects, diagnoses, and repairs localized
software and hardware problems." [KC03]. Similarly as in the case of the IBM white paper, the
self-protection definition in [KC03] is very close to the self-healing one but with focus on security
issues, i.e. self-protection aims at mainly resolving security related attacks. This close relation is
further pursued in the current work given that the proposed framework for distributed self-healing
is also meant to deal with particular security problems, which are resolvable by means of software
agents running inside the nodes of a networked system.

Moving on to another notable research and standardization effort related to self-healing: 3GPP
has investigated and pushed towards standardization of different self-healing concepts in the scope
of SON (Self-Organizing Network). According to 3GPP, self-healing aspects are related to "Fea-
tures for automatic detection and removal of failures and automatic adjustment of parameters"
[3GP16a].

Thereby, the self-healing behaviors are captured in the form of self-healing concepts, use cases and
requirements in the belonging ETSI standards [3GP16b]. Indeed, each single self-healing behav-
ior is described as a scenario (use case), including the involved components (e.g. base stations, E-
UTRAN/EPC components, and logical functions) as well as the steps required to restore the 3GPP
access network functionality. To achieve this, a strict definition of self-healing is given which is
hierarchically built based on the definition of a Trigger Condition of Self-Healing (TCoSH), of
a Self-healing Process, and finally of the Self-healing Function itself. The TCoSH is defined as
follows [3GP16b]: "Trigger Condition of Self-Healing (TCoSH): it is the condition which is used
to judge whether a Self-healing Process needs to be started. This condition could be an alarm
or the detection of a fault." [3GP16b]. Based on the TCoSH, a definition of a Self-healing Pro-
cess is given [3GP16b] by "Self-healing Process: When a TCoSH is reached, particular action(s)
will be triggered to solve or mitigate the particular fault." [3GP16b], which in turn facilitates the
definition of the Self-healing Function that is of particular interest for this work: "Self-healing
Function: a Self -healing Function is to monitor a particular TCoSH and then, if necessary, to
trigger a Self-healing Process to solve or mitigate the particular fault." [3GP16b]. The goal of
this definition can be understood as to continuously monitor the condition of the access network
and to intelligently react in the face of challenges as to mitigate and/or resolve problems.

Focusing on traditional/legacy networking technologies, self-healing networks were a subject of
research and standardization especially with respect to self-healing rings as implemented in FDDI
[AJ94], SDH [ITU07], SONET [TEL09], and IEEE 802.5 Token Ring [LS98]. These networks
build on a ring infrastructure that provides the possibility to quickly re-route traffic over the al-
ternative ring path in case of a node or link failure. In addition, (G)MPLS network technology
[Man13] provides the possibility to setup various alternative paths for different types of traffic
(e.g. different classes), such that traffic can be quickly pushed to another route in case of link/n-
odes failures or QoS degradation in general. Hence, the understanding in that context is again
boiling down to the fast recovery of the network services and packet forwarding paths in the face
of failures.

C.J. Green discusses on protocols for a self-healing network in his research [Gre95]. In that scope,
self-healing is referred to as to "Provide fault tolerance, with the ability to detect congestion and
network faults rapidly and to implement alternate routes without delays for recomputation or hold-
down." [Gre95]. The focus of this early work is set on protocols on the network and transport layer,
thereby pointing to congestion, network faults (mainly link and node failures) as well as to the re-
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quired rerouting as the key properties of a self-healing network. The framework presented in the
current thesis extends this definition by addressing various types of faults - e.g. link/node failures,
configuration faults, emerging situations due to failed automations and others described in section
5.3 - in a cross-layered manner spanning the TCP/IP stack.

On the applications layer of the TCP/IP stack, a definition of self-healability is provided within the
reference model of the S-Cube (Software, Services and Systems) network of excellence [SCU16],
which aimed at establishing a research community for the topic of software services based on
Internet technology. The definition is provided in a belonging project deliverable [Del08] and de-
fines self-healibility as follows: "Self-Healability is the property that enables a system to perceive
that it is not operating correctly and, without human intervention, make the necessary adjustments
to restore itself to normality" [Del08]. This prescribes a clear need for a system to reduce (or
even) remove the human involvement in the process of restoring normal operation in the face of
challenging situations.

In his article "Self-healing Software" [Sah07], Goutam Kumar Saha discusses self-healing as fol-
lows: "Software which is capable of detecting and reacting to its malfunctions, is called self-
healing software. Such software system has the ability to examine its failures and to take ap-
propriate corrections. Self-Healing system must have knowledge about its expected behavior in
order to examine whether its actual behavior deviates from its expected behavior in relation of
the environment. Self-Healing system in general has similar objectives to the area of dependable
computing system. Techniques involved in self-healing are similar to those of dependable comput-
ing techniques but all dependable computing research areas are not self-healing." [Sah07]. The
especially interesting aspect of this definition is given by naming the link between self-healing
and the area of traditional dependable computing. Indeed, techniques and reaction schemes from
the area of dependable computing should be taken into account in the course of designing a self-
healing system/software. However, the above discussion/citation refers mainly to inbuilt features
within a software program - e.g. particular type of exception handling, whilst the research in this
thesis aims to establish an agent based framework, which should be aware of the expected normal
behavior of a particular distributed communication based system, and should strive to maintain it
and optimize its operation at the same time.

Based on the above understandings and definitions of self-healing, the next subsection elaborates
on how the self- healing function is realized within this work.

3.2 Self-Healing Function as Realized Within the Current Thesis

Given the reviewed understandings of self-healing, one can observe that they all involve two key
aspects, which are given by a proactive and a reactive self-healing behavior of the system in ques-
tion. That is, a self- healing system should be able to reactively deal with occurring challenges,
as well as to proactively anticipate and avoid impending problems. In this line of thought, the
current work builds on an abstract definition which meets the above key needs and was set in a
previous work of the author [TC10b] based on the fundamental definitions in [ibm05]. Hence, for
the purpose of this work self-healing is understood as follows:

To detect incidents such as adverse conditions, faults, errors, failures; diagnose, and act to
prevent or solve disruptions.

That is, on one hand a networked system equipped with self-healing mechanisms - given by the
emerging agent based framework - should try to automatically remediate future problems, whilst
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on the other hand it should detect, diagnose and remove faults, given that the detected/diagnosed
faults can be automatically resolved, or have their impact reduced to a minimum, by means of a
software-agent based framework.

The current thesis proposes to realize self-healing for a distributed networked system based on the
deployment of software agents in the network nodes. These software agents collaborate and imple-
ment self-healing in a distributed manner thereby fulfilling the above requirements for proactively
and reactively handling network/system challenges. Thus, the proposed framework implements a
distributed control loop, in which every node can implement reactive/ proactive schemes based on
information regarding faults, errors, failures and alarms, which is shared between the network de-
vices. Indeed, the current thesis devises a set of components which should be in place within each
node of a self-healable network/system. These components facilitate each device in the network

1. to monitor for anomalies and symptoms of faulty conditions.

Subsequently, the detected symptoms are pushed to a local agent that is generally responsible for:

2. disseminating the information among the involved network nodes.

Given that some incidents/symptoms where either locally detected or received from the network -
based on step (2) from above, these incidents are pushed to other software agents within a network
node, which are in turn responsible for:

3. issuing a fast reaction to the detected symptoms in order to mitigate their immediate impact

4. analyzing the symptoms w.r.t. to future potential fault activations and triggering a corre-
sponding action, and in parallel

5. analyzing the overall set of incidents (gathered across the network) in order to identify the
root cause(s) for the observed problems and

6. removing root cause(s) in the long-term operation of the network.

In this line of thought, the most important ingredient is given by the fact that steps (3), (4), (5) and
(6) are executed not only for the locally detected, but for the overall set of symptoms and incidents
which are observed across the network. This is enabled by the mechanisms for incident sharing
among the involved devices, which aim at delivering the detected information among the nodes in
question. This incident exchange operates whilst the network/system is facing challenges and/or
faulty conditions, and hence should be implemented in a way as to increase the probability for a
successful message delivery, given the problems faced by the network/system as a whole. More
details are given in the belonging chapters relating to incident information exchange.

Whilst realizing the above behaviors the components aim at synchronizing their actions towards
achieving optimal operation and striving to realize distributed self-healing in a way that provides
stable networking services and better QoS to the end user. These self-optimization aspects as well
as other self-optimization features of the proposed framework are elaborated in the next chapter.



Chapter 4

The Self-Optimization Function

Having presented the self-healing function, as understood within this thesis, the next step is to
introduce the self- optimization function, which is the second key feature of the proposed self-
healing framework. As in the previous chapter, the presentation starts with a discussion on exist-
ing definitions and understandings of the term self- optimization. Thereafter, the realization of the
self-optimization function within the proposed self-healing framework is elaborated.

4.1 Existing Understanding of Self-Optimization

Self-optimization is considered one of the key features of an autonomic system as introduced
within the fundamental IBM white paper [ibm05] on autonomics. According to [ibm05], self-
optimization should be realized through the use of MAPE (Monitor→Analyze→Plan→ Execute)
control loop structures. Such MAPE control loops constitute the means to meet the following
definition of self- optimization: "To tune resources and balance workloads to maximize the use of
information technology resources." [ibm05]. Obviously this definition focuses on the optimal uti-
lization of IT resources through the adjusting of corresponding parameters, which is also a vision
followed within the design of the emerging distributed framework for self-healing.

Another fundamental work in the area of autonomic computing that discusses on aspects of self-
optimization is given by [KC03]. This work refers to complex middleware or database systems
that "may have hundreds of tunable parameters that must be set correctly for the system to per-
form optimally" [KC03] and argues that only "few people know how to tune them" [KC03]. In
that scope, [KC03] defines the role of autonomic systems with respect to self-optimization: "Au-
tonomic systems will continually seek ways to improve their operation, identifying and seizing
opportunities to make themselves more efficient in performance or cost" [KC03]. The current
thesis clearly adopts this vision by devising a framework that tries to execute self-healing as to
not only repair basic network/system services, but also aims at restoring the system to an optimal
configuration, thereby avoiding inconsistencies and instabilities in the required and initiated self-
healing reactions. In addition, the proposed self-healing framework aims at optimizing its own
operations, e.g. when it comes to the monitoring overhead induced in the involved network nodes.

The emergence of 4G mobile networks was accompanied by a strong push towards the self -
optimization of the access network segment, which resulted in standards such as SON. Different
companies - e.g. vendors and consulting services - were engaging in that scope and were refining
the practical understanding of self-optimization in the light of 4G access network technology.

71



72 Chapter 4 The Self-Optimization Function

Referring to research efforts in the scope of 4G, an interesting work [HZZ+10] states that
self-optimization includes approaches "such as CCO" (Coverage and Capacity Optimization)
... "MRO" (Mobility Robustness Optimization) ... ", mobility load balancing, and interference
control", as standardized in LTE-Advanced. Thereby, this work elaborates on the introduction of
MAPE like control loops for self-optimization within the SON access network with the aim of
reducing OPEX and CAPEX.

Similarly as in the above research, the keywords and acronyms definition of 3GPP [3GP16a] re-
lates to self-optimization for 4G access networks as including "optimization of coverage, capacity,
handover and interference". However, the 4G approach is pretty tight to particular functions and
behaviors for self-optimization of the radio access technology. On the contrary, the current thesis
goes for an abstract approach that is generally applied for whatever type of self-healing actions
and behaviors are configured/realized by the proposed distributed framework. This can easily in-
corporate, but is not limited to, radio access network related self-healing and self-optimization
features.

4.2 Self-Optimization Function as Realized Within the Current The-
sis

The following paragraphs aim at elaborating the role of the self-optimization function within the
current thesis, i.e. in the course of the proposed architectural framework for distributed self-
healing.

Firstly, a definition is required which would introduce and identify the place of self-optimization
during the envisioned self-healing process. Based on the above understandings and definitions,
self-optimization is regarded as follows in the course of this work:

The proposed framework for self-healing aims at recovering the network/system functional-
ity in a way, and to a state, which is optimal for the network/system in question, such that it
can continue delivering its services from this state.

In addition, the proposed framework for self-healing should continuously seek to improve
its own operation in terms of recovery strategies and resource utilization (e.g. with respect
to overhead) within the network nodes.

The above understanding is based to a large extend on the definitions given in [ibm05] and [KC03],
and cited above. These definitions are combined and adapted to the context of the emerging frame-
work for distributed self-healing, where the self-optimization refers to the need to improve the
operation of the framework itself, while implementing self-healing behaviors within the network
nodes. In this line of thought, the self-optimization features of the emerging framework are listed
below:

Monitoring Job Parameters: The proposed framework for distributed self-healing relies heavily
on monitoring functions for the detection of symptoms of faulty conditions. These monitoring
functions induce some overhead in the devices and the network as a whole, e.g. memory usage
or bandwidth usage/overhead (in case of some active or passive network monitoring techniques).
Hence, in order to reduce this overhead, it is imperative to regulate and self-optimize with respect
to various parameters of the belonging monitoring jobs such as sampling rate, aggregation func-
tion parameters - in cases where several measured values are aggregated before further utilization,
or number of samples to keep track of in a node local database - this would need to be regulated
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in order to manage the amount of monitoring data stored within a node.

Fault-Propagation Model: The Fault-Propagation Model1 deployed across the network nodes
constitutes the key model that steers the Fault-Isolation process and determines the reactions of
the emerging self-healing framework. Naturally, a Fault-Propagation Model would be based on
some probabilistic framework (e.g. Bayesian Networks), which would isolate potential faults with
a certain probability. The self-healing framework would in turn check whether these faults are
indeed present and would also provide the possibility to implement mechanisms which could au-
tomatically adapt the Fault-Propagation Model instances in case the diagnosis results have turned
out to be incorrect. The adaptation would naturally consist of adjusting the probabilities in the
scope of the belonging probabilistic model.

Context-aware Self-healing Actions: The experiments that were conducted in the course of this
thesis have clearly shown the need for adapting the actions issued by the self-healing framework,
depending on particular context such as the history of executed actions. To justify that: for instance
it was experienced that restarting a particular type of Network Interface Card (as a self-healing ac-
tion) has led to a situation where the corresponding driver was not functioning properly and the
whole NIC or even node needed a restart, in order to resort from this erroneous state. Hence, it
is required to understand such situations and plug-in such context -aware self-healing behaviors
using the hooks provided by the proposed framework for distributed self-healing.

Selection of Optimal Tentative Actions: Various agents of the proposed framework, operating in
different nodes across the network, would plan some tentative actions in order to either realize
self-healing by executing some corrective actions or to regulate some aspects of the framework’s
operation (e.g. monitoring job parameters). These tentative actions require to be synchronized
among each other such that the right subset is selected, in order to recover the system to an opti-
mal state, as well as to converge and improve with respect to the best self-optimization actions for
the distributed framework itself. As a means to achieve this, a self-optimization model is put in
place that allows for selecting the optimal subset of tentative actions issued by the involved agents
( of the emerging self-healing framework) after having executed their belonging control loops.

Avoiding Contradictory Tentative Actions: The self-optimization function of the proposed
framework inherently takes care of avoiding contradicting tentative actions, which are either
related to self-healing or to optimizing the operation of the distributed self-healing framework.
Thereby, the contradictions are avoided based on the mechanisms for self-optimization provided
by the corresponding agent (later denoted as Self-Optimization Agent) of the framework within
each node. This means that the optimization of the state, to which the self-healing operations aim
to recover the network/system, turns to be the vehicle to achieve the avoidance of contradictory
self-healing measures across the distributed system or network. Thereby, actions are allowed or
disallowed based on a model for the self-optimization of tentative actions as proposed later on in
this thesis.

Having described the self-optimization features/function of the emerging framework for dis-
tributed self-healing, the next chapters proceed with designing the node and network level
components towards the realization of distributed self- healing with self-optimization aspects.
This includes the specification of the components, their interfaces and interactions, as well as the
algorithms which are required to implement scalable and efficient distributed self-healing with
self-optimization features.

1The model based on which network challenges are analyzed and the root causes identified.
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Chapter 5

Research Requirements Analysis

In this chapter1, a list of requirements is derived that determines various aspects, components and
mechanisms of the emerging FDH(Framework for Distributed Self-Healing). While it is a chal-
lenging task to capture all possible requirements, the list here was gradually enhanced in the course
of various activities - including large scale research projects on EU level - and constitutes an ex-
haustive set of aspects reflecting the plethora of issues related to self-healing. The requirements
that are presented in this chapter will drive, within the rest of this thesis, the definition of various
components and mechanisms addressing faults/errors/failures/alarms on node and network level.

First, a set of functional requirements for the FDH framework are given after a short discus-
sion, in which each of these requirements is motivated. Secondly, a number of non-functional
requirements are presented which concern various aspects of the operation of FDH. Such aspects
are given by the security of the framework, its scalability and overhead produced in the network
nodes. Finally, the different types of faulty conditions are outlined, which the emerging framework
for self-healing is meant to handle. This poses on one hand a set of requirements to be met by the
design of the FDH architectural framework, whilst on the other hand the list of the targeted faulty
conditions defines the operational scope of FDH.

5.1 Functional Requirements

The list of requirements derived in this section determines various aspects, components and mech-
anisms of the emerging framework for distributed self-healing. As previously mentioned, while
capturing all possible requirements towards such a framework constitutes an extremely challeng-
ing task, the current list was gradually updated and improved as a result of an extensive literature
review, as well as various discussions in the course of European projects, e.g. ANA [BJT+10]
[ANA16] and EFIPSANS [efi16a] [efi16b], plus discussions around emerging standardization ef-
forts in the area [SWC+12] [SWC+] [ETS13] [CWM+13]. Thus, the coming list can be considered
an exhaustive list reflecting the plethora of issues related to agent based self-healing in distributed
networked environments.

1The current chapter is based on initial considerations published in [TS14a].
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5.1.1 General Functional Requirements

First of all, the FDH must provide interfaces and components addressing the tasks of
Fault/Incident-Detection, Incident/Alarm-Dissemination across the network, Fault-Isolation,
and Fault-Removal. That is required, in order to enable the FDH to take care of faulty conditions
across the networked system in a distributed manner. Therefore, the presence of erroneous states
needs to be first detected and consequently disseminated to all FDH running nodes, such that the
overall set of FDH instances can react adequately. This reaction is meant to ultimately lead to the
removal of the root causes (Fault-Removal) for the observed symptoms. Thus, the root causes
must have been identified by corresponding components for Fault-Isolation, running within the
scope of the FDH instances in the network nodes. These considerations lead to the following
concrete requirement:

Req 1: The proposed architecture must define components and interfaces that target issues re-
lated to the processes of Fault-Detection, Incident/Alarm-Dissemination across the network,
Fault-Isolation, Fault-Removal, and Fault-Mitigation.

As mentioned above, the goal is to design a framework which operates in a distributed manner
with its components embedded within the network nodes. By devising the framework to operate
in a distributed manner, the traditional principles of network management are bridged, where net-
work management systems constitute centralized instances (e.g. SNMP type of network manage-
ment architectures). Such a distributed architecture for self-healing allows to reduce the overhead
of gathering related information at a central place, and facilitates the fast realization of resilient
mechanisms as close as possible to the network nodes. This results in the following requirement.

Req 2: The proposed framework should remove/mitigate problems operating as close as possible
to the device, thereby working in a distributed manner without (fully) relying on a central-
ized instance.

In the course of its distributed operation, the FDH components would require to access and mod-
ify various parameters and settings within a network node as well as the network as a whole. For
example, such exclusive access might be required in the course of Fault-Removal, i.e. whilst re-
moving the root cause of the observed set of symptoms, as well as during monitoring and verifying
the different steps of the FDH control loops’ executions. Therefore, the FDH entities within the
network nodes should be given exclusive access to every functional entity and resource inside a
device in order to manage it with respect to alarms and incidents, and thus enable the process of
distributed self- healing.

Req 3: The components of the architectural framework must be given exclusive access to all func-
tional entities and resources inside a node in order to manage them with respect to incidents
and alarms towards the realization of scalable and efficient distributed self-healing.

5.1.2 Monitoring Requirements

Within the emerging FDH, a monitoring component responsible for Fault-Detection as well as for
gathering general monitoring information is introduced in every networking device. This means
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that monitoring entities in multiple devices collaboratively monitor and process information re-
garding the involved network nodes. This implies a number of requirements, such as the need for
the monitoring agents (across the FDH nodes) to collaboratively detect faults and monitor various
key performance indicators, both on network level and inside a host/router. These considerations
result in the following requirements.

Req 4: Distributed monitoring realized by collaborative behaviors between different FDH mon-
itoring components is an essential aspect to be addressed by the monitoring parts of the
emerging self-healing framework.

Req 5: The Fault-Detection/monitoring aspects covered by the FDH monitoring components,
which are dispersed across the network, are given by the need to detect faults based on
diverse parameters within each single hosting node. In addition, the FDH monitoring com-
ponents inside a device should be able to monitor and detect faulty conditions based on
diverse aspects related to traffic which passes through the node.

Within the scope of the FDH, it is further essential that the monitoring components can serve
on-demand requests submitted by the various agents of the emerging framework. Thereby, the re-
quests should trigger the instrumentation of monitoring tools which gather information about (mul-
tiple) key performance indicators. Furthermore, the monitoring components of the FDH should
hide the complexity of orchestrating the required monitoring tools, whilst obtaining the belonging
KPI values and searching to detect erroneous states in the network. Following requirements arise
due to the above aspects.

Req 6: The FDH monitoring components inside a node should be able to accept and serve mon-
itoring requests submitted by another FDH agent or on demand by the network administra-
tor. That is, other autonomic agents should be able to request the FDH monitoring agent
to start/instrument different type of monitoring techniques, extract and analyze belonging
information, and finally recognize conditions (e.g. faults or any other situations worth dis-
seminating) which are to be described and conveyed back to the requesting entity.

Req 7: The FDH monitoring components inside a device should hide from a requesting agent
(in the sense of the previous requirement) the complexity of orchestrating monitoring tools.
That means, the requesting agent, should get notified of the requested monitoring informa-
tion or incidents without being involved in the specifics of the monitoring process/ activities
i.e. specific monitoring tools, protocols, information sources etc.

Moreover, the FDH needs to include a monitoring database in each node. This database should
keep important KPI measurements which should have been preprocessed/aggregated, in order to
reduce the total amount of measurements to a manageable and meaningful number.

Req 8: Each FDH node must keep a log (database) of the KPIs values monitored over a particular
time period.

Req 9: Aggregation of monitoring data should be part of the process of analyzing the data towards
detecting erroneous states and/or providing important KPI measurements for the requesting
agents.
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The extensibility of the FDH monitoring platform is very important, in order to implement the
efficient monitoring for different KPIs and to facilitate Fault-Detection for different types of faults
according to the specifics of the underlying network/system. On one hand, the extensibility re-
lates to extending the monitoring features of the platform, and on the other hand to providing
hooks for realizing self-optimization within the FDH monitoring components. That is, the latter
type of hooks would allow for dynamically instrumenting policies concerning aspects such as 1)
admission control for monitoring requests, 2) notification rates for requesting agents, and 3) adap-
tation of running monitoring services towards maximizing the effectiveness and minimizing the
overhead.

Req 10: The monitoring components should be easily extensible by different monitoring
features/plug-ins that allow acquiring information about diverse metrics and key perfor-
mance indicators towards the detection of faulty conditions. Examples of relevant metrics
and KPIs are given by: 1) one-way delay, 2) round-trip delay, 3) available bandwidth
towards some recipients, 4) CPU utilization (e.g. along a path), 5) utilization of the queues
in the routers along a path, 6) number of dropped packets on different layers (e.g. TX and
RX of a NIC) etc.

Req 11: The FDH monitoring components inside a node should provide hooks for supplying dif-
ferent types of policies and implementing different adaptive behaviors and mechanisms.
Such behaviors and mechanisms might be related to admission control with respect to re-
quests for establishing monitoring services, adaptation of monitoring services (e.g. sam-
pling rate), or escalation policies determining which values should be reported to the re-
questing agent.

The above requirements determine design of the FDH monitoring functions. Having detected an
incident, the FDH needs to disseminate the information to relevant FDH agents across the network,
which is the scope of next subsection.

5.1.3 Incident/Information Sharing Requirements

Once a faulty condition has been detected based on the above requirements, or an incident has been
recovered and a recovery notification is pending, the corresponding node components of FDH are
expected to step up and disseminate the information in question to all FDH instances across the
network. This implies that FDH should provide hooks to trigger incident information sharing and
additionally should put in place the components and mechanisms facilitating the exchange of vi-
tal self-healing information (e.g. incident description and incident recovery notifications). The
following paragraphs elucidate on and formulate requirements to these aspects.

An important aspect to be considered is that of the interfaces which are available for incident/al-
arm information sharing. That is, it should be possible to access the FDH over a well-defined
interface and submit information about any network/system malfunctioning. In this way, devel-
opers can implement software as to share information regarding erroneous states over the FDH,
and to support the framework in the course of achieving network resilience through agent based
self-healing. For example, a Java or C/C++ based service/application might be developed in a
way that in case of exceptions related to network resource unavailability, the situation is described
and the belonging information pushed to the FDH framework in order to support the distributed
self-healing. The same interfaces are to be used for alarm and incident sharing between the FDH
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components across the network in question, e.g. Fault-Detection entities operating as monitoring
plug-ins in the scope of FDH. Hence, the following requirement emerges.

Req 12: The architecture must provide components and interfaces to enable the collaborative
sharing of alarm/incident information inside a device and across the network.

Given the fact that in case of an erroneous state a large amount of incidents might emerge, the FDH
incident/information sharing mechanisms should be able to reduce the dissemination activities to
the most necessary ones. The task of reducing the amount of outage related information, which
is conveyed to the centralized Network Management System, is known under the term alarm sup-
pression [JWW94] in traditional network management. Thereby, different techniques are applied
in order to suppress irrelevant information/alarms, or information/alarms of minor importance,
along the hierarchy of devices and management systems underneath the centralized Network Op-
erations Center. In the case of FDH, a strong tool to reduce the amount of disseminated inci-
dents/information is constituted by the possibility to send particular messages only to those nodes,
which can adequately include the information in the belonging incident handling processes (e.g.
Fault-Isolation, Fault-Removal and Fault-Mitigation).

Req 13: The issue of "alarm suppression" must be addressed in the course of the process of al-
arm/incident dissemination. That is, alarm/incident descriptions should not be flooded to
all, but should only get conveyed to selected nodes, which have to be informed of, and/or
can benefit from the corresponding information.

Req 14: The employed dissemination techniques should be able to deliver incident notifications
to pre-defined groups of nodes, i.e. they must incorporate multicast mechanisms. Further-
more, the alarm/incident dissemination mechanisms should also have the ability to notify
entities residing on network nodes or end systems, which are not belonging to any multicast
group.

In general, the inter-node alarm/incident sharing mechanisms would be operating in the face of
challenging conditions whilst the network as a whole is trying to survive. Hence, these mech-
anisms would need to consider the increased probability of failing to deliver the required mes-
saged and should correspondingly try to remediate potential difficulties. This means that the al-
arm/incident information sharing - among the involved FDH nodes - should depend on the situation
in the network, as well as on the importance/severity of the alarm/incident to disseminate. Hence,
following requirements emerge.

Req 15: An appropriate alarm/incident dissemination strategy (among the FDH nodes) must be
selected according to: 1) the severity of the information to convey, and 2) the situation in
the local node and the network.

Req 16: In the context of employing unreliable communication protocols - for example (UDP on
top of) pure IPv6 multicast or unicast, the dissemination techniques should aim at increasing
the chances of the alarm/incident information to get conveyed to the intended recipients.

5.1.4 Incident Handling Requirements

Having covered the aspects of monitoring and self-healing related information dissemination, the
next step is constituted by defining requirements towards the way incidents are handled within
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the FDH nodes in a distributed manner. These requirements prepare the path towards efficient
distributed self-healing with self-optimization features.

The various symptoms, which are visible during an erroneous state, should be optimally analyzed,
in order to identify the belonging root cause(s) with the goal of eventually removing it/them. This
requires the process of Fault-Isolation to be supplied with models that facilitate it to quickly and ef-
ficiently identify faults based on the observations made across the network. In that line of thought,
for the purpose of Fault-Isolation, the causality relations (fault-propagation models) among the
observable symptoms (failures and alarms) and the internal propagation of events in terms of root
causes (faults) and errors should be taken into account. This would result in a Fault-Propagation
Model, which will be used for Fault-Isolation within the network devices.

Req 17: The framework must consider the causality relations (fault-propagation patterns) regard-
ing root causes (faults) and their propagation as one or many errors until eventually resulting
in observable symptoms (failures and alarms). These causality relations should be provided
as a Fault-Propagation Model based on which the process of Fault-Isolation would be real-
ized in the network nodes.

Once a Fault-Isolation result has been obtained based on the above Fault-Propagation Model, this
result must be verified. On one hand this requirement aims at avoiding consecutive actions based
on wrong information. On the other hand, by checking the quality of the obtained Fault-Isolation
results, the underlying Fault-Propagation Model can be improved in the long-term operation of the
network. These thoughts result in the following FDH requirement.

Req 18: The results of the Fault-Isolation process should be verified within the network nodes.

In the context of Fault-Removal, it is imperative that the framework takes into account the dynam-
ics of the node and the network with respect to the history of executed management actions. For
example, in some cases if a Network Interface Card (NIC) has been restarted a number of times,
the driver might not able to reinitialize after a next restart, and hence only the rebooting of a node
can be used as a last resort to restoring full functionality. Hence, in such cases the Fault-Removal
functions of FDH should be able to understand the situation and undertake the right action as to
restore full functionality.

Req 19: When executing Fault-Removal actions, the dynamics of the software and hardware com-
ponents with respect to the history of executed management actions should be taken into
account.

The FDH framework embeds different processes and belonging control loops (e.g. Fault-
Removal). These would mainly concern the handling of faulty conditions, but also the
optimization of the framework’s operations, e.g. the operational fine tuning of the monitoring
functions. Hence, all these control loops and their multiple instances - for example parallel
running Fault-Removal processes - must be synchronized and their tentative actions optimized,
in order to achieve an efficient FDH operation and increased QoS of the underlying network in
question. Therefore, in order to ensure the stability with respect to concurrently/parallel running
FDH processes and control loops (e.g. in a multi-threading environment), the FDH needs to
guarantee that the overall set of actions to be executed are synchronized towards a common goal
of improving the overall fitness of the network. Hence, a component is required that synchronizes,
in an appropriate way, the actions issued by diverse concurrent FDH processes.
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Req 20: The emerging architectural framework needs to ensure that the actions undertaken by
parallel FDH processes do not contradict each other and that the entire decision making
process effectively contributes to the overall fitness of the network.

In addition, after executing a Fault-Removal action on a resource or managed functional entity, the
success of the action must be checked, in order to verify that the functionalities in question were
properly recovered. This would make the FDH framework aware of the success of its activities,
and will contribute to the stability of the architecture by providing means to assess the quality and
trends in the undertaken agent based managerial actions.

Req 21: The effectiveness of the undertaken Fault-Removal management actions must be as-
sessed.

Last but not least, the FDH instances in the network nodes across the network should be able
to self-assess and judge on whether they are successfully coping with the challenging conditions
the network is exposed to. Indeed, in situations where FDH is not able to remove faults and im-
prove the network operation, the issues should be escalated to the network operations personnel.
Thereby, all the relevant information should be forwarded to a centralized Network Management
System, such that the network administrators can analyze it beyond the capabilities of FDH. The
goal of the following requirement is to ensure that FDH keeps the human in the loop and does not
perform useless operations or even harm the network, in case it is incapable to address the current
challenges.

Req 22: The framework should be able to reason whether it is able to handle the overall set of
faulty conditions in the network, and in case it is not, to escalate the challenging situation to
the network operation personnel.

The functional requirements that were presented in this section will drive, within the next sections,
the definition of various components and mechanisms addressing faults/errors/failures/alarms on
node and network level.

5.2 Non-Functional Requirements

Non-functional requirements relate to the characteristics of the system’s operation in general. In
this line of thought, functional requirements specify the functionality of a system, whilst the non-
functional requirements describe the way these functionalities are executed and the system proper-
ties, which accompany its operation and contribution to an ecosystem. There are various standards
which specify the type of non-functional requirements to be covered while designing and imple-
menting a system [ISO01] [ISO10] [SB13]. Given the fact, that the current work focuses on the
research aspects relating to the emerging framework for distributed self-healing, non-functional re-
quirements looking at FDH as a product are omitted, e.g. usability, portability, and look and feel.
Instead the focus is set to requirements which are vital to be addressed by the research approach at
the pre-product/prototype phase - e.g. security, scalability, dependability, stability, efficiency and
overhead.

The first non-functional aspect to pay attention at is Security. In that scope, the FDH should be
designed in a way as to be secure against threats and manipulations. Especially, the traditional
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dimensions of security -Confidentiality, Integrity, and Availability (CIA) [LSG16] [GvSO01] -
should be taken into account, and the FDH should be able to employ mechanisms, which address
the above aspects. For example, the signaling mechanisms between the FDH instances should be
secured against manipulations, such that the FDH cannot be highjacked by hackers and turned
against the integrity of the underlying system/network. Furthermore, the availability of the FDH
instances, even in the face of challenges to the hosting network elements, should be considered
and addressed in the FDH designs. These considerations lead to the following requirement.

Req 23: The FDH framework should be designed in a way, such that vital security aspects are
covered and the framework instances do not open vulnerabilities that might be exploited
by attackers. Especially, the CIA aspects of security should be considered. Thereby, it is
important to ensure integrity and confidentiality with respect to the signaling information
flowing among FDH instances and components, as well as to take measures to sustain FDH
availability/services in the case of challenging situations2.

Secondly, the aspect of scalability needs to be elaborated on. Scalability is generally perceived as
the capability of a system to process growing number of inputs within a reasonable time/compu-
tational and space (e.g. memory) limits. Hence, it is imperative for the FDH to be able to process
growing numbers of events within acceptable limits in regard to computational and space (mem-
ory) complexity. This aspect relates mainly to the key mechanisms and algorithms, which will be
employed within the FDH instances.

Req 24: The distributed FDH control loops should be realized through scalable algorithms and
mechanisms, thereby allowing the FDH to process reasonably growing numbers of faults,
errors, failures, and alarms.

The issues of efficiency and overhead are closely related to the aspect of scalability. Indeed, it is
imperative that the FDH requires minimal CPU utilization and memory consumption for its op-
eration, even in the face of large numbers of incidents which need to be processed. In addition,
the execution times for the control loops should also stay minimal with a growing number of in-
cidents and size of the employed models (e.g. Fault-Propagation Model, Policy Models etc.). The
latter execution time aspect is very important, as to enable the FDH to quickly remove or mitigate
erroneous states and to help the operators provide an acceptable QoS even in the face of network
challenges.

Req 25: The components and phases of the FDH control loops should employ efficient algorithms
thereby reducing the FDH overhead in terms of memory consumption and CPU utilization
within a network node. In addition, the execution times of the FDH control loops should
remain reasonably minimal, whilst the size of the employed models (e.g. Fault-Propagation
Model) and the number of events to process in parallel might be growing.

With respect to dependability and stability: the FDH design should consider these aspects from
different angles. First of all, the FDH prototype should prove that such a framework can oper-
ate in a stable way in the long-term operation of the network, thereby removing/mitigating faults

2The current requirement is not thoroughly addressed in the scope of the current thesis, since the focus is mainly set
on capturing the overall requirements, devising the concepts/algorithms, and proving the applicability and benefits, as
well as the scalability of the emerging framework for self-healing.
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and supporting the network operations personnel to sustain a required QoS level. Furthermore,
it should be possible for the FDH to continue its operation even in the face of serious challenges
including the outage of hardware and software components, as well as in case that even parts of
the FDH itself have crashed. Moreover, the FDH design should take into account that the result-
ing actions, which are undertaken as measures to reduce the effect of or to completely remove
faults, might after all result in contradictions between single actions and even harm the overall
health of the network/system. Thus, the FDH specification should take into account the issue of
contradicting control loops and provide means to avoid such situations.

Req 26: Regarding dependability and stability in relation to FDH, the emerging framework
should be able to: 1) operate in a stable manner in the long-term operation of the net-
work/system and support the administrators towards sustaining a required QoS level, 2)
continue its operation in the face of network/system challenges even in case when parts
of the FDH itself have crashed, and 3) consider the issue of potential contradictions and
unwanted oscillations between managerial actions and provide means to avoid such.

Having captured the vital functional and non-functional requirements for the emerging framework
for distributed self- healing, the following section outlines the operations’ domain of FDH by clas-
sifying the different types of problems to be addressed by the framework. In addition, the role of
FDH is contrasted and put in relation to the way IT system and network components traditionally
address the particular type of problems.

5.3 Classification of Problems

The current section classifies the various types of erroneous states and problems which are to be
handled by the distributed FDH architecture. This classification outlines the scope of operation
of the emerging architectural framework and constitutes a requirement for it, i.e. FDH should
be designed in a way as to be able to handle the listed types of problems in an appropriate way.
Furthermore, appendix C shows some concrete examples of network problems, which can be seen
as instances of the classes of faulty conditions below.

Whilst presenting the different classes of faulty conditions and problems, the role of FDH based
self-healing in relation to the particular type of network challenge is also sketched. Furthermore,
the way standard Fault-tolerant Systems, Services and Protocols (in the following denoted as
Domain-FSSP) handle the particular type problems is contrasted to the way FDH deals with them
(denoted as Domain-FDH). This contrast is important as an attempt to draw a line between the
operational domain of FDH and the resilience features existing within existing network protocols,
services and applications.

5.3.1 Faults/Errors/ Failures detected at the Network Layer, Link and Physical
Layers

Domain-FSSP: Some protocols are designed with intrinsic mechanisms to detect faults/errors/fail-
ures and react by executing resilience and recovery mechanisms i.e. fault-tolerance mechanisms
and strategies, e.g. protection and restoration schemes in telecommunication networks [TH01],
[ITU98], [Aut03]. For example telecommunication protocols such as ATM, MPLS/IP-FR, and
SONET/SDH exhibit such resilience and recovery characteristics [ITU98], [Aut03].
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Domain-FDH: The Fault-Detection part of FDH needs to not only rely on NMS level3 alarms gen-
erated as symptoms, but also access detected errors/failures and information in general regarding
low level conditions/states, which are normally not communicated to the NMS through alarms.
There might be various reasons for such information not being visible on the level of NMS, e.g.
alarm suppression or simply because "humans" may have thought that some low level incidents
need not be communicated or even archived for offline analysis.

Moving on to Fault-Isolation as a next step to FDH based self-healing, Alarm Correlation (and
correspondingly Fault-Isolation) is traditionally performed using NMS level alarm information
coming from the network elements. For FDH based self-healing, some information about low
level detected incidents - often not considered necessary to be communicated to the Network
Management System (NMS) - as well as detected threats and attacks may be required in perform-
ing extensive Fault-Localization. An important constraint in that context is given by the question
on whether it is practically feasible to include all such information in a Fault-Propagation Model
of a device or a network of some scope.

Following the Fault-Isolation aspects of FDH, the processes which influence the network as a re-
sult of an erroneous state, namely Fault-Mitigation and Fault-Removal, need to be elaborated in
the scope of the current type of faulty conditions. Fault-Removal and Fault-Masking mechanisms
must infer whether resilience and recovery, i.e. fault-tolerance mechanisms, employed by some
protocols upon the detection of an incident have executed successfully or not. This is required,
in order to execute a strategy on the global level, to remove or reduce the impact of a fault, in
order to ensure system/network integrity, reliability and availability. Fault-Removal should embed
information regarding the dependencies between the different networking components (software
and hardware) as discussed in [LCZ08] and later in this work. Decisions regarding Fault-Removal
will be taken mainly locally. However, if required, a dedicated instance might initiate actions on
network level. These actions might be executed in a distributed and collaborative manner among
the involved network nodes/systems.

5.3.2 Faults/Errors/Failures detected at the Services and Application Layers

Domain-FSSP: There is a great deal of work achieved and research continues in systems engineer-
ing practices for the design of fault-tolerant service components and applications. Multi-Layer re-
silience strategies (see [TH01], [Aut03]) also include how the service/application layer reactions
should be taken into account. Furthermore, the efforts in the area of Content Distribution Networks
(CDN) and Cloud Computing have resulted in highly resilient service architectures (e.g. based on
cloud elasticity and load balancing), which are able to dynamically reconfigure and successfully
address challenging conditions, whilst continuing to provide the requested services.

Domain-FDH: Fault-Detection in the services/applications layer follow similar requirements as
discussed in the case of Fault-Detection at the network layer and below. Namely, the goal of the
Fault-Detection mechanisms instrumented by FDH is to obtain a rich set of information regarding
operational issues related to services and applications, beyond the scope of the alarms reported to
the standard OSS (Operations Support System). As the operator’s desire to see automated service
monitoring (refer to [WL09]), it means FDH related mechanisms must perform service monitor-
ing, e.g. service probing to detect problems.

With respect to Fault-Isolation, Fault-Propagation Models are required which describe the differ-
ent potential problems and fault propagation chains across the various communication layers up

3Network Management System level
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to the services and applications layer.

The same is valid for Fault-Removal/Mitigation policies related to the service/application layer,
which enable the reaction to root causes of erroneous states (obtained based on the above
mentioned Fault-Propagation Models) as well as to the symptoms manifesting erroneous states.
Thereby, the aspects of cross-layer fault propagation (e.g. between network and service layer)
should be considered whilst analyzing the symptoms of erroneous states, and in the course of
removing or mitigating those.

5.3.3 Traditional Network and Systems Management Alarms

Domain-FSSP: At this level, some resilience and recovery functions process alarms and react
upon them, while at the same time generating other types of alarms to the Management Systems
or OSSs.

Domain-FDH: Alarms are used primarily as symptoms used for triggering Fault Diagnosis/Lo-
calization. Alarm "severity" indications are vital input to Fault-Removal and Fault-Mitigation
functions.

5.3.4 Human Errors during Network and Service Management Phase

Domain-FSSP: Such Human Errors are not handled at this level, but rather in the FDH domain.

Domain-FDH: In [Whi08], an insight is provided as to what sort of faults may be created during
the configuration of the network by humans, e.g. erroneous configuration data provided as input to
systems. Moreover, [Whi08] and [STP+15] discuss automation techniques that relieve the operator
from introducing severe faults into the input supplied to configure network elements. Despite such
research and development efforts, the introduction of faults into network configurations cannot be
completely avoided. Indeed, configuration faults will be predominantly manifesting in particular
situations, which deviate from the normal operation of the network, e.g. whilst the network is
trying to cope with some challenges and dynamically reconfigures as to preserve an acceptable
QoS. In such situations, the FDH should support the network components by detecting the cor-
responding symptoms and analyzing the situation, based on a Fault-Propagation model that takes
into account known configuration based problems. Finally, the FDH should try to remove the fault
by adapting the configuration whilst at the same time reacting to the manifesting symptoms, in
order to sustain the network QoS. Hence, the autonomic FDH agents should incorporate - on the
base of the corresponding types of reaction policies and models - fault-tolerance techniques (e.g.
as described in [Whi08]) or in general Fault-Removal techniques such as Rollback, Compensation,
Reconfiguration, Re-initialization, etc. To summarize, the FDH agents should be able to discover
a manifesting erroneous configuration and correct it during the operational phase of the network.

5.3.5 Unknown Faults resulting from insufficient Testing of Software

Domain-FSSP: Resilience and recovery mechanisms within the software components can be ex-
pected to handle such faults in a very limited scope.

Domain-FDH: Such kind of faults are hard to detect and identify, and would be often classified as
"unknown" during Fault-Isolation. Naturally, they would be resolved by upgrading the software
components, by applying patches and resorting to new releases [Whi08]. In situations where the
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Fault-Isolation process is not able to conclude regarding the root cause for an erroneous state, the
faulty condition should be escalated to the network operations personnel (also denoted as "human
in the loop"), and all relevant information should be provided as to enable the successful analysis
of the situation by the network administrators. Given that the problem is analyzed and concluded
as a deficit/ bug of the involved software components, these components should be either updated
(if possible at this point of time), or the FDH models/policies should be changed as to accommo-
date the experienced type of faults, until the improved updated software is available. Provided
that the FDH models/policies have been adapted, the FDH should be able to detect the manifes-
tation of situations, for which the aforementioned software weakness constitutes the root cause,
and to initiate reactions as to allow the network to continue its operations despite the belonging
challenges.

5.3.6 Emergent Behaviors resulting from Software/Hardware Errors, Interoper-
ability, Performance, Security related, and Automation Issues

Domain-FSSP: Resilience and recovery mechanisms, embedded inside the protocol modules and
the services software, would have only limited capabilities of handling such faults. The reason for
that is that the modules itself are causing the problems which constitute the emerging erroneous
state.

Domain-FDH: In the long term, this type of faulty conditions should be resolved by improving
the quality of the involved components. Such improvements can include bug fixing, supplemented
by more extensive interoperability, penetration and performance testing. However, such proce-
dures might be cost intensive and requiring a longer period of time until the new software releases
are made available. In the period of these improvement activities, the FDH mechanisms (Fault-
Mitigation running in parallel to Fault-Isolation and Fault-Removal) can provide a temporary so-
lution which can enable the network to continue providing its services even in the case of such
unwanted emergent behaviors. By supplying an enhanced Fault-Propagation Model and corre-
sponding Fault-Masking/Removal policies considering the emergent faulty conditions in question,
the human operator can enable the FDH framework in the nodes and the network as a whole to
cope with such emergent situations, as long as the improved components are not available.



Chapter 6

Framework Specification

Having captured the key requirements for the emerging FDH, the current chapter proceeds with
the design of the framework itself1. Thereby, the previously identified requirements are considered
as a driving tool towards the specification of the distributed self-healing and belonging required
components on node and network level.

At the beginning the distributed control is sketched, as to give the reader the rough idea of how
FDH is meant to function. That includes outlining the interaction flows among the components
dispersed along the network in question. That way, the reader is given a high level idea of the
proposed approach without going into the "nuts and bolts" of the distributed FDH framework.

After presenting the network level view of the distributed FDH control loop, the focus is set on
depicting the corresponding node level components, which are responsible for collaboratively re-
alizing the process of self-healing. Having elaborated on each node level component, the dynamic
aspects of the emerging framework are presented, i.e. the interaction flows among the various
FDH components are described in detail. These interaction flows and process sequences achieve
the FDH based self-healing as captured within the requirements analysis. In addition, the aspect
of escalating faulty conditions, not resolvable by FDH means, to the network operations personnel
is dealt with. This includes a set of criteria, which allow the FDH components across the network
to determine on whether the distributed self-healing acts successfully, and if not, to escalate the
situation and involve the network administrators.

6.1 Self-Healing Distributed Control Loop Design: High Level View

Within this section, the distributed self-healing control loop2 is drafted without going into the
details of the involved components. That way, a high level view of the proposed approach is pre-
sented before going into the detailed specification of each FDH component. Thus, the distributed
FDH control loop is illustrated in Figure 6.1. First of all, it is presumed that each FDH node is
equipped with an entity (Fault-Management Agent) that can potentially realize the processes of
Fault-Isolation and Fault-Removal based on corresponding models, e.g. Fault-Propagation Models
or Fault-Removal policy models. In addition, an FDH node should run a component (Survivabil-

1Initial considerations regarding the content of the current chapter were published in [TGV09], [TS14a], [CWM+13]
and [WTVL13].

2The self-optimization features of FDH are left aside in this high level description as to convey the idea of the
distributed self-healing control loop in a more simple way.
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ity Agent) that would be responsible for Fault- Mitigation, i.e. immediate response to observed
symptoms/indications for network problems. Another required assumption is that some of the
nodes should have "monitoring sensors" deployed, i.e. monitoring components which are able to
detect particular symptoms of faulty conditions. Given that one of these components has detected
indications for an erroneous state, the symptoms are described in a specific format and initially
pushed to the local Fault-Management and Survivability agents. Furthermore, they are conveyed
to another local agent that takes care of disseminating the alarm/incident description within the
network scope in question, e.g. an OSPF area or a LAN. That is, all the relevant nodes within
the scope in question are aiming to converge with respect to their view on the set of symptoms
detected across the network. Thereby, within each FDH node, the corresponding processes - in-
side the Fault-Management and Survivability agents - take place based on the converged view
regarding the set of alarms/incidents detected across the network.

Figure 6.1: Overview of the Distributed Control Loop

The Survivability Agent in each node issues a node-specific Fault-Mitigation process, which is
meant to locally address the immediate symptoms of the current fault(s) across the network. In par-
allel, the Fault-Management agents in each node periodically trigger a process of Fault-Isolation
based on the set of symptoms which have been either detected locally, or have been received from
the network.

The Fault-Isolation processes in all nodes run based on the same Fault-Propagation Model, a copy
of which is stored locally within each node. This Fault-Propagation Model is provided by the net-
work manager based on his anticipation for potential issues within the network in question - these
anticipations can be based on experience, risk analysis, recent publications, or obtained by per-
forming different tests. Given that all nodes have converged with respect to monitored symptoms
(which might not always be the case), every Fault-Management Agent in each FDH node would
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arrive at the same conclusion regarding the root cause(s) of the current erroneous state - due to the
Fault-Isolation process based on the same Fault- Propagation Model deployed in each device. The
results of this root cause analysis are then automatically forwarded to the Fault-Removal Func-
tions (FRF) of each Fault-Management agent. This FRF module operates based on policies - also
supplied by the network operations personnel - that are specific to every node in the network. That
is, some of the nodes would issue an action as a response to the isolated fault and others would
back off since their reaction is not required in the current situation. Finally, the effectiveness of
the undertaken actions should be verified. Given that the actions have failed to achieve their goal,
the situation has to be escalated and the network manager notified. In case that the faults have
been successfully removed, a recovery notification should be sent across the network as to notify
all FDH instances of the successful self-healing. The described steps hitherto indicate that the
distributed control loop consists of local control loops, which are executed based on the incident
information shared between nodes.

The above description clearly shows that the FDH framework is planned to execute a distributed
control pattern, in which the the network nodes host the self-healing and self-optimization compo-
nents. Hence, the implemented network control procedures do not rely on any centralized instance,
which addresses Req 2 from chapter 5. Furthermore, the proposed control loops are supposed to
steer and manage every possible aspect of a network node with respect to incidents. Hence, it is
presumed that they receive the required access to node operational aspects, which addresses Req
2 from the requirements chapter. Based on the high level view presented above and the identified
requirements, the next section proceeds with designing the components of FDH inside a node.

6.2 Components Specification on Node Level

Having presented the distributed self-healing control loop, the node level components of FDH are
described within this section. Figure 6.2 illustrates the node architecture of the emerging frame-
work. In general it consists of four different types of components:

1. components realizing the self-healing function

2. components which are mainly involved with the self-optimization features of FDH ("Self-
Optimization Function" block in Figure 6.2)

3. various supporting components, which are in charge of incident dissemination/sharing, as
well as of handling and storing different types of information and models that are vital for
the control loop processes/phases, and finally

4. a set of components that serve as interfaces to the network operations personnel and are
used, on one hand, for escalating (to the network operations personnel) challenges/situa-
tions not resolvable by FDH means, and on the other hand for the network administrators to
provide the models, based on which FDH should operate

By devising and describing the above components, the current chapter addresses Req 1 from
section 5.1 which determines that FDH must define components and interfaces facilitating the
tasks of Fault-Detection, Incident/Alarm-Dissemination, Fault-Isolation, Fault-Removal and
Fault-Mitigation. These tasks and interfaces sketch the rough structure of the self-healing
procedure that is specified in detail in the coming paragraphs. In this scope, the following
subsections describe the nuts and bolts of the components illustrated on Figure 6.2.
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Figure 6.2: Overview of the Node Level Components of the Framework for Distributed Self-
Healing

6.2.1 Self-Healing Function

The focus of the presentation is first set on the node components, which are solely responsible for
the realization of the self-healing function. Thereby, the interactions with the Self-Optimization
Agent, in charge of providing the self- optimization features of FDH, are pointed out. The elab-
oration starts with the monitoring functions of FDH and proceeds with the components that con-
sume the outcome of the FDH monitoring framework and implement different reactions upon the
detection of erroneous states. These components are given by the Survivability Agent, responsi-
ble for quick reactions and proactive avoidance of problems/challenges, as well as by the Fault-
Management Agent that takes care of removing the root causes for the manifesting challenges in
the long-term operation of the network /system.

6.2.1.1 Monitoring Agent

The entity responsible for coordinating the Fault-Detection efforts inside a network node is the
Monitoring Agent ( MonAgent) illustrated within the FDH entities on Figure 6.2 and depicted
in detail in Figure 6.3. The Monitoring Agent is the main entity responsible for addressing the
monitoring requirements in section 5.1.2, i.e. Req 4-11. Its role is to satisfy the monitoring re-
quests and needs for tackling the erroneous states resolvable by means of FDH (i.e. Req 4 and
Req 5). That is, this entity starts monitoring jobs which observe the status of different opera-
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tional key performance indicators (KPIs), and can recognize anomalous states which can be seen
as symptoms of a potential fault within the network/system. Such KPIs might be for example the
counters (e.g. dropped packets or frame collisions) of a Network Interface Card (NIC), different
traffic metrics e.g. duplicate acknowledgments or retransmissions in TCP flows, as well as tradi-
tional QoS metrics as known within telecommunications, i.e. jitter, delay, out of order packets,
packet loss (addressing Req 11). Thereby, the MonAgent would not only look for erroneous states
but would also provide generic monitoring information which could be of use by any of the FDH
components. This monitoring information is stored in a dedicated FDH repository within each
FDH node (inline with monitoring requirement Req 8). The MonAgent orchestrates and regulates
the behavior of different monitoring tools as to instrument passive and active distributed moni-
toring techniques (Req 4), in order to gain the required information. In addition, with respect to
alarms/incidents/symptoms, there is also a direct communication channel to a set of lightweight
FDH node-level repositories, which participate actively in the alarm/incident/symptom informa-
tion sharing within a node and across the network scope in question. That is, once a symptom
has been detected, it is described based on an information model and stored in the corresponding
node-level FDH repository by the detecting component, which is orchestrated and instrumented
by the MonAgent.

Figure 6.3: The FDH Monitoring Agent

Based on the above discussion, a number of components are specified which are needed to meet the
identified requirements and the above elaborated aspects. The proposed monitoring architecture
to serve the purposes of FDH is presented in Figure 6.3. It consists of four main components:
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1. Orchestration Engine

2. Traffic Monitoring Coordination component

3. Node Monitoring Coordination component and a

4. Data Aggregation and Correlation Framework

In addition to these main components, a set of "Network Operations Personnel Interfaces" (on the
right in Figure 6.3) are available. These interfaces serve the purpose of allowing the network ad-
ministrators to configure various MonAgent aspects/parameters, as well as to obtain information
regarding the operation of the FDH monitoring architecture in the network devices. Especially,
these interfaces are utilized for supplying various policies which determine the operation of the
FDH MonAgent within a node, i.e. addressing Req 11 from section 5.1.2. Next, each of the four
key components is described in turn with its associated sub modules, while the configurability
over the "Network Operations Personnel Interfaces" is emphasized where appropriate.

Orchestration Engine: The Orchestration Engine is illustrated at the top in Figure 6.3 and consti-
tutes the core of the Monitoring Agent, when it comes to processing monitoring requests and regu-
lating monitoring services. This is the component that accepts monitoring requests (corresponding
to Req 6) - either submitted by another FDH functional entity or by the network operations person-
nel - and decides on whether to accept them or not based on pre-configured Admission Policies -
illustrated within the Policy Evaluation Component on the right side of Figure 6.3. Such admission
policies are supplied by the network operator in advance over the corresponding interfaces part of
the "Network Operations Personnel Interfaces", according to Req 11. An admission policy can,
for example, reject the request in case memory is scarce at the given point in time. The evaluation
of all types of policies within the Orchestration Engine, including the Admission Policies in ques-
tion, is handled by the Policy Evaluation Component. Thereby, the action that would be issued as a
result of the policy evaluation might need to be synchronized with the actions planned by the other
FDH agents - the Survivability Agent and the Fault-Management Agent. Such coordination and
action optimization between the FDH agents is handled by the Self-Optimization Agent described
later in this chapter. In case a monitoring request has been allowed by both, the Admission Policies
and the Self-Optimization Agent, the Orchestration Engine has to process the submitted request
and trigger the corresponding Traffic or Node Monitoring Coordination component to setup the
required monitoring service - inline with requirements Req 6 and Req 7. In case of a problem
while setting up the monitoring task, or if the request was not allowed, the Orchestration Engine
has to respond to the requesting entity with the belonging error code or rejection notification.

In addition to the above aspects, the Orchestration Engine plays a vital role when processing the
monitoring information obtained by the orchestrated monitoring tools. Once a measurement has
been obtained, it is first forwarded to the Data Aggregation and Correlation Framework, which has
the task to aggregate these measurements. Given that enough KPI values have been obtained and
correlated, they are subsequently pushed back to the Orchestration Engine. The Orchestration En-
gine is then the module that is concerned with notifying the requester in question - FDH functional
block or network administrator over the belonging "Network Operations Personnel Interfaces"-
based on its embedded pre-configured Notification Policies, which are again evaluated by the Pol-
icy Evaluation Component. Thereby, the Notification Policies and resulting actions might also
determine/drive the description of an alarm/incident based on the aggregated monitoring informa-
tion and an underlying incident information model.
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After the execution of the previously mentioned Notification Policies and resulting actions, the
Orchestration Engine (correspondingly its Policy Evaluation Component) triggers and executes its
pre-supplied Adaptation Policies that are in charge of adapting the behavior (e.g. sampling rate)
of the monitoring task in question. Thereby, similarly as in the case of the Admission Policies,
the action(s) resulting from the Adaptation Policies could potentially need synchronization (over
the Self-Optimization Agent) with tentative actions planned by the other FDH agents. Within
the above described process, both sets of policies - Notification and Adaptation Policies - are
supplied by the network operations personnel over the belonging "Network Operations Personnel
Interfaces" (i.e. Req 11).

The above descriptions clearly illustrate the realization of the adaptation control loop within the
MonAgent. Thereby, the Orchestration Engine is the cornerstone for the realization of the control
logic around the orchestrated monitoring services. It starts with receiving a monitoring request,
and setting up a monitoring job, and continues with a number of actions after obtaining an aggre-
gated KPI value. These actions include the notification to the requester based on the evaluation
of some Notification policies, and finally the adaptation of the monitoring task based on some
adaptation policies. The overall interplay of the MonAgent components within the control loop is
later illustrated in the section describing the dynamic aspects of the MonAgent with the proposed
FDH architecture.

Traffic Monitoring Coordination: The Traffic Monitoring Coordination (TMC) is the component
responsible for setting up and running monitoring jobs related to network traffic passing through,
or originating from the local node (i.e. Req 7). After a traffic monitoring request has been received
and has passed through the admission control of the Orchestration Engine, the TMC module has
to select the right plug-in for the submitted request, and to start it with the appropriate parameters.
The selected traffic monitoring plug-in makes use of one or many traffic monitoring tools, which
are combined as to deliver the required data.

Node Monitoring Coordination: The Node Monitoring Coordination acts similarly as the previ-
ously described TMC component with the difference that it is responsible for setting up monitor-
ing jobs (i.e. Req 7). , which observe KPIs related to the state of the local node. As in the previous
case, this component has the task of selecting the correct node monitoring plug-in and starting it
with the right parameters upon a received monitoring request. As in the case of the TMC, the node
monitoring plug-in makes use of one or many node monitoring tools, which are combined as to
deliver the required data.

Data Aggregation and Correlation Framework (DAC): The Data Aggregation and Correlation
Framework (DAC) plays and important role in the course of data aggregation (inline with
monitoring requirement Req 9) and alarm/incident/monitoring information suppression, which
are among the vital challenges of traditional network management. It is presumed that each
monitoring plug-in is associated with a specific instance of DAC. These DAC instances are
responsible for aggregating the data for a certain monitoring plug-in. There can also be different
aggregation mechanisms inside the instances, e.g. one can be using a smoothing average filter
whilst another one is looking for the median of a number of monitored samples. Given that data
aggregation has been accomplished, the summarized value is pushed to and processed by the
Orchestration Engine.



94 Chapter 6 Framework Specification

6.2.1.2 Survivability Agent

To support generic Resilience and Survivability functions within an FDH implementing node, the
Survivability Agent (SurvAgent) is proposed as a core part of the presented FDH node architecture.
The components encompassing the SurvAgent are shown in Figure 6.4. The two main components
are given by the Fault-Mitigation Functions (FMF) and the Failure-Prediction Functions (FPF).

The FMF is the SurvAgent module that takes care of first immediate reaction to the symptoms
of an erroneous state, while at the same time the Fault-Management Agent is concerned with
resolving the root cause(s) of the problem in the long-term operation of the network.

In parallel, the FPF consume various types of monitoring information in an effort to identify poten-
tial failures in near future. This would result in a warning alarm upon which the FMF should take
an action to mitigate the potential faulty condition. In the course of their operation, the FMF and
FPF depend on information from the MonAgent and the monitoring plug-ins operating under its
orchestration. This information is stored in the local lightweight FDH repositories and forwarded
to the SurvAgent. Similarly as in the case of the MonAgent, both components are configured and
monitored over a set of "Network Operations Personnel Interfaces".

Figure 6.4: The Survivability Agent

Fault-Mitigation Functions: Having information from the FDH node repositories, the SurvAgent
triggers diverse reactive fault-masking mechanisms depending on the situation in the network. As
previously mentioned, this process is realized by the Fault-Mitigation Functions (FMF) module
towards realizing fast immediate reactive resilience within the FDH nodes. The role of the Sur-
vAgent is to trigger specific Fault-Mitigation actions that would be best applicable as an immediate
reaction to the current incident(s), alarm(s) and symptom(s) in general . However specific fault
tolerant algorithms/procedures/behaviors are not implemented within the SurvAgent and its FMF
module, but their functionality is specific to the underlying lower level functional entities (e.g.
protocols, network layer restoration schemes, etc.).

After having been informed about an incident, the SurvAgent synchronizes its tentative action(s)
with the other agents of the FDH node architecture, i.e. the Monitoring Agent and the Fault-
Management Agent. This synchronization is conducted over the Self-Optimization Agent pre-
sented in the next section. Based on the synchronization result, the SurvAgent discards or per-
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forms the Fault-Mitigation action(s) on the corresponding managed resources, whilst taking into
consideration their embedded fault-tolerant behaviors. Thus, the SurvAgent acts in a fault-tolerant
manner and orchestrates immediate resilient mechanisms involving the selected node entities to
ensure acceptable QoS and sustain network functionality. In order to select appropriate solutions
towards a proper first response resilient behavior of a node, the SurvAgent must be aware of the
resilient/fault-tolerant mechanisms implemented intrinsically inside the entities, which are under
its control, e.g. protocol modules. In this line of thought, before imposing its own decisions, the
SurvAgent is required to give the low level entities a chance to recover based on their own intrin-
sic resilient mechanisms. However, first response responsibilities belong to the SurvAgent and
thus it should have the right and means to intercept the intrinsic actions, undertaken by the node
functional entities if required.

Failure-Prediction Functions: While the FMF module of the SurvAgent takes reactive actions upon
detected incidents, the Failure-Prediction Functions (FPF) module tries to anticipate the occur-
rence of certain incidents in the near future. As a result, the SurvAgent is able to proactively steer
the node entities such that the node and/or network can prepare for the problems that are likely to
manifest in the future. As a consequence, it is possible to avoid future fault activations. The FPF
module enables the Fault-Management and Survivability agents to shift from basic, reactive only
schemes, to new proactive ones where prediction allows the framework to anticipate failures as
well as to dynamically improve its operation, e.g. the Fault-Propagation Model within the FDH
nodes may be adapted based on the anticipated faulty conditions.

6.2.1.3 Fault-Management Agent

The Fault-Management Agent (FaultManAgent) agent within a node is responsible for the automa-
tion of Fault-Detection, Fault -Isolation and Fault-Removal with respect to faulty conditions which
affect the local device. The internal architecture of the FaultManAgent is depicted in Figure 6.5.
In general, the automation of the above processes (Fault-Detection, Fault-Isolation, and Fault-
Removal) is assigned to the Fault-Isolation Function (FIF) - being the component gluing Fault-
Detection and Fault-Isolation - and the Fault-Removal Functions (FRF) for removing faults and
their effects locally (after a successful Fault-Isolation). In addition, as these Fault-Management
processes get automated and glued together, the (intermediate) outcomes of Fault-Isolation and
Fault-Removal need to be verified. The task of checking the correctness of the Fault-Isolation re-
sults is realized by the Fault-Isolation Assessment Functions ( FIAF), and the task of verifying the
effectiveness of the Fault-Removal actions is realized by the Fault-Removal Assessment Functions
(FRAF). Next, all these components are described in turn.

Fault-Isolation Functions: The Fault-Isolation Functions (FIF) module is the component respon-
sible for isolating and diagnosing faults in the process chain of the automated Fault-Management
implemented by the FaultManAgent. The FIF functions are realized by a library which is invoked
by the FaultManAgent after some incidents (or alarms) have been reported and their analysis is
correspondingly required. A submitted incident (or alarm/symptom/event) 3 description can be ei-
ther referring to locally detected incidents which are forwarded to the FaultManAgent agent by the
corresponding repository or to incidents which were detected elsewhere in the network and were
reported locally using the service of the Event Dissemination Engine (see section 6.2.3.2). The
FIF functions gather such incident descriptions and trigger the Fault-Isolation process according

3The term incident is quite often used in the broader sense encompassing all types of possible artifacts such as
events, symptoms, alarms and incidents relating to a faulty condition
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Figure 6.5: The FDH Fault-Management Agent

to some pre-defined conditions:

1. Fault-Isolation is triggered every time a particular pre-defined number of incidents (or
alarms/symptoms/events) have been reported

2. Fault-Isolation may also get immediately initiated after a single incident event has been
reported given that the event has a high (according to a pre-defined value) severity level and

3. if only few (less than the pre-defined number of) incidents/alarms/events/symptoms are
reported and their severity is not causing the FIF functions to immediately trigger Fault-
Isolation, then Fault-Diagnosis is triggered after a pre-defined time slice, which can be real-
ized by the expiration of a timer.

The aforementioned number of incidents, the severity level of the incidents immediately trigger-
ing Fault-Isolation, and the duration length of the time slice after which the FIF functions initiate
Fault-Isolation, are parameters, which need to be supplied by the human experts tweaking the
FDH operation. Once Fault-Diagnosis is triggered, selected algorithms start reasoning based on
the knowledge4 regarding the relations between faults/errors/failures/alarms in the network, cap-
tured in a dedicated node repository denoted as Fault-Propagation Model Repository (FPMR) and
described in the next sections.

Fault-Isolation Assessment Functions: Given the uncertainties which accompany the task of Fault-
Isolation, it is imperative to ensure that the results of the Fault-Isolation process are indeed correct -
as required in Req 18 in section 5.1.4 - before issuing a Fault- Removal action. These uncertainties
arise due to the stochastic nature and complexity of the network and deployed protocols/services
in a distributed environment. Hence, the Fault-Isolation process has to intrinsically rely on prob-
ability based models (e.g. Bayesian Networks) for its reasoning. Thus, its results might also be
wrong and the resulting Fault-Removal actions could potentially even worsen the erroneous state
of the network. The Fault-Isolation Assessment Functions (FIAF) is the component responsible

4This type of knowledge is denoted as Fault-Propagation Model and fulfills Req 17 from section 5.1.4
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for avoiding such situations. In the course of its operation, the FIAF can for example deploy dif-
ferent probing mechanisms, check the running configuration of some entities, examine the queue
sizes or the state of the node, in order to test and verify the results of the Fault-Isolation task.

Fault-Removal Functions: Given the verified results of the Fault-Isolation process, the Fault-
Removal Functions (FRF) of the FaultManAgent provide the means by which a specific fault can
be removed. The FRF of a device become activated when the isolated fault is related either to the
node itself or to its neighborhood, and the reaction of the node can remediate the erroneous state
of the network. The FRF module implements functionalities that influence the behavior of the
pool of functional entities in the network, and therefore is a component that is critical with respect
to the stability and overall effectiveness of the FDH control loops (SurvAgent, FaultManAgent,
and MonAgent control loops). In order to ensure stability with regard to avoiding contradicting
actions issued by parallel instances of the FDH control loops, the FRF refers to the local
Self-Optimization Agent. The Self-Optimization Engine is responsible for synchronizing such
tentative actions, and for selecting an optimal subset (from the tentative actions) based on the goal
of improving the performance of the network/system. The Self-Optimization Agent component
is elaborated in more detail in the coming sections. Given that an action has been allowed by
the Self-Optimization Agent, the FRF triggers the execution of the corresponding scripts or
management tools, for instance by using their belonging CLI (Command Line Interface). All
the information regarding the execution of an action can be captured in a policy like information
model (derived) which is supplied by the human experts tweaking the FDH processes of the
network.

Fault-Removal Assessment Functions: Finally, the Fault-Removal Assessment Functions (FRAF)
have the task to inspect whether the Fault-Removal process within the FaultManAgent, following
the process of Fault-Isolation, was successful or not (thereby explicitly fulfilling the belonging
Req 21 from section 5.1.4). Hence, the FRAF realize functions like probing and testing, in order
to verify that a functionality or service has been successfully restored and is available again. Based
on the result from this assessment, a local FRAF escalates the problem to the network operation
personnel in case Fault-Removal has failed. Alternatively, the FRAF marks as cleared/recovered
all the incidents and alarms related to the problem in question, in case Fault-Removal was suc-
cessful. At the end, the control loop’s execution, with its status obtained by the FRAF, is logged
to the local Control Loop History Log described in the coming sections.

6.2.2 Self-Optimization Function

The other main pillar of FDH, besides the distributed self-healing, is given by the self-optimization
features the framework implements. These features are mainly realized by the Self-Optimization
Agent described in the following subsection.

6.2.2.1 Self-Optimization Agent

The Self-Optimization Agent (SelfOptAgent) is the component responsible for ensuring the sta-
bility and overall efficiency of the various FDH control loops executing in parallel. These control
loops are implemented within the MonAgent, the FaultManAgent, and the SurvAgent within an
FDH node. Architecturally, the SelfOptAgent consists of a module that implements the action
synchronization and optimization function which is configured for each FDH instance over a set
of Network Operations Personnel Interfaces.
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The task of the SelfOptAgent is to "gather" tentative actions and to synchronize them towards a
common goal based on a pre-defined utility function and optimization problem. Similarly as in
the case of the FIF part of the FaultManAgent, the tentative actions are gathered over a pre-defined
period of time after which the synchronization is initiated. A synchronization of tentative actions
can be also triggered after a pre-defined number of synchronization requests have been submitted,
or in the case when a synchronization request is marked as urgent. The SelfOptAgent allows only
those tentative actions to be executed that do not interfere with each other and contribute to the
optimization of the corresponding utility function, i.e. maximization of the underlying network fit-
ness model. Hence, the SelfOptAgent is naturally defined as the component fulfilling Req 20 from
section 5.1.4 within the requirements chapter. More details on the algorithms for self-optimization
and the applied structures can be found later in section 8.

6.2.3 Supporting Components

The previously described Self-Healing and Self-Optimization functions require various support-
ing components, in order to operate as required and specified. These components allow the FDH
instances to store, exchange, and manage information which is required for the different FDH con-
trol loops within a node and the network as a whole. The information in question includes alarms
and incidents that were submitted to FDH by different monitoring entities. Furthermore, the sup-
porting components - described in the following paragraphs - store models which are needed in the
scope of Fault-Isolation, i.e. node-specific Fault-Propagation Models. In addition, the history of
control loop executions is also correspondingly tracked as to allow the network administrators to
follow and understand the operation of the FDH instances across the network, as well as to enable
the awareness of different FDH functions (e.g. FRF) with respect to the history of FDH control
loop actions. The components described below are vital for the realization of the FDH based dis-
tributed self- healing since they provide the platform, on the top of which the FaultManAgent, the
SurvAgent, and the MonAgent realize their control loops.

6.2.3.1 Node-Specific Event Management Functions and Repositories

The overall set of Node-Specific Event Management Functions and Repositories is depicted in
Figure 6.6. The various modules and their role in the distributed control loops are described in
the following paragraphs. Thereby, it should be noted that all modules implement a set of inter-
faces (on the right side in Figure 6.6), which are accessed by the network operations personnel,
in order to monitor or configure a particular part of the Node-Specific Management Functions and
Repositories.

Node Repositories: The alarm/incident repositories (in the middle of Figure 6.6) inside the device
architecture are the consolidating point for faults/errors/failures/alarms (and symptoms for faulty
conditions in general) coming from the node and from the network scope in question (e.g. LAN
or OSPF area). The information is stored in a structured way in different repositories, so that a
classification of incidents from the point of view of the local node is achieved. In that regard,
the FDH design borrows a classification from previous work [Cha09] [CTS08] related to Failure
Detection in clean slate networks, and adopts the following repositories inside an FDH instance:

1. Local and External Alarms Repository

2. Local Incidents Repository
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Figure 6.6: FDH Node-Specific Event Management Functions and Repositories

3. External Incidents Repository - dedicated to storing incident information related to other
network nodes

4. Asserted Incidents Repository - responsible for storing incident information coming from
other network nodes and related to the local node

Furthermore, a repository for general events - i.e. General Events Repository is required in order
to allow the FDH taking notice and considering situations such as scheduled maintenance or any
other types of events, which are not really an incident but should be taken into account within the
control loops’ executions.

Regarding the involvement of the FDH node repositories in the alarm/incident information ex-
change: the repositories are responsible for forwarding submitted alarm/incident descriptions to
the local FaultManAgent and the SurvAgent. In that sense, the repositories fulfill requirement Req
12 from section 5.1.3 that specifies the need for collaborative alarm/information sharing across a
single node and the network as a whole. Indeed, once a symptom has been detected by the corre-
sponding monitoring entity (orchestrated by the MonAgent) and submitted to the belonging repos-
itory, the alarm/incident description is automatically forwarded to the local Fault-Management and
Survivability agents, as well as to the local Event Dissemination Agent, such that it gets dissem-
inated across the network scope in question (e.g. LAN or OSPF area). In case a fault has been
removed and a recovery notification has been issued by the local FaultManAgent or received over
the Event Dissemination Agent - in case the fault was removed by a FaultManAgent on a remote
FDH node - the repositories should schedule the related incidents for deletion by the Obsolete
Event Handling Component, which is described below.

Asserted Incidents Assessment Functions: The incident information being reported to the FDH
node repositories may trigger local probing mechanisms, in order to verify whether a particular
functionality or service offered by the local node is still available and functioning correctly. This
functionality is realized by the Asserted Incidents Assessment Functions (AssIncFunc) which is
a separate agent that triggers different probing mechanisms based on a reaction model supplied



100 Chapter 6 Framework Specification

by the network operations personnel. In case the AssIncFunc have found out that a particular
functionality is actually available, contrary to the suggestion of a particular asserted incident, a
recovery notification for this particular incident would be disseminated using the Event Dissemi-
nation Agent. Subsequently, the incident would be marked as recovered in the FDH repositories
across the network and would be scheduled for deletion by the Obsolete Event Handling Compo-
nent, which is described next.

Obsolete Event Handling Component: The Obsolete Event Handling Component (OEHC) is an
integral part of the alarm/incident repositories, and as the name suggests, it is responsible for re-
moving and dumping alarm and incident information, which relates to already resolved erroneous
states. In the course of experimenting with the FDH prototype in the testbed presented in section
11, a number of situations were encountered where, due to delays in the convergence of the dis-
semination mechanisms (within the Event Dissemination Agent), information about a particular
incident event arrived at a node after the incident has been recovered and locally deleted from
the repositories by the Fault-Removal and Fault- Removal Assessment mechanisms. This disor-
der of notifications has led to repeatedly triggering Fault-Isolation with a wrong set of detected
incidents. In order to resolve this, the incident/alarm events are not immediately removed when
a recovery notification is issued by the FRF and the FRAF mechanisms, but their status is set to
recovered/cleared. Therefore, if a particular incident detection notification arrives after the cor-
responding incident recovery notification, all the means (in terms of information) are available to
resolve this ambiguous situation. However, at some point the information about the recovered in-
cident has to be deleted from the node repositories and saved to the log history of the framework.
This is where the OEHC is required. The OEHC checks periodically for alarms and incidents
having the cleared/ recovered status inside the repositories, and dumps this information to a log
thereby deleting it and releasing the allocated memory within the repository processes.5

6.2.3.2 Event Dissemination Agent

The Event Dissemination Agent (EvDissAgent) is the entity that plays the role of a gateway to the
network inside an FDH implementing device, thereby addressing Req 12 from section 5.1.3. It is
responsible for disseminating and receiving alarm/incident/events information (e.g. symptoms for
faulty conditions) and recovery (i.e. Fault-Removal) notifications to and from the network. Thus,
once a symptom of a faulty condition has been observed, described and submitted to the incident
repositories on the node hosting the corresponding Fault-Detection component, the repository in
question forwards the incident description to the FaultManAgent, the SurvAgent and to the lo-
cal EvDissAgent. In that context, alarms are forwarded and processed exactly the same way.
The EvDissAgent in turn disseminates the alarm/incident description to involved nodes across the
network scope where the corresponding FDH control loops are to be triggered based on the al-
arm/incident information. With respect to receiving alarm/incident information from the network,
the local FDH EvDissAgent has the responsibility of storing it in the appropriate local node al-
arm/incident repository and conveying it to the local Fault-Management and Survivability agents,
such that this incident description can be considered for the following FDH control loop execu-
tions. Finally, after a successful completion and assessment of a Fault-Removal process, a recov-
ery notification is sent (by the corresponding FaultManAgent) across the network scope (over the
services of the EvDissAgents) such that the relating symptom descriptions can be deleted across
the repositories of the involved nodes.

5The term process relates to an operating system process.
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6.2.3.3 Monitoring Information Repository

The Monitoring Information Repository (MIRep) is used to store a history of the obtained mon-
itoring information within a device6. It keeps track of important KPI values measured by the
monitoring plug-ins of the MonAgent, such that these values are available for different parties,
e.g. for the network operations personnel, for the FRF/FIF/FIAF/FRAF modules of the FaultMan-
Agent, for the FMF/FPF modules of the SurvAgent, or for the diverse policies of the Orchestration
Engine within the MonAgent.

6.2.3.4 Fault-Propagation Model Repository

The Fault-Propagation Model Repository (FPMR) is the FDH node component responsible for
storing a local node instance of the Fault-Propagation Model (FPM) for the network scope in
question (e.g. LAN or an OSPF area). The FPM stores the causality relations between different
symptoms (failures and alarms), intermediate unobservable events in a fault- propagation i.e. er-
rors, and the corresponding root causes (faults). These relations are stored in a way that allows fast
real-time reasoning and root cause analysis. At this point it should be mentioned that the Fault-
Propagation Model and the FPMR facilitate addressing Req 17 from section 5.1.4. Indeed, the FIF
functions of the FaultManAgent are accessing the FPMR and the stored FPM instance every time
they need to perform Fault-Isolation. The contents of the FPMR are supplied by human experts
that have in-depth knowledge of potential cases of fault-propagation in the network, depending on
the deployed hardware and software. The algorithms, which are used by FDH to query the FPM,
are detailed in section 7.3.

6.2.3.5 Control Loop History Log

Naturally, all control loop activations, including the intermediate results produced within the dif-
ferent involved components, should be recorded. These records are stored in the Control Loop
History Log (CHL) within each FDH node and can serve different purposes. Within a possible
utilization, the CHL records can be used by the network operations personnel to understand and
improve the operation of FDH within the network. For example, the Fault-Propagation Model may
be improved as to deliver better Fault-Isolation results, or the different policy models specifying
the actions in different stages of the control loop (Fault-Removal, Fault-Isolation Assessment etc.)
can be further refined based on the recorded logs. The control loop history should also be easily
accessible over an API as to give the FaultManAgent-FRF functions (and various policy based
modules in general) the capability to be aware of the type of actions which were already executed
by the FDH - inline with the need identified in Req 19 from the requirements chapter. The ex-
perience, drawn from experiments with the FDH prototype, has shown that this can be especially
helpful in situations where an entity (e.g. a NIC or its driver) is not really stable and multiple
reconfigurations in a row make it unusable, thus requiring the hardware/software component to be
restarted or completely reinitialized.

6In this scope, the MIRep is responsible for fulfilling Req 8 from the monitoring requirements.
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6.2.4 Network Operations Personnel Interfaces

The Network Operations Personnel Interfaces stand for a set of components that enable human
experts to steer and monitor the operation of the FDH framework across the network, and that
way to effectively handle faults/errors/failures/alarms. Basically, each FDH component within the
FDH node architecture on Figure 6.2 possesses various interfaces that allow the network adminis-
trator to configure it and monitor its operations. Figure 6.7 provides a unified view on the different
modules enabling the interactions between the network administrators and the FDH components
across the network. Next, each of these modules is described in turn.

Bootstrap Manager: A Boot Manager resides in each FDH node and takes care of the correct boot-
strapping of the self-healing components in a network device. The Boot Manager is responsible
for starting all the FDH modules on Figure 6.2 in the right order. Thereby, it monitors the status of
the FDH components during the bootstrapping of a node and reports any occurring issues within
the process to the network operations personnel.

Provisioning Tools: Different models are required for the operation of the distributed self-healing
framework across the network. This includes the network-wide Fault-Propagation Model as well
as various node-specific models, such as the Fault-Removal policies, the Fault-Isolation Assess-
ment policies, the Fault-Mitigation reactions policies etc. All these models must be designed by
the administrators for the network as a whole as well as for the individual FDH nodes. In order
to support the design of these models, a set of provisioning tools is required, which would aid the
network operations personnel to efficiently create the required FDH models. Subsequently, these
models are stored in a centralized Configuration Server, from where they can be downloaded to
the individual nodes during the bootstrapping phase of an FDH node.

Configuration Server: As previously mentioned, the centralized Configuration Server is the com-
ponent that stores the FDH operational models for the network and the single nodes, once these
models have been designed using the above elaborated Provisioning Tools. During the bootstrap-
ping phase of each device, the single FDH components build up a connection to the centralized
Configuration Server and download the belonging models required for the realization of FDH
based self-healing. Thereby, the downloaded models are locally stored in the corresponding repos-
itories.

Monitoring Interfaces to the Network Nodes: The FDH network nodes provide monitoring inter-
faces, over which the operation of the FDH components inside a device can be observed. These
monitoring interfaces can be differently realized, e.g. by using SNMP or CLI. Moreover, the FDH
control loops log the different steps of their execution to the Control Loop History Log on each
FDH node. These logs are also accessible for the purpose of monitoring the self-healing control
loops across the network. The monitoring interfaces in question are also used for escalating faulty
conditions, which are not resolvable by FDH means, to the network operations personnel. The
aspects of faulty condition escalations were ellaborated in the previous sections, e.g. in the part
relating to the FRAF functions of the FaultManAgent.

Network Monitoring System: The various aspects of the FDH operations need to be presented to
the network operations personnel in a comprehensive manner. This should be done by integrating
the above described monitoring interfaces into existing Network Monitoring Systems (e.g. Nagios
[Bar08]). That way the network administrators will have the possibility to oversee the self-healing
activities across the network and get involved if required, e.g. the human experts can improve the
FDH operations by adapting the operational models. The Network Monitoring System is also the
component which presents, to the network administrators, information related to faulty conditions
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that are not resolvable by FDH means and are being escalated because of that.

Figure 6.7: FDH Network Operations Personnel Interfaces

6.3 Dynamic Aspects of the Framework

Based on the architectural descriptions provided above, the current section proceeds with outlining
the dynamic aspects of the FDH framework and specifying the distributed control loop in detail.
In the course of this, the various interaction flows among the FDH components are described using
the concept of UML sequence diagrams. The first set of interactions, which need to be elucidated,
are those pertaining to the the bootstrapping phase of an FDH node. These interactions are of
relevance to the network operations personnel activities relating to setting up a functioning FDH
based self-healing infrastructure in a network. However, given that the bootstrap sequences are
not at the heart of the self-healing and self-optimization control loops, they are described in de-
tail in the appendix of this thesis (i.e. in appendix section B.1) and not in the main thesis part
regarding the architectural design. Hence, the current section starts directly with describing the
dynamic aspects relating to the tasks of Monitoring and Fault-Detection, which corresponds to the
first step of the FDH control loops. Subsequently, a set of sequence diagrams are presented that
depict the process of how an incident/alarm description is managed and made available for the
node level self-healing machinery. In that context, the sequence diagrams also elaborate on how
an incident/alarm description plays a role within the distributed self-healing on network level. Fi-
nally, the processes implemented within the Fault-Management Agent and the Survivability Agent
are described, which aim at mitigating the immediate impact of erroneous states, whilst at the same
time removing the underlying root cause(s) in the long-term operation of the network.

In addition to the dynamic aspects presented in this section, appendix F introduces further dy-
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namic aspects which are not the main focus of this thesis. These aspects are mainly related to the
collaboration of FDH instances across multiple domains, e.g. among FDH instances embedded in
end-systems, access, edge and core network components.

6.3.1 Monitoring and Fault-Detection

The sequence diagram on Figure 6.8 illustrates the processing of monitoring information resulting
from a previously instrumented monitoring job. The corresponding monitoring plug-in combines
the outputs of different monitoring tools as to extract some relevant information (orchestrateMoni-
toringActivities). At this point, it is possible that the plug-in in question detects a fault and directly
pushes it to the local node repositories of the FDH framework.

Network Node

OrchestrationEngine DataAggrCorrFram Monitoring ToolsClient Agent Monitoring Plugin

MonAgent

MIRep

opt

returnObtainedMonitoringResults

orchestrateMonitoringActivities

submitMonitoringResultsToDataAggrCorrFram

performDataCorrelationif [enoughDataForAggregationAvailable]

submitAggregatedMonitoringDataToOrchestrationEngine

storeAggregatedDataInLocalMIRep

evaluateNotificationPolicies

opt

notifyClientAgent

evaluateAdaptationPolicies

if [clientAgentHasToGetInformed]

SelfOptAgent

opt if [AdaptationPlanned]

synchronizeTentativeAction

SynchronizationResult

if [ActionAllowed]opt

adaptMonitoringPluginParameters

          
    

       

Figure 6.8: Processing Monitoring Information

Besides the latter possibility to submit an incident/alarm directly from a monitoring plug-in to the
local FDH repositories, it is also possible to pursue the general path depicted on Figure 6.8, where
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the results obtained by the monitoring plug-in are forwarded (submitMonitoringResultsToDataAg-
grCorrFram) to the DataAggrComFram (Data Aggregation and Correlation Framework) that
in turn aggregates (performDataCorrelation) several such measurements before reporting (sub-
mitAggregatedMonitoringDataToOrchestrationEngine) the aggregated value to the Orchestration
Engine of the MonAgent. Subsequently, the Orchestration Engine stores (storeAggregatedDataIn-
LocalMIRep) the aggregated data into the local FDH repository for monitoring data - i.e. MIRep
- and triggers the evaluation of the notification policies (evaluateNotificationPolicies). These pre-
configured polices determine whether the aggregated value should be sent to the requester and
potentially trigger its control loop. The notification policies would also be the place where an
alarm might be generated, or an incident description might be created, in order to push it to the lo-
cal FDH alarm/incident/event repositories thereby completing the process of Fault-Detection. To
summarize: On one hand, the notification policies play an "alarm suppression" type of a role, since
they push only vital monitoring information to the agents of the FDH framework. On the other
hand, the notification policies constitute the hook - besides the possibility to implement Fault-
Detection or Alarm Generation directly in a monitoring plug-in - for realizing Fault-Detection and
Alarm Generation based on aggregated monitoring KPIs provided by the plug-in components.

After the monitoring information has been recorded to the local monitoring repository and the
Notification Policies have been evaluated and executed, the pre-configured Adaptation Policies
are triggered (evaluateAdaptationPolicies), in order to modify the behavior of a monitoring job if
required. The Adaptation Policies constitute the hook for realizing regulative mechanisms with
respect to the running FDH monitoring jobs. Indeed, this is the place where aspects such as sam-
pling rate, aggregation strategy and resource allocation around a monitoring service/job/task, can
be all adapted. Thereby, the adaptation of the monitoring job might need to be synchronized (syn-
chronizeTentativAction) over the SelfOptAgent, since it constitutes an action that would potentially
require additional resources and might contradict with other tentative actions originating from the
FDH agents within a node. Given that the action has been allowed by the SelfOptAgent, the
adaptation of the belonging monitoring parameters (e.g. sampling rate) is conducted ( adaptMon-
itoringPluginParameters). In Appendix E, a specific example of how such an adaptation can be
realized is given.

6.3.2 Processing Incident and Alarm Descriptions

Provided that the FDH monitoring components within a node have detected a symptom for an
erroneous state, this symptom is subsequently described using an information model and has to
be made available for the purposes of the distributed self-healing control loop. This means that
the belonging alarm/incident description has to be stored and disseminated across the network in
question, such that the FDH agents inside the network nodes can react upon in an attempt to sustain
quality of service and remove the root causes for the observed anomalies. Figure 6.9 describes this
process from the perspective of the node within which the FDH monitoring components have de-
tected the symptoms. These monitoring components are represented by the UML lifeline relating
to the monitoring plug-ins.

There are two types of descriptions which might be generated and processed based on the specifics
of a particular monitoring plug-in, namely alarm and incident description. Given that an alarm has
been generated by the monitoring plug-in in question, then the belonging alarm description is
pushed to the Alarm Repository of the local FDH node (storeAlarmInformation on Figure 6.9).
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Subsequently, the local entities - represented through the LE UML lifeline 7 on Figure 6.9 - inside
the FDH node are notified regarding the newly submitted alarm description (notifyLocalEntities on
Figure 6.10). This includes, on one hand, the core FDH agents such as the local node FaultManA-
gent and SurvAgent, as well as other functional entities which might have registered at the Alarm
Repository for receiving information of interest. That way these entities would be able to adapt
their behavior according to the received notification. This is especially valid in clean slate type of
networks (such as ANA [BJT+10]) where network protocols and functional blocks are designed
from scratch and might be inherently developed with the awareness of a framework such as FDH.
Having notified the local entities, the Alarm Repository proceeds with triggering the dissemination
of the alarm notification throughout the network scope in question (e.g. a LAN or an OSPF area).
This activity is represented by the triggerAlarmDissemination call on Figure 6.9. Subsequently,
the EvDissAgent continues the flow with conveying the message (disseminateAlarm) regarding
the newly generated alarm to relevant nodes across the FDH controlled network (represented by
the NET UML lifeline 8 on Figure 6.9).

A similar procedure as the one above is performed when it comes to the processing of incident
(failure/error/fault) descriptions. The lower part of Figure 6.9 describes the belonging steps in-
cluding the storing of the incident information to the Local Incident Repository (storeIncidentIn-
formation) , followed by the notification sent to the local functional entities (including the core
FDH agents within a node), and finally triggering and conducting the dissemination of the inci-
dent description across the network scope in question (triggerIncidentDissemination and dissemi-
nateIncident). Thereby, the overall process is again initiated by the Monitoring Plug-ins operating
within the FDH monitoring platform, and detecting the symptoms of faults from the perspective
of a particular network node. The main difference between the initial processing of an incident
and an alarm is given by the repository for storing and dispatching the information within an FDH
node - the Local Incident Repository in case of an incident, and the Alarms Repository in case of
an alarm.

The opposite aspect of alarm/incident processing is given by the case when an alarm/incident de-
scription is conveyed to an FDH node over the network. The FDH interaction flows that handle
this aspect are depicted on Figure 6.10. The incident or alarm arrives at the local node (reportInci-
dentOrAlarm on Figure 6.10) and is first received by the EvDissAgent, which serves as a gateway
between the FDH node components and the network as whole. In case the received message relates
to an alarm, the belonging alarm description is stored (storeAlarmInformation on Figure 6.10) into
the local Alarms Repository and forwarded to the core local FDH agents, i.e. FaultManAgent and
SurvAgent, as well as to interested local functional entities. Subsequently, both core FDH agents
can proceed with their local self-healing control loops.

In case the received message relates to an incident (failure/error/fault), the EvDissAgent has to
differentiate whether the reported incident is related to the local node or not. In case the inci-
dent is not related to the local node, then it is stored in the External Incident Repositories of
FDH (storeIncidentInformation on Figure 6.10) and the relevant local entities, including the FDH
FaultManAgent and SurvAgent, are notified regarding the newly received external incident. Cor-
respondingly, both key self-healing agents can involve the new external incident information in
their belonging control loops.

Given that the received incident relates to the local node, i.e. a remote node asserts a malfunc-
tioning of the local node, the incident description is first forwarded (forwardIncidentInformation)

7LE stands for Local Environment
8NET stands for Network
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Figure 6.9: Processing Incidents and Alarms Originating from the Local Node

to the Asserted Incident Assessment Functions part of the FDH supporting components. The Ass-
IncFunction-module executes some pre-configured policies, supplied by the network operations
personnel, in order to verify the asserted incident locally (assessAssertedIncident). In case the
asserted incident was confirmed, the belonging description is stored in the Asserted Incidents
Repository of the FDH and all relevant local entities are notified. As a result, the FaultManAgent
and the SurvAgent can use this incident information within their belonging control loops.

In case the asserted incident could not be confirmed, the AssIncFunc should trigger the dissemina-
tion of a recovery notification across the network (triggerRecoveryNotificationDissemination on
Figure 6.10), given that the incident is obviously not present any more. This recovery notification
is triggered over the EvDissAgent which notifies (disseminateRecoveryNotification on Figure 6.10)
the FDH nodes in the network scope regarding the fact that the asserted incident is not present.
As a result, the local FaultManAgent and SurvAgent will not involve the asserted incident descrip-
tion in their control loop executions, and the incident description will be removed from the FDH
repositories across the network. This would hopefully lead to all FDH network nodes omitting the
incident description in question within their local self-healing processes and improving the local
self-healing operations.

Having shown how the FDH prepares and provides the set of alarms/incidents for the self-healing
control loop, the next sections focus on how this information is utilized for self-healing by the
FDH agents across the network.

6.3.3 Survivability Control Loops

Given that alarm and incident descriptions are handled and made available as described in the
previous sections, the presentation of the dynamic aspects continues with the way a SurvAgent
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Figure 6.10: Processing Incidents and Alarms reported to the Local FDH Node from the Network
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Figure 6.11: The Fault-Mitigation Control Loop within an FDH Node

within an FDH node consumes this information for its local control loop (see Figure 6.11). The
SurvAgent is notified by the local FDH repositories (informSurvAgent on Figure 6.11) regard-
ing a newly reported and locally stored incident or alarm. Based on this information, the local
SurvAgent triggers a local Fault-Mitigation control loop (triggerFaultMitigation on the belong-
ing sequence diagram). Correspondingly, the pre-configured Fault-Mitigation policies of the local
SurvAgent are evaluated and an action prepared for execution, in order to mitigate the local effects
of the reported erroneous state. Before running this tentative action, it needs to be approved for
execution by the local SelfOptAgent, which is in charge of synchronizing the tentative actions of
the various FDH control loops and optimizing the operation of the overall self-healing framework.
This is achieved by the synchronizeTentativeAction call to the SelfOptAgent, and the belonging
answer is given by the SynchronizationResult return value. Given that the tentative action was
allowed by the SelfOptAgent, it is executed (executeAction) and the whole control loop is logged
to the local control loop history log (logControlLoopRun).

In addition, Figure 6.12 presents the way monitoring information is consumed for the purpose
of Failure-Prediction within the SurvAgent of an FDH node. The monitoring information is
obtained by the MonAgent based on the monitoring requests which were submitted by the Sur-
vAgent (submitFailurePredictionMonitoringRequests on Figure B.1) during the bootstrap phase of
an FDH node. These monitoring requests result in KPI values periodically reported to the Failure-
Prediction Functions of the SurvAgent. Hence, the FPF correlate the different monitored values
(correlateMonitoringInformation on Figure 6.12) based on the node specific Failure-Prediction
Models which were obtained (getNodeSpecificFailurePredictionModels on Figure B.1) during the
bootstrap phase of the FDH node. Based on the node specific Failure-Prediction Models, the FPF
might decide that an alarm needs to be generated since there is a high risk for a failure of a par-
ticular component, e.g. hardware component or an application server. Thereby, the alarm is used
to first trigger local Fault-Mitigation. Subsequently, the belonging alarm description is stored in
the local alarms repository (storeAlarmInformationWithoutAutomaticallyNotifyingSurvAgent) and
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Figure 6.12: Failure-Prediction and Alarm Generation within the SurvAgent of an FDH Node

processed as described in the previous section, i.e. the local FaultManAgent is notified, relevant
local entities are informed, and the alarm is disseminated by the EvDissAgent across the network,
such that the self-healing control loops in other FDH nodes can react.

6.3.4 Fault-Management Control Loop

The last and most important FDH control loop to describe is given by the FaultManAgent control
loop, which has the goal to remove faults in the long-term operation of the network. The interac-
tion flows implemented by the FaultManAgent and its control loop in an FDH node are presented
on Figure 6.13.

Given that the FaultManAgent has been notified every time a new alarm/incident description has
been reported and stored locally - refer to Figure 6.9 and Figure 6.10 - the process of Fault- Iso-
lation is triggered (isolateFaults on Figure 6.13) if one of the following conditions (which were
already mentioned in section 6.2.1.3) is met:

1. Fault-Isolation is triggered every time a particular pre-defined number of incidents or alarms
have been reported

2. Fault-Isolation may also get immediately initiated after a single alarm/incident event has
been reported given that the event has a high (according to a pre-defined value) severity
level, and

3. if only few (less than the pre-defined number of) incidents/alarms are reported and their
severity is not causing the FIF functions to immediately trigger Fault-Isolation, then Fault-
Diagnosis is triggered after a pre-defined time slice, which can be realized by the expiration



6.3 Dynamic Aspects of the Framework 111

ActionExecutionStatus

SynchronizationResult

FaultIsolationOutcome

Network Node

Fault-Isolation FunctionsLE
Fault-Isolation Assessment

Functions
Fault-Removal Functions

Fault-Removal Assessment

Functions
SelfOptAgent

FaultManAgent

Network Monitoring System

isolateFaults

opt

triggerVerificationOfFaultIsolationOutcome

if [LocalReactionToFaultIsolationOutcomeNeeded]

alt
if [LocalIsolationOutcomeNotCorrect]

checkFaultIsolationOutcome

escalateFaultyConditionToNetworkOperationsPersonnel

triggerFaultRemoval

synchronizeTentativeAction

else if [LocalIsolationOutcomeCorrect]

opt
if [ActionAllowed]

executeAction

triggerFaultRemovalAssessment

ActionSuccessfulStatus

verifyActionEffictevness

alt

if [ActionNotSuccessful]

escalateFaultyConditionToNetworkOperationsPersonnel

CLHLog

logControlLoopRun

logControlLoopRun

else if [ActionSuccessful] triggerIncidentRecoveryNotification

         

    

Figure 6.13: The FaultManAgent Control Loop within an FDH Node
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of a timer

As previously mentioned, all the parameters required for evaluating the above conditions are sup-
plied by the human experts tweaking the FDH processes.

The Fault-Isolation task uses the network-wide Fault-Propagation Model which is locally kept in
the FPMR repository. After the Fault-Isolation results have been obtained, it needs to be checked
on whether these results require a local reaction of the corresponding functions within the Fault-
ManAgent. In case a local reaction is indeed required, the FIAF functions of the FaultManAgent
must verify that indeed the faults, which were found based on the FPM, are activated (triggerVer-
ificationOfFaultIsolationOutcome on Figure 6.13). This is done based on pre-configured policies,
which lead to the required actions, in order to locally check the presence of a particular fault.
The required action (e.g. probing or checking the run-time configuration of a functional entity)
is executed on the local environment (checkFaultIsolationOutcome on Figure 6.13) and the be-
longing result is given by the return value FaultIsolationOutcome, which would keep a simple
boolean value indicating whether the fault in question is indeed activated or not. In case the fault
is not present, which would mean that the Fault-Isolation process was not correct, the situation is
escalated to the network operations personnel (escalateFaultyConditionToNetworkOperationsPer-
sonnel on Figure 6.13) and the control loop execution so far is logged to the Control Loop History
Log (logControlLoopRun on Figure 6.13). Otherwise, if the isolated fault is indeed present, the
Fault-Isolation result is passed to the Fault-Removal Functions of the FaultManAgent, in order
to trigger the process of Fault-Removal (triggerFaultRemoval on Figure 6.13). In that context,
the FRF operate based on pre-configured policies - supplied by the network administrators and
downloaded from the Configuration Server during the bootstrap phase - that decide on the ac-
tion(s) which is/are to be executed, in order to remove a set of faults. These action(s) would need
to be synchronized over the SelfOptAgent (synchronizeTentativeAction and SynchronizationResult
on Figure 6.13), in order to avoid contradictions with other FDH control loops and to assure the
optimized operation of the FDH instances across the network. In case the tentative action was
approved by the SelfOptAgent, it is executed on the local entities (executeAction on Figure 6.13)
and the Fault-Removal Assessment Functions are triggered (triggerFaultRemovalAssessment on
Figure 6.13), in order to check whether the fault(s) was/were indeed successfully removed (veri-
fyActionEffectiveness on Figure 6.13). In case the set of faults was not successfully removed, an
escalation of the situation to the network operations personnel is initiated (escalateFaultyCondi-
tionToNetworkOperationsPersonnel on Figure 6.13) after the control loop run has been recorded
to the Control Loop History Log. In case of successful Fault-Removal, recovery notifications for
all related incidents should be disseminated across the network (triggerRecoveryNotification on
Figure 6.13), such that the incidents in question can be scheduled for deletion by the Obsolete
Event Handling Components on the involved FDH nodes. In this line of thought, Figure 6.14
elaborates in details on the steps behind the triggerRecoveryNotification message/call on Figure
6.13.

Figure 6.14 illustrates the process which is initiated after a successful Fault-Removal, namely the
process of disseminating recovery notifications for alarms/incidents related to the successfully re-
moved faults (root causes for faulty conditions). The process is initiated by the FRAF functions,
which firstly mark related alarm/incident descriptions as cleared (clearRelatedIncidentDescrip-
tions on Figure 6.14) within the local node FDH repositories, such that these alarm/ incident
descriptions are scheduled for deletion by the local OEHC component. Next, the FRAF module
of the FaultManAgent triggers the EvDissAgent to disseminate a recovery notification (trigger-
RecoveryNotificationDissemination on Figure 6.14). As a result, the EvDissAgent notifies inter-
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Figure 6.14: Dissemination of Recovery Notifications

ested local functional entities and subsequently disseminates the recovery notification across the
network using the same mechanisms as in the case of alarm/incident dissemination. After the
recovery notification has arrived on a remote FDH node, the belonging EvDissAgent accepts it
(relate to Figure 6.15) and correspondingly invokes the clearRelatedIncidentDescriptions call on
the alarm/incident repositories, in order to schedule the related alarm/ incident events for deletion
by the belonging OEHC component. That way, the set of faults behind an erroneous state have
been technically resolved and all belonging alarm/incident descriptions have been cleared from the
FDH repositories across the network. This completes the FaultManAgent Control Loop within
a node and the network as a whole.

6.4 Criteria for Escalating Faulty Conditions to the Network Opera-
tions Personnel

Having designed the distributed control loop on node and network level, the key aspect of the
escalation of faulty conditions - not resolvable by means of the FDH framework - to the network
operations personnel needs to be specified. Thereby, it is required to define what it means that a
particular erroneous state is not resolvable by means of FDH. Based on this definition, the FDH
control loops as well as the "Network Operations Personnel Interfaces" would be able to make de-
cisions and notify the network administrators when required. Hence, a set of criteria are required
which would allow the above mentioned FDH components and mechanisms to judge on whether
a particular situation should be escalated or not. These criteria directly fulfill the corresponding
Req 22 from section 5.1.4. The following paragraphs discuss and define the concrete criteria for
the FDH framework.

6.4.1 Increased FDH Overhead and Excessive FDH Activity

Given that the fundamental goal of a distributed system is to deliver its services in a qualitative
and reliable manner, human intervention is needed whenever the FDH self-healing overhead is
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Figure 6.15: Receiving Recovery Notifications

increasing and is holding the network/system back from its fundamental task of forwarding traffic
and delivering services, or when a problem is unresolvable by means of FDH based distributed
self-healing. In the context of FDH, two cases have been identified that can indicate increased
self-healing overhead. These are formulated in the following as criteria upon which the network
operation personnel should be consulted, i.e. brought into the loop.

Criterion 1 - Incidents Overload: The FDH components should raise an alarm to the network op-
eration personnel whenever too many (according to a pre-defined threshold) incidents are reported
to the fault/error/failure/alarm repositories in the FDH nodes across the network.

Criterion 2 - Increased Control Loop Overhead: The FDH components should raise an alarm to the
network operation personnel whenever the control loops for distributed self-healing are triggered
too often (according to a pre-defined threshold).

6.4.2 Inability of FDH for Coping with an Erroneous State

As already mentioned, in addition to the above criteria the FDH mechanisms are expected to esca-
late and report the situation to the network administrators, in case there are increased indications
that the FDH control loops are not able to cope with the challenges the network/system is exposed
to. In the following, a number of such indications are listed, according to which the FDH control
loops can be considered unable to resolve the issues the network/system encounters. Such issues
would need human intervention and the involvement of the network administrators. Next, the in-
dications are formulated as criteria upon which the particular situation should be escalated to the
network operations personnel.

Criterion 3 - Unknown Incidents Reported: The FDH components should raise an alarm to the net-
work operation personnel whenever an incident reported to the FDH node repositories is unknown
within the Fault-Propagation Model of the network. In such a case, the processes of Fault-Isolation
and consequently Fault-Removal cannot be triggered. Hence, the network is not able to react to
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such an incident (self-heal), and the current situation should correspondingly get escalated to the
network administrator.

Criterion 4 - Failed Fault-Isolation: The FDH components should raise an alarm to the network
operation personnel whenever the Fault-Isolation process is not able to identify the root cause for
the erroneous state of the network.

In the case of a probability based reasoning framework, the above criterion would mean that the
probabilities calculated for the diverse potential root causes are too low and none of them can be
diagnosed with a high value of certainty. Moreover, the FIAF functions of the FaultManAgent
have the task to verify the correctness of the Fault-Isolation outcome. That is, the FIAF have to
verify whether the identified root cause(s) (state(s)) are indeed activated, e.g. the configurations
of an entity can be examined. If the suggested faults in question are not activated, then obviously
the Fault- Isolation process has failed, and an escalation to the network operations personnel is
required.

The next criterion relates again to the issue of a failed part of the FaultManAgent control loop,
namely the Fault-Removal step.

Criterion 5 - Fault-Removal Failed: After the FRF module of the FaultManAgent has addressed
an isolated fault (root cause), the FRAF part of the Fault-Management Agent would try to verify
the elimination of the faulty condition by applying some probing/testing techniques. In case the
FRAF functions assert that the faulty condition is still present, then an alarm should be raised to
the network operation personnel, since it is likely that some of the FDH processes are operating in
a wrong and inefficient manner.

The next criterion relates again to the potential inability of the FaultManAgent control loop to
resolve a faulty condition. However, this criterion does not rely on particular FDH component to
assess the outcome of a FaultManAgent control loop phase, but rather on observations regarding
the alarm and incidents submitted to the FDH node repositories across the network.

Criterion 6 - Alarm/Incident Repeatedly Reported: The FDH components and mechanisms should
raise an alarm to the network operation personnel whenever the same alarms/incidents are repeat-
edly reported (a number of times) to the alarm /incident repositories of the framework, although
the corresponding control loops have already undertaken some actions to remove the assumed
underlying root cause.

A situation as in the above criterion implies that either the process of Fault-Isolation or the pro-
cess of Fault-Removal is failing to achieve its goal and the root cause for the corresponding faulty
condition cannot be removed. Hence, an alarm describing the erroneous state should be conveyed
to the human experts operating the network.

6.4.3 High Risk for a Component Outage

The Failure-Prediction Functions of the SurvAgent would produce estimations for the failure of
diverse hardware components inside the network/system. An increased failure probability, based
on observations related to the component in question, are vital information that can be used by
the network operations personnel, in order to remove and substitute a hardware component that is
likely to fail in the near future. Hence the following criterion is defined:

Criterion 7 - High Failure Probability: An alarm should be raised to the network operation person-
nel whenever the likelihood for a failure of a particular hardware component, estimated by the FPF
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module of the SurvAgent agent, has reached a critical level.

All above criteria should be used to implement the interactions of the components of the FDH
with the traditional Network Management/Monitoring System (NMS) as employed today in Net-
work Operations Centers. The way these interactions are implemented within the FDH research
prototype is presented in section 9 and section 10.7.



Chapter 7

Realization of the Self-Healing Function

The current chapter presents the conceptual and algorithmic aspects of the way the self-healing
function of FDH is realized in the scope of the current thesis. The flow starts with describing the
FDH Monitoring Agent and proceeds with the alarm/incident/event sharing techniques that were
considered within the current work. Having described these aspects, and having that way laid the
foundations for the sophisticated processes for handling alarms and incidents, the following sec-
tions proceed with describing the algorithms and models for realizing the critical FaultManAgent
processes of Fault-Isolation, Fault-Isolation Assessment, Fault-Removal, Fault-Removal Assess-
ment, as well as Fault-Mitigation and Failure-Prediction within the FDH SurvAgent. Thereby, the
belonging requirements from chapter 5, which were already mapped to the corresponding compo-
nents, are further refined and addressed on algorithmic level.

The description of the mechanisms implementing the FDH processes consists of various aspects.
These include the specification of algorithms, structural concepts, meta-models and XML formats
for capturing the required actions. Thereby, the algorithms are described using a pseudo code
notation and their time and/or space complexity is discussed on. The time and space complexity
discussions are conducted inline with the belonging requirements (Req 23 and Req 24) from sec-
tion 5.1.4. Specific scalability/performance/overhead measurements are presented in chapter 12,
where the performance/overhead/scalability of the single FDH processes, as well as of the overall
FDH distributed self-healing are analyzed in detail.

In order to demonstrate the applicability of the proposed algorithms, particular case studies are
derived and presented. These case studies are later on considered as parts of some of the over-
all case studies presented in chapter 13, in which the whole distributed self-healing process is
demonstrated and discussed on.

7.1 FDH Monitoring Agent

The FDH Monitoring Agent1 is the FDH component that delivers basic monitoring services to-
wards enabling the distributed self-healing realized by the FDH framework. Thereby, it plays
the role of a Fault-Detection component, which provides input to the Fault-Management agents
and the Survivability agents across the network. In addition the FDH Monitoring Agent can be
requested (on-demand) to monitor and deliver information regarding different KPIs (reflecting net-

1The current section is an extended version of the work initially published in [TP12] and [LZM+10].
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work/system performance and state), which can be further exploited by the FDH components if
required.

The following subsections describe the different design principles, which were taken whilst real-
izing the monitoring functions required for the FDH framework. Thereby, these design principles
are a further refinement of the high-level (reference model level) specification in section 6.2.1.1.
Hence, the belonging monitoring requirements from chapter 5 are further addressed on technical
level within the coming paragraphs.

It should be noted that the FDH Monitoring Agent is presented here based on its architectural mod-
els, which are very close to the implementation. The reason for this is that the realization of the
FDH MonAgent is mainly architecturally driven, i.e. the internal structure of the agent and the in-
teractions among the sub-modules determines its operation, whilst there are hardly any significant
algorithms of vital importance. This is a major difference to the other aspects of the self-healing
function (and correspondingly the other sections of this chapter), which are presented with a focus
on algorithmic aspects, whilst the implementation and configuration models are addressed in the
sections relating to the prototype implementation and to the network operations personnel view on
FDH.

7.1.1 Extensible Monitoring Functions Design

The FDH Monitoring Agent must be extensible and configurable to deal with different types of re-
quests for Fault-Detection and KPI’s monitoring. In order to achieve that, it is needed to come up
with structures which would allow the extensibility of the monitoring platform depending on the
self-healing needs of the particular network. The key element within this concept is the one of a
monitoring plug-in - be it a Traffic Monitoring Plug-in or a Node Monitoring Plug-in - as specified
in section 6.2.1.1 and Figure 6.3. Therefore the FDH MonAgent is designed, and its specification
is further refined, as to be extensible by plug-ins which would be doing the job by combining dif-
ferent monitoring tools and accessing belonging monitoring interfaces (e.g. SNMP MIBs or CLIs).
Indeed, the interfaces between the various FDH MonAgent modules (e.g. monitoring plug-ins or
Data Aggregation and Correlation Framework of the FDH MonAgent) must be specified in way
that they can serve the purpose of being accessed by plug-in developers, who would be normally
be constituted by network/system administrators implementing monitoring functions required for
a particular network/system. In the following, the modeling concept of UML interface diagrams
[Bel04] is used to capture the APIs required and made available for the deployment of monitoring
plug-ins enabling FDH based self-healing.

+isAbleToServeMonitoringRequest(in MonitoringRequest mr) : bool
+serveMonitoringRequest(in MonitoringRequests mr)
+getMonitoringJobStatus() : int
+stopMonitoringJob() : bool

«interface»
MonitoringPlugin

MonitoringPluginInterfaces

Figure 7.1: Monitoring Plug-in Interfaces

The interfaces which are required for the implementation of an FDH monitoring plug-in are given
in Figure 7.1. These interfaces are to be seen as abstract functions, which are later to be imple-
mented and provided by each plug-in, such that it can be integrated within the FDH MonAgent
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flows. In the scope of the Java based implementation presented later on this thesis, these interfaces
are realized as Java interfaces, which fix the way a monitoring plug-in is addressed by the rest of
the MonAgent components - after having been loaded and initialized within the FDH MonAgent
platform.

Coming back to the interfaces described in Figure 7.1, a monitoring plug-in should be able to
recognize whether a monitoring request - submitted by one of the other FDH agents (see Figure
B.2- can be processed by the monitoring plug-in. The logic for the identification of such relevant
monitoring requests should be implemented within a specific method specified as isAbleToServe-
MonitoringRequest(in MonitoringReques mr): bool in Figure 7.1. This method is invoked by the
Orchestration Engine of the FDH MonAgent after a monitoring request has been sent/submitted
by another FDH agent. Thereby, the Orchestration Engine forwards the request to each available
monitoring plug-in. That means, that the isAbleToServeMonitoringRequest method of each plug-
in is invoked with the corresponding monitoring request as parameter, which is in turn analyzed
if it is suitable to process by the current plug-in, and correspondingly a boolean value is returned
that determines whether the request can be served by that plug-in or not. Provided that a monitor-
ing request has matched a particular monitoring plug-in using the above interface, the monitoring
request should be subsequently passed to the plug-in for further processing. This is realized via
the serveMonitoringRequest (in MonitoringRequest mr) interface. The reason for separating the
matching of a request from the submitting of the request is constituted by the idea to give the
MonAgent the freedom to implement a logic for selecting a monitoring plug-in, in case multiple
plug-ins match a particular request. Finally, a monitoring plug-in should be able to report the
status of the running monitoring job, which is to be realized via the getMonitoringJobStatus(): int
interface. In that case the status is encoded as an integer value, which can reflect different states
of the monitoring process. Through the above specified interfaces, it should be guaranteed that
the FDH MonAgent platform can address and interact with plug-ins, which implement monitoring
functions specific to the needs of the network/system in question. Furthermore, it is required to
define interfaces which allow the monitoring plug-ins to interact with other modules within the
FDH MonAgent. These interfaces are described in the following paragraphs. Finally, it should be
possible to stop a monitoring job, which is realized over the stopMonitoringJob() : bool interface
to be implemented by each plug-in.

After having captured a particular KPI value, the monitoring plug-in pushes it to the Data Aggre-
gation and Correlation Framework of FDH (see Figure 6.8 in section 6.3.1). The DataAggrCor-
rFram is subsequently responsible for selecting the corresponding data aggregation/correlation
function and forwarding the resulting KPI value to the Orchestration Engine of the FDH Mon-
Agent (refer to Figure 6.8). In order to push monitored KPI values to the DataAggrCorrFram,
a monitoring plug-in uses the pushDataForCorrelation (in KPI k, in int CorrelationAndAggrega-
tionMethod) interface captured by the UML interface diagram in Figure 7.2. Thereby, an object
containing the measured KPI value is passed, as well as an integer that is meant to contain a code
representing the requested aggregation/correlation method - e.g. average, exponential average, or
median. The belonging functionality for the correlation must be offered as part of the monitoring
platform and the provided Data Aggregation and Correlation Framework.

Besides, according to the interaction flows described in Figure B.2 and Figure 6.8, there are par-
ticular points at which the evaluation of some policies is required - e.g. admission, adaptation or
notification policies regarding a particular plug-in, its monitoring behavior or the KPI values it has
monitored. These policies are indeed required to follow a particular format, which would enable
them to be integrated and utilized at the corresponding places within the interaction sequences.
The way these policies were realized within the FDH prototype is described in the coming sec-
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DataCorrelationAndAggregation

Figure 7.2: Data Correlation and Aggregation Interfaces

tions.

7.1.2 Meta-Models for the MonAgent

The following subsections focus on the meta-models, which are needed for the operation of an
FDH MonAgent within a network node.These include the different policies that are needed for
the internal processes of the monitoring platform, as well as the meta-model for defining and
expressing monitoring requests.

7.1.2.1 FDH MonAgent Policies

The operation of the FDH MonAgent inside a network device requires various types of policies
that facilitate the FDH MonAgent to take key decisions regarding the monitoring process. The
relevant policies were initially captured in Figure 6.3 in section 6.2.1.1.

These policies include the Admission Policies of an FDH MonAgent that determine whether a
particular monitoring request - coming either from the FaultManAgent or the SurvAgent - should
be accepted and fulfilled based on various constraints, which may include for example aspects of
resource (memory, CPU utilization, etc.) consumption, or the number of monitoring jobs already
in place. Other policy sets, which need to be provided by the network operations personnel, are
constituted by the Notification Policies and the Adaptation Policies for an FDH MonAgent within
a node.

The Notification Policies contain the logic for decisions, on whether a particular measurement
should be communicated to the agent, which has submitted the belonging monitoring request. This
decision would normally be based on particular thresholds that determine if a value, which was
measured for a KPI, constitutes an abnormal situation or not. Furthermore, the Adaptation Policies
are invoked at a particular point of the monitoring information processing (specified in Figure 6.8
as the point after the notification/decision w.r.t. the monitored KPI values) and trigger steps as to
adapt the belonging monitoring job/plug-in, depending on key aspects within the last monitoring
period. Parameters of a monitoring job/plug-in, which may require adaptation, are given by the
duration of a monitoring period, the granularity/rate of the monitoring job invocation, the storage
policy for measured values - which KPI measurements require to be stored in a local database and
which can be dismissed immediately, the measurement aggregation parameters, such as number
of measurements or type of aggregation function, e.g. median [She07], weighted average [She07],
or simple arithmetic mean [She07]. The adaptations would take into account aspects such as re-
source consumption issues (e.g. memory consumption, CPU utilization, etc.), the dynamics of the
measured KPIs - for example how strongly do the measured values vary, and further aspects which
would depend on the particular monitoring job and implementing monitoring plug-in.



7.1 FDH Monitoring Agent 121

Notification Policy

Monitoring Agent Policy

+type : string
+id : string

Condition

+logicalConditionStr : string

Decision

+scriptStr : string

1

1

1

1

Adaptation Policy Admission Policies

+addmissionResult : byte

Figure 7.3: Meta-Model for the Policies required by the FDH Monitoring Agent in a Node

The meta-model for the different types of policies required by an FDH MonAgent within a node
is illustrated in Figure 7.3. It builds on an abstract Monitoring Agent Policy depicted in the center
of Figure 7.3. This abstract policy contains the fields id and type, which are meant to identify it
and to provide a short description, such as type of the policy or a short combination of keywords
capturing key aspects of the policy (e.g. RTT MONITORING NOTIFICATION). The abstract
Monitoring Agent Policy is further composed of a Condition and a Decision, which are both rep-
resented by strings. The Condition is meant to be a logical expression which can be evaluated and
the Decision string is meant to represent the action which is executed based on the outcome of
the condition 2. Finally, the Monitoring Agent Policy is specialized (in terms of being the basic
class) by the particular policies required for the different steps of the FDH MonAgent operations.
Thereby, the Admission Policies bring in a new attribute in particular, which is given by the ad-
mission result that is used by the Orchestration Engine of the MonAgent, in order to dismiss or
proceed with a particular monitoring request.

A final remark on the presented policies meta-model: It is considered that the monitoring policies
are node-specific and should be separately provisioned for the FDH MonAgent for each device in
a distributed network/system.

2In the current prototype, the Condition and the Decision part are implemented based on the Java BeanShell [Bea16]
library, which allows for dynamically executing pieces of Java-like code. More details on the implementation including
examples of policies are given in chapter 10.
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7.1.2.2 Monitoring Requests

The monitoring requests are the second key aspect that makes the operation of an FDH MonAgent
within a node. These monitoring requests are downloaded by the key FDH agents within a node
- the FaultManAgent and the SurvAgent - and submitted in turn to the local FDH MonAgent, in
order to initiate required monitoring jobs. That is, the decision on when to submit a monitoring
request to the MonAgent, and that way initiate a monitoring job, is left to the operational logic of
the other FDH agents. Therefore, the download of the monitoring requests from the centralized
FDH Configuration Server is realized by each of the key FDH agents (FaultManAgent and Sur-
vAgent) for its own set of monitoring requests The interactions required to accomplish these steps
are depicted in Figure B.1.

The meta-model for FDH monitoring requests is provided in Figure 7.4. It is inspired by the Net-
work Resource Model of 3GPP [3GP13], which is taken as a pattern regarding how to describe a
particular network resource that needs to be monitored. This pattern includes the aspect of a Sub-
network, which contains a number of nodes that can be either a Host - i.e. a machine connected to
the network providing services or applications, or a Router - a forwarding node on network layer.
Both types of network nodes possess interfaces to the network - DeviceInterface with belonging
IP addresses as well as a device identification string, e.g. eth0. In addition, various node-specific
aspects can be monitored within a device which is given by the NodeMonitoringAspects abstrac-
tion.

The concept of a Subnetwork comprising the above aspects is the key item within an abstracted
MonitoringJob that also includes the attributes of granularityPeriod, i.e. the pause between two
periodical invocations of the monitoring job, and the total number of monitoring periods (num-
berOfMonitoringPeriods), i.e. the number of times the monitoring job will be periodically started.
The concept of a MonitoringJob together with the above described Subnetwork and comprising
aspects round up the abstract part of the meta-model, which contains abstract classes that must
be specialized (depicted through the UML generalizations) for the purpose of describing concrete
monitoring jobs as well as concrete resources to be monitored.

Focusing first on the resources to be monitored in Figure 7.4: the DeviceInterface can be directly
included in the monitoring jobs as a resource to be monitored, whilst the NodeMonitoringAspects
are specialized by further model elements describing specific node KPIs to be observed, such as
open FileDescriptors per process, MemoryUtilisation and CPUUtilization per process. Naturally,
it is possible to add further node KPIs beyond those which were implemented for the scenarios in
this thesis.

Moving on to presenting the specific jobs, various monitoring jobs have been specified for the
purpose of the scenarios in this thesis. All these jobs are based on the abstract MonitoringJob
presented above and contain automatically the attributes of a granularityPeriod and numberOf-
MonitoringPeriods. In addition, many of these jobs contain threshold attributes or IP addresses
that specify the network interfaces/devices towards which particular probes must be sent (e.g. in
case of the RTT monitoring job). Furthermore, many of these jobs are meant to detect incidents
or generate alarms and directly submit those to the repositories of FDH. In these cases, attributes
are put in place that specify the interface to which the incident/alarm information is to be sent 3.
As in the case of the KPIs to monitor, the meta-model can be extended by further monitoring jobs
depending on the requirements of a particular network/system and the addressed scenarios.

3In the concrete implementation, these interfaces are given by Unix Domain Sockets paths where the information is
sent to.
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Figure 7.4: Meta-Model for Monitoring Requests
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Further details regarding specific implementation aspects - based on the meta-models and FDH
MonAgent specifications presented hitherto - are described in section 10.2. In parallel, the follow-
ing section demonstrates the application of the above monitoring related concepts to real network
problems, which are relevant for the case studies of the current thesis.

7.1.3 Example Applications

The current section presents how the FDH MonAgent was instrumented to monitor for IP Black
Holes [Lah00] and for Ethernet Duplex Mismatches [SC05]. Thereby, the FDH MonAgent is
configured as to detect symptoms for the erroneous states in question. Hence, the MonAgent in
that context takes care of orchestrating monitoring services that realize Fault-Detection based on
requests submitted by the FDH FaultManAgent.

The meta-model for specifying these requests was defined in section 7.1.2.2. Furthermore, an ex-
ample for such an XML request based on the above meta-model is given in section 10.2, which
elucidates various configuration aspects of the FDH framework.

Figure 7.5: Reference Network on which the Case Study is based

The case study was deployed on the reference testbed depicted in Figure 7.5. This testbed reflects
a network which is used to play case studies for the algorithms and techniques which were de-
signed for the various components of FDH. Thereby, this sub-network 4 is constituted by a part of
the overall testbed presented in section.

7.1.3.1 Ethernet Duplex Mismatch

The problem of Ethernet Duplex mismatch appears especially in Fast-Ethernet (IEEE 802.3) net-
works when the auto- negotiation procedure between the Network Interface Cards (NICs) on a link
has failed. This auto-negotiation procedure is meant to ease the setting up of an IEEE 802.3 based
network. However, there are particular situations which were reviewed in [SC05] and can lead to a
mismatch in the duplex mode (e.g. full vs half-duplex mode) assumed on the Fast-Ethernet NICs
on both ends of a link.

According to [SC05], a duplex mismatch on an IEEE 802.3 link can occur in the following setups:

4Sub-network is not meant in the sense of an IP sub-network, but in the sense of the given network being part of the
larger testbed
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1. "One card is hard-coded to use full-duplex and the other is set to auto- negotiate: the
hard-coded side will not participate in negotiation and the auto-negotiating side will use its
half-duplex default setting;

2. The two cards are hard-coded to use different duplex modes;

3. Both cards are set to auto-negotiate, but one or both of them handles auto-negotiation poorly
" ... "note that, in this case, the problem can occur sporadically and rebooting or resetting
the interface on either side could clear the condition." [SC05]

Such a situation would lead to frames being sent out on the link by the NICs without consideration
regarding whether the interface on the other end is simultaneously issuing Ethernet frames or not.
Obviously, this would lead to a large number of lost IP packets and has the potential to severely
cripple the performance of a network.

Based on the information provided in [SC05], a number of plug-ins for the detection of symptoms
of duplex mismatch were developed. Thereby, small programs were implemented which use vari-
ous available monitoring tools in order to obtain required KPI values. These small programs were
in turn wrapped into Java based FDH MonAgent plug-ins that implement the interfaces described
in section 7.1.1 above.

Following plug-ins for detecting symptoms of IEEE 802.3 duplex mismatch according to [SC05]
were provided:

• NicStatusPlugin - this plug-in is responsible for obtaining various KPIs during the opera-
tion of a Network Interface Card. Thereby, it utilizes the ethtool [ETH05] and the ifconfig
[IFC00] tools to obtain performance indicators such as the TX/RX counters of a NIC, as
well as the number of dropped packets at a particular Network Interface Card. An increased
number of dropped packets is a symptom that might be occurring due to an IEEE 802.3
duplex mismatch. The identification of whether the root cause is indeed given by such a du-
plex mismatch is the task of the Fault-Isolation process, which runs on a Fault-Propagation
Model capturing the various possible chains of fault-propagation within a network. The
requests for this plug-in are based on the NICStatusMonitoring part of the meta-model in
Figure 7.4.

• TcpRetransmissionsPlugin - the TcpRetransmissionsPlugin uses available packet capturing
tools (tcpdump [TCP15] within the current prototype), in order to track TCP packet flows
over an interface and identify an increased number of TCP retransmissions. An increased
number of TCP retransmissions is another indication that potentially an IEEE 802.3 duplex
mismatch has been activated on an Ethernet link. The requests for this plug-in are based on
the TcpRetransmissionsMonitoringJob part of the meta-model in Figure 7.4.

• DuplicateAcksPlugin - duplicate acks constitute a TCP protocol feature that enables a re-
ceiver to notify a sender that packets are arriving in a messed up order and that obviously
packets in between have been lost. The corresponding plug-in for detecting this anomaly
(whenever occurred) is developed as to use packet capturing tools (tcpdump [TCP15] within
the current prototype) and to analyze TCP traffic on an interface, in order to detect increased
appearances of duplicate acks. Such increased appearances of duplicate acks are indicative
for packet losses and might eventually mean that an IEEE 802.3 duplex mismatch has oc-
curred on an Ethernet link. The task of correlating the various symptoms, and identifying
whether indeed a duplex mismatch is the reason for the crippled network performance, is
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fulfilled by the Fault-Isolation process based on a Fault-Propagation Model capturing the
potential fault-propagation chains within the network in question. The requests for this
plug-in are based on the DuplicateAcksMonitoringJob part of the meta-model in Figure 7.4.

The above presented plug-ins were conceptualized and realized to monitor their respective KPIs
for a Network Interface Card. Hence, it is expected that depending on the characteristics of a
network, these plug-ins would be activated to monitor some key NICs on selected nodes. Coming
back to the reference network for the monitoring case studies (Figure 7.5): The requests for de-
tecting Ethernet Duplex Mismatches were served on the routers R2, R3, and R6 in the testbed on
Figure 7.5. These routers have Fast-Ethernet NICs attached, which potentially can have the prob-
lem of a duplex mismatch as described in [SC05]. The above described plug-ins realize the Fault-
Detection with respect to the identified symptoms and would be submitting their observations to
the FDH repositories residing in the routers, as well as to the corresponding FDH FaultManAgent
and SurvAgent within a node.

7.1.3.2 IPv6 Black Holes

The second Fault-Detection case study deals with a specific version of the problem of Black Holes
in IP networks and especially in IPv6 networks, which have undergone a transitioning from an
IPv4 based network configuration. The particular type of IP Black Hole that was addressed within
the case study is described in detail in [Lah00].

In general, the term Black Hole refers to a router that silently drops packets without sending any
notification to the involved communication participants, in particular sender or receiver. Thus, it
is difficult for the sender to regulate the settings of the flow it generates. That way, big amounts of
traffic can get lost causing the network to fail delivering its services. [Lah00] describes the above
mentioned specific type of a Black Hole phenomenon that can potentially occur in IPv6 networks,
which have inherited their firewall configurations from a previous IPv4 deployment, e.g. due to
IPv4-to-IPv6 transition. The misconfiguration of the firewall is constituted by the suppression of
ICMPv6 "Packet too big" messages. These messages are meant to notify the end systems in case
the PMTU (Path Maximum Transmission Unit) changes during the lifetime of a flow (e.g. be-
cause of a link failure and automatic traffic rerouting), such that the sender can adjust the size of
the packets it sends out.

The latter situation can lead to extensive packet loss in the scope of IPv6, because in IPv6 networks
packets do not get fragmented on intermediate router nodes, in order to reduce the performance
overhead in the forwarding plane. However, in IPv4 networks, it was a common practice to sup-
press many different types of ICMP messages due to the fact that implementation bugs have made
them an easy vehicle for an attacker to flood the network and achieve service unavailability. In
contrast, in an IPv6 network, the suppression of ICMP in firewalls is a critical issue that should be
carefully handled according to the belonging IETF RFC, e.g. RFC4942 [DKS07].

On the network in Figure 7.5, R1 would be a router that can potentially cause such a Black Hole
problem, provided that R1 has different types of links attached - a Gigabit-Ethernet link that can
carry up to 9000 bytes (e.g. with Jumbo Frames), and a Fast-Ethernet link with an MTU of
maximum 1500 bytes. In a situation where a path has been established that contains only Gigabit-
Ethernet links - such as End User ↔ R1 ↔ R2 ↔ R4 ↔ R5 ↔ FTP server #1 - a Path MTU
(PMTU) of more than 1500 bytes would be established for the flows on this path. In case of a
failure on the link R2↔ R4, the dynamic routing protocol (e.g. OSPFv3 or RIP-ng) on R2 would
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take care of rerouting the above flows over the R2↔ R3 link, which would lead to a decrease in
the PMTU that would be then set down to the 1500 bytes MTU of the Fast Ethernet (FE) link (R2
↔ R3). This would lead to R2 failing to forward packets over the R2↔ R3 link because of the link
being unable to carry the size of the packets which are sent out based on the PMTU established
over the Gigabit-Ethernet path (End User ↔ R1 ↔ R2 ↔ R4 ↔ R5 ↔ FTP server #1), which
would be larger than 1500 bytes. Normally, R2 would notify the sending device (End User on
Figure 7.5) via an ICMPv6 "Packet too big" message to reduce the size of the packets it sends
out. However, the presumed firewall misconfiguration on R2 (due to the IPv4-IPv6 transitioning)
would suppress the notification via the ICMPv6 "Packet too big" message, which would imply
that the end user system continues sending out packets that are silently dropped at R2 leading to a
Black Hole at this router.

The symptoms of such a Black Hole are partially described in [Lah00]. In the current study, moni-
toring sensors were instrumented, which were observing TCP flows on R1 order to detect duplicate
acks, increased numbers of retransmissions or sudden drops in TCP traffic that are indications for
Black Hole problems. Hence, following monitoring plug-ins were conceptualized and deployed 5

within the FDH MonAgent on R1:

• TcpRetransmissionsPlugin - as described above, the TcpRetransmissionsPlugin utilizes the
tcpdump [TCP15] packet sniffer for the purpose of capturing TCP flows and detecting in-
creased numbers of TCP retransmissions. This anomaly constitutes a symptom for an IP
Black Hole besides being also an observable anomaly in the course of IEEE 802.3 duplex
mismatch. Once detected, the observation is submitted to the other FDH agents - within a
node and eventually across the network - where it is used within the Fault-Isolation process,
in order to identify the correct underlying root cause - be it an IEEE 802.3 duplex mismatch
or an IPv6 Black Hole.The requests for this plug-in are based on the TcpRetransmissions-
MonitoringJob part of the meta-model in Figure 7.4.

• DuplicateAcksPlugin - as described in the previous section, the DuplicateAcksPlugin uses
the tcpdump [TCP15] packet capturing tool, in order to analyze TCP flows passing through
R1 and to detect increased number of duplicate acks. The symptom of duplicate acks stands
for a flow where packets arrive in the wrong order and the receiver notifies the sender to
re-send missing packets. Thus, duplicate acks might also occasionally appear in case of
an IP Black Hole activation, in cases when large packets fail to get through whilst small
ones succeed. Given that such an increased number of duplicate acks has been detected,
the DuplicateAcksPlugin submits an incident to the other FDH agents in the local node and
subsequently across the network (after the dissemination process has been accomplished),
where the duplicate acks incident is used in the Fault-Isolation process towards the identifi-
cation of the underlying root cause (e.g. a Black Hole occurrence or an IEEE 802.3 duplex
mismatch).The requests for this plug-in are based on the DuplicateAcksMonitoringJob part
of the meta-model in Figure 7.4.

• TcpTputDropsPlugin - another anomaly which is observed in case of an IPv6 Black Hole
occurrence is constituted by sudden drops in the throughput of TCP flows passing through
a router between the sender and the Black Hole router - in the current case this router is
given by R1. These sudden drops are detected by the TcpTputDropsPlugin orchestrated by
the FDH MonAgent on R1. Thereby, the TcpTputDropsPlugin uses the tcpdump [TCP15]
packet capturing tool, in order to track TCP flows passing through R1 and to search for

5Implementation details are provided in section 10.2
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sudden drops in the TCP throughput for the captured traffic. Given that such an anomaly
has been detected, the TcpTputDropsPlugin submits a corresponding incident description to
the FDH platform. This description is later used in the process of Fault-Isolation within the
FDH nodes. The requests for this plug-in are based on the TcpTPUTDropsMonitoringJob
part of the meta-model in Figure 7.4.

The above listed plug-ins utilize theMonAgent plug-in interface specifications6 - refer to the Mon-
itoringPlugin interface in Figure 7.1.These plug-ins are deployed and orchestrated by the FDH
MonAgen on R1. In order to test the plug-ins, the IPv6 Black Hole problem was introduced, i.e.
the R1 firewall was configured to suppress ICMPv6 "Packet too big" messages and the R2↔ R4
link was brought down such that the running traffic between End User and FTP server #1 had to
be re-routed over the Fast-Ethernet link with the lower MTU (i.e. the R2↔ R3 link). Thereby, the
monitoring plug-ins were detecting the above symptoms on R1 and pushing incident descriptions
to the FDH agents. Indeed, it was observed that the sudden throughput drops were always de-
tected whenever the IPv6 Black Hole on R1 was activated, whilst the duplicate acks and the TCP
retransmissions were only sporadically observed. This can be explained by the somehow stochas-
tic nature of the monitoring plug-ins given that they periodically sample traffic and subsequently
analyze it. Hence, it might happen that the specific occurrence of retransmission/"duplicate acks"
anomalies (before the TCP flow stalls) is missed by the sampling processes.

The above described case studies demonstrate the feasibility and applicability of the FDH Mon-
Agent concepts and architecture for the purpose of Fault-Detection for distributed self-healing in
IP networks. Thereby, it was shown how the FDH MonAgent can be used to monitor and de-
tect symptoms of IEEE 802.3 duplex mismatch and of IPv6 Black Holes resulting from firewall
misconfigurations due to an IPv4-to-IPv6 transitioning.

7.2 Incident Sharing Techniques

The following sections describe the realization of the mechanisms for the exchange of informa-
tion between the FDH agents within a node, as well as between the FDH nodes in a particular
network (area). Within the current thesis, the focus was set on plugging some basic techniques
into the corresponding FDH components and using these techniques, in order to evaluate the over-
all feasibility of the FDH approach for distributed self-healing. Indeed, there is a vast amount of
sophisticated research that deals with various techniques for information dissemination and rout-
ing over different network topologies, configurations and overlays 7. All these techniques can be
considered for the FDH dissemination components and used in concrete scenarios.

7.2.1 Introduction

The dissemination of alarms and incidents across the network (area) in question is the enabler
for distributed Fault-Isolation and self-healing in the context of the FDH. The goal is to facilitate
the FDH nodes to exchange information regarding their detected incidents and alarms, as well as
regarding different events they have observed and experienced. That way the FDH nodes would

6As previously mentioned, further details on the technological implementation aspects - related to the FDH MonA-
gent and the plug-ins in this section - are provided in section 10.2

7Some of these works are cited in the following subsections.
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strive to converge and compile a global picture with respect to problems within the network in
question.

The alarm/incident/event sharing among the FDH entities is realized by a couple of FDH com-
ponents. Given that an FDH MonAgent plug-in has an alarm/incident to pass to the other FDH
components (also across the network), the belonging description is submitted to the FDH repos-
itories of the local nodes, whilst in parallel it is directly passed to the belonging FaultManAgent,
SurvAgent and EvDissAgent 8. Thereby, the EvDissAgent is the node level component that serves
as a gateway to the network, taking care of sending out the alarm/incident description, as well
as responsible for receiving alarms/incidents from the network (i.e. alarms/incidents observed on
remote nodes) and dispatching them to the local agents (i.e. FaultManAgent and SurvAgent) and
to the local FDH node repositories.

A timely and efficient dissemination of alarms/incidents would enable the nodes implementing the
proposed FDH self-healing framework to correlate faults/errors/failures/alarms beyond the scope
of the local node, and to hunt down faults that propagate through the network. Therefore, diverse
dissemination techniques need to be applied depending on the TCP/IP layer of the affected enti-
ties, on the severity of the alarms and incidents to be disseminated, and on the current situation in
the network.

7.2.2 FDH Dissemination Techniques

In section 5.1.3 a number of requirements were identified which should be considered when select-
ing or designing the dissemination techniques for the FDH. Important aspects to consider within
this section are given by:

1. the requirement for providing means for alarm suppression (Req 13 from section 5.1.3 of
the requirements chapter 5) similarly as in traditional network management, i.e.the alarm/in-
cident/information should not be sent out to all FDH nodes across the network, but only to
those which can utilize it and potentially identify root causes (faults) that can be taken care
of by the FDH components residing on these nodes.

2. the requirement to incorporate multicast mechanisms and be able to deliver information to
pre-defined groups of nodes (Req 14).

3. the need to select the appropriate dissemination strategy according to the urgency of the
information to spread and the load in the network and the belonging nodes (Req 15).

4. naturally 9, unreliable communication protocols (Req 16), e.g. IP unicast/multicast or UDP,
would be employed, which would mean that it is required to equip the dissemination mecha-
nisms with means to increase the chances for successful delivery of the alarm/incident/event
information despite the unreliable nature of the protocols.

In [CTS08], the dissemination of alarms and incidents was already discussed in the context of the
UniFAFF [Cha09] framework, which was one of the starting points for the research presented in
this thesis, along with the Omega architecture [BDmB06] and the research activities in the EU-FP7
EFIPSANS project [efi16b] [efi16a]. These techniques were implemented for the Autonomic Net-
work Architecture (ANA) project [ANA16] [BJT+10], where the UniFAFF framework provided a

8All the agents reside on the local node, where the alarm/incident has occurred.
9The aspect of utilizing unreliable communication protocols for FDH is discussed in the following subsections.
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platform for Fault-Management and Failure-Detection in the scope of the pursued clean slate ap-
proach. The ANA project aimed at redesigning the traditional ISO/OSI and TCP/IP stacks towards
the provisioning of a network architecture with high degree of flexibility (i.e. through Functional
Composition) and in-built management functionality. Thereby, the dissemination techniques were
implemented on top of the link layer (in the form of Ethernet) ANA "compartment". A "compart-
ment", which is an ANA concept, wraps different sets of entities (across the network) providing
network functionality as a whole communication layer. These techniques from the ANA project
were adopted for the IP based EvDissAgent of the FDH framework for distributed self-healing.

Three techniques have been adopted and tested for the FDH prototype. These are:

1. repetitive retransmission of the alarm/incident/event message by the EvDissAgent of the
fault-detecting node

2. a canonical flooding on top of IP as well as a

3. gossiping on top of IP, similar as the one described in [CTS08] and [Tch09].

All these techniques are implemented based on datagrams, i.e. using unreliable communications
protocols (e.g. UDP in case of the prototype of this thesis - see section 10.6). The usage of
connection-oriented communication (e.g. TCP or the reliable Pragmatic Generic Multicast - PGM
[LFE+01]) is a challenge in that context, since incidents/alarms/events can occur sporadically and
the maintenance of a data stream is not so trivial, e.g. in PGM the delivery of a non-ACK 10 would
not work reliably given the sporadic nature of the incident data to send. Next, each of the above
listed dissemination techniques is elaborated on in turn.

Repetitive Retransmission: With respect to the first technique (the repetitive retransmission) from
the above list, the fault detecting node is simply repetitively sending out messages (packed in
datagrams) containing the alarm/incident/event description. These messages are posted to all
the IP addresses (including uni-cast addresses as well as multicast groups - e.g. as in the scope
of IPv6 based MLD [CV04] or IPv4 based IGMP [CDF+02]) which were pre-configured in
the EvDissAgents accross the network. Thereby, the number of retransmissions as well as the
delay between two consecutive retransmissions 11 must also be provided in advance, in case
of employing this dissemination strategy. Correspondingly, this straight forward dissemination
scheme can be summarized as follows.

10Within PGM, the participants in a multicast group must detect that they must have missed a packet in a sequence -
which can be recognized based on the sequence numbers of the arriving packets - and notify the sender by generating a
so called non-ACK packet.

11In the course of the experiments presented in this thesis, a number of 5 retransmissions and a delay of 0,5 seconds
was used.
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Dissemination Scheme (D1): Repetitive Retransmission of Alarm/Incident/Event Messages
Input:
1) numberOfRetransmissions - the number of times each message should be retransmitted by
the fault-detecting node.
2) delayBetweenRetransmissions - the delay in seconds between two consecutive retransmis-
sions.
3) messageToDisseminate - the message to disseminate.
4) IPAddressesForDissemination - a list of IP addresses to which the incident message must
be sent out.
1. foreach i in numberOfRetransmissions
2. foreach IP in IPAddressesForDissemination
3. send datagram with messageToDisseminate to IP
4. end foreach;
5. sleep for delayBetweenRetransmissions seconds
6. end foreach;

Canonical Flooding on Top of IP: With respect to the flooding on top of IP, the prototype
developed in the scope of the current thesis employes the dissemination scheme that was
drafted in [CTS08] and [Tch09] [Tch10]. Thereby, the fault-detecting node sends out the
alarm/incident/event message to all IP addresses which were pre-configured. The EvDissAgents
on the nodes behind these IP addresses accept the message and check whether the contained
alarm/incident/event description is already known locally, i.e. if it is already present in the
local alarm/event/incident repositories or not. In case the alarm/incident/event description in the
message is not known by the receiving node, it is stored locally and subsequently sent by the
receiving/ forwarding node to all IPs which have been pre-configured in the EvDissAgents of
the FDH nodes across the network. With respect to the dissemination node, the flooding over IP
scheme can be summarized as follows.

Dissemination Scheme (D2): Activities of the Fault-Detecting Node for Alarm/Incident/Event
Flooding on top of IP
Input:
1) messageToDisseminate - the message to disseminate.
2) IPAddressesForDissemination - a list of IP addresses to which the incident message must
be sent out.
1. foreach IP in IPAddressesForDissemination
2. send datagram with messageToDisseminate to IP
3. end foreach;

Regarding the receiving/forwarding FDH node, the flooding over IP dissemination consists of the
following steps:
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Dissemination Scheme (D2): Activities of the Receiving/Forwarding Nodes in the Scope of
Alarm/Incident/Event Flooding on top of IP
Input:
1) IPAddressesForDissemination - a list of IP addresses to which the incident message must
be sent out.
1. receive message from the network
2. if contentOfMessageNOTknownLocally
3. store content in the local FDH repositories
3. foreach IP in IPAddressesForDissemination
3. send datagram with contentOfTheReceivedMessage to IP
4. end foreach;
5. end if;

Gossiping on Top of IP: Finally, a further dissemination scheme was used for delivering event
messages ( including alarms and incidents) to the FDH nodes across the network scope in ques-
tion. This scheme was employed in cases when the events/alarms/incidents were not marked as
urgent and hence they did not require a fast delivery across the network (e.g. LAN or OSPF area).
For such cases, a gossiping over IP scheme was put in place, which was aligned to mechanisms
and concepts presented in previous research works such as [Tch09], [Tch10], and [CTS08]. In
these publications, this gossiping scheme was employed for a clean slate (i.e. non-IP legacy) type
of approach to advancing network technologies. The gossiping scheme was implemented on top
of the Ethernet compartment in an ANA (Autonomic Network Architecture) type of network.

The gossiping scheme is again to be described based on the actions to be undertaken by the initial
sender (i.e. the FDH fault-detecting node) of the alarm/event/incident message, as well as by the
actions required by the receiving FDH nodes. Following scheme describes the behavior of the
FDH fault-detecting node that initiates the dissemination:

Dissemination Scheme (D3): Activities of the Fault-Detecting Node for Alarm/Incident/Event
Gossiping on top of IP
Input:
1) messageToDisseminate - the message to disseminate.
2) IPAddressesForDissemination - a list of IP addresses denoting potential receivers.
3) nIP - the number of IP addresses contained in the IPAddressesForDissemination list.
4) nIPstep - the number of IP addresses to which the message should be sent out in each step.
1. numberOfRounds := nIP / nIPstep + nIP mod 12 nIPstep
1. for i :=0 to numberOfRounds
2. IPaddr := pick the next nIPstep addresses from IPAddressesForDissemination
3. foreach IP in IPaddr
4. send datagram with messageToDisseminate to IP
5. end foreach;
6. end for;

Regarding the receiving/forwarding FDH node, the gossiping over IP dissemination consists of
the following steps.

12mod stands for a division resulting in the reminder of the normal division of two integer numbers.
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Dissemination Scheme (D3): Activities of the Receiving/Forwarding Nodes in the Scope of
Alarm/Incident/Event Gossiping on top of IP
Input:
1) messageToDisseminate - the message to disseminate.
2) IPAddressesForDissemination - a list of IP addresses denoting potential receivers.
3) nIPstep - the number of IP addresses to which the message should be sent out if required.
1. receive message from the network
2. if contentOfMessageNOTknownLocally
3. store content in the local FDH repositories
3. for i :=0 to nIPstep
3. IP := pick the next address from IPAddressesForDissemination
4. send datagram with contentOfTheReceivedMessage to IP
4. end foreach;
5. end if;

The difference between the gossiping and the flooding scheme is given by the fact that the gos-
siping is less aggressive and sends out less datagrams to the network. The latter is due to the
fact that the gossiping does not send the alarm/incident/event message to all IP addresses in the
list, but only selects a subset of the pre-configured IP addresses. Hence, the gossiping can be
used in cases where the network should not be demanded to an extreme, such as the dissemina-
tion of non-critical/-urgent alarms/events/incidents. In the current prototype of FDH, exactly the
dissemination of non-critical/-urgent information is handled over gossiping, whilst critical mes-
sages are conveyed based on flooding. In addition, the repetitive transmission is also available as
a dissemination scheme 13, and can be configured for all types of messages.

7.2.3 Evaluation of the Dissemination Quality

As described above, various dissemination schemes were implemented for the FDH proof of con-
cept that was worked out in this thesis. This subsection focuses on evaluating and comparing the
dissemination quality of two of the above presented mechanisms - the flooding over IP and the
repetitive retransmission of datagrams. The gossiping was left aside, since it can be seen as a
special version of the flooding for situations when the network is overloaded or for non-critical
alarm/incident/event information.

The FDH canonical type of flooding on top of IP is described in the two algorithmic descriptions -
marked as Dissemination Scheme (D2) - in the previous subsection. Thereby, whenever required,
the symptom detecting node sends an alarm/incident/event message to a list of IP addresses (in-
cluding multicast addresses as obtained within IPv6- MLD or IPv4-IGMP). In turn, each of the
recipients forwards the message to all IP addresses in case it experiences the message for the first
time, and drops it in case the message is locally known. This procedure worked sufficiently during
the trials conducted in the testbed for evaluating FDH, which is described in chapter 11.

In order to evaluate the alarm/incident/event dissemination with respect to various properties on a
large scale, an OMNET++ simulation was developed. In this subsection, the OMNET++ simula-
tion results regarding the dissemination quality are taken a closer look at. Thereby, dissemination
quality means the percentage of FDH nodes which are successfully informed/updated with respect
to alarm/incident/event occurrences in larger networks, whilst considerable levels of background
traffic are present in parallel. In addition, in section 12.2.2 in chapter 12, the same simulation setup

13Actually, this solution was implemented as first mechanism that was plugged into the EvDissAgent of FDH
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Figure 7.6: The 10 Nodes Network used for the Evaluation of the Incident Sharing Techniques as
generated by the Waxman Model [Nal05] for Internet Topologies
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is used for evaluating the scalability properties of flooding over IP and the repetitive transmissions
scheme in large scale networks with deployed FDH instances in the network nodes.

Figure 7.7: Networks used for the Evaluation of the Incident Sharing Techniques as generated by
the Waxman Model [Nal05] for Internet Topologies

For the simulation setup, networks of various sizes were generated (10,100, 200, . . . ,1000) using
the BRITE tool [BRI16] [MLMB01], which can employ different theoretical models, in order to
output large scale Internet type of topologies. For the current, simulation setup the Waxman model
[Nal05] was used, which resulted in a series of networks some of which are visualized in Figure
7.6 (for ten nodes in order to give a demonstrative example) and in Figure 7.7.

The conducted experiments compared the implemented flooding procedure with the repetitive
retransmission of datagram incident messages by the fault detecting node. In addition, for the
duration of an experiment, each node was pushing background traffic into the network thereby
randomly selecting a node and sending a packet of size 1024 bytes every 100 microseconds. This
resulted in at least a dozen of Giga-Bytes of background traffic for each simulated network. In
that setup, there are two parameters of interest: the first one being the ratio of informed nodes -
it should be noted that the case was simulated where no multicast addresses were used i.e. one
IP address stands for exactly one router, and the second being the convergence time required to
convey the incident message to all informed nodes. The latter aspect is elucidated on in section
12.2.2, where the scalability and overhead analysis of the various FDH components is presented.

The obtained results with respect to the ration of informed nodes are presented in Figure
7.8.Thereby, one can observe that the evaluated mechanisms scale reasonably up to 500 nodes
when it comes to the percentage of informed nodes. For networks of larger sizes, the conducted
experiments indicate that not all FDH nodes would be updated and able to converge with respect
to alarms/incidents/events provided the conditions which were present during the experiments,
i.e. amount of background traffic.

Certainly, during the past decades a large amount of research has been conducted on the area of
gossiping and flooding. This research encompasses flooding and gossiping over special graph
structures, e.g. Harary Graphs [LMM99], message routing in wireless sensor networks [BE02]
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Figure 7.8: Ratio of Informed Nodes achieved during the Simulation of the Dissemination Tech-
niques in Networks of various Sites
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[Mar04], flooding and gossiping routing in MANETS [FGR+07] [HHL06] etc. Thus, the topic
of alarm/incident/event dissemination has a great potential to grow (e.g. application of various
research results) that is currently beyond the scope of the research in this thesis.

Finally, it should be noted that the techniques, which were used for the FDH EvDissAgent at the
current stage, belong to the type of in-band dissemination schemes, i.e. they use the same network
which carries the user/production traffic. It is also possible to use a dedicated network (e.g. some
management or control network) for conveying the alarm/incident/event messages between the
FDH instances. This type of dissemination/signaling is denoted as out-of-band dissemination and
constitutes an additional option for improvement of the EvDissAgent quality and speed. However,
the improvement achieved by using out-of-band dissemination comes at the cost of additional
investment in infrastructure, i.e. dedicated signaling/control/management network.

7.3 Fault-Isolation

Next, the presentation of the key processes required for the self-healing function continues with
addressing the process of Fault-Diagnosis/Localization/Isolation. Initially, a general introduction
discusses on basic aspects of the Fault-Isolation task elucidated here. Subsequently, a scalable
Markov Chain based algorithm for Fault-Isolation is presented14, which was especially developed
for the needs of the FDH framework, and proves to be scalable thereby determining key properties
of the overall FDH based distributed self-healing. This algorithm is correspondingly compared to
typically used Fault-Isolation schemes and discussed in the light of the FDH framework.

The coming introduction section elaborates extensively on the problem of Fault-Isolation and
presents a number of approaches described in literature. Additionally, it characterizes the re-
quirements for applying Fault-Isolation techniques in the context of FDH and prepares the reader
for the description of the Fault-Isolation algorithms, to be deployed within the FIF functions.

7.3.1 Introduction

The term Fault-Isolation refers to the process by which the observed symptoms - alarms and fail-
ures - of an erroneous state are correlated, and a fault - root cause for the observed malfunc-
tioning - is identified. Other names for this process that can be found in literature are Fault-
Localization, Alarm Correlation, Event Correlation, and Root Cause Analysis [SS04a], as well as
Fault-Diagnosis.

The process of Fault-Isolation is considered as one of the main challenges whilst executing Fault-
Management processes15 realizing network automation such as proposed in the scope of Auto-
nomic Communications/Computing [KC03] and correspondingly Autonomic Fault-Management,
as well as in the current scope towards the realization of a framework for distributed self-healing.
The challenging character arises due to issues ranging from the complexity of the required models
and the need for appropriate algorithms running on the models, to the performance characteristics
of the whole machinery - "Fault localization is subject to complications resulting from complexity,
unreliability, and non-determinism of communication systems." [SS04a]. Especially in the scope
of FDH, the fact that Root Cause Analysis is considered as part of a distributed control loop, which

14The work presented here was initially published and presented at the IEEE Globecom conference [TCC10].
15For instance as defined by the FCAPS TMN standard [ITU00] or in the scope of ISO20000 based ITIL [ISO11]
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is executed inside the network nodes, imposes special types of requirements regarding scalability
such as computational performance and memory consumption of the process.

Fault-Isolation is considered, according to TMN [ITU00], as one of the main functions regarding
Fault-Management. For that reason, intensive research has been conducted over the past years
that investigated the application of a number of techniques from the field of Artificial Intelligence
(AI), graph-theory and from the domain of modeling. Early initiatives such as [HSV99] aimed
at defining a generic framework for Event Correlation. Bayesian networks [Bis06] were used
for Fault-Isolation in 3G networks in [BDmB06] [BMQS08]. The usage of bipartite graphs (graph
theory approaches) has been investigated in [KYGS07]. Furthermore, [SS04a] reviews approaches
that have been applied or developed for the purpose of Event Correlation in telecommunication
networks. A recent patent [BCF+17] provides an integrated framework for monitoring and cor-
relating operational parameters towards pinning down sources of failures in computer networks
and architectures. In other domains (e.g. Nuclear Power Plants and industrial manufacturing pro-
cesses), the problem of Root Cause Analysis has been also addressed by the application of Hidden
Markov Models (HMM) as investigated in [XG04] and [KKS02]. The application of Bayesian
Networks for diagnosis in the aircraft domain was presented in [MBKM17] by discussing on how
to obtain a reasonable Bayesian Network instance for the purpose of efficient analysis. Thereby, a
mining approach is combined with human expertise in order to achieve best performance. These
publications/works reflect just a fragment of the amount of conducted scientific activities related
to the topic of Fault-Isolation. However, it was identified that this work normally targets either a
specific problem (e.g. link failures), or provides methods which are not followed by an automated
removal of the isolated fault, i.e. the Fault-Isolation is performed offline and the information
gained is used to remove the fault manually. Because of the former fact, diverse real-time self-
healing related aspects of the proposed methodologies were not really considered. Additionally,
the mechanisms were not examined in the context of Resilience and distributed self-healing as
proposed by FDH, targeting a generic approach to the diversity of potential network problems.

For the above reasons, as part of the current thesis, a Markov Chain based reasoning framework
was developed, which is suitable for (close to) real-time purposes. A comparison between the
proposed framework and the traditional widely used concept of Bayesian Networks is provided
within the next paragraphs of this section. The understanding of these techniques requires basic
knowledge from the area of linear algebra and probability theory on the level provided in [Bis06]
and [DHS00].

The concept of Bayesian Networks (BN) is one of the main frameworks developed by the AI16

community for the purpose of representing and traversing uncertain knowledge with a structure
of causalities among the items of interest. Bayesian Networks constitute the mathematical foun-
dation behind approaches to Root Cause Analysis such as Causality Graphs [SS04a] and Depen-
dency Graph [SS04a]. A Bayesian Network, also called Belief Network, is a probabilistic graph-
ical model expressed in terms of a direct acyclic graph (DAG). In such a graph, nodes represent
random variables over a multivalued domain, and the edges indicate the dependencies between
variables where the conditional distributions express the strength of these dependencies [SS04a].

The mathematical foundations of the Bayesian Network framework and related modeling ap-
proaches for Fault-Isolation are described in detail in chapter D within the appendix. The resulting
inference problem is known to be NP-hard. Hence, it is obvious that Bayesian Networks bear a
number of challenges when it comes to using them for fast and efficient distributed self-healing
- especially with respect to performance, overhead and scalability. For that reason, an optimized

16Artificial Intelligence
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algorithm is required that can be used for (almost) real-time reasoning regarding the root cause(s)
of faulty conditions. Thus, the following subsections derive such a scalable Markov Chain based
algorithm, which is also one of the key contributions of this thesis.

7.3.2 Scalable Markov Chain based Algorithm for Fault-Isolation

In order to systematically specify the proposed Fault-Isolation algorithm, the basic definition of a
discrete Markov Chain as provided by [Ber93] is introduced:

Definition 7.3.2.1 A discrete homogenous Markov Chain is a countable sequence of random vari-
ables (Xn )n∈N with values in a countable space E . The distribution of (X1,X2,X3, . . .) has the
following property:

P (Xn+1 = en+1 | Xn = en , . . .X0 = e0) = P (Xn+1 = en+1 | Xn = en ) (7.1)

with e0, . . . , en+1 ∈ E .

(7.1) is denoted as (first-order 17) Markov Property and P (Xn+1 = en+1 | Xn = en ) as the transi-
tion probability from en to en+1. The transition probabilities of a Markov Chain are captured in a
stochastic matrix P = (pij )i ,j∈E , in which the values in each row sum up to 1.

In Fault-Isolation, the aim is set at finding the most probable fault that is expected to have been
activated in order to produce the monitored incidents, alarms and/or events in general. Therefore,
the Markov Chain framework is looked at as a means for modeling event sequences that could
have potentially caused an observed event. In this line of thought, set

E := {all known faults/errors/failures/alarms/events in the modeled network} with | E |< ∞
(7.2)

and

F := {all known faults (root causes) in the modeled network} with F ⊆ E . (7.3)

In order to apply Markov Chains for the purpose of Fault-Isolation, the causality relationship is
modeled that a particular error/failure/alarm has been caused by another incident/event with a cer-
tain probability. Thereby, the probabilities play an important role in case that an incident/event has
been potentially caused by more than one event. In such cases, the probabilities give a ranking of
the possible events directly causing the incident/event in question.

In the above setup, the value of the first random variable (X0) in a sequence represents an observed
symptom, i.e. P (X0 = “observed symptom”) = 1. The most probable cause is diagnosed, when
the probability distribution of a random variable in the sequence is concentrated over F and the
probabilities are not changing for subsequent random variables, i.e. an invariant distribution has
been reached. This is formalized as follows:

∀ i ∈ E\F ,∀ j ∈ F ,∀ k ∈ E ,

17First-order means that the probability for the values of a random variable are conditionally dependent only on the
values of its predecessor random variable
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P (Xn = i ) = 0 ∧
∑
f ∈F

P (Xn = f ) = 1 ∧ P (Xn = k ) = P (Xn+1 = k ) (7.4)

If (7.4) holds, the most probable fault f ∗ is given by:

f ∗ = argmax
f ∈F

P (Xn = f ) (7.5)

Figure 7.9: An example of a Markov Chain for Fault-Isolation

Naturally, rules are required regarding how faults/errors/failures/alarms must be embedded
inside the Markov Chain framework, such that inference is facilitated, i.e. invariant distributions
concentrating on F always exist. Hence, the following Requirements are derived:

Req. 1 (Modeling of Faults):
Faults (root causes for erroneous states) should be modeled as absorbing nodes

An absorbing node (events 6, 7 and 8 in Figure 7.9) in the Markov Chain representing graph is
considered as a node having only one arc starting from it and ending at the same node. This edge
has an assigned probability of 1.

Req. 2 (Modeling of Errors/Failures/Alarms):
The events from E\F must build up a DAG (directed acyclic graph), which means that no cycles
are allowed in E\F and especially that none of the nodes representing events from E\F has an
arc starting on the node and ending on the same node.

Req. 3 (Relations between Monitorable Events and Root Causes):
A path must exist from each element of E\F to at least one element of F .

Figure 7.9 gives an example of a Markov Chain that follows the requirements mentioned above.
These requirements imply the convergence of the Markov Chain to an invariant distribution
concentrating on F . This can be formulated as the following lemma:
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Lemma: (Inference in Markov Chains for Fault-Isolation)
Given a discrete homogenous Markov Chain (Xn )n∈N with a stochastic matrix P = (pij )i ,j∈E that
fulfils Req. 1-3, and a starting vector µi∈E = δi ,then the Markov Chain converges to an invariant
distribution that is concentrated on F . That is:

∃n ∈ N , µi P
n = µi P

n+1

To illustrate the inference procedure, the Markov Chain in Figure 7.9 is represented as a stochastic
matrix

P :=



0 0 0 0 1 0 0 0
0 0 0 0.9 0.1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0.95 0.05 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(7.6)

Assume that incident 2 (Figure 7.9) has been monitored. Thus, P (X0 = 2) = 1 and the reasoning
starts with a distribution vector µ2 = (0, 1, 0, 0, 0, 0, 0, 0). The theoretical foundations of Markov
Chains allow to iterate over the sequence of random variables while iteratively multiplying the
stochastic matrix P in addition to the starting distribution vector µ2. That way, one can search for
a invariant distribution implied by µ2. Hence, the following limit is iteratively calculated:

lim
n→∞

µ2 ×P
n (7.7)

For n ≥ 2, it holds : µ2 P
n = µ2 P

n+1 = (0, 0, 0, 0, 0, 0.855, 0.045, 0.1), and according to (7.5):
f ∗ = 6. Instead of going every time through matrix multiplications, the most probable faults (when
starting in different events from E ) can be pre-computed, stored in an array, and immediately
retrieved during Fault-Isolation. That way, the proposed Fault-Isolation algorithm can be signifi-
cantly optimized in terms of speed and memory consumption. However, the mere pre-computation
presented here is only applicable in case a single symptom has been observed. In order to extend
the algorithm for dealing with and correlating multiple observed events (e.g. failures, alarms, and
events in general) the next section proposes a technique for exploiting the graph structure, which
reflects the Markov Chain based Fault-Isolation model in question.

7.3.2.1 Extending the Markov Chain based Technique to deal with Multiple Symptoms

In this subsection, the Markov Chain framework for Fault-Isolation is extended, and the steps
are defined that are required in the general case of m ∈ N + "simultaneously" reported observed
incidents/events. In order to correlate the monitored events, the graph representation of the cor-
responding Markov Chain is exploited. First, it is required to search for the closest common
predecessor of the reported symptoms. The term "closest common predecessor" stands for the
event-representing node with the minimal distance (in terms of number of edges) to the observed
incident events (symptoms). The closest common predecessor is a joint event that explains and
represents a set of reported incident events. Once such a predecessor is found, the reasoning pro-
cess can proceed as presented in the previous section, i.e. the most probable pre-computed root
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cause should be selected with respect to starting the Markov Chain in the identified closest prede-
cessor. In case the reported incidents do not have a common predecessor, they must be sorted in a
number of sets of maximum size, each of which having its own common nearest predecessor.

Given that the shortest path matrix A of the Markov Chain representing graph is available (e.g.
obtained by using [Flo62]), then the matrix AT gives the distance between all pairs in the direction
from the faults (root causes) to the symptoms. The positions of none zero entries in the rows of
AT which represent the set F (faults) in the graph, provide the errors/failures and alarms which
are caused by this fault, e.g. in Figure 7.9 fault 8 causes error 5 and monitorable incidents 1 and 2.
The events caused by a particular fault are intrinsically guaranteed to have a common predecessor.
For the purpose of run-time Fault-Isolation, these | F | (number of faults) sets of events (caused
by each single fault) are stored in an appropriate structure and used during the on-line Root Cause
Analysis. Hence, whenever a set I of m ∈ N + events (incidents) are "simultaneously" reported,
the reported incidents must be grouped together that build up a subset of each of the pre-computed
event sets originating from each single fault. A single reported incident could participate in mul-
tiple such groups. The sets of grouped reported events are denoted as J := {J1, . . . , J|F |}. Every
set of J is guaranteed to have a common predecessor. Thus, Fault-Isolation must be performed
separately for each single element of J that is not empty. The next algorithm is used to construct J .

Algorithm (A1): Extract from the reported incidents the sets that have a common predecessor
Input:
1) T - a number of | F | sets which contain the errors/failures/alarms that are caused by each
single fault from F : T = T1, ...,T|F |.
2) I - the set of reported incidents with I = {i1, ..., im }

Output: J - a set of groups of events from I such that each group is a subset of the sets from
T with J = {J1, . . . , J|F |}.

1. init J1 = ∅, . . . , J|F | = ∅ , and J = J1, . . . , J|F |
2. foreach i in I
3. for k = 1 to | F |
4. if i ∈ Tk then
5. Jk = Jk ∪ {i };
6. end if;
7. end for;
8. end foreach;

After A1 has identified the subsets of I that are guaranteed to have a common predecessor,
another iteration is required, in order to find the belonging closest common predecessors. This is
done by the following algorithm.



7.3 Fault-Isolation 143

Algorithm (A2): Find the closest common predecessor of a set of incidents which are guaran-
teed to have a common predecessor
Input:
1) K - a number of reported incidents that have a common predecessor
2) A - a matrix containing the shortest paths between all pairs of nodes inside the graph. If
there is no path between two nodes, then the corresponding matrix entry is 0.
Output: cP - the closest common predecessor for all reported incidents from K

1. init S = ∅

2. select randomly one k from K
3. for i = 1 to | K |
4. if Akj ! = 0 then
5. found = TRUE ;
6. foreach j in K \{k }
7. if Aji == 0 then
8. found = FALSE ;
9. break ;
10. end if;
11. end foreach;
12. if found == TRUE then
13. S = S ∪ {i };
14. end if;
15. end if;
16. end for;
17. cP = argminj∈S Akj ;

A2 picks one of the incidents from the set with the common predecessor, and searches for a pre-
decessor - an event that must have happened before the incident according to the Markov Chain
representing graph. Once such a predecessor is found, the algorithm checks whether it is also a
predecessor for the rest of the reported incidents in K .If this is the case, then the predecessor is
added to the set of common predecessors. Finally, the closest common predecessor is selected as
the one that is the closest to the reported incident selected in the first lines of the algorithm. This is
possible since due to the DAG structure of the sub-graph on E\F , the closest common predecessor
of one of the events in K is automatically the closest common predecessor of all elements of K .
Finally, the reasoning proceeds as derived for a single reported event, starting with the common
predecessor as described in the previous section.

Having specified the different pieces of the Markov Chain based Fault-Isolation technique, the
next section proceeds with the theoretical time and space complexity analysis of the proposed
algorithm.

7.3.2.2 Complexity Analysis

The time complexity of A1 is O(|F||I|). A2 has a time complexity of O(|E||K| + |E|), because of the
embedded cycle and the obtaining of cP at the end.In the worst case K can reach the size of |I|.
Hence the time- complexity is given by O(|E||I| + |E|). A2 must be run |F| times in the worst-case
in order to find the closest common predecessor for each of the identified sets J = {J1, . . . , J|F |}.
Together with the complexity of A1 (A1 is required to run before A2 for the purpose of run-time
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inference), a time complexity of O(|F|(|E||I|+|E|)+|F||I| + 1) results as a first complete estimation.
The "1" at the end results from the additional effort that is needed in order to select the most
probable root cause from the corresponding pre-computed array. This estimation is dominated
by |F||E||I|. Hence, this implies a worst-case time complexity of O(|F||E||I|) for run-time reason-
ing, considering that the fault/error/failure/alarm relations have been modeled within our proposed
Markov Chain based framework.

Another concern regarding scalability is the amount of memory required by the proposed algo-
rithm. From the above description of the algorithms, it is possible to identify the following data
required for Fault-Isolation:

1. A vector of size |E\F| that stores the most probable root cause for each monitorable er-
ror/failure/alarm

2. A matrix with the shortest paths (inside the Markov Chain representing graph) between
every two events - such a matrix is of size |E|2

3. A number of |F| sets of events originating from each single fault - in the worst case
O(|F||E\F|)

Hence, the overall required space complexity is O(|F||E\F|+|E|2+|E\F|). Taking |E| as an upper
bound for |E\F| results in a worst-case space complexity of O(2|E|2+|E|).

To summarize: based on the analysis conducted in the course of this section, one can observe that
the proposed Fault-Isolation scheme has a polynomial time and space complexity. This fact allows
to expect fast Fault-Isolation within the FDH nodes with minimal overhead in terms of resource
consumption (e.g. memory).

7.3.3 Example Application: Localizing Ethernet Duplex Mismatch and potential
Black Holes in IPv6 networks resulting from IPv4-to-IPv6 Transitioning

The case study builds on the two network problems which were already used for the evaluation
of the FDH MonAgent in section 7.1.3. In that sense, section 7.1.3 already describes quite exten-
sively the specifics of the network problems in questions, whilst the following subsection focuses
on the aspects, which are of relevance for evaluating the Fault-Isolation procedure. Further details
on these selected networking problems are provided in chapter 13 for the purpose of evaluating
the overall operation of the FDH self-healing framework.

Within the presented case study, the proposed algorithm is used to localize the problems of poten-
tial Black Holes [KYGS07] [Lah00] in IP networks (especially in the scope of IPv6) and Ethernet
Duplex Mismatch [SC05]. Thereby, the effectiveness of the proposed Markov Chain based tech-
nique is compared against the commonly used Bayesian Network based concept of a Causality
Graph [SS04a], which is similarly applied on causality relations among events - faults/errors/fail-
ures/alarms.

7.3.3.1 Problem Definition

As previously described: Black Holes, as elucidated on in [Lah00], can potentially occur in IPv6
networks in case some routers (Black Hole routers) have been wrongly provisioned with IPv4
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relevant firewall configurations suppressing ICMP messages. Provided that the PMTU (Path Max-
imum Transmission Unit) of a flow decreases at the Black Hole router during the lifetime of a
connection - e.g. because of a link failure and subsequent rerouting leading to a lower PMTU
value, the Black Hole router would be subsequently unable to forward packets on the link with a
smaller MTU (there is no packet fragmentation on routers in IPv6) and would not be able to send
an ICMPv6 error notification to the sender ( because of the aforementioned ICMP suppression
in the Black Hole router firewall). The sender in turn would not able to readjust the size of the
packets being sent out, which would lead to a timeout of the connection. Regarding the Ethernet
Duplex Mismatch issues, the elucidations given in [SC05] are used, which describe the situation
of two Fast- Ethernet Network Interface Cards (NIC) that fail to auto-negotiate the duplex mode
on a link. The aim in the current context is to identify the correct fault occurrence (misconfigured
firewall or wrong duplex mode of a NIC) based on different monitored incident events. A more
elaborated discussion of the networking problems is given in chapter 13, where the case studies
are described, based on which the overall FDH machinery is evaluated. Additionally, it should be
noted that section 7.1.3 already provided a more elaborated description of the networking issues
in question, however mainly from the perspective of the FDH monitoring framework.

7.3.3.2 Constructing a Fault-Propagation Model

Assuming that the network operation personnel administers a network as the one in Figure 7.5, the
first thing that stands out is that this network is a compilation of different types of links. Hence,
the network administrator would recognize the potential for a Black Hole at R2 and for a Duplex
Mismatch on the links R2↔R3 and R3↔R6. The network operation personnel is expected to ex-
tract a number of potential incidents out of [SC05] and [Lah00] and construct a Fault-Propagation
Model which describes the relations among these events. In practice, the process of constructing a
Fault-Propagation Model would be realized by using the available knowledge about the causes of
different types of network problems. This knowledge can be obtained from the community (e.g.
publications, white papers, discussions ...), by performing different tests (such as conformance,
stress and penetration testing of protocols), as well as from simulations and validations of pro-
tocol or system behaviors. The structure of the Fault-Propagation Model for the Fault-Isolation
case study - encompassing 30 events - is illustrated in Figure 7.10.The events are listed in Ta-
ble 7.1. The graph in Figure 7.10 is equivalent to the underlying directed acyclic graph of the
Bayesian Network for this problem. The structure of the corresponding Markov Chain is obtained
by reversing the arcs of the graph in Figure 7.10.

7.3.3.3 Experimental Setup

The proposed Markov Chain based Fault-Isolation algorithm was implemented in C++ and eval-
uated on a Linux machine (Intel(R) Core(TM), 2 x"2.80GHz Duo CPUs", 3.9 GB RAM). The
Bayesian Network evaluations and comparisons are based on the open source Probabilistic Net-
works Library (PNL) [PNL16] which was initiated by Intel.

7.3.3.4 Training and Evaluation Sets

In order to evaluate the Fault-Isolation qualities of the proposed framework, training data as well
as evaluation data sets have to be designed. The training data is used to obtain the probability
based parameters of the underlying Markov Chain and/or Bayesian Network, whilst the distinct
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Table 7.1: Events inside the constructed Fault-Propagation Model

Nr. TYPE DESCRIPTION

1 FAULT The NIC on R2 towards R3 operates mistakenly in half- dulpex mode.
2 ERROR R3 fails to send some frames to R2 because of interferences with the R2 NIC

mistakenly operating in half-duplex mode (for more details see [SC05]).
3 ERROR TCP packets flowing from R3 to R2 get lost.
4 ERROR Duplicate ACKs in TCP flows streaming over R3 and R2 in a row.
5 ERROR Increased number of duplicate ACKs in TCP connections flowing over R2 and

R3.
6 ERROR Increased number of dropped packets at the R3 NIC connecting R2 and R3.
7 FAULT The NIC on R3 towards R2 operates mistakenly in half- dulpex mode.
8 ERROR R2 fails to send some frames to R3 because of interferences with the R3 NIC

mistakenly operating in half-duplex mode (for more details see [SC05]).
9 ERROR TCP packets flowing from R2 to R3 get lost.

10 ERROR Duplicate ACKs in TCP flows streaming over R2 and R3 in a row.
11 ERROR Increased number of dropped packets at the R2 NIC connecting R3 and R2.
12 FAULT Misconfigured firewall suppressing ICMP packets on R2
13 ERROR R2 is unable to send ICMP messages.
14 ERROR R2 fails to send ICMP Packet Too Big notification to the corresponding end

system
15 ERROR Incorrect PMTU assumed on the end system.
16 ERROR Large TCP packets fail to pass R2.
17 ERROR Duplicate ACKs in the direction from R1 into the network.
18 ERROR Duplicate ACKs in the direction from the network to R1.
19 ERROR Duplicate ACKs observed on R1.
20 FAULT The NIC on R3 towards R6 operates mistakenly in half- dulpex mode.
21 ERROR R6 fails to send some frames to R3 because of interferences with the R3 NIC

mistakenly operating in half-duplex mode (for more details see [SC05]).
22 ERROR Increased number of dropped packets at the R6 NIC connecting R3 and R6.
23 ERROR TCP packets flowing from R6 to R3 get lost.
24 ERROR Duplicate ACKs in TCP flows streaming over R6 and R3 in a row.
25 ERROR Increased number of duplicate ACKs in TCP connections flowing over R3 and

R6.
26 FAULT The NIC on R6 towards R3 operates mistakenly in half- dulpex mode.
27 ERROR R3 fails to send some frames to R6 because of interferences with the R6 NIC

mistakenly operating in half-duplex mode (for more details see [SC05]).
28 ERROR Duplicate ACKs in TCP flows streaming over R3 and R6 in a row.
29 ERROR Duplicate ACKs in TCP flows streaming over R3 and R6 in a row.
30 ERROR Increased number of dropped packets at the R3 NIC connecting R6 and R3.
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Figure 7.10: The structure of the constructed Fault-Propagation Model

evaluation/test data sets are needed, in order to check how good the reasoning frameworks can
identify the root causes for faulty conditions within the current case study.

In order to design the training data, a number of 20000 faults were picked from the Fault-
Propagation model according to the discrete uniform distribution over the set of faults F . The
resulting chains (e.g. 1→2→3→4→5→19 and 1→2→6) of events according to the Fault-
Propagation Model (Figure 7.10) were extracted and used for training the Markov Chain and
Bayesian Network based models.

To create evaluation sets, 6000 multiple simultaneous fault activations were simulated which re-
sulted in a total number of 17960 faults and belonging symptoms. For example, in case the simulta-
neous occurrence of 1 and 7 was simulated, the resulting monitored events are given by 5,6,11,19.
These symptoms were then given to the Bayesian Network and to the Markov Chain based Fault-
Isolation technique in order to evaluate their fault identification properties, which were trained
based on the previously described training data. For example, if the event set I = {5, 6, 11, 19} is
submitted as monitored events to the Fault-Isolation frameworks, it is expected that in the opti-
mal case the corresponding reasoning algorithms should identify the set {1, 7} as simultaneously
activated faults.

7.3.3.5 Obtaining Key Parameters of the Evaluation Models

Based on the above described training set, the corresponding Maximum Likelihood estimators
were used to train the Markov Chain and respectively the Bayesian Network. For the Markov
Chain framework the Maximum Likelihood Estimator is given by

P̂ij =
nij

ni
(7.8)
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according to [Teo09],with P̂ij being the estimated transition probability from event i to event j , ni
being the overall number of transitions (within the training event sequences) starting from event i ,
and finally nij being the number of transitions from event i to event j within the training set.

For training the Bayesian Network based Causality Graph, the Maximum Likelihood Estimator
(MLE) [PNL03] [JB00] provided by the PNL library was used. This MLE is defined as follows

p̂(xv | xπv ) =
m(xφv )
m(xπv )

(7.9)

for an event/incident node v from the Bayesian Network constituting the base for a Causality
Graph. Thereby, πv stands for the set of direct predecessors of the node v according to the struc-
ture of the underlying Bayesian Network, xv stands for a particular value of the node v , whilst xπv
denotes a particular tuple of values for the predecessor nodes of v in the Bayesian Network. In
the case of a Causality Graph for Fault-Isolation, an event representing node may only take the
values 0 - meaning that the event has not occurred, and 1 - meaning that the event has occurred.
Furthermore, m(xπv ) stands for the total count of occurrences of the particular tuple of values xπv
in the training set, whereas m(xφv ), with φv = πv ∪ {v }, denotes the number of occurrences of xπv
in conjunction with the particular value xv of the node in question (i.e. v ). Hence, the estimation
of the probability for the particular value xv of node v , subject to a particular tuple of values xπv
for its predecessors, is given by the ratio between the number of occurrence of xv in conjunction
with xπv , i.e. m(xφv ), divided by the total number of occurrences of xπv , i.e. m(xπv ).

Based on the above described Maximum Likelihood Estimators and the pre-designed training data
set, the probability parameters of the Markov Chain and of the Bayesian Network for the Causality
Graph were obtained. In the case of the Bayesian Network, the Maximum Likelihood Estimation
functions of PNL 18 were used. The number of parameters that had to be learnt was 30x30=900 in
case of the Markov Chain and 146 conditional probabilities in case of the Bayesian Network. The
evaluation set was used to compare the performance of the proposed method with the Bayesian
Network based Causality Graph.

7.3.3.6 Performance Measure

Before issuing a comparison between the qualification properties of the Fault-Isolation techniques,
the KPIs should be clarified upon which the comparison takes place. A typical measure, which is
used in the areas of statistics and machine learning, for evaluating the properties of a classifier is
given by the F-measure [Rij79]. The F-measure is defined as follows:

F = 2 ×
Precision × Recall

Precision + Recall
(7.10)

with Precision being the ratio of correctly identified root causes (i.e. faults) from the overall set
of faults, which were deemed as root causes for the observed events, i.e.

Precision =
True Positives

True Positives + False Positives
(7.11)

Moreover, the Recall is defined as follows

18These are based on the above described technique.
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Recall =
True Positives

True Positives + False Negatives
(7.12)

thereby reflecting the ratio of correctly identified faults - i.e. root causes for the observed al-
arm/incident events - from the sum of the correctly identified root causes and the wrongly uniden-
tified root causes - i.e. the cases in which a fault has occurred but was not identified as a root cause
by the corresponding Fault-Isolation technique. The F-measure is a widely used as a performance
indicator for evaluating classifiers and diagnostic techniques, since it combines the Precision and
Recall in a harmonic type manner. Thereby, Precision and Recall are two key aspects with respect
to which a classifier should be optimized.

Based on the above consideration on Precision and Recall, the F −measure can be summarized
as follows:

F =
2 × True Positives

2 × True Positives + False Positives + False Negatives
(7.13)

7.3.3.7 Evaluation of Classification Properties

In the scope of the Case Study presented here, the Bayesian Network based Causality Graph
achieved an F-measure value of 0,888786 while the proposed Markov Chain based technique
achieved an F-measure value of 0.896162. This means that the proposed approach to Fault-
Isolation performed slightly better in terms of fault identification quality. In addition, it can be
expected that the Markov Chain based Fault-Isolation (proposed in this thesis) would have some
more advanced scalability properties as compared to traditional Bayesian Networks. This is veri-
fied in the coming section.

7.3.3.8 Empirical Scalability Evaluation and Comparisons

Next, a scalability evaluation and comparison between the proposed Markov Chain based approach
and the BN framework is presented, with respect to a growing number of nodes in the network -
managed by FDH in regard to self- healing - and corresponding events in the Fault-Propagation
Model. To simulate such growth, the network in Figure 7.5 was replicated by copying it and at-
taching the copy to the corresponding router at the edge next to the user’s end system. In addition,
the Fault-Propagation Model was changed according to the resulting network. Thus, the size and
structure of the FPM was extending with respect to the number of events. The aspects that were
investigated, and based on which a comparison was drawn, were given by the time needed to per-
form Fault-Isolation, as well as by the memory consumption, which was observed in the light of
a growing number of events. The results can be seen in Figure 7.11 and Figure 7.12 and clearly
indicate that the Markov Chain based approach outperforms the PNL implementation of Bayesian
Networks with respect to time and memory scalability. The comparison between the Markov
Chain approach and the Bayesian Network stops at a number of 165 events due to the inability
of the PNL library to cope with larger Fault-Propagation Models. These issues were investigated
with the valgrind [NS07] [VAL16] memory analyzer that indicated a number of memory allocation
errors within the PNL library.

To show further that the Markov Chain based approach (proposed in this work) can be used in real
time for large networks, additional experiments were conducted, the results of which are presented
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Figure 7.11: Markov Chain based approach vs. Bayesian Networks: Time required for Inference
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and discussed in the dedicated chapter on FDH scalability (see section 12.2.3).

Figure 7.12: Markov Chain based approach vs. Bayesian Networks: Maximum Heap Size during
Inference

7.3.4 Discussion

In the course of this thesis, a novel technique for Fault-Isolation was specified and evaluated 19.
This technique is based on the mathematical foundations of Markov Chains and is used for prob-
ability based reasoning and identification of root causes for faulty conditions. The resulting rea-
soning scheme was compared to the Bayesian Network based Causality Graph framework, which
is a traditionally applied technique [SS04a] in networks’ Fault-Management and serves similar
purposes.

Looking on both frameworks from the theoretical point of view, the comparison can be based on
the (time and space) complexities derived above, as well as on the properties of the correspond-
ing model. As previously mentioned, a Bayesian Network is NP-hard in the general case. For
special cases of Bayesian Networks, there exist efficient heuristic algorithms that can approxi-
mate an optimal solution of the Fault-Isolation problem. On the other hand, the Markov Chain
framework has a better time complexity of O(|F||E||I|) 20 in the general case. Hence, it can be
claimed that in the latter aspect the Markov Chain approach is better, since: 1) it does not im-

19The current discussion is based on the findings initially presented at the IEEE Globecom conference [TCC10]
20Please refer to section 7.3.2 for the exact definition of the alarm/incident/event sub-sets F , E and I
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pose any additional special requirements on the type of applied instances, and 2) it appears to be
faster based on the derived computational complexity. Beyond these theoretical considerations,
the argumentation with regard to speed could be confirmed by the measurements and numerical
comparisons which were conducted and described in the course of section 7.3.3.8. Furthermore,
with respect to space complexity, the Markov Chain based approach scales quadratically in the
number of alarms/incidents/events whose relations are captured. In the Bayesian Networks case, a
conditional probability matrix ( in the "very"worst case already nearly quadratic in the number of
alarms/incidents/events) should be stored for each single event, which implies a worst-case cubic
space complexity - quadratic number of relations pro event times the overall number of events.
For comparison, the proposed Markov Chain based approach comes with a quadratic time com-
plexity, as derived in section 7.3.2.2. Hence, one would also expect the Markov Chain based
Fault-Isolation to require less memory than the Bayesian Network based one. This assumption
is clearly confirmed by the numerical results in section 7.3.3.8, which analyzes the heap memory
consumption during the operation of both algorithms.

Despite the above described Bayesian Network drawbacks, it can be claimed that BNs have a big
advantage over Markov Chains with respect to their modeling properties regarding the relations
among alarms, incidents and events. In the case of the proposed Markov Chain based framework,
the information about the occurrence of intermediate events in a fault- propagation chain is to-
tally neglected. The proposed (Markov Chain related) algorithms are designed in a way that they
address only the isolation of a particular fault without identifying sequences of events that could
have probably originated as a result of this fault. Hence, this information would not be available
if it is required within the process of Fault-Removal. On the contrary: the Bayesian Networks
compute a probability of occurrence for every single event (alarm/incident). Thus, they provide
the means to estimate the whole amount of alarm/incident events (root causes, intermediate events
and symptoms) that must have occurred under the current faulty condition.

The preceding discussion clearly indicates that the BNs outperform the Markov Chain based
framework proposed in this thesis, when it is required to reason not only for faults, but for the
overall set of relevant events that must have occurred and constitute the current erroneous state.
However, Bayesian Networks have a number of disadvantages with respect to their time com-
plexity (NP − hard ), the restrictions that must be imposed on their structure to enable scalable
reasoning algorithms to run, as well as the space complexity of a Bayesian Network based frame-
works, e.g. Causality Graphs.

7.4 Failure Prediction

The next aspect which requires elucidation is given by the task of Failure-Prediction which is to
be implemented by the FPF functions of the SurvAgent.

7.4.1 General Considerations

As specified in section 6.2.1.2, the goal of the FPF is to acquire various monitoring informa-
tion, including monitored events, to analyze those and anticipate the activation of faults and their
manifestation as failures ahead in time. Thereby, the FPF is designed in a way as to be able to
utilize different algorithmic frameworks and models for the task of Failure-Prediction. Indeed, the
monitoring information that is analyzed is received from the FDH MonAgent within a network
node, and depends on the type of utilized monitoring plug-ins. Therefore, the FPF module of the



7.4 Failure Prediction 153

SurvAgent should send the corresponding monitoring requests to the node level FDH MonAgent
during the initialization phase, in order to receive the required information.

In case the requested information 21 consists of events, which can be analyzed similarly as in the
case of Fault-Isolation, the application of the techniques which were discussed in section 7.3 can
be considered. These include the presented Bayesian Network framework as well as the Markov
Chain algorithm for fast and scalable reasoning. In that case the relations between events would
need to be modeled, in terms of the possibility and likelihood for particular observed events, to be
the indication of a fault activation and belonging propagation to (a) service affecting failure(s) in
the near future. This is in contrast to the modeling which was presented in the section on Fault-
Isolation (section 7.3, where the employed models were semantically capturing the likelihood for
particular events to have been caused by other events.

7.4.2 Possible Techniques for Failure-Prediction

Given the above general considerations, it is possible to deploy various other frameworks (other
than the Markov Chain or Bayesian Network based approaches so far) for the goals of Failure-
Prediction. An example for such framework is given by the so-called Hidden Markov Models
(HMM) [Rab90] [SMA+16], which are closely related to the Bayesian Network or the Markov
Chain concepts. In the case of HMM, the relation between various observed events and the pos-
sible implications of these events for an internal/hidden model of the system is calculated. These
implications to the internal /hidden model can be interpreted as expected to lead to anticipated
fault activations and the belonging manifestation of failure events.

Additional techniques and frameworks from the areas of machine learning and mathematical
statistics may be employed for the needs of the FPF. Such techniques are given by traditional
classifiers such as Linear [YLTP16] [YS09] or Ridge Regression [vW17], Support Vector Ma-
chines [YJH+16], Gaussian Processes [BWA16] [RW05] or by the widely used Neural Networks
[SRKO16] and Self-Organizing Maps [Koh90]. Thereby, these techniques would be operating on
numerical values regarding different key performance indicators and would be trying to anticipate
various potential anomalies based on their embedded model. This model is normally represented
as parameters of the corresponding technique. The parameters would be obtained based on training
sets characterizing the typical operation of the network/system.

Another interesting proactive approach to router failures is presented in [VNC12] [VCNR13] and
[WTVL13]. Thereby, based on node failure characteristics such as Mean-Time-Between-Failure
(MTBF) and Mean-Time-To-Repair (MTTR), the probability for a node (denoted as N ) to be in
a failure state is derived as Pf (N ) =

MTTR(N )
MTBF (N )+MTTR(N ) . Based on such probabilities for the

nodes of a network, it is consequently possible to derive the probabilities for network paths and
correspondingly for traffic flows to be in a failure state. Furthermore, it is possible to assess the
risks for the successful delivery of traffic and proactively undertake actions, in order to back-
up and remediate potential shortcomings. Such actions can be given by the adaptation of the
protection/restoration schemes in GMPLS or by the dynamic adjustment of key parameters (e.g.
availability check Hello timers) of the employed routing protocols (such as OSPF).

21Monitoring information to be delivered by the FDH MonAgent to the FDH SurvAgent for the purpose of Failure-
Prediction
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7.4.3 Failure Prediction Realization

Having elucidated on various applicable approaches to Failure-Prediction and risk assessment,
next the concrete technique which was implemented for the FDH prototype is presented. For the
purpose of demonstrating the concept of the Failure-Prediction Functions of the SurvAgent an
off-the-shelf algorithm for predicting future values of selected key performance indicators was
employed within the FPF module of the FDH SurvAgent. The algorithm is given by the exponen-
tial smoothing [Nat12] method which is a commonly used technique across various domains - e.g.
finance.

The following equation 7.14 summarizes the principles upon which the value prediction (for par-
ticular KPIs) takes place. Indeed, the weighted sum s(t) (with t ∈ N +) of a number of values
is used to detect a trend in the belonging time series, i.e. x (1), x (2) . . .. Thereby, a parameter
α ∈ [0, 1] determines the decreasing importance/influence of the values back in time. That is, the
larger α the faster the influence of the past values decreases with decreasing t .

s(t) = α × x (t − 1) + (1 − α) × s(t − 1) (7.14)

The current FDH prototype embeds the above described technique in a way that different moni-
tored KPI values are received over the FDH MonAgent, and subsequently passed to the exponential
smoothing function. In order to receive such monitoring information, the FPF module (of the Sur-
vAgent) is pre-configured as to submit the required monitoring requests to the MonAgent during
the FDH initialization phase. In addition, a threshold for the trend of each KPI (the trend would
be reached by the exponential smoothing in (7.14)) should be given as configuration to the FPF
module. This threshold is used to determine whether a trend in the development of a particular
KPI should be considered an indication for a failure in the future, and should be the reason for the
generation of an alarm. Such an alarm (if generated by the FPF) is then passed to the FDH node
repositories and would be considered within the belonging functions/modules of the FaultManA-
gent or of the SurvAgent (especially the FMF).The corresponding interaction flows were captured
in section 6.3.3. Furthermore, the meta-models which provide the foundations for configuring the
FPF, as implemented within the current FDH prototype, are captured in section 9.2.3.

7.5 Policy Handling

The current section points briefly to various aspects of policy handling, which are fundamental for
the implementation of key FDH functions. Thereby, the policy handling components - as referred
to in this section - instrument the triggering of actions/reactions according to input and context
from different FDH processes, within the particular situation in the network/system controlled by
FDH. The content of the following subsections is a condensed representation of the policy han-
dling artifacts within the emerging FDH architecture and prototype, whilst at the same time the
detailed elaboration takes place in other sections/chapters across the thesis, which are correspond-
ingly pointed to.

7.5.1 Introduction

Various components of the FDH framework rely on so-called Event-Condition-Action (ECA) poli-
cies in order to complete certain aspects of the (distributed) FDH control loops. This includes:



7.5 Policy Handling 155

1. the FPF and FMF modules of the SurvAgent,

2. the FRF,FIAF and FRAF modules of the FaultManAgent, complemented by the supporting
component of the ASAF module, and

3. the Policy Evaluation Component of the MonAgent which embeds the Admission Policies,
the Notification Policies as well as the Adaptation Policies for the FDH MonAgent opera-
tions

Depending on the needs of the above listed components and the technological platforms that were
used for the realization of the belonging FDH agents, different design options and principles were
considered. Before taking particular design choices, a look into some established policy based
solutions - e.g. from the research and industrial domains - was required, in order to gain a solid
basis for the design of the Policy Handling within the FDH prototype. This included the review
of policy models and evaluation frameworks such as the Common Open Policy Service (COPS)
[Her00], DEN-ng [Str02] [BDJS10] [Str03a] from the domain of Autonomic Networking, Pon-
der [DDLS01], Common Information Model (CIM) [CIM16] of the Distributed Management Task
Force (DMTF), eXtensible Access Control Markup Language (XACML) [XAC17] of the OASIS 22

consortium,and iptables [IP617] - as a Linux based tool for the implementation of packet process-
ing policies. Furthermore, router specific technologies such as Access Control List (ACL) [Shi07]
or Policy based Routing (PBR) [Bra89] were considered, in order to establish a broader view on
the policy based aspects with respect to network control and management. Further details on state
of the art regarding Policy Handling are provided in section 2.2.6.

7.5.2 Design of the involved Policy Handling Components

The current section summarizes the design of the various policy handlers which are required for
realizing the self-healing function of the FDH framework. Thereby, the state-of-the-art analy-
sis, which was previously presented in this thesis, played a crucial role while making key design
choices. In that sense, the FDH policy handling is specific to the concrete tasks - e.g. Fault-
Mitigation within the Survivability Agent or Admission Control in the scope of the FDH MonA-
gent. Hence, solutions where developed, which are not as generic and powerful as the previously
presented frameworks from the area of Policy based Network Management (see section section
2.2.6), instead being dedicated to the specific task and fulfilling it in high efficiency and in a scal-
able fashion.

Another important aspect is given by the flow for provisioning the policies, which is outlined in
section 6.3 and chapter 9. In general, the required FDH policies 23 are specified on a machine run-
ning the corresponding tools (e.g. XML-editors), which allow the specification, pre-deployment
evaluation and consistency check (e.g. for conflicting policies) within the policy/reaction specifi-
cation process. Subsequently, the node-specific policies are stored on a logically centralized FDH
Configuration Server and downloaded during the initialization phase of an FDH instance within a
node (refer to appendix section B.1 for further details). Thus, the policies are evaluated within the
network nodes during run time, and the corresponding policy obligations (resulting actions) are
eventually executed in case they have been allowed by the run-time synchronization/optimization
of the node FDH SelfOptAgent.

22Organization for the Advancement of Structured Information Standards
23Policies are used in the context of the SurvAgent, the FaultManAgent, and the MonAgent of the FDH instance

within a network node.
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The above elucidated constellation, leading to policies being evaluated inside the network nodes,
is a main difference to the IETF COPS [Her00] architecture that suggests the evaluation of the
policies on a remote node (PDP - Policy Decision Point), and proposes the enforcement of the
policy (i.e. action execution) on the local node. In the scope of COPS, the PDP can have a larger
set of resources (e.g. memory or CPU power), which would enable the efficient evaluation of
complex policy conditions. On the contrary, FDH is meant to execute the PDP-function within a
device which calls for the design of more simple, targeted and (in parallel) efficient fast and scal-
able policy evaluation methods (and belonging structures). This is one of the main reasons that
influenced the decision to implement proprietary and well-optimized/fine-tuned policy handlers
for the belonging FDH tasks. A further reason for designing and implementing proprietary FDH
policy solutions on a case-by-case basis is given by the sub-optimal Open Source tool support for
the most important policy languages of choice (especially the CIM-Policy Model and CIM-SPL).
Hence, the opportunity was taken to derive and use specific models and languages for the needs of
the FDH agents. These artifacts are efficiently processed within the FDH agents, thereby produc-
ing minimal overhead and scaling up with a growing size of the input parameters (i.e. number of
policies) as shown later in this thesis.

7.5.2.1 Policy Handling within the FDH Node Monitoring Agent

The basic (meta-)model for Policy Handling within the FDH Monitoring Agent was already pre-
sented in Figure 7.3. It includes a Monitoring Agent Policy class which incorporates a Condition
and a Decision sub-component. The different types of policies are correspondingly specifications
from the generic Monitoring Agent Policy class. These different policy types, which are required
for the operation of a node level FDH MonAgent, are given by 1) Notification Policies - respon-
sible for deciding whether a particular measurement should be contained or communicated to the
requesting entity (be it a an agent or an OSS-management 24 component), 2) Adaptation Policies
- contain and determine the logic regarding how key parameters (e.g. observation period) of a
monitoring job should be adapted (based for instance on the dynamics of the monitored data as
exemplified in appendix E), and 3) Admission Policies - constitute the logic behind the decision
whether a newly arriving monitoring request should be served or not.

Examples of how the above listed policies are realized (within the FDH prototype of this thesis)
are given in the chapter elucidating on the implementation aspects (i.e. section 10.2). Thereby,
a combination of an XML-format reflecting the above meta-model structure and the Java Bean-
Shell [Bea16] scripting language is used, in order to facilitate the ECA type of reaction within the
corresponding steps of the FDH MonAgent processes.

The design and technologies, which were pointed to in the current section, are evaluated in various
other parts of the thesis. The applicability of the designs is proven in section 7.1.3 and chapter 13,
which present case studies involving the FDH MonAgent as a key component. In addition, section
12.2.1 presents various successful performance measurements involving the evaluation of policies
within the FDH MonAgent.

The following section proceeds with the rest of the policy components that play a role for the
purpose of distributed self-healing as specified in this thesis.

24 OSS stands for Operations Support System and is the system that enables among others the management of a
network, e.g. serving as an interface to the network operations personnel.
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7.5.2.2 Policy Handling within the Survivability and Fault-Management Agents

The Survivability and Fault-Management Agents within an FDH node are the other two com-
ponents, which require to be equipped with the capability to implement policy based decisions,
especially in order to execute actions that are triggered by information analysis results from the
processes of Fault-Isolation and Self-Optimization.

Given the fact that various specific reaction policies are required for the operation of the Fault-
ManAgent and the SurvAgent, the approach was followed to come up with a meta-model that is
in turn specialized for a concrete task within both key self-healing agents of FDH. The overall
picture w.r.t. to reaction policies and belonging meta-model for the FDH FaultManAgent and the
FDH SurvAgent 25 is provided later on in chapter 9 and especially in Figure 9.6. This meta-model
is one of the aspects considered by the network operations personnel for the configuration of the
FDH and its self-healing processes in a network.

The concepts that were presented here are implemented in C/C++ and integrated as a library within
the corresponding component, be it the FaulManAgent, the SurvAgent or the ASAF supporting
component. Thereby, an XML parser 26 was implemented that reads in the XML descriptions27 28

of the provided policies and creates a tree data structure in the device memory, which can be sub-
sequently traversed such that the corresponding decision and resulting action(s) can be obtained.
Subsequently, the SelfOptAgent might be addressed (if required) over the corresponding API 29 to
allow or disallow an action. Finally, the resulting action (policy obligation) is executed as an ex-
ternal CLI command, which completes the required activity (e.g. Fault- Removal, Fault-Isolation
Assessment ...).

25The AssIncFuncPolicies from the FDH supporting components are also part of this picture.
26Xerces [XER17] based
27These XML descriptions are composed according to the corresponding meta-models.
28Concrete examples of the policy configurations based on XML descriptions are given in chapter 10.
29Refer to section 10.5 for a detailed description.
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Chapter 8

Realization of the Self-Optimization
Function

The current chapter elucidates on the realization of the self-optimization features of FDH. The
self-optimization function as a whole was already presented in chapter 4. Based on these abstract
considerations and definitions, the next sections present in detail the topic of Optimized Action
Synchronization, whilst the rest of the self-optimization features are discussed and related to in
the coming general section 8.1, in terms of the modules that realize them. Hence, the following
paragraphs elucidate on various considerations and derive algorithmic schemes which fulfill Req
20 from the requirements chapter - Req 20 determines key aspect of self-optimization required for
the efficient FDH operation.

8.1 General Considerations

As presented in section 4.2, the self-optimization features of FDH are given by the following
aspects:

• Dynamic Adaptation of Monitoring Job Parameters - these aspects are elucidated in section
7.1.2.1, where it is shown which parameters of the FDH Monitoring Agent can be adapted
and what are the means for achieving this adaptation. An example for such an adaptive
monitoring behavior is given in Appendix E.

• Optimization of the Fault-Propagation Model - it is possible to dynamically adjust various
parameters and aspects of the employed Fault-Propagation Model, as already outlined in the
general chapter 4 on self-optimization within FDH. The adjustment may include removing
particular incidents (i.e. faults, errors, failures, alarms) in case there is none probability for
those to occur - e.g. in case a network node was dynamically shutdown and related inci-
dents cannot occur any more - or by dynamically adjusting the propagation probabilities of
the underlying statistical model (e.g. Bayesian Network or Markov Chain). For the latter
probabilities adjustment, different techniques from the domain of Machine Learning and
Statistics can be applied. The application of such dynamic methods for adapting the FPM
is naturally placed within the FRAF and FIAF functions. This possible FPM adaptation
is additionally complemented by the possibility to automatically analyze the control loop
execution logs, including the judgments (by the Fault- Isolation Assessment Functions) on

159
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whether the Fault-Isolation process was successful or not. The analysis of these logs allows
to extract better Fault-Propagation Models - in terms of propagation probabilities - and store
them dynamically within the FPMR repositories of the FDH nodes.

• Context-aware Self-healing Actions - the context-aware self-healing actions - as outlined in
section 4.2 - are implemented by the different types of policies, which can be embedded in
the various FDH agents, e.g. Fault-Removal policies of the FaultManAgent. Thereby, these
policies and resulting actions have access to all the information/data within the FDH repos-
itories, which includes node related information in the first place, but also network level
information given that the event dissemination mechanisms/components of the FDH have
converged with respect to a common view on related events and alarm/incidents. Further-
more, the policies and resulting actions have direct access (over a corresponding interface)
to the FDH node local repository for logging control loop executions (Control Loop His-
tory Log, i.e. CLH). By accessing this history, each policy can embed a logic as to judge
on whether, or in which form, the resulting action should be executed. For instance, as
described in section 4.2, the subsequent reconfiguring of a network interface card, in the
course of the conducted experiments, has led to a crash of its operating system driver such
that after several reconfigurations, a restart of the NIC (or even the whole node) was re-
quired as to continue the corresponding network operations. The counting of the number of
reconfigurations and the resulting NIC/node restart in that case constitute an example of a
context and history aware self-healing function.

• Selection of Optimal Tentative Actions - the way this function is realized is presented in
the next section 8.2, where a belonging optimization problem is defined and an effective
way/algorithm for solving this optimization problem is proposed.

• Avoiding Contradictory Tentative Actions - the avoidance of contradictory tentative actions
is an aspect that is covered in the course of selecting the optimal tentative actions, which
are about to be issued by the FDH agents on different levels (e.g. node or network level).
Hence, these aspects are also handled in the next section 8.2, whilst describing the derived
optimization problem and belonging procedure to solve it.

The above list of FDH self-optimization aspects represents a wrap-up of the various self-
optimization features, which are described across the different chapters of this work and also
introductory outlined as an abstract self-optimization function in chapter 4. The next section
focuses on the realization of one of the main pillars of this thesis, which is given by the self-
optimization for the selection and run-time synchronization of optimal tentative actions, which
are about to be issued by various FDH agents across multiple parallel control loops.

8.2 Optimized Action Synchronization

The current section describes the main part of the self-optimization function of FDH, which is
given by the run-time action synchronization. Thereby, the goal is to synchronize multiple parallel
control loops in the course of their execution and to avoid emergent situations, where each control
loop optimizes its own goal, but the overall set of executed actions damages the network/system
as a whole. This problem is complementary to the task of policy checking before network/sys-
tem deployment, where the prepared policies are examined regarding different aspects such as
contradictions among conditions and action impacts.
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The problem of run-time action synchronization addresses the final stage of all involved control
loops, where different actions resulting from previous control loop stages (e.g. Fault-Isolation)
are already scheduled for execution. These actions have passed all previous pre-defined con-
straints (e.g. alarm thresholds) and are the result of multiple policy evaluations and computations
(e.g. Markov Chain based Fault-Diagnosis) as well as (traffic) monitoring and data storage/re-
trieval/dissemination activities. In addition, these actions have emerged in the context of the par-
ticular unforeseeable timing aspects (e.g. communication delays) within the network/system being
controlled and enhanced by FDH self-healing features. Hence, these tentative actions can be con-
sidered as those, which formally satisfy all constraints defined in the pre-deployment phase, but
bear severe risks given the intrinsic nature, the timing and emergent situations within real net-
work/system operations1.

8.2.1 Introduction

The current thesis has reviewed a number of approaches to self-management of/for devices, net-
works and distributed systems in general (see section 2.2.4 and section 2.2.6). All these approaches
address differently the problem of synchronization and ensuring the stability of multiple parallel
(autonomic) control loops.

As previously discussed, the issue of action synchronization and optimization is vital in the scope
of FDH, since in a complex distributed environment and a composite architecture such as FDH,
involving several control-loops executing in parallel, there is an inherent challenge to ensure that
the behaviors of the involved agents - e.g. Monitoring Agent, Survivability Agent and Fault-
Management Agent - are synchronized towards a global goal. That is required in order to facilitate
self-optimization and to avoid a situation, whereby each FDH agent is working towards its own
goal but, the overall set of actions/policies degrades drastically the performance and dependabil-
ity of the network/system, which is controlled by FDH with respect to faults, errors, failures and
alarms. Such a situation could even result in unwanted oscillations and instabilities in the control
loops.

Coming back to the existing options for achieving action synchronization within the initiatives
and research works reviewed in this thesis, a number of approaches can be easily identified. For
example, since CASCADAS ACEs [AO16] [CAS16] [ea06] operate based on executable plans,
it is straight possible for the autonomic system’s developer to embed stability constraints in the
resulting (collaborative) behaivour(s). The utility function based approach for deriving policies
of ANEMA [DAS09] [ea06] suggests that the resulting behaviors will be intrinsically stable and
conflict free during the operation of the network. In addition, the EFIPSANS project [efi16b] has
investigated possibilities to design collaborative control loops such that they operate in a stable
manner [PCS11] [PTC12]. This includes the application of game theory concepts during the de-
sign phase and the application of model driven engineering techniques. The latter can be achieved
through different tools or combinations of tools (tool chains), which are applied during the design
of the corresponding agents such that their control loops are intrinsically stable and synchronized
by design. The set of applicable tools includes modeling environments such as GME [GME16],
MagicDraw [BBPK13] and EMF [SBPM09],simulation and verification tools such as UPPALL
[BSB+16], Simulink [BSB+16] [TCRMDlF16](UPPALL and Simulink have also some significant

1The results in this section have been recognized as important for the domain of network and systems manage-
ment and have been published as one workshop paper [TCP09], one conference paper [KTP+10], and one journal
paper [TS14b], reflecting different stages of the development of concepts and algorithms for the FDH self-optimization
function.
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modeling capabilities) as well as OMNET++ [VH08], and finally some code generation tool. Ex-
amples for tool chains or standalone tools enabling the model driven specification and design of
autonomic agents are given in [PTC12] as well as in [RFGS10] and [VH12] [Vas09]. Thereby, the
approach in [PTC12] is based on the interplay between existing tools facilitated through a model
sharing system called ModelBus [HRW09], whilst [RFGS10] and [VH12] [Vas09] aim at defining
a modeling language that enables the specification of self-managing entities.

To underline once again, FDH enables self-optimization not only by verifying the employed con-
figurations, behaviors (e.g. policies and actions) and models (e.g. Fault-Propagation Models)
prior to an FDH deployment, but also by introducing the concept of run-time action synchroniza-
tion for multiple parallel control loops, and by providing the required means to realize it2. The
mathematical optimization problem that lies at the heart of this concept is introduced within the
next section. Based on a model about the impact of potential actions on selected key performance
indicators (KPIs), as well as the importance of these KPIs, methods and techniques are proposed
for the selection of an optimal subset of tentative actions, which are planned for execution by the
involved FDH agents. The approach is validated based on a prototype that allows to conduct a
representative qualitative performance and scalability analysis of the proposed concepts.

8.2.2 The Action Synchronization Problem

This section formally defines the run-time Action Synchronization Problem (ASP). The flow starts
with a short introduction related to the emerging mathematical model and an overview of similar
efforts in the past years. Subsequently, a model is derived that allows to mathematically reason
about the optimal subset of tentative actions requested for synchronization by the FDH agents at
a point in time. This model consists of a set of mathematical objects, such as a utility function to
optimize, and a set of constraints represented by corresponding matrices and vectors.

8.2.2.1 General Considerations Related to the Action Synchronization Problem

In a complex multi-agent environment or architecture - such as FDH - involving more than one
control loop that need to execute in parallel, the challenge is to ensure that the agents’ behaviors
are synchronized towards a common goal. That is required in order to avoid a situation whereby
each FDH entity is working towards its own goal but the overall set of actions/policies degrades
the performance and dependability of the system in question. In order to achieve the aforemen-
tioned common goal, an approach is derived, which is based on the concept of an optimization
problem and belonging utility function that incorporates the state of the network/system, and must
be optimized by selecting the optimal subset of tentative actions, resulting from decisions made
by the single FDH entities.

Research related to the application of utility functions and optimization problems in the area of
self-* features for automating system/network management has been ongoing since the release
of the IBM Autonomic Computing white paper [ibm05]. The idea of Autonomic Management
based on goals, for which utility functions are a way to express, was initially investigated in
[LDA+05]. [KD07] is one of the pioneer publications discussing the role of utility functions
in self-management. It elaborates on the different classes of policies that can be applied, in order

2The general novelty - beyond the FDH scope - of this idea is that it allows for autonomic agents, which were not
intrinsically designed as to collaborate, to synchronize their tentative actions and work together towards improving the
performance and Quality of Service (QoS) of the network or IT infrastructure in question.
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to optimize the corresponding utility function and presents a case study carried out in the con-
text of the Tivoli Intelligent Orchestrator [Tiv16]. [BDK+12] constitutes a further development of
the above pioneer work, thereby applying some special optimization techniques (e.g. Incremental
Utility Elicitation) and evaluating the approach in the scope of data center management. [TK04]
describes a two-level utility function based architecture for monitoring and actively optimizing
the performance of a Web-Sphere application environment [HHM04]. However, the application
of the utility functions is mainly embedded inside the autonomic entities and there is no additional
arbiter component that handles synchronization requests from the involved agents, and chooses to
allow or disallow specific tentative actions to be executed. Having briefly looked at the application
of utility functions to self-management, the next section proceeds with the formal definition of the
ASP problem and derives the belonging utility function.

8.2.2.2 Deriving the ASP Problem

Based on ideas from the theory of Optimal Control [HDPT04], an optimization problem is defined
that should be solved by an FDH SelfOptAgent whenever a set of actions needs to be synchronized.

Let Q be a set of performance metrics/KPIs, and |Q| = n ∈ N +. Let W be a set of weights, each of
which is assigned to one of the metrics contained in Q and |W| = n ∈ N +. These weights represent
the importance of a single KPI for the overall health of the system, and thus they all should be
positive, i.e. wi ≥ 0 for wi ∈W , wi ∈ R and i ∈ {1, . . . ,n}.

Considering a particular point in time t0, the values of the KPIs in Q are represented by a vector
Q(t0) = (q1(t0), . . . , qn (t0))T ∈ Rn . Suppose that, the higher the values of q1(t0), . . . , qn (t0) the
better the performance of the system (for KPIs which require to be minimized one can take the
reciprocal value), then the following expression gives the system fitness at t0.

SF (t0) =

n∑
i=0

wiqi (t0) =< w ,Q(t0) > (8.1)

Hence, the goal of the FDH mechanisms in the node/device and the network is to maximize SF(t)
throughout the operation of the system.

Additionally, let A be the set of possible actions that can be potentially issued by all relevant FDH
agents and |A| = M ∈ N +. By aj ∈ A with j ∈ {1, . . . ,M } a single action is denoted. Further,
the domain relation of an action d : A → {0, 1}n is introduced. The relation takes as an input an
action and returns a (0-1) binary vector, which contains mappings to the metrics the input action
influences if executed. Indeed, if the i th component of the vector is 1, then the i th metric is influ-
enced by the input action, and respectively if the latter is 0, then the metric is correspondingly not
influenced. Putting together the domain relation outputs for all actions as columns in matrix form
results in what is defined here as the domain matrix of A.

D = (d (a1), . . . , d (aM )) ∈ {0, 1}n×M (8.2)

The last and most important ingredient for formulating the optimization problem is the impact
relation of A - I : Q × A → R. The output value of I(i,j) stands for the impact the j th action has
on the i th KPI. Thus, if only action aj is executed at point in time t0, then the new value of qi will
be qi (t0) + I (i , j ).



164 Chapter 8 Realization of the Self-Optimization Function

Based on the above definitions, and assuming that in a particular time slice a total number of
m ∈ N + (m ≤ M ) actions have been requested for synchronization, the following optimization
problem is defined.

max
p∈{0,1}n

n∑
i=0

wi (qi (t0) +

m∑
j=0

pj I (i , j )) (8.3)

subject to: Dmp ≤ c

In (8.3), p stands for a (0-1) vector, which gives whether a particular action was allowed to execute
or not. Indeed, if the j th position of p is 1, then the corresponding action has been selected for
execution; otherwise it has to be dropped. Hence, an optimization with respect to p is equivalent
to selecting the optimal set of actions requested in a particular time frame. Moreover, the matrix
Dm is a sub-matrix of the domain matrix D of A consisting only of the columns representing the
domains of the requested actions.

The vector c ∈ N n determines the extent, to which actions with overlapping domains are allowed.
For example, if n=4 and c = (1, 1, 1, 1)T , i.e. only four KPIs are considered, then the addi-
tional constraint says that only one action influencing a single metric is allowed. In the case of
c = (2, 1, 1, 1)T two actions are allowed that influence the first metric. Hence, the additional con-
straint can be used to enforce the resolution of conflicts between actions with overlapping domain
regions. Rewriting (8.3) in vector-matrix form results in

max
p∈{0,1}n

wT Imp + wTQ(t0) (8.4)

subject to: Dmp ≤ c

where Im stands for an n ×m real-valued matrix that contains the impact of the requested actions
on the considered KPIs. Thus, Im (i , j ) represents the impact of the requested j th action on the i th

metric.

Since the term wTQ(t0) in (8.3) is just a constant that reflects the current state of the network,
it can be dropped, which is very good news because it means that the values of the KPIs are
not needed for the optimization. That fact reduces the overhead produced by the FDH self-
optimization within the FDH SelfOptAgent, since no interaction with monitoring functions mea-
suring the KPIs is needed. Hence, the final optimization problem takes the following form:

max
p∈{0,1}n

wT Imp (8.5)

subject to: Dmp ≤ c

The above optimization problem can be interpreted as “selecting the most appropriate subset of
tentative actions such that the change in the state of the system is positively maximized”.

8.2.3 On the Complexity of ASP

This subsection investigates around the complexity and the challenges that are expected while
solving instances of ASP. First of all, ASP is a special case of integer/binary programming which
potentially classifies it as an NP-complete problem, i.e. a hard to tackle problem which can be
only solved by a non-deterministic polynomial-time Turing machine [Her88]. More specifically,
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ASP corresponds to a special instance of the thoroughly studied 0-1 multi-constrained knapsack
problem (MKP) [KKA17] [LWC+16] [Fre04]. MKP is defined as follows:

max
p∈{0,1}n

n∑
i=0

gixi , subject to:
n∑
j=0

vij ≤ Ci (8.6)

with gains (profits) gi ≥ 0, volumes (oder weights) vij ≥ 0 and capacities Ci ≥ 0 with respect to
the overall volume (or weight) for each knapsack. Thereby, gi ∈ R, vij ∈ R, and Ci ∈ R. The
difference between ASP and MKP is constituted by the ranges for vij and Ci , and correspondingly
dij - the elements of Dm , as well as ci - the elements of the constraint vector c. dij can take
only binary values, and ci can take only positive integer values according to the definition of ASP.
Hence, each ASP instance is an instance of MKP. MKP has drawn the attention of the research
community for years due to its wide field of application (e.g. resource and budget planning). It is
known to be an NP-hard problem [Fre04] with exact algorithms existing for some special cases,
as for example described in [GPP12] and [GG67]. However, based on a review of existing op-
tions, it can be concluded that no exact algorithm exists for high dimensional special instances as
constituted by ASP.

The above considerations show that finding a solution for the run-time action synchronization
problem is not an easy task. Therefore, different heuristics and approximation algorithms can be
considered. For example, modern solvers - such as GLPK [GLP16] or Coin-OR [COI17] - are
quite advanced and would provide a solution that is the best possible based on the underlying op-
timization algorithm, e.g. branch-and-bound, simulated annealing, tabu search, etc. Moreover, in
the next section, an approach is proposed that allows to partially overcome the obstacles arising
due to ASP’s computational complexity.

8.2.4 Machine Learning Approach to Action Synchronization

In this section, an approach to run-time action synchronization is proposed that allows overcom-
ing the obstacles of inconvenient problem complexity identified in the previous sections. The ASP
problem is correspondingly reformulated and a machine learning methodology to handling the
uncertain parameters, resulting from the reformulation, is provided.

8.2.4.1 RASP: Relaxation of the ASP Binary Optimization

The reformulation starts with the previously derived optimization problem, and proceeds to relax-
ing the binary constraints such that the resulting (reformulated) problem belongs to the complexity
class P [Pap03], i.e. to the problems solvable in polynomial time. That is, the condition pi ∈ {0, 1}
is turned into an inequality: 0 ≤ pi ≤ 1, for i ∈ {1, . . .m}. Hence, the new optimization problem
is given by:

max
p

wT Imp (8.7)

subject to: Dmp ≤ c,
0 ≤ pi ≤ 1, i ∈ {1, . . .m}
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This optimization problem is a linear program (in optimization theory terminology), which consti-
tutes a convex optimization problem. Hence, given the convex nature, there is only one optimum
and every local optimal solution is also a global one, which means that the diverse optimization
techniques will always improve iteratively the quality of the obtained solution. The above formula-
tion constitutes a problem belonging to the complexity class P, i.e. efficient polynomial algorithms
exist for solving this problem. The result of this optimization is a vector containing values from
the interval [0, 1]. If i th component of this vector is 0, then the corresponding action is disallowed.
Correspondingly, if it is 1 then the action should be issued. If an agent, requesting for synchro-
nization, receives as response a value from the interval (0, 1), then it can either execute or drop the
action based on an internal threshold θi . These thresholds can be supplied by the human experts
tweaking the network/system, which is managed by FDH w.r.t. to faults/errors/failures/alarms.
For instance, the history of requests for synchronization can be analyzed offline - e.g. by em-
ploying statistical and/or machine learning methods - and appropriate thresholds can be extracted
using some optimization tools. In the following sub-section such a methodology is proposed and
elaborated in detail.

8.2.4.2 Methodology for obtaining Threshold Parameters for RASP

Assuming that during the operation of a particular system, a history of FDH action synchronization
requests - coming from the FDH agents - was collected r := {r1, . . . , rtr }, tr ∈ N

+, a methodology
is proposed regarding how to obtain thresholds {θ1, . . . , θM }, such that the involved FDH agents
(FaultManAgent, SurvAgent or MonAgent) are able to decide whether to execute an action or
not based on the solutions of RASP obtained by the corresponding FDH SelfOptAgent. One can
assume that as long as training data is being collected, the system operates based on ASP. The el-
ements of r are 0-1 vectors, where a 1 is set in case the action at the corresponding position in the
vector was requested for synchronization within the particular request, and a 0 in case the action
was not requested. The results of the RASP optimization - based on the requests in r - are then
given by X = {X1, . . . ,Xtr }, tr ∈ N

+ whereby Xi ∈ [0, 1]M . By defining and solving an optimiza-
tion problem based on the training data in X , one can obtain the thresholds {θ1, . . . , θM } which are
in turn given to the requesting agents and used in the course of run-time action synchronization.
This leads to the following maximization objective:

max
θ∈[0,1]

tr∑
i=0

wT I (Xi − θ) (8.8)

(8.8) can be explained as follows: the distances between the threshold values and the RASP results
should be optimized in a way that the impact (reflected by these distances) of the corresponding
actions on relevant KPIs is positively maximized. (8.8) can be further reformulated as follows:

max
θ∈[0,1]

tr∑
i=0

wT I (Xi − θ) = max
θ∈[0,1]

[ tr∑
i=0

wT IXi −

tr∑
i=0

wT I θ

]

⇐⇒ min
θ∈[0,1]

tr∑
i=0

wT I θ ⇐⇒ min
θ∈[0,1]

wT I θ (8.9)

The final result in (8.9) is based on the fact that the first sum in the rearranged optimization prob-
lem is a constant, because it is computed only based on the available training data.
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In order to preserve the constraints given in the ASP definition (8.5), the following constraint is
added

∑
j∈Im (qk )

1{Xij
≥θj } ≤ ck (8.10)

with Im(qk ) = {j ∈ N : aj ∈ A ∧ Im (k , j ) , 0} representing the indices of the set of actions that
impact KPI qk .Furthermore Xij stands for the j th element of the training vector Xi ∈ [0, 1]M , and
ck is the bounding value for k as given in the “subject to” part of (8.5). Hence, the constraint in
(8.10) ensures that the sum of all actions influencing qk should not be larger than the impact limit
ck , which reflected on the training data means that for the training vectors X = {X1, . . . ,Xtr } the
sum of all actions scheduled for execution and influencing qk should not exceed the impact limit
ck .

Combining (8.9) and (8.10) results in the following non-linear optimization problem:

min
θ∈[0,1]

wT I θ , subject to:
∑

j∈Im (qk )

1{Xij
≥θj } ≤ ck (8.11)

As a further step towards increasing the solvability of (8.11), one might consider to treat the con-
straint in a way that it becomes differentiable such that optimization algorithms can be applied that
explicitly make use of the gradient. A possible direction to go is to relax the constraint with the
indicator function 1{Xij

≥θj } such that the optimization is done with respect to the distribution of
all actions influencing qk within the training data. Hence, an additional random variable X∗j and
belonging probability measure P are introduced, which characterize the distribution of the actions
influencing qk within the training data. This yields the following reformulation of the constraint
part:

∑
j∈Im (qk )

P (X∗j ≥ θj ) ≤ ck

⇔
∑

j∈Im (qk )

[1 − P (X∗j ≤ θj )] ≤ ck (8.12)

Thereby, as previously mentioned, P (.) on the last line stands for the (cumulative) distribution of
X∗j , i.e. the distribution of RASP results (or in that case training values) for the j th action. To
become more specific, X∗j stands for a random variable that represents the various values of the
j th elements in the training vectors.Thus, in (8.12) P (.) gives the probability for θj to be greater
than X∗j . Thereby P (.), in terms of a probability model, must be a distribution over the set [0, 1].
Indeed, a distribution of X∗j can be computed out of the trainings data, e.g. by calculating the
maximum likelihood estimators for the targeted/assumed probability model. Combining (8.9) and
(8.12) results in the following optimization problem:

min
θ∈[0,1]

wT I θ , subject to:
∑

j∈Im (qk )

[1 − P (X∗j ≤ θj )] ≤ ck (8.13)

The beta-distribution [Nat12] is a good candidate for P (.), since it generalizes different possible
distributions over the [0, 1] interval. Hence, (8.13) can be further specified in a way:
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min
θ∈[0,1]

wT I θ , subject to:
∑

j∈Im (qk )

[1 − BX∗j
(θj , pj , qj )] ≤ ck (8.14)

The cumulative distribution function (CDF) of the beta distribution, adapted to the current context
for a threshold θj , is given by:

BX∗j
(θj , pj , qj ) =

∫ θj
0 tpj (1 − t)qj−1dt∫ 1
0 tpj (1 − t)qj−1dt

, with pj , qj > 0 (8.15)

The gradient of (8.15) can be also easily calculated by taking into account that the derivative of a
CDF is given by the corresponding PDF (probability distribution function). This gradient can be
used to improve the quality of the obtained thresholds given that an algorithm is utilized, which
can explicitly make used of it.

Based on (8.15) and (8.13), the optimization problem takes the following form:

min
θ∈[0,1]

wT I θ , subject to:
∑

j∈Im (qk )

[
1 −

∫ θj
0 tpj (1 − t)qj−1dt∫ 1
0 tpj (1 − t)qj−1dt

]
≤ ck (8.16)

(8.15) has two parameters pj and qj , which can be estimated from the training data by using the
method of moments, which is defined as follows according to [Nat12]:

pj = X̄∗j (
X̄∗j (1 − X̄∗j )

s2 − 1)

qj = (1 − X̄∗j )(
X̄∗j (1 − X̄∗j )

s2 − 1)

with

X̄∗j =
1
tr

tr∑
k=1

Xkj

s2 =
1

tr − 1
×

tr∑
k=1

(Xkj − X̄∗j )
2

Hence, by using the proceeding formulas for the method of moments - thereby incorporating the
training data - one can proceed to efficiently solving (8.14) and obtaining the thresholds for the
belonging actions and correspondingly for the FDH agents.

Based on these considerations, the following sections compare the quality of action synchroniza-
tion by solving directly the binary optimization problem in (8.5), and by solving the relaxation
based on threshold estimations provided by (8.11), and by (8.13) thereby applying (8.15) as a rele-
vant probability measure. In the following, the combination between (8.13) and (8.15) (i.e. (8.16))
is denoted as the beta-distribution approach. Next, the overall proposed approach is shortly re-
lated to traditional control theory, before the presentation continues with the promised numerical
evaluations.
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8.2.5 Relating Run-time Action Synchronization to Traditional Control Theory

The action synchronization problem derived in the previous sections aims at ensuring the stabil-
ity of the multiple FDH control loops running in parallel. Thereby, depending on the particular
configurations, policies and deployed models, the control loops may be based on generic models
defined for autonomic computing and networking in the past years (e.g. IBM MAPE [ibm05],
FOCALE [SAL06], or GANA [MCR+16]) or on control loops as specified within the area of tra-
ditional control theory [HDPT04]. Such control loops are based on specific transfer functions
and on the state of the system under control, in case of feedback control loops such as the PID
(Proportional-Integral-Derivative) controller. Transfer functions can be seen as mathematical ar-
tifacts, which describe the required regulative mechanisms based on different parameters such as
time or system feedback. Fundamental properties, which the control loop designer tries to achieve
by adjusting the parameters of the belonging transfer functions, are the so-called SASO properties
- Stability, Accuracy, Settling Time and Overshoot [HDPT04]. Stability in that case is considered
mainly with the oscillations that could be potentially caused by an improperly selected transfer
function parameters. Accuracy deals with the degree to which particular desired values of the reg-
ulated parameters are achieved. The Settling Time property can be seen as an indicative for “how
long it takes” until the effects of the regulative behavior are achieved. Finally, Overshoot gives the
maximum deviation (from the desired value) which results from the regulative action.

Within the proposed FDH SelfOptAgent and the algorithmic framework it embeds, one would
expect that the underlying control loops, which would be placed within the other FDH agents, are
designed considering the SASO properties. The impact of the actions, which result from these
control loops, should be modeled as considered after the corresponding settling time. That is, it
is presumed that the final effect of the action is taken into account when modeling the potential
tentative actions and their impact on KPIs. This way the interplay between the proposed approach
for the FDH SelfOptAgent and traditional control loops is facilitated.

8.2.6 Experimental Evaluation of the Self-Optimization Quality

In order to evaluate the proposed approach, a set of experiments was designed such that the quality
of the action synchronization achieved by the different mechanisms and techniques can be com-
pared 3. Since there are no such systems deployed in practice, different requests and models of
different sizes were simulated for the experiments - including weight vectors, impact matrices,
and constraint vectors. This allowed to gain an impression of the performance of the different
techniques on a number of models and combinations of tentative actions.

The measurements presented in this section are meant to benchmark the quality of the action syn-
chronization procedure, in terms of achieved utility value and constraint satisfaction as determined
by the corresponding constraint vector. This utility value is obtained by solving ASP directly, or by
solving the corresponding relaxation - RASP, and applying thresholds for executing or dropping
actions.

A set of models with equal numbers of KPIs and potential tentative actions were used. For each
model size, 1000 different model instances were taken. Additionally, 1000 action synchronization
requests were simulated as training data for each model size, in order to evaluate the machine
learning approach from section 8.2.4. Moreover, 100 action synchronization requests were used

3Thereby, the prototype implementation presented later on in section 10.5 was used for gaining experiences and
supporting the required measurements.
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Figure 8.1: The Average Difference between the Utility Values obtained by solving RASP com-
bined with applying Thresholds based on optimizing (8.11), and directly solving the ASP problem

as test data for each model size, upon which the quality of the different techniques was validated.
A Matlab/Octave [OCT16] [MAT16] script was developed that implements the machine learning
procedures as specified by (8.11), as well as by (8.13) with applying the beta- distribution (8.15)
as a probability measure. In the course of this, the NLOPT [NLO16] library for non-linear opti-
mization was utilized. Thereby, initially the “Improved Stochastic Ranking Evolution Strategy”
[RY05] was employed, in order to perform a global search for both problems defined in (8.11)
and (8.13). Subsequently, a local search was conducted based on the “Constrained Optimization
by Linear Approximations” [Pow98] algorithm for (8.11) , and on the “Augmented Lagrangian
algorithm” [BM08] for (8.13), in order to find a precise solution locally. Thereby, the algorithm
applied for (8.13) can explicitly benefit from the derivatives of the utility function and the con-
straints, which can be computed based on the beta distribution function. These steps resulted in
thresholds obtained based on (8.11) and (or) (8.13) for each model instance. The above introduced
test data was used to evaluate the quality of these thresholds in terms of accepting or dropping an
action based on a solution for RASP (8.7). That is, firstly RASP was solved, and subsequently by
using the corresponding set of thresholds, the tentative actions were accepted or dropped based on
the obtained RASP solution vector. The selected actions resulted in a particular value of the utility
function, and potentially violated the constraints vector, since the relaxations influence directly the
involved constraints. For that reason, on one hand, it is worth to compare the difference between
the utility value achieved by using thresholds and the one obtained by solving ASP directly. On
the other hand, it is required to measure the magnitude of constraint violation achieved by solving
RASP and applying the thresholds. At this point, it should be noted that straight solving the binary
program (8.5) does not lead to any constraint violations, since this is the original version of the
optimization problem.

Figure 8.1 and Figure 8.2 illustrate the empirical distributions of the differences between the av-
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Figure 8.2: The Average Difference between the Utility Values obtained by optimizing RASP com-
bined with applying Thresholds based on the Beta Distribution Approach, and solving directly the
ASP problem

eraged utility values of the involved approaches for each model size. The averaged utility values
were obtained based on the belonging test data set. That is, the utility values obtained for each
action request in the corresponding test data were averaged and presented in the form of the em-
pirical distribution of the difference between these averaged utility values for each of the 1000
instances of the model size. In that case, difference means “averaged utility value of RASP and
(8.11)” - “averaged utility of ASP” for Figure 8.1, and “averaged utility value of RASP and
(8.13)” - “averaged utility of ASP” for Figure 8.2. Indeed, a positive value within the empirical
distribution means that the corresponding RASP based technique performed better than straight
binary optimization. The box plots in the figures visualize the median, the 25% quantile, the 75%
quantile, the minimum and maximum value of the experienced sample. Figure 8.1 shows that
solving RASP, and applying thresholds obtained by (8.11), performed slightly worse than binary
optimization of ASP for smaller model instances. However, with growing model sizes, the RASP
based method started performing better eventhough there were still some outliers (in terms of
models) for which binary optimization is better. On the other hand, Figure 8.2 shows that solving
RASP, and applying thresholds obtained through the beta distribution approach, resulted in better
utility values for all evaluated model sizes. Again, there were some outliers (in terms of models)
by which the binary optimization seems to be the better approach to obtaining an optimal global
reaction for the FDH agents.

The averaged constraint violations while performing RASP based optimization are shown in Fig-
ure 8.3 and Figure 8.4. The average value was built based on the above introduced test data set
for each model instance. Figure 8.3 and Figure 8.4 clearly indicate that even tough the violations
in the case of the beta distribution approach were minor, the non-linear threshold optimization
(8.11) clearly outperformed the beta approach when it comes to constraint violations. This is not
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Figure 8.3: The Average Violation in case of optimizing RASP and applying Thresholds obtained
through (8.11)

surprising, since (8.11) reflects to a large extent the initial ASP problem regarding the constraints,
while the probability based approach (8.13) relaxes them by assuring compliance only a probabil-
ity distribution base.

In general, it can be observed that the two discussed RASP based techniques performed reasonably
as compared to straight ASP binary optimization when it comes to achieved KPI based quality of
the overall FDH reaction, and to satisfying the original constraints, which influence the simulta-
neous execution of actions.

The results presented in the previous paragraphs allow to draw some conclusions and recom-
mendations on how to handle the different aspects of the FDH SelfOptAgent for the purpose of
run-time synchronization of parallel FDH control loops. Using RASP as an underlying optimiza-
tion problem brings some scalability benefits - as presented in detail later on in section 12.2.5 -
when it comes to optimizing FDH reactions based on larger models. However, this comes on the
costs of some constraint violations, which might be critical in particular computing environments.
It remains the task of the FDH configurations’ designer to determine whether these constraint vio-
lations, in terms of allowing actions with overlapping domains of influence, are acceptable or not.
In addition, the thresholds obtained through the beta distribution approach seem to deliver better
utility values then those obtained by solving (8.11), when it comes to interpreting the results of a
RASP optimization. However, the beta distribution based thresholds imply some higher degree of
constraint violation as discussed before. In general, during the experiments, it was observed that
given a particular RASP model, it is beneficial to experiment with different available algorithms
and parameters for solving (8.11) and (8.13), until the best thresholds are obtained.

With respect to scalability and memory overhead, the conceptual considerations suggest that RASP
based action synchronization is the better choice and should be used for time critical and resource
constrained systems. This is indeed confirmed by the results presented later on in section 12.2.5
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Figure 8.4: The Average Violation in case of optimizing RASP and applying Thresholds obtained
through the Beta Distribution based approach

of this thesis.

With these considerations in mind,the next section describes a case study illustrating how the pro-
posed techniques can be applied. Moreover, the next section identifies potential pitfalls, as well as
valuable tricks, which should be considered when deploying and configuring an FDH SelfOptA-
gent for run-time synchronization of parallel FDH control loops.

8.2.7 Example Application

The illustrative case study is a simplified version of the combined case study for the overall frame-
work, which is described in section 13.4. However, the elucidations here focus largely on the self-
optimization and action synchronization aspects of the FDH framework. In addition, the involved
networking problems were already used for illustrating the operations of the FDH MonAgent (in
section 7.1.3) and for exemplifying and evaluating the Fault-Isolation techniques of relevance (in
section 7.3.3). In both of these cases, the focus was set to evaluating the properties of the com-
ponent/algorithm in question, whilst here the main aspect is given by demonstrating the action
synchronization/optimization techniques proposed in this thesis.

As previously presented, the FDH FaultManAgent is responsible for realizing self-healing in the
long-term operation of the network/system thereby automating the processes of traditional Fault-
Management. To recap: traditional Fault- Management is understood [LCZ08] as an interplay of
the tasks defined by the ITU-T TMN [ITU00] (Telecommunication Management Network) stan-
dard. These tasks are: Fault-Detection - “detect the presense of fault”, Fault-Isolation “find the
root cause for the observed faulty condition”, and finally Fault-Removal - “remove the identified
root cause”. On the other hand, the resilience of the network depends also on an immediate reac-
tion to an observed faulty condition, which is realized by the FDH SurvAgent. This means that an
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immediate action is expected from the FDH SurvAgent, in order to mask the erroneous state until
the FDH FaultManAgent mechanisms have managed to remove the underlying root cause(s). Such
an immediate action could be for example the result of a regulative mechanism based on a transfer
function as implemented in traditional control theory [HDPT04]. Indeed, when it comes to execut-
ing the resulting actions, the involved entities - the FDH FaultManAgent and the FDH SurvAgent
- need to negotiate, in order to resolve potential conflicts due to multiple Fault-Management or
Fault-Masking processes (threads) running in parallel. This negotiation is facilitated by FDH
SelfOptAgent within each device and is exemplified in the coming paragraphs.

Figure 7.5 from section 7.1.3 presents the reference network for the case study. The network is
basically the same as the one, which was used for previous case studies within the description
of the FDH self-healing function, e.g. the Fault-Isolation case study. Each of the routers (R1 to
R6) is equipped with a full scale FDH framework including a SurvAgent, FaultManAgend and a
SelfOptAgent.

The focus is set on potential faulty conditions around router R2, and on potential reactions to these
faulty conditions issued by the relevant FDH agents on R2. However, presenting the models and
mechanisms that drive the reactions of the autonomic entities is beyond the scope of this case
study. This mechanisms are described in the corresponding sections and belonging case studies
within this thesis.

In Figure 7.5, R2 is a critical point in the network, since it is a router having different (Gigabit
and Fast Ethernet) types of links with different characteristics, as for example MTU (Maximum
Transmission Unit) size - 1500 bytes for Fast Ethernet and maximum 9000 bytes for Gigabit Eth-
ernet links. To recap from previous sections: this MTU difference creates the potential for black
hole problems as described in [Lah00]. These problems are made possible by the traditional se-
curity related suppression of ICMP messages on the router in question having links with different
MTUs attached. As previously mentioned, this is especially critical in IPv6 where there is no
packet fragmentation on intermediate routers. On the other hand, the (dynamic) suppression of
ICMP messages is required in case the network is under attack, since ICMP responses were often
used to realize flooding and Deny of Service (DOS) attacks in the past. Hence, it is a good idea
to also dynamically regulate the level of ICMP suppression as a reaction to an anticipated attack
on the network infrastructure. Thus, the following potential actions, to be issued on R2 by the
FDH FaultManAgent agent, are introduced: set-icmp-suppression-(low/medium/high). These ac-
tions are expected to differ with regard to the subsets of ICMP message types being suppressed
on R2. Furthermore, the problem of link flapping can potentially occur on any of the routers in-
cluding R2. It is constituted by a link that is continuously going up and down thereby affecting
the OSPF routing in the network [WCLL08] (in case OSPF dynamic routing is deployed), such
that the routers have difficulties to converge with respect to available routes. An immediate reac-
tion of the FDH SurvAgent to this phenomenon could be given by adjusting the rate of the OSPF
Hello Timer [Moy98] on the affected routers [WCLL08]. Thus, the following potential actions, to
be issued on R2 by the FDH SurvAgent, are considered: set-hello-rate-(low/medium/high). As a
result of the belonging automated Fault-Management processes (also of any other kind), the FDH
FaultManAgent agent can decide to either restart a Network Interface Cards (NIC) on R2, or to
restart R2 as whole. This results in the following potential actions restart-node and restart-NIC.

Regarding the KPIs to optimize for the case study, the following QoS metrics from the telecommu-
nications domain are considered: delay, jitter, packet loss, out of order packets, and throughput,
as well as the KPIs of overall security level, CPU utilization and memory consumption on R2.

Table 8.1 presents the parameters of the model created based on the case study described hitherto.
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Table 8.1: Model Parameters for the Case Study

restart-
node

restart-
nic

set-hello-
rate-high

set-hello-
rate-
medium

set-hello-
rate-low

set-icmp-
suppression-
high

set-icmp-
suppression-
medium

set-icmp-
suppression-
low

constraints weights

DELAY 5 4 5 1 -2 -3 1 3 2 15

JITTER 4 3 5 1 -2 -3 1 3 2 10

OUT OF OR-
DER 4 3 5 1 -2 -3 1 3 2 15

PACKET LOSS 5 3 5 1 -2 -4 2 4 2 20

THROUGHPUT 5 4 5 1 -2 -4 2 4 2 20

SECURITY
LEVEL -1 0 -1 1 2 5 1 -5 2 20

CPU 5 0 -4 1 3 0 0 0 2 10

MEM 5 0 -4 1 3 0 0 0 2 10

Disallow some of the Actions to execute simultaneously
0 0 0 0 0 1 1 1 1 0

1 1 0 0 0 0 0 0 1 0

0 0 1 1 1 0 0 0 1 0

Prioritize specific Actions
2 1 0 0 0 0 0 0 1 1

2 0 1 0 0 0 0 0 1 1

2 0 0 1 0 0 0 0 1 1

2 0 0 0 1 0 0 0 1 1

2 0 0 0 0 1 0 0 1 1

2 0 0 0 0 0 1 0 1 1

2 0 0 0 0 0 0 1 1 1
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The first eight columns show the impact matrix of the model. The last two columns show corre-
spondingly the constraints and the weights of the model determining the importance of the KPIs to
optimize. For the impact of a certain action on the KPIs, integer values from the interval [-5,5] are
assigned meaning that a negative degrades the KPI, and correspondingly a positive value improves
the KPI. For the weights, values from the interval [0,20] were considered. A number of interesting
aspects are given by the lines, not assigned to a KPI, at the end of Table 8.1. They demonstrate how
model parameters can be extended beyond the modeling notions described in section 8.2.2, such
that particular actions do never get executed simultaneously, and certain actions are prioritized. In
the current case study, it is logically required that only one action at a time is executed from the sets
set-hello-rate-(low/medium/high), restart-(node/nic), and set-icmp-suppression-(low/medium/high)
in case multiple actions from these sets are requested for synchronization by parallel FDH control
loop processes. This is modeled by the second part of Table 8.1, and is achieved through creating a
relationship between these actions, and restricting this relationship by extending the impact matrix
and the constraints vector. Through this, only one action of each set is selected for execution after
a synchronization process. The last segment of Table 8.1 illustrates how an action can be set to
have a higher priority than another one. In that case, the action restart-node is prioritized over
each of the other potential actions. This is achieved by an additional row in the impact matrix
for each intended prioritization. Indeed within each line for prioritization, restart- node is favored
based on the new “impact values”, and only one of the two actions in question (i.e. restart-node
and the action with respect to which it is being prioritized) can be selected according to the new
constraints (refer to the belonging entries in the constraints vector).

To illustrate the operation of an FDH SelfOptAgent based on the case study and belonging model,
a prototype was used (described in section 10.5 that handles implementation aspects), in order to
issue different requests for action synchronization, and observe the resulting selected subsets of
actions. Thereby, the FDH SelfOptAgent was operating on the binary program constituting the
ASP version of the above described model. Table 8.2 summarizes some of the results from the
conducted experiments in the case study scope. The first row in each segment contains the tentative
actions, which were about to be simultaneously executed on R2. The second row in each segment
indicates which action(s) has/have been allowed for execution and which disallowed. It can be ob-
served that indeed only one action from the sets set-hello-rate-(low/medium/high), restart-(node/

nic), and set-icmp-suppression-(low/medium/high) has been selected for execution, in case multi-
ple actions from these sets were requested for synchronization. Moreover, one can also see how
the action restart-node, when requested, is always prioritized over the others. For the rest, the se-
lection is performed based on the impact of the tentative actions on the utility function of the FDH
SelfOptAgent for the network/system in question. This function was defined in (8.3) and (8.5).
The results in Table 8.2 show how such an FDH SelfOptAgent can resolve emergent conflicts
between parallel FDH control loops and optimize the overall operation of the FDH framework,
thereby always trying to achieve an optimal improvement with respect to self-healing.

8.2.8 Discussion and Summary

The above sections introduced a framework for ensuring the conflict-free and synchronized oper-
ation of multiple parallel FDH control loops. This framework is accommodated within the FDH
SelfOptAgent on node/network level in an FDH controlled network/system. Such a framework is
extremely useful, in order to avoid situations when the FDH agents - implementing the parallel
control loops - operate in a way as to achieve their own goals, which might unfortunately influence
the overall self-healing function in a negative way. In this line of thought, the node/network level
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Table 8.2: Illustrative Action Synchronization Requests

REQUESTED restart-node restart-nic set-icmp-suppression-
low

SELECTED YES NO NO

REQUESTED restart-nic set-icmp-suppression-
low

set-icmp-suppression-
medium

SELECTED YES YES NO

REQUESTED restart-node set-icmp-suppression-
high

set-icmp-suppression-
low

set-icmp-suppression-
medium

SELECTED YES NO NO NO

REQUESTED restart-node set-hello-rate-low set-hello-rate-medium set-icmp-suppression-
high

SELECTED YES NO NO NO

REQUESTED restart-nic set-hello-rate-medium set-hello-rate-high set-icmp-suppression-
medium

SELECTED YES NO YES NO

FDH SelfOptAgent (responsible for action synchronization and optimization) needs a model that
allows it to reason about the impact of different actions such that a synchronization procedure can
be performed. Therefore, a mathematical model called ASP (Action Synchronization Problem)
was developed, instances of which can be given to an FDH SelfOptAgent, in order to facilitate
its operation in a particular context. This model is based on the optimization of key performance
indicators (KPIs) relating to the operation of the network/system in question. It allows for: 1)
specifying the importance of single KPIs, 2) specifying the impact of the potential actions on the
KPIs, and 3) influencing the execution of actions with overlapping impact domains (in terms of
KPIs). Moreover, in the course of the presented case study, it was exemplified how the model can
be used to: 4) explicitly disallow the simultaneous execution of some actions, and 5) prioritize
some actions over others. Unfortunately, this model results in a problem which is of very hard
computational complexity. For that reason, an additional effort was presented that aims at relax-
ing the original problem in a way that it can be efficiently solved. The resulting reformulation
delegates some degree of decision to the requesting FDH agents. These decisions are based on pa-
rameters - thresholds used to evaluate the numerical solutions of the reformulated ASP - for which
a machine learning approach for their configuration was proposed. A comparison between the
diverse techniques - direct binary optimization and machine learning based decisions - was also
conducted. This comparison shows that the proposed reformulation does not degrade the quality
of the action synchronization procedure, while at the same time it has the potential for reducing the
memory consumption and improving the response time of an FDH SelfOptAgent (as later shown
in section 12.2.5).

The action synchronization and optimization approach proposed here opens a number of exciting
research and development challenges. For example, the investigation of further ways for mod-
eling run-time action synchronization and belonging efficient algorithms might be an interesting
research topic. Besides, there is a need for sophisticated tooling that allows to easily create ASP
models as those proposed here. This could potentially be done in a way that the system’s oper-
ator does not get involved into the mathematical details, but rather relies on easy to understand
atomic artifacts, which can be efficiently combined to enable the FDH framework coping with
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various emergent situations. Finally, one might also consider the mapping of multiple parameters
of the ASP model to business goals, and using this to achieve revenue by for example adapting the
behavior of FDH to specific types of expected traffic or customer specific system needs.



Chapter 9

Network Operations Personnel
Perspective

Having presented the distributed architecture for self-healing, as well as the realization of key
functionalities in terms of algorithms and processes, the current chapter summarizes and describes
the system administrators’ view1 on the FDH framework (addressing Req 22 from the research re-
quirements chapter). Thereby, it is presumed that the nodes of the network/system in question are
all equipped with FDH components. Correspondingly, the system administrator has to "interact"
with the FDH components across network in order to:

1. provision the required models to enable FDH based self-healing with self-optimization, and

2. get notified regarding situations, in which the FDH control loops are not able to cope with
challenges to the network/system and "give up" thereby escalating to the network operations
personnel.

Capitalizing on these aspects, the role of the system/network manager would shift from some-
one, who is involved in the detailed configuration and planning, and who has to continuously deal
with the faults across the network in terms of Fault-Management processes, to someone who once
configures the processes of FDH, observes the operation of FDH and the resilience of the net-
work/system, and improves the operational models of FDH, in order to increase the resilience of
the network/system in question.

The presentation proceeds with some general considerations on the network operations personnel
view on the FDH nodes within a network or a distributed system. Subsequently, the following
section summarizes the configurations required for provisioning the various operational aspects
of FDH. Most of these aspects were already presented/touched in the previous chapters. In the
current chapter, mainly their role from the perspective of the network/system operations personnel
is discussed. Finally, the aspects of FDH involving the network administrators in its operational
activities, i.e. human in the loop aspects, are elucidated thereby referring back to the content of
previous chapters and shedding a light on the belonging relations.

1Initial considerations on the topic presented in this chapter were published in [TC10a].
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9.1 General Considerations

Equipping a network with FDH based self-healing mechanisms requires a definition of the way
FDH instances interact with the traditional network management infrastructure. This is quite a hot
topic since the inbuilt self-healing that is introduced through the FDH principles is expected to
transfer some of the management tasks from the network operation personnel to the node/device
architectures. However, it is presumed that it is not realistic to design a production-level network
with humans completely removed from the overall management processes with respect to faults,
errors, failures and alarms - i.e. Fault-Management processes according to TMN.

First, this thesis argues that today’s networks need a smooth transition from the "human-driven"
Fault-Management to self- healing features as proposed as proposed by FDH. The FDH concepts,
algorithms, behaviors and mechanisms will need to evolve over time whilst operating in produc-
tion networks. Thus, in such a transition period FDH based self-healing systems will still require
Fault-Management activities under intensive human supervision.

Secondly, even when the FDH principles and associated mechanisms for a particular network have
been extensively refined and matured, the network operation personnel still needs to be kept in the
loop as depicted by the "configure/control FDH control loops across the network" flow on Figure
9.1. In such situations, the network administrator acts as a full- time observer and as the highest
level of escalation in case the FDH mechanisms across the network encounter a challenge that is
beyond their capabilities, and/or should better be escalated to the network management personnel.
This requires a number of well-identified criteria in order to determine whether a particular situ-
ation should be alerted to the network operation personnel or not. This also means that a history
of the occurred incidents and the reactions of the FDH control loops should be made available to
the human experts, in order to support the better understanding of processes, trends, and behaviors
of the FDH based self-healing network/system. Such information can also be used for preparing
statistics that reflect the operation of the self-healing network in terms of utilization and resource
consumption.

A high-level view on the information flows between the network management side and an FDH
based self-healing network is provided on Figure 9.1. In Figure 9.1, the network management side
is represented through a Network Management Console, which constitutes the interface between
the operations personnel and the network infrastructure. Thereby, the abstracted information flows
to and from the network are represented.

As previously mentioned, the network operations personnel configures the FDH control loops and
manages their executions, i.e. besides providing models based on which the FDH instances across
the network run their belonging mechanisms, the network administrator closely observes and in-
tervenes - if required - in the operation of the belonging control loops. This includes the reaction
of the network managers to faulty conditions, which are beyond the capabilities of the FDH based
mechanisms, and for which the FDH instances would raise an alarm according to the escalation
criteria presented in section 6.4.

As a further aspect, Figure 9.1 depicts the flow in which the history of control loop executions is
conveyed to the network operations personnel, such that it can be analyzed in order to improve the
FDH operational models in the long term. Based on the elaborations from Figure 9.1, the follow-
ing sections proceed with structuring the system administrators’ view on the FDH framework for
distributed self-healing.
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Figure 9.1: High-Level Description of the Information Flows between the Network Management
Side and an FDH based Self- healing Network

9.2 Configuration and Administration of FDH

The configuration, control and observation of the FDH control loops across a distributed system or
a network require the specification of a number of models, which are elaborated in the following
sections. Finally, the involvement of the human in the execution of the self-healing mechanisms is
discussed, i.e. the observation of the control loops operations and the involvement of the human
in particular Fault-Removal reactions.

9.2.1 Provisioning of FDH Configurations

At the bootstrapping phase of each FDH instance, it is required that particular models are down-
loaded to the node/device in question and setup in a way that they can be used for self-healing
during the operation of the belonging system/ network. These models would be typically provided
by human experts configuring and tweaking the processes and self- healing mechanisms of the
framework. The models are elaborated in the coming sections and would be created by human
experts thereby using special tools. Subsequently, the created models are provided to a central-
ized Configuration Server that is accessed by the FDH instances, in order to download the models
required for their operation. Different protocols can be used for the communication between the
FDH instances and the centralized Configuration Server. These protocols can be for example
DHCP (or DHCPv6) [Dro97] [Bou03], TR-69 [HBCS11] - a protocol which is widely used in
recent years for the configuration of home routers, as well as research prototypes such as ONIX
(Overlay for Information eXchange) [TPS+12]. In the scope of the current thesis a simple informa-
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tion exchange on top of TCP sockets was realized, in order to enable the download of the models
to the bootstrapping FDH instances. The interactions sequences between the bootstrapping FDH
components within an instance and the centralized Configuration Server are specified in detail in
appendix section B.1. These include the download of FDH operational models such as the Fault-
Propagation Model, various reaction policies (e.g. Fault-Mitigation and Fault-Removal) for the
FDH agents, configuration models including IP addresses for the exchange of alarm/incident in-
formation among nodes, as well as models for self-optimization of tentative actions. More details
on initialization procedure for an FDH instance, including all models and configurations which
are downloaded to a node, can be found in section B.1 within the appendix.

9.2.2 Monitoring Agent Configurations

The FDH MonAgent within each node requires a set of configurations, which need to be provided
by the human experts tweaking the self-healing processes across the network/system in question.
The configurations are comprised by the set of policies determining the operations of an FDH
Monitoring Agent within a node, and the monitoring requests for the different FDH agents, which
are submitted by those agents to the MonAgent.

Given that the realization of the FDH MonAgent is more structurally and architecturally driven,
the meta-models for the above mentioned configuration aspects were already presented in chapter
8 dealing with the realization of the FDH self-healing function. Thereby, the corresponding poli-
cies meta-model was specified in section 7.1.2.1, whilst the meta-model for monitoring requests
was discussed in section 7.1.2.2.

All the configurations are delivered as XML files - based on the corresponding meta-models - to
the FDH node instances across the FDH controlled/managed network/system. Examples for the
XML files are given later on in the chapter elaborating on the concrete implementation design of
the FDH prototype. The delivery of the configurations takes place according to the interaction
flows in in appendix section B.1.

9.2.3 Failure-Prediction Model

The Failure-Prediction Model is at the heart of implementing proactive resilient behaviors in the
scope of FDH. It determines the mechanisms used by the SurvAgent to acquire monitoring infor-
mation, correlate it and anticipate the potential occurrence of an incident in the future.

The Failure-Prediction Model as realized within the current thesis is presented in Figure 9.2. The
key concept on Figure 9.2 is constituted by the FPFConfiguration. The Failure-Prediction Model
for a particular FDH node consists of a list of such FPFConfigurations. A Failure-Prediction con-
figuration consists of monitoring requests, on one hand, and of alarm "templates" to be utilized
for alarm generation based on the information resulting from the monitoring requests, on the other
hand.

The decision on when to generate an alarm, based on the monitoring information, is determined
by the employed Failure- Prediction method, which is represented through the FailurePrediction-
Method class in Figure 9.2. The usage of various Failure-Prediction methods is possible, such as
Markov Decision Processes [HTC+16] - enabling predictions for future values of the monitored
KPIs, Bayesian Networks, Gaussian Processes - as a means for determining the boundaries for
the expected values of a particular process, as well as other methods from the areas of Machine
Learning, Knowledge Representation (e.g. ontologies), and Statistics.
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Figure 9.2: UML Class Diagram representing the Failure-Prediction Model of FDH

Within the current thesis, the exponential smoothing average method was utilized for the purpose
of generating alarms as a method for Failure-Prediction. More details on the exact algorithm are
given in section 7.4.3. The key parameter of the algorithm is constituted by the smoothing factor
which is one of the attributes within the ExponentialSmoothingAverage class in Figure 9.2. The
additional attribute is given by the alarmGenerationThreshold that determines the key parameter
value which if crossed, would lead to raising of an alarm.

The alarm, which would be generated in case the above described threshold has been crossed, is
expected to trigger a reaction of the FMF functions within the SurvAgent. The representation of
this alarm within an FPF configuration could also be given by a template type of definition that is
automatically filled with the concrete data (e.g. KPI value or crossed threshold) once the particular
Failure-Prediction method is about to generate a concrete alarm.

The above presented Failure-Prediction meta-model is used for the definition of the SurvAgent
configuration aspects for each single FDH node, i.e. the FPF configurations are node-specific and
differ from node to node within a network/ system. These node-specific configurations are down-
loaded by each device during the FDH bootstrap process, which is depicted by the getNodeSpeci-
ficFailurePredictionModels and getNodeSpecificFailurePredictionMonitoringRequests of the Sur-
vAgent in Figure B.1. Thereby, the downloaded configurations are represented as XML artifacts
complying to the Failure-Prediction meta-model. Examples for the XML artifacts are provided
later on in the chapter handling concrete implementation related aspects. Finally, the SurvAgent
submits the belonging monitoring requests to the FDH MonAgent and starts consuming monitored
KPI values, which are utilized by the Failure-Prediction method and lead to the raise of an alarm
in case a particular threshold has been crossed.

9.2.4 Fault-Propagation Model

The Fault-Propagation Model - used for performing Fault-Isolation and Root-Cause Analysis
within the FDH nodes - is the key operational model for distributed self-healing of the FDH
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framework. In contrast to the previously presented configurations, the FPM is defined not on
a node-by-node basis, but for the network or distributed system as a whole. This network-wide
model is downloaded by the FPMR (Fault-Propagation Model Repository) in each node during the
initialization phase of the FDH instance in the device. The corresponding action is described by
the getNetworkWideFaultPropagationModel interaction in Figure B.3, which shows the download
from the centralized FDH Configuration Server.

9.2.4.1 FPM Design Considerations

The design of the Fault-Propagation Model for a particular network or distributed system is within
the responsibility of the network/system operations personnel. Thereby, different processes should
be considered when initially designing and continuously improving the FPM. Initially, the FPM
is designed by the network/system administrators (i.e. human experts) based on their experience,
scientific and technical reports describing different potential problems, as well as the anticipation
of the human experts regarding various potential problems within the specific network infrastruc-
ture. The FPM is generally represented by a graph whose edges stand for different potential events
- e.g. faults, errors, failures, alarms, and maintenance events - and whose vertices represent the
casual relations between these events in terms of "event A leads to event B".

Having defined an initial Fault-Propagation Model, the network operations personnel provides it
to the FDH instances running across the network in question. This model is used in the long-term
operation of the network and should be continuously improved based on the history of problems
and FDH control loop activations experienced by the network/ system. This history can be ana-
lyzed in order to extract additional events/incidents- faults, errors, failures, alarms, maintenance
events etc. - that should play a role within the fault-propagation chains of the FPM, as well as to
extract new casual relations between events, or to adjust various parameters of these relations, e.g.
probabilities in case of a probabilistic approach. A framework addressing these considerations
from the network administrator’s perspective is presented in the following sections.

9.2.4.2 Ontological based FPM

In general, different representations of a Fault-Propagation Model are required, in order to address
the belonging aspects of relevance, including the creation and continuous offline improvement of
a an FPM as well as the fast and efficient automated Fault-Isolation within the network devices.

Figure 9.3: Ontology Building Blocks for a Fault-Propagation Model
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For the run-time Fault-Isolation within the FDH nodes, a compressed representation of an FPM
is considered, which increases the speed of the belonging algorithm (see Markov Chain based
Fault-Isolation in section 7.3) and reduces the memory consumption within the nodes at the same
time.

With respect to the offline activities, which include the creation of the Fault-Propagation Model
as well as its improvement based on the historical data gathered throughout the FDH operation,
it is imperative to use frameworks that allow for modeling relationships between events and for
capturing semantic relations between the various involved artifacts, such as the values of particu-
lar attributes within the modeled concepts. Hence, the use of semantic knowledge representation
technologies is required, in order to capture the complex relationships (which can potentially play
a role) spanning across different terminologies and different standards.

The building blocks for an ontology based semantic FPM are shown in Figure 9.3. The diagrams
there show the semantic relations which build up a Fault-Propagation Model and the belonging
events that are structured in the sense of alarms, incidents and other events, whereby the incidents
are further specified as faults, errors, and failures. Furthermore, an FPM is built up by a set of
isCausedByRelations which reflect the various fault-propagation chains among the events on the
right hand side in Figure 9.3.

A detailed view on the overall Fault-Propagation Model Ontology is provided in Figure 9.4. It
illustrates the above construction of the FPM consisting of isCausedByRelations, which include
a causedEvent and a belonging cause instance. The relation between a cause and causedEvent is
enhanced by a probability that reflects the likelihood for a particular event to be caused by another
event. In addition, each of the events - be it a fault, error, failure, alarm or another type of event -
has its own attributes such as descriptions, ids, or threshold information 2 for the alarms.

Figure 9.4: Fault-Propagation Model Onotology

Based on such an ontological model, it is possible to add new semantic relations that would fa-
cilitate the use of different terminology implied by various communities, standards, or language
usage - e.g. "mobile phone" in UK and "cell phone" in the USA. Given that, it would be possible
to realize an efficient sharing of FPMs among network operation teams, in order to ease the pro-
cess of Fault-Propagation Model creation and improvement thereby learning from the experience
of colleagues dealing with similar network/system infrastructures. The use of ontological models
would also allow the implementation of automated reasoners which would be capable of analyzing
different model instances, improving them based on historical records - e.g. improving the proba-

2The ThresholdInformation description is omitted here, in order not to disturb the flow. In general it consists of a
textual description of a particular threshold and a float value, which determines the threshold leading to an alarm.
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bilities3 within the isCausedByRelations based on the history of control loop activations within an
FDH network, and supporting the human experts tweaking the FDH processes of the network in
improving the particular FPM.

9.2.4.3 Framework for FPM Provisioning

Having described the ontological model that was derived in the course of this thesis, the next step
is to depict the process that leads to the creation and improvement of the Fault-Propagation Model.
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Figure 9.5: Provisioning a Fault-Propagation Model for a particular Network

Figure 9.5 illustrates the view on the human expert management activities related to the Fault-
Propagation Model description process. Indeed, a tool-chain is needed that allows the network
operation personnel to describe the Fault-Propagation Model for a given network, with a con-
crete physical topology and software as well as hardware components, and "inject" this Fault-
Propagation Model into the node level FPMR repositories of FDH. The description of the Fault-
Propagation Model is provided by the network administrator in the above described ontological
format using an ontology editor (left side of Figure 9.5). As mentioned above, the usage of on-
tologies is proposed for several reasons:

1. the semantic knowledge representation constitutes state of the art in the domain of knowl-
edge engineering,

3For example by using statistical or machine learning methods.
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2. the Fault-Propagation Model knowledge, stored in an ontology format such as OWL or RDF,
would allow a number of tools to analyze and query it,

3. the idea of semantic knowledge representation facilitates the bridging of different standards
and terminologies,

4. the Protégé [Mus15] [PRO17] editor, together with its graphical plug-ins provides a conve-
nient interface for preparing and maintaining a Fault-Propagation Model,

5. well-proven APIs (e.g. Jena [APA17]) for processing OWL and RDF resources are avail-
able.

In addition, the history of events and the judgment on whether the Fault-Isolation process was
successful (such judgment can be obtained by the FRAF and the FIAF functions inside the Fault-
ManAgent) can be used to refine the Fault-Propagation Model in the long-term operation of the
network. This is illustrated on the right side in Figure 9.5. The history of events can be uti-
lized automatically by some data mining algorithms for the purpose of updating the probabilities
of a Bayesian Network or a Markov Chain employed for Fault-Isolation, or can be used by the
human experts to gain additional experiences regarding the network and define a new improved
Fault-Propagation Model (back to the left side in Figure 9.5).

The question remains of how to ensure the accuracy of a Fault-Propagation Model and facilitate
its smooth and efficient construction for a particular network. At the current stage, this is an open
research challenge that can be addressed in various ways. For instance, it is possible to have
and combine various pre-assessed building blocks for Fault-Propagation Models, i.e. structures
that reflect potential fault-propagation chains within a particular topology as well as hardware and
software characteristics. These structures can be shared and improved within the networking com-
munity, e.g. based on experience and training sets - in the sense of statistical data - gained during
network operations. The structures can be subsequently combined based on the concrete network
topology and device types.

The above elucidations present the tool chain concept that was worked out in the scope of this
thesis and serves the purpose of a vehicle for provisioning Fault-Propagation Models within the
FDH prototype. In addition, the opportunities were discussed which are given by using technolo-
gies for semantic knowledge representation. The presented approach enables not only the straight
creation of FPMs but opens new possibilities for the sharing of sub-structures which reflect fault-
propagation chains of events and could be combined, depending on the particular network infras-
tructure that is managed by the FDH framework with respect to incidents and alarms.

9.2.5 Fault-Removal Functions

The FRF module, part of the FaultManAgent agent, is another component requiring administra-
tion. The role of the human expert in that context is to define the reactions of the node-level
FaultManAgent to particular isolated faults. Moreover, the network administrator has to identify
whether the current Fault-Removal process is allowed to issue particular reaction on its own or
should consult an "arbiter", in order to synchronize its tentative actions with those coming from
other Fault-Removal or Fault-Masking processes, i.e. whether it should "consult" the SelfOptA-
gent of FDH or not. Additionally, even if an action has been allowed by the SelfOptAgent to
proceed, some Fault-Removal reactions may require the approval of the network operation per-
sonnel, e.g. the rebooting of a node.
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The above aspects need to be captured in a meta-model that can be used for the configuration
of the FDH instances across a network. Thereby the FRF reaction policies are specific for each
single device in a distributed system or network. The node-specific FRFs are downloaded during
the bootstrapping of an FDH node, which is depicted by the getNodeSpecificFaultManAgentRe-
actionPolicies call to the FDH Configuration Server in Figure B.1.
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Figure 9.6: The Meta-Model for Reaction Policies within the FDH

Given the fact that various reaction type of policies are required for the operation of FDH,
the approach was followed to come up with a generic meta-model for a reaction policy and
specialize it based on the demands of the concrete functions. The overall picture w.r.t. to reaction
policies and belonging meta-models within the FDH is provided within Figure 9.6. It consists
of an Action meta-model, which is at the heart of the overall reaction policies description. The
Action captures the above mentioned attributes which are all relevant when it comes to an FDH
agent issuing a reaction. These include in particular an identification string (id) for the action
and a number of boolean flags which indicate whether the action requires synchronization/self-
optimization (attribute named synchronization), whether the action should immediately trigger
synchronization/self-optimization (attribute named highSynchronizationPriority), and finally
whether the execution of the action requires the approval of the network operations personnel
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(attribute named humanIntervention).

Within the meta-model provided in Figure 9.6, the FRFPolicies are modeled based on the above
described Action model, which is used to compose a generic reaction-to-a-fault-description
(FDHReactionToFaultDescription) together with a belonging condition (FaultCondition) that
captures different combinations of faults based on the occurrences of which, one or multiple
actions would be issued. A set of specific Fault-Removal Reactions - represented through the
FRFReactionDescription model on the very left in Figure 9.6 - build up the Fault-Removal
policies for an FDH node, which are to be provided on a node-by-node basis in order to ensure the
correct reaction of each device to a particular (complex) faulty condition. Thereby, based on the
node-specific policies for the FRF part of the FaultManAgent within an FDH node, some devices
would react to certain faults (i.e. root causes for erroneous states) whilst others will back-off

given the pre-defined FRF policies for each node.

As mentioned above, the FRF node-specific reaction policies are downloaded from the FDH Con-
figuration Server during the initialization phase of an FDH node. Thereby, they are represented as
XML files according to the meta-model presented in the previous paragraphs. These XML artifacts
emerge as a result of the definition of the node-specific FRF policies by the network operations
personnel. Examples of such XML FRF policy representations are given in the implementation
chapter (section 10.3) where the concrete prototype designs are elucidated on.

9.2.6 Fault-Mitigation Functions

The Fault-Mitigation Functions of the SurvAgent are meant to realize the reactions of an FDH
instance to symptoms and/or indications for faulty conditions in the network. That is, the FMF
functions must be able to react to any sort of event, which might be related to an erroneous state
and should therefore be implemented by a set of policies, which react to all kinds of events in-
cluding incidents, alarms as well as generic events, such as maintenance activities etc. In that line
of thoughts, the Action meta-model from Figure 9.6 is further used for composing the reactions
to events (EventReactionDescription) based on particular conditions combining generic events -
e.g. incidents, alarms, or events in general such as maintenance activities. Thereby, the Even-
tReactionDescription constitutes a generalized concept to the specific FMF reaction descriptions
(FMFReactionDescription) that build up the set of node-specific FMF policies (FMFPolicies) to
be provided by the network operations personnel for each device in a network.

These node-specific FMF policies are downloaded by the SurvAgent of each node during the boot-
strapping phase, which is represented by the getNodeSpecificFaultMitigationPolicies interaction
in Figure B.1. Thereby, the downloaded configurations are constituted by XML artifacts accord-
ing to the meta-module descriptions from above. Corresponding examples are given in the chapter
handling the prototype implementations.

9.2.7 Asserted Incident Assessment Functions

The AssIncFuncPolicies determine the reactions of the Asserted Incident Assessment Functions,
which are meant to check whether a particular incident that has arrived the network - i.e. it was
detected by another node and its belonging FDH components - and refers to the local node is in-
deed present and is not only the result of any emergent network condition ( e.g. increased latency).
Therefore, the AssIncFuncPolicies should be able to react to incidents be it faults, errors or failures
as defined in section 6.6 and section 6.3.2 regarding the dynamic aspects of FDH.
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The AssIncFuncPolicies are similarly modeled (see Figure 9.6) as the FRF and FMF policies from
the previous sections with the difference that the single meta-models are based on the incident
concept - i.e. Incident, IncidentCondition, and IncidentReactionDescription.

The policies for the Asserted Incident Assessment Functions, which are specifically created for
each single device by the network/system administrator - based on the meta-model in Figure 9.6,
are downloaded by each FDH instance during the bootstrapping phase as described in Figure B.4.
The download is represented by the getNodeSpecificAssIncFuncPolicies interaction in Figure B.4.
Thereby, the FDH nodes download specific XML artifacts, which are defined based on the above
meta-models.

9.2.8 Fault-Removal Assessment Functions

The Fault-Removal Functions (FRAF) of the FaultManAgent is another FDH FaultManAgent
component on node level that requires a set of policies to be provided by the network operations
personnel. The FRAF policies are node-specific depending on the particular faults which can be
potentially isolated and should be verified for their occurrence within a particular device.

The FRAF policies for an FDH instance within a node are modeled following the pattern that
was presented for the Fault- Removal related policies (see Figure 9.6). Thereby, the FDHReac-
tionToFaultDecription constitutes the generalization for the reaction descriptions (FRAFReaction-
Description) to faults in the context of the FRAF module of the FaultManAgent. Indeed, the FRAF
have the task to issue particular actions/commands that verify whether the submitted faults, which
were identified as root causes for the current erroneous state, have been indeed removed and the
network/system can proceed with its normal operation. In order to capture the overall set of such
reaction policies, the reaction descriptions (FRAFReactionDescription) are used to compose the
overall set of node-specific FRAF policies (FRAFPolicies).

After having created the FRAF policies for each FDH node, the network administrator submits
them to the (logically) centralized FDH Configuration Server which enables each FDH instance to
download its device specific FRAF policies during the initialization phase of the framework. The
latter is represented and included within the getNodeSpecificFaultManAgentReactionPolicies call
to the FDH Configuration Server in Figure B.1. Thereby, XML artifacts are downloaded, which
are based on the above meta-model descriptions - corresponding examples are given in the chapter
on the prototype implementation aspects.

9.2.9 Fault-Isolation Assessment Functions

In addition to the above presented FRAF and FRF reaction policies for a FaultManAgent, the
Fault-Isolation Assessment Functions must be configured as to check whether the results of the
Fault-Isolation process are correct with respect to root causes (faults) relating to the local device.
This is required in order to avoid following Fault-Removal actions which are based on wrong
assumptions regarding the problems to be removed and actions to be issued. Thereby, the FIAF
policies are clearly node-specific and address the faults, which reside on or are closely related and
can be checked from within a particular network node/device.

The policies for FIAF are modeled in Figure 9.6 and follow the same structure as the FRAF and
FRF policies. Thus, an FIAF reaction description (FIAFReactionDescription in Figure 9.6) spe-
cializes the generic reaction-to-fault description for the FDH (FDHReactionToFaultDescription in
Figure 9.6). Subsequently, a set of such FIAF reaction descriptions build up the FIAF reaction
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policies (FIAFPolicies in Figure 9.6) for an FDH node instance, which determine the activities of
the FDH FaultManAgent in a node when it comes to locally verifying Fault-Isolation results.

The set of Fault-Isolation Assessment policies is created by the network administrator and stored
within the FDH Configuration Server. The node-specific FIAF policies are in turn downloaded to
a node during the initialization phase of an FDH instance, which is represented by the the getN-
odeSpecificFaultManAgentReactionPolicies call to the FDH Configuration Server in Figure B.1.
Similarly as in the previous subsections, some XML artifacts are downloaded which are based on
the above described meta-models.

9.2.10 Event Dissemination Agent Configurations

The configurations of the EvDissAgent contain the list of FDH nodes and IP addresses in general,
to which alarm/incident/ event information should be disseminated in the scope of the network,
which is managed by FDH with respect to self- healing. In that sense, each node is configured
with a list of IP addresses, which might either stand for single network nodes or for a set of nodes,
e.g. standard multicast addresses or multicast groups as available in scope of IGMP or MLD.

Besides the pure provisioning of lists of IP addresses, the network operations personnel should an-
alyze the FPM for the network and should determine which particular events, incidents or alarms
are of interest for some of the nodes. It might be the case that a node is not concerned with an
incident at all, in case the underlying graph of the network-wide FPM does not contain a path that
connects the incident with a fault of direct concern for the node itself. In such a situation, an ID
of the event/incident/alarm and a list of belonging IP addresses, to which the event/incident/alarm
should be sent, are provided by the network operations personnel 4.

The configurations for the EvDissAgent can be either node-specific - for example different lists of
IPs for different nodes, or one global configuration can be used for a number or for all of the FDH
instances across the network. These configurations are again stored within the logically central-
ized FDH Configuration Server and are downloaded by the EvDissAgent of each FDH during the
bootstrapping phase - represented by the getListOfAddressesOfInvolvedNetworkNodes interaction
in Figure B.4.

9.2.11 Self-Optimization Model

The Self-Optimization Model is the key configuration model for the SelfOptAgent, which is the
main component providing the self-optimization features of the FDH framework. The SelfOptA-
gent operates based on the algorithmic framework that was developed in the scope of this thesis
and is presented in chapter 8. Thereby, a SelfOptAgent is operating in each FDH node, in order
to ensure the proper synchronization of the actions undertaken by the FDH components and to
achieve the optimization of the self-healing control loops. For that, the SelfOptAgent requires
a number of parameters, which are to be provided by the network operations personnel. These
parameters represent the various sub-parts which build up the algorithmic framework presented in
chapter 8, such as impact matrix, weights determining the significance of KPIs, and the constraint
vector determining the number of actions that can simultaneously influence a KPI.

The meta-model that can be used by the network operations personnel is presented in Figure 9.7.

4In case there is no specific belonging list of IPs for an event/incident/alarm ID, then it is circulated to the maximum
scope which is given by the list of all IPs configured for the EvDissAgents of the FDH instances across the network.
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Figure 9.7: The Self-Optimization Model for the SelfOptAgent of FDH

It is build up by key performance indicators (KeyPerformanceIndicator in Figure 9.7), action de-
scriptions (Actions in Figure 9.7), the impacts (Impact in Figure 9.7) of the actions on the key
performance indicators as well as the prioritization among the actions. All these aspects flow
into the overall self-optimization model ( SelfOptimizationModel) that contains the number of
requests triggering synchronization (attribute numberOfRequestsTriggerungSynchronization) as
well as the maximum time (synchronizationInterval attribute), which the SelfOptAgent should
wait before triggering action synchronization/optimization, provided that the number of requests
for triggering synchronization was not reached in that period.

As previously mentioned, a number of KPI descriptions are contained within the self-optimization
model. A KPI model is specified by a name, id, description, and weight - reflects the weight, i.e.
importance of the KPI within the self-optimization setting as described in chapter 8. Finally, the
number of simultaneous actions allowed to influence the KPI is included (attribute numberOfSi-
multaneousActions).

The above described KPIs are influenced by corresponding actions, which is represented by the
impact values between actions and KPIs - modeled through the Impact UML association class and
the corresponding impactValue attribute.

Finally, the actions can be prioritized among each other - modeled through the ActionPriorization
and the belonging association ends i.e. prioritizedAction and prioritizedOverActions on the right
side in Figure 9.7. This sub-model for action prioritization corresponds to the way some actions
were prioritized over others in the scope of the case study for the self-optimization framework in
section 8.2.7.

The above described meta-model is used to capture the self-optimization parameters for a Self-
OptAgent, either for a specific node or at network-wide level being employed on a device that
oversees the FDH activities in the network with respect to self-optimization. In both cases, the
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corresponding self-optimization model is defined by the network operations personnel and stored
into the FDH Configuration Server. Correspondingly, it is downloaded by the FDH instances
during the initialization phase which is represented by the getOptimizationAndActionSynchroniza-
tionModels models in Figure B.3.

9.3 Human in the Loop

Having presented the various configuration aspects of FDH, it is important to elaborate on the
involvement of the network operations personnel within the FDH control loops.

First, the network administrators are responsible for improving the operational models in the long-
term operation of FDH and providing these improved models to the running instances. That is, the
human experts are involved in a sort of "outer loop". Within this loop, the control loops’ logs of
the FDH instances are analyzed, and conclusions are drawn regarding what went wrong and which
of the models would require what sort of improvement. In order to improve the models, different
types of techniques from various domains can be used - for example methods from the area of
statistics or machine learning depending on the nature of the underlying model. Concrete exam-
ples of the application of such techniques are given by the extraction of the parameters required
for self-optimization and action synchronization in section 8.2.4, as well as by the calculation of
the Markov Chain transition probabilities in section 7.3.

Besides the above "outer loop", the network operations personnel might be directly involved in
the control loops of FDH whilst managing the network/system with respect to faults/errors/fail-
ures/alarms. Especially when it comes to the execution of Fault-Removal actions, which change
some basic network configuration, it is reasonable to refer to the network administrator in order to
give her/him the chance to allow or disallow the tentative reconfiguration. Such an option is also
considered within the design of the Fault-Removal reaction policies meta-model in Figure 9.6.

Finally, given that FDH is not able to cope with an erroneous state, an escalation of the partic-
ular situation/state to the network operations personnel is required. The escalation takes place
based on the criteria for escalating faulty conditions, which were formulated as requirements to-
wards FDH in section 6.4. Consequently, the human experts would need to proceed with manual
Fault-Management procedures, in order to restore normal network operations. Having recovered
the network/system, the human experts would need to analyze in detail the faulty condition that
was escalated and improve the belonging FDH operational models, such that FDH has increased
chances to handle similar erroneous states in the future.
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Chapter 10

Prototype Implementation and
Integration

The current chapter aims at describing the implementation of the FDH prototype, which is one
of the main means for validating the proposed concepts, including components, interaction flows,
dissemination techniques and algorithms. The software, which emerged in the course of this the-
sis, is a a research prototype that was used for evaluating the implementability as well as the
performance and capability of FDH to solve different network/system problems. Furthermore, the
research prototype was used to measure the overhead - an FDH deployment would lead to - within
the network nodes. Such an overhead might have an implication on the dimensioning of the net-
work nodes’ hardware and might also mean additional costs/expences. All these evaluations are
presented in the coming chapters, whilst the sections of this chapter exemplify on how the FDH
components can be implemented and integrated as a whole.

The presentation starts with some general descriptions on the choices of technologies for the im-
plementation and proceeds with each of the key FDH components. Thereby, various integration
aspects are being elucidated, e.g. the realized APIs that enable the communication between the
different modules of the FDH prototype.

10.1 General Description of the Prototype and Overall Component
Integration

In order to validate the proposed FDH based approach to self-healing, the components of FDH
were implemented using C/C++ and Java on a Linux platform, such that they can easily get
deployed on the Linux based routers inside the testbed that was developed alongside this the-
sis1.Indeed, besides the Orchestration Engine of the FDH Monitoring Agent no other FDH compo-
nents were implemented in Java, which means that the rest was realized by means of C/C++. Fur-
thermore, the communication between the FDH components within a device (router, server, media
gateway, host ...) was realized using Unix Domain Sockets [SFR03] whereby the corresponding
Linux based C library was utilized. Thereby, TLV (Type-Length-Value) binary messages were
utilized, in order to efficiently exchange data between the different FDH agents and supporting
components within a device. The only component that is accessed by means of shared memory

1The testbed is presented later on in chapter 11 illustrated in Figure 11.1.
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(using the belonging boost C/C++ library [Sch11]) is the Fault-Propagation Model Repository
(FPMR), which is one of the FDH supporting components. Thereby, the FaultManAgent on a
node is able to access the FPMR and use the stored Fault-Propagation Model for the purpose of
Fault-Isolation. Finally, the communication between FDH nodes is realized by the EvDissAgent
in each node. The Event Dissemination Agents exchange data using the UDP protocol.

Having drafted the main technological pillars for the realization and integration of the FDH com-
ponents on node and network level, the following sections elaborate on each of the key components
in turn.

10.2 FDH Monitoring Agent

In this section, the prototype of the above proposed FDH MonAgent is presented. This prototype
allowed to iteratively refine the initial ideas of how such a monitoring framework should look. The
lessons learned during the implementation and experimentation phase facilitated the clarification
of many aspects with respect to the required components and interaction flows. Indeed, section
6.2.1.1 and section 7.1 presented the final version of the FDH MonAgent, after the refinements
implied by the prototyping.

In the course of presenting the prototype, the structure of the interaction flows presented in section
6.3 is followed - i.e. with respect to the sequence diagrams in Figure B.2 and Figure 6.8. That is,
the prototype presentation starts at the point of the arrival of a monitoring request and elucidates
on the way it would finally result in a monitoring job. Subsequently, the processing of monitoring
information being initiated within a plug-in is described. Thereby, at certain points, the presenta-
tion flow dives into the technical details of the realization, e.g. details around the adopted policy
engine technology.

The FDH MonAgent prototype is implemented in Java and can run in the control plane of a router
thereby orchestrating different tools for obtaining information regarding traffic and node charac-
teristics. The implemented FDH MonAgent awaits monitoring requests on a TCP socket. The
requests are submitted in XML form, which reflects the meta-model presented in Figure 7.4 (sec-
tion 7.1 in the chapter on the self-healing function realization) and are correspondingly aligned to
some aspects of the Network Resource Model [3GP13] proposed by 3GPP. These XML requests
are provided (to the requesting FDH agents, i.e. FaultManAgent and SurvAgent) by the network
operations personnel following the above described meta-model for monitoring requests. An ex-
ample for such an XML request based on the meta-model in Figure 7.4 is given in the following
listing.

<?xml version="1.0" encoding="ASCII"?>

<SubNetwork id="1" type="NIC_STATUS_MONITORING" modifier="create">
<Router id="1" modifier="create">

<DeviceInterface id="1" modifier="create">
<IPv6Address>2001:638:806:66:224:e8ff:fed7:5b2d</IPv6Address>
<deviceIdentifier>/SubNetwork−1/Router−1/DeviceInterface−1/</deviceIdentifier>

</Router>
...
<NicStatusMonintoring id="1">

<granularityPeriod>3</granularityPeriod>

<reportingIntervals>12</reportingIntervals>
<thresholdName>tx_dropped</thresholdName>

<thresholdValue>20</thresholdValue>

<deviceIdentifier>/SubNetwork−1/Router−1/DeviceInterface−1/</deviceIdentifier>
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<monitoringIntervalDuration>5</monitoringIntervalDuration>

</NicStatusMonintoring>

...
</SubNetwork>

The above listing constitutes an example of a request for monitoring the status of a network inter-
face card (NIC). The UML model behind the possible monitoring requests is presented in section
7.1, which handles the aspects of FDH relating to the realization of a monitoring framework for
the purpose of distributed self -healing.

Coming back to the above listed XML (representing a NIC monitoring request), the NIC is spec-
ified as belonging to a device (router) and having a specific IPv6 address assigned. Finally, a
monitoring job is described that determines the type of KPI - in that case TX dropped packets
- to be measured on the NIC in question as well as the threshold value, which would trigger a
notification to the requester, in case a particular threshold of TX dropped packets has been crossed
within a sampling period.

This presented monitoring request complies to the meta-model in presented in Figure 7.4. Thereby,
it should be noted that this meta-model was iteratively extended in the course of realizing differ-
ent case studies. Hence, all possible artifacts for monitoring requests are summarized in a model
which is the common ground for the implementation of diverse monitoring plug-ins and requires
to be extended in case new types of monitoring functionality is meant to be provided by an FDH
MonAgent.

Proceeding with the implementation and technological aspects of monitoring request processing:
Once a request like the above is sent to the Orchestration Engine, the latter uses a DOM [Ind16]
parser to prepare an object which is then further processed by the involved modules. Such a DOM
object is queried by the different components using the XQuery and XPath [XPA17] [hSJK16]
concepts for fetching information from XML. Indeed, the Orchestration engine passes further
such a DOM object to the Admission Policies, which have to decide on whether the request can
be accepted or not.

At this point, it needs to be elucidated on the way the different policy engines within the framework
were implemented/ realized. In the course of implementation, different policy concepts were eval-
uated with respect to their fast and efficient integration within a Java prototype. More specifically,
policy concepts such as those provided within the CIM model [CIM16], SID [SID17a] and Den-ng
[Str03a] [Str02] were taken a close look at. Even tough, these models are extremely sophisticated
they lack easy to integrate libraries that could be used within the Java based FDH MonAgent pro-
totype. For that reason, a close to Java technology was selected for realizing the policy engines,
thereby still allowing for implementing a transformation from CIM, SID or Den-ng policies to the
selected format on a later stage.

The choice was made to use the Java BeanShell scripting library [Bea16] which allows for adding
and exchanging lightweight scripts, which are interpreted within the Java byte code. These scripts
can access the different objects within the Java Virtual Machine, and that way obtain different
information and even realize the adaptation of the monitoring plug-ins and services. Concrete
example of an FDH MonAgent policy realization utilizing the Java BeanShell is provided later on
in this section.

Coming back to the Orchestration Engine processing a monitoring request: After the admission
policies have been evaluated, the belonging DOM object is passed to the node/traffic monitoring
coordination component where the right plug-in has to be selected. This requires describing the
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way plug-ins for the FDH MonAgent prototype are implemented. There exists an abstract plug-in
class that defines the following methods which must be implemented by a plug-in:

1. isAbleToServeMonitoringRequest - this method receives a DOM object representing the
monitoring request and returns true in case the plug-in can serve the request.

2. serveMonitoringRequest - this method triggers a monitoring job that is managed by the
plug-in and fulfills a monitoring request that it can serve.

3. stopMonitoringJob - stops a monitoring job managed by the plug-in.

4. getMonitoringJobStatus - returns the status of a monitoring job.

These methods were already presented as part of the abstract Monitoring Plug-in Interfaces in
Figure 7.1.The first method is used by the monitoring coordination components to select a plug-in
able to serve a particular request. The second one is triggered subsequently on the corresponding
plug-in, in order to create the required monitoring job.

The monitoring job is then executed within the plug-in based on the parameters submitted in the
request, e.g. number of reporting intervals, reporting periods, etc.Moreover, each plug-in can cre-
ate its own DataAggrCorrFram component which performs a selected sort of aggregation (e.g.
mean value) and conveys the aggregated results from the monitoring job to the Orchestration En-
gine. Subsequently, the Orchestration Engine stores the results in a local MySQL database using
the Hibernate persistence framework [Hib17].

At the end of the monitoring information processing loop, the notification and adaptation policies
are evaluated and the corresponding decisions executed. The mechanism, these policy modules
are based on, was touched on in the previous paragraphs (recall the reference to Java BeanShell
scripting library [Bea16]). The next listing presents a simple example of a notification policy.
Thereby, the Java BeanShell scripts are wrapped in XML as to obtain a better separation between
the preconditions for a policy and the policy logic 2.

<?xml version="1.0" encoding="UTF−8"?>

<NotificationPolicy id="1" type="RTT_MONITORING">
<Condition>true</Condition>

<Decision>

import java.lang.Double;
...
if ( Double.parseDouble(policyParameter.getRttvalue())) > 30) {

return "SEND_NOTIFICATION";
}
return "DO_NOT_SEND_NOTIFICATION";

</Decision>

</NotificationPolicy>

As previously mentioned, the core of the FDH MonAgent - i.e. the Orchestration Engine - was
developed in Java since it was considered to be not so time critical. This is backed by the assump-
tion that the orchestration part is only going to start some "monitoring sensors" at the bootstrap
phase of FDH inside a node, and then let them do the job and directly report detected symptoms
to the local alarm/incident repositories. Besides this orchestration part of the FDH MonAgent,

2The XML form follows the basic rules specified by the meta-model for policies required by the FDH Monitoring
Agent in Figure 7.3 in section 7.1.2.1
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all other relevant monitoring entities (especially the monitoring sensors/tools) are implemented
in C/C++. For the monitoring components, different freely available monitoring tools - e.g. eth-
tool [ETH05], tcpdump [ETH05], tcptrace [TCP16] etc. - are wrapped in small C programs that
automate the interplay among the tools as to extract the required information, which potentially
contains indications for faulty conditions.

10.3 FDH Fault-Management Agent

The FDH Fault-Management Agent is one of key entities of the emerging framework. In gen-
eral, it is responsible for realizing self-healing in the long-term operation - of the device and the
network - by automating the processes of Fault-Detection, Fault-Isolation and Fault-Removal. In
order to achieve this, the FDH FaultManAgent implements several modules/components, such as
Fault-Isolation Function (FIF) and Fault-Removal Functions (FRF), as well as the belonging as-
sessment/control functions for these processes, namely the Fault-Isolation Assessment Functions
(FIAF) and the Fault-Removal Assessment Functions (FRAF).

Similarly, as the other agents and supporting components, the FDH FaultManAgent is realized
as a daemon process running on top of the operating systems. The FaultManAgent consumes
alarms/incidents/events which are submitted to the local node repositories (part of the supporting
functions in section 6.2.3). It receives these events over a Unix Domain Socket [SFR03] com-
munication channel that it has established with the different repositories. Both, the repositories
and the Fault-Management Agent are implemented in C/C++ utilizing standard Linux libraries
and communication channels such as Unix Domain Sockets and shared memory [Sch11]. Shared
memory communication is used in for the process of Fault-Isolation, during which the FDH Fault-
ManAgent has to access the Fault-Propagation Model, in order to diagnose the problems on node
level with respect to the current the erroneous state. The Fault-Propagation Model is kept in the
Fault-Propagation Model Repository (FPMR), which in turn provides the above mentioned shared
memory interface. The shared memory allows the FDH FaultManAgent to directly access the
FPM every time Fault-Isolation is required.

With respect to the Fault-Isolation Task: Two different algorithms/schemes were implemented as
presented in section 7.3 - a Bayesian Network based Fault-Isolation and a Markov Chain based
algorithm [TCC10] that was developed in the course of this thesis. As previously mentioned, the
PNL [PNL16] library was used for the Bayesian Network aspects and was correspondingly inte-
grated in the C/C++ prototype. The Markov Chain based algorithm was directly implemented in
C++, as part of the FDH FaultManAgent.

For the FRF, FRAF, and FIAF components which all require a policy handler to encode their
reaction patterns, a proprietary policy handler was implemented in C/C++ that allows to supply
reaction patterns in an XML format. The XML format is synchronized with the meta-model for
FDH reaction policies, which was presented in Figure 9.6. The following paragraphs give concrete
examples of such reaction policies in XML.

First, an FRF policy description is exemplified in the following listing. The XML description
captures the CLI command (a Linux ip6tables call) that needs to be executed, in order to remove
the suppression of ICMPv6 messages in Linux router firewall3. Thereby, the action to be issued is
specified as not needing any human intervention but requiring the synchronization over the FDH
SelfOptAgent with other parallel tentative actions.

3Details on these circumstances are provided in the various case study descriptions across the thesis.
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<?xml version="1.0"?>

<FRFPolicies xmlns="http://www.efipsans.org/frf">
<FRFReactionDescription>

<FDHReactionToFaultDescription>

<FaultCondition id="reaction_1_condition_1">
<fault id="FAULT_Misconfigured_firewall_suppressing_ICMP_packets"/>

</FaultCondition>

<Action id="reaction_1_action_1" synchronization="yes" humanIntervention="no">
<call>/sbin/ip6tables</call>
<parameter>−D</parameter>
<parameter>OUTPUT</parameter>
<parameter>−p</parameter>
<parameter>icmpv6</parameter>
<parameter>−−icmpv6−type</parameter>
<parameter>packet−too−big</parameter>
<parameter>−j</parameter>
<parameter>DROP</parameter>

</Action>

</FDHReactionToFaultDescription>

</FRFReactionDescription>

</FRFPolicies>

Next, an FIAF policy description is exemplified in the listing below. The description is straight-
forward and captures the execution of a shell script that checks whether a particular firewall rule
(suppression of ICMPv6 "Packet too big") is activated.

<?xml version="1.0"?>

<FIAFPolicies xmlns="http://www.efipsans.org/frf">

<FIAFReactionDescription>

<FDHReactionToFaultDescription>

<FaultCondition id="reaction_1_condition_1">
<fault id="FAULT_Misconfigured_firewall_suppressing_ICMP_packets"/>

</FaultCondition>

<Action id="reaction_1_action_1">
<call>/opt/fdh/check_icmp_suppression.sh</call>
<parameter/>

</Action>

</FDHReactionToFaultDescription>

</FIAFReactionDescription>

</FIAFPolicies>

Finally, an FRAD policy description is presented in the below XML example. It constitutes a di-
rect description of a call that starts a Java client, in order to check whether an ICMPv6 black hole
was indeed removed. Thereby, the java client can check the firewall rules on a router or simulate
a packet flow, in order to check whether the black hole is still present at the critical point in the
network.

<?xml version="1.0"?>

<FRAFPolicies xmlns="http://www.efipsans.org/fraf">
<FRAFReactionDescription>
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<FDHReactionToFaultDescription>

<FaultCondition id="reaction_1_condition_1">
<fault id="FAULT_Misconfigured_firewall_suppressing_ICMP_packets"/>

</FaultCondition>

<Action id="reaction_1_action_1">
<call>/usr/bin/java</call>
<parameter>BlackHolesClient</parameter>
<parameter>172.19.4.224</parameter>
<parameter>recover_traffic_after_black_hole</parameter>

</Action>

</FDHReactionToFaultDescription>

</FRAFReactionDescription>

</FRAFPolicies>

Having presented the key aspects of the FDH FaultManAgent implementation (including the key
utilized libraries, technologies and formats), the next section continues with describing the imple-
mentation of the FDH Survivability Agent.

10.4 FDH Survivability Agent

Similarly as the previously presented FaultManAgent, the FDH SurvAgent is implemented in
C/C++ and runs as a daemon process on top of Linux in the nodes of the testbed presented later
on in Figure 11.1. The Survivability Agent reacts to alarms/incidents/events is receives from the
local node repositories, after the FDH MonAgent has submitted those to the local node node
repositories. The communication in that case, i.e. from the repositories to the FDH SurvAgent, is
technically realized through the use of Unix Domain Sockets as in the case of the FDH FaultMan-
Agent.

10.4.1 Fault-Mitigation Functions

The reaction to the the alarms/incidents/events is realized by Fault-Mitigation Functions (FMF) of
the SurvAgent. This reaction constitutes an immediate short-term handling of an erroneous state
and is meant to remediate the malfunctioning whilst the FaultManAgent removes the underlying
fault (root cause for the erroneous state) in the long-term operation of the network/system. The
FMF module functions based on the policy handling mechanisms which were implemented in the
course of this thesis. Thereby, a proprietary policy handler was implemented in C/C++ which is
also used to evaluate policies within the FMF module and initiate resulting actions. An example of
an XML definition for FMF policies is presented in the listing below. These FMF XML artifacts
comply to a meta-model presented in Figure 9.6 and supporting the interactions to/from the net-
work operations personnel and correspondingly the management of the FDH framework operating
in a distributed system.

<?xml version="1.0"?>

<FMFPolicies xmlns="http://www.efipsans.org/fraf">

<FMFReactionDescription>
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<EventReactionDescription>

<EventCondition id="reaction_1_condition_1">
<event id="BR1_CR1_bad_link_quality"/>

</EventCondition>

<Action id="reaction_2_action_1" synchronization="no">
<call>/sbin/ifconfig</call>
<parameter>eth2</parameter>
<parameter>down</parameter>

</Action>

</EventReactionDescription>

</FMFReactionDescription>

</FMFPolicies>

10.4.2 Failure Prediction Function

Another key aspect of the SurvAgent is given by the Failure-Prediction Functions, which aim at an-
alyzing different monitored key performance indicators of the system in question, and generating
an alarm that indicates an expected faulty condition. The method, which is currently implemented
is based on exponential smoothing of measured values and is described in section 7.4.3.

The FPF module is implemented in C/C++ and receives data from "monitoring sensors" (orches-
trated by the MonAgent) using Unix Domain Sockets communication. Thereby, the measured
values result from monitoring requests, which are submitted by the FPF part of the SurvAgent to
the FDH MonAgent. An example of an FPF configuration containing a monitoring request for the
MonAgent is given below.

<?xml version="1.0" encoding="utf−8"?>

<FPFConfiguration>

<FailurePredictionMethod>

<ExponentialSmoothingAverage>

<alarmGenerationThreshold>40</alarmGenerationThreshold>

<smothingFactor>0.7</trendParameter>
</ExponentialSmoothingAverage>

</FailurePredictionMethod>

<Alarm>

<eventType type="COMMUNICATIONS_ALARM_TYPE"/>
<alarmInformation>

<notificationId>BR1_CR1_bad_link_quality</notificationId>

<perceivedSeverity>MAJOR</perceivedSeverity>

<keywords>
<keyword>increased</keyword>

<keyword>round trip delay</keyword>

<keyword>RTT</keyword>

</keywords>
<stateChanged>0</stateChanged>

<monitoredAttributes>rtt</monitoredAttributes>
<proposedRepairActions/>
<corelatedNotifications/>
<backupId>

<entityDescription/>

<entityLocation/>

<entityInterfaceDescription/>
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</backupId>

<thresholdInfo>

<description>RTT towards a network node</description>

<!−−Must be the same value as the alarmGenerationThreshold−tag −−>

<thresholdLevel>40</thresholdLevel>
<locationEntity>

<entityDescription/>

<entityLocation/>

<entityInterfaceDescription/>

</locationEntity>

</thresholdInfo>

</alarmInformation>

</Alarm>

<MonitoringRequest>
<SubNetwork id="1" type="RTT_MONITORING" modifier="create">

<Router id="1">
<DeviceInterface id="1"’>

<IPv6Address>2001:f5a:53:b1c1::b1</IPv6Address>
<deviceIdentifier>/SubNetwork−1/Router−1/DeviceInterface−1/</deviceIdentifier>

</DeviceInterface>

</Router>
<RTTMonitoringJob id="1" modifier="create">

<granularityPeriod>2</granularityPeriod>

<numberOfMonitoringPeriods>10000</numberOfMonitoringPeriods>
<destination>2001:f5a:53:b1c1::c1</destination>

</RTTMonitoringJob>

</SubNetwork>

</MonitoringRequest>

</FPFConfiguration>

This configuration complies to the meta-model presented in Figure 9.2 and defines key aspects,
such as the type alarm to be generated in case a particular trend is recognized in the measured
monitoring values, as well as the monitoring request to be submitted to the FDH MonAgent for re-
ceiving these values. At the start of the SurvAgent, a number of such configurations are imported
and belonging POSIX threads started, which handle the required aspects from the fpfConfigura-
tion-segments.

Having a more detailed look at the example XML configuration: the alarmGenerationThreshold
gives a particular threshold value which when crossed - based on calculations from the smoothing
average method presented in section 7.4.3 and parametrized with the value of the smothingFactor-
leads to the generation of an alarm, which is in turn submitted to the relevant local node reposi-
tories. The alarm to be generated within this configuration is outlined by the template specified
in the tag Alarm 4. Correspondingly, the monitoring request for the FDH MonAgent, which leads
to setting up the belonging monitoring job, is specified at the end within the SubNetwork tag that
follows the meta-model in 7.4 and resembles aspects of the 3GPP Network Resource model as
elaborated on in the previous sections. The example monitoring request leads to a periodic RTT
(round trip time) measurement to a particular node, which is subsequently analyzed and escalated
as an alarm in case an increasing trend is detected, which might be an indication for the deteriora-
tion of the network/system performance.

Having described the implementation aspects of the SurvAgent, the next section proceeds with the

4The fields for the alarm description are based on considerations from ITU-T standard [ITU92], which were also
used within [TC08].
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FDH SelfOptAgent, which is the key FDH entity with respect to self-optimization.

10.5 FDH Self-Optimization Agent

In order to analyze the technical feasibility of the proposed self-optimization approach with respect
to functionality, scalability and overhead produced by solving the previously derived (see section
8.2) optimization problems in real-time, an FDH SelfOptAgent was implemented on top of Linux
in C/C++, and can be started inside an FDH controlled node.Additionally, an API was defined and
developed that can be used by "client" components willing to synchronize tentative actions - these
components can be any program program running in an FDH node, be it an FDH agent, a Mon-
Agent monitoring plug-in/sensor, or any of the programs/tools implementing an action resulting
from one of the policy based components/modules within the FDH architecture.

To wrap up the above considerations: The FDH SelfOptAgent implementation was conducted on
a Linux platform using C/C++ and POSIX threads, whilst the "client" components use a spe-
cially implemented library for communicating with the node level FDH SelfOptAgent over Unix
Domain Sockets.

Figure 10.1: A Message carrying an Action Synchronization Request

10.5.1 FDH SelfOptAgent Implementation Architecture

The first issue that has to be addressed, when designing an FDH SelfOptAgent is related to the
solver required for solving the ASP and RASP optimization problems (see section 8.2). Research
done in the field of electricity spot market optimization problems [TOC06] has compared different
open-source solvers for linear and mixed integer programs and gives hints that the SYMPHONY
solver (for solving ASP) and the CLP solver (for solving RASP), which are both part of the Coin-
OR project [COI17], perform best. Thus, the implementation of FDH SelfOptAgent was built
around the solvers provided by the Coin-OR project.

With respect to internal software architecture: the FDH SelfOptAgent consists of two modules -
one that takes care of reading and interpreting the configuration data passed to the SelfOptAgent,
and a second one that manages the threads serving the "clients".

The configuration data required by an FDH SelfOptAgent component includes:

1. a file containing the impact matrix,

2. a file containing the weights corresponding to the metrics’ significance,
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3. a file containing the constraints vector that restricts the number of actions that influence
overlapping sets of metrics,

4. the time interval after which the solving of the optimization problem is automatically trig-
gered, independently of the number of requests,

5. a maximum number of requests that automatically triggers the solving of the optimization
problem, and

6. a flag indicating whether ASP or RASP should be solved by the FDH SelfOptAgent, in
order to perform run-time action synchronization.

All these parameters need to be supplied to the FDH SelfOptAgent by the time it gets started, and
can be provided by a human expert. The aspects of FDH configuration - including belonging meta-
models - and the interfaces to the network operations personnel are correspondingly addressed in
section 9.2.11.

Figure 10.2: Response as a Result of an ASP based Action Synchronization

After the module parsing the parameters has completed the configuration of the FDH SelfOptA-
gent in a node, a main "server" thread is started that listens for, and accepts "client" connections.
In parallel a periodical thread is started that "wakes up" up every X seconds (X is a value provided
as a configuration parameter), "gathers" all requests for synchronization, prepares the requests, the
impact matrix, the constraints vector as well as further required parameters in the form required by
the native interface of the solver in use (SYMPHONY or CLP), and finally invokes it in order to
obtain a solution for the current set of tentative actions to synchronize. Consequently, the relevant
parts of the solution are communicated back to the corresponding requesting agents. Apart from
the periodical task/thread, every time a connection gets accepted by the FDH SelfOptAgent, the
requests are stored in a common (for all threads inside the SelfOptAgent-process5) registry. In
cases that the request was submitted and marked as highly important, or the maximum number of
requests after which synchronization is automatically triggered has been reached, the solving of
the optimization is invoked, taking into account all synchronization requests stored in the common
registry since the last time optimization was triggered. In order to synchronize all the concurrent
threads around the common registry and the solving process, POSIX mutexes [But97] are utilized.

5The term process denotes a Linux process on top of the operating system.
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Figure 10.3: Response as a Result of a RASP based Action Synchronization

10.5.2 FDH SelfOptAgent Interfaces

In addition to the above described implementation aspects, the communication between the re-
questing entities and an FDH SelfOptAgent requires the specification of a message format for the
exchange of requests and responses in case of an ASP or RASP solving SelfOptAgent. These
messages can be exchanged over Unix Domain Sockets inside a device (as currently done), or
over specially designed protocols for control information exchange between nodes, such as the
ICMPv6 inspired IP based Generic Control Protocol (IGCP) [BCX+11].

Figure 10.1 presents the format of an action synchronization request message as implemented in
the FDH SelfOptAgent prototype developed in the course of this thesis. The first bit is used to
indicate the urgency of the request. The following 15 bits are used to encode the number of re-
quested actions, followed by a set of 16 bit integers representing the requested actions (in terms of
numerical IDs).

Depending on whether the FDH SelfOptAgent in question is pre-configured to perform an ASP or
a RASP optimization, different response formats are required. Figure 10.2 illustrates the message
carrying the response from an ASP based action synchronization. The first bit of the message
indicates whether the synchronization was successful or not. In case of a failed synchronization,
different error codes can be reported within the next 15 bits. In case of a success, a corresponding
number of bits is conveyed which reflect the request for action synchronization thereby indicating
whether a tentative action is allowed (bit value 1) or disallowed (bit value 0). Additionally, Figure
10.3 depicts the response message in case of RASP synchronization. It consists of a sequence of
thresholds each encoded in 4 bytes. These are meant to be floating point numbers in the range
between 0 and 1. In case of failed action synchronization, an error code is returned that indicates
the type of problem occurred within the FDH SelfOptAgent.

The above presented implementation aspects cover the key component regarding self-optimization
within the FDH. The operation of the main FDH agents within a node - i.e. FaultManAgent, Sur-
vAgent and SelfOptAgent - are facilitated by a number of supporting components, the implemen-
tation of which is presented in the next subsection.



10.6 FDH Supporting Components 207

10.6 FDH Supporting Components

The FDH supporting components encompass a set of repositories and attached functions - i.e.
Node-Specific Event Management Functions and Repositories, Monitoring Information Reposi-
tory, Fault-Propagation Model Repository, Control Loop History Log - as well as the Event Dis-
semination Agent that takes care of synchronizing the FDH nodes with respect to alarms/inci-
dents/events.

Regarding the repositories: The node-specific repositories for alarms/incidens/events were imple-
mented as daemons on top of Linux and are based on previous work conducted in the course of
[Tch09] and [CTS08]. Thereby, various traditional data structures (e.g. linked lists and differ-
ent types of hash maps) were efficiently implemented in C and used for storing and retrieving
alarms/incidents/events within the FDH nodes. In addition, the communication to and from the
repositories was realized using Unix Domain Sockets, which means that each FDH componen-
t/agent needs to setup a Unix Domain Socket towards the relevant repositories at its start. In the
course of that, the repositories act as a server whilst the other FDH components connects as clients
over the Unix Domain Socket. Furthermore, it must be mentioned that the FDH node-specific
repositories for alarms/incidents/events provide an API that allows random pieces of software run-
ning inside a network node to store and query data utilizing the FDH repositories. Hence, random
programs/components within a node can act as monitoring sensors or can adapt their behavior with
respect to the situation regarding alarms and incidents within a network node.

There is one additional component, which is attached to the FDH node-specific repositories for
alarms/incidents/events. This component is given by the Asserted Incidents Assessment Functions
which is responsible for verifying whether incident information provided by remote FDH nodes
(i.e. which has arrived over the overlay of FDH EvDissAgents) and pertains to the local node is in-
deed valid. Hence, these functions need to implement a policy based reaction which verifies such
incident claims/assertions for erroneous states. That is, tiny checks should be issued in terms of
monitoring activities that examine the asserted states locally. The component is also implemented
in C/C++ as a Linux daemon and utilizes the proprietary policy engine designed within this the-
sis. The corresponding policy model are provided in Figure 9.6, which deals with the aspects of
FDH configuration and management to be conducted by the network operations personnel. Given
that a particular incident/alarm cannot be verified as present within the local node, the Asserted
Incidents Assessment Functions can use corresponding APIs - of the local FDH EvDissAgent - to
disseminate a belonging recovery notification across the distributed system. If an alarm/incident
gets confirmed, it is stored in the corresponding repository using the above mentioned API of the
alarm/incident/event repositories (see section 6.3.2 for such dynamic aspects).

The supporting component Monitoring Information Repository is responsible for keeping general
monitoring information, such as the values of different QoS metrics towards particular nodes (e.g.
jitter, delay, round-trip-time ...) or the current memory consumption in a network node. This infor-
mation is obtained by the different monitoring sensors of the FDH MonAgent. The data is kept in
a MySQL database [MYS17], which is accessed (mainly by the FDH MonAgent) over a Hibernate
[Hib17] persistence layer. That way the SQL database can be easily exchanged depending on the
deployment circumstances (e.g. PostgreSQL [Pos17]). Thereby, the data stored in the database
can be dynamically extended over the Hibernate mechanisms.

Focusing further on the FPMR: the Fault-Propagation Model Repository keeps the Fault-
Propagation Model for facilitating Fault-Isolation in a shared memory segment in each FDH
node. Hence, the Fault-Propagation Model can be accessed using C/C++-libraries [Sch11] for
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accessing shared memory. Indeed, the FDH FaultManAgent utilizes these libraries in order to
traverse the Fault-Propagation Model each time Fault- Isolation needs to be performed within
the FDH FaultManAgent control loop. Furthermore, given that the FPMR is implemented as a
C/C++ based daemon on top of Linux, it starts a TCP client socket for obtaining/receiving new
versions of the Fault-Propagation Model. These new versions of the FPM are generated based on
various techniques and processes as outlined in section 7.3. The belonging interaction flows are
captured in section B.1 within the appendix.

Moving on to the FDH Event Dissemination Agent, it is also implemented in C/C++ on top of
Linux in each node of the testbed in section 11. For the node internal communication to and from
the FDH EvDissAgent - see different calls within the sequence diagrams in section 6.3 - Unix
Domain Sockets are utilized as typical for the FDH implementation in the course of this thesis.
For the communication among the FDH EvDissAgents, residing in different nodes, UDP was used
as a protocol for communicating short datagrams containing small in size alarm/incident/event
descriptions, which are TLV based and described in previous work such as [Tch09] and [CTS08].

In order to increase the chance of complete successful alarm/incident/event dissemination be-
tween the EvDissAgents (over unreliable UDP datagram messaging), a canonical type of flooding
was implemented where the node that has detected/ generated the alarm/incident/event sends the
resulting short message (using its EvDissAgent component) to a list of addresses (potentially in-
cluding multicast addresses) 6. In turn, every recipient node forwards again the message to all
the addresses in question, in case the alarm/incident/event description contained in the message is
unknown to it, or drops it in case it has already received it. This procedure was analyzed using the
OMNET++ simulator and the resulting scalability analysis is provided later on in section 12.2.2.
Further algorithmic elucidations and discussions were given in section 7.2.

Finally, the Control Loop History Log is realized as a text file containing logging information
from the control loop executions within a node. This information is generated and can also be
parsed and utilized by the small programs (i.e. Fault-Removal or Fault-Masking actions) realizing
the final reactions of the relevant FDH control loops - e.g. FaultManAgent or SurvAgent control
loops. Given the open and flexible nature of the reactions (i.e. of the belonging software compo-
nents), no specific format for the Control Loop History Log is specified. This aspect is rather left
open to the network engineers/managers implementing the specific reactions for a particular FDH
managed/controlled network.

10.7 Interface to the Network Administrator

In the course of prototyping the FDH framework, a number of possibilities were analyzed for im-
plementing a toolkit that meets the needs of the interface between FDH and the network operations
personnel. The high-level specification and requirements for this interface and correspondingly for
such a toolkit were presented in section 6.2.4 and section 6.3, where the architectural and dynamic
aspects of FDH were specified. Regarding the architectural aspects, the key components which
were specified are given by the Bootstrap Manager, the Configuration Server, the Provisioning
Tools and the Network Monitoring System that is used to oversee the operation of FDH in the net-
work as a whole. In the following, the key technological aspects of the implemented components
are elucidated.

The current implementation of FDH does not contain a dedicated Bootstrap Manager component,

6The TLV format of the messages was specified in previous works such as [Tch09] and [CTS08]
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which constitutes a deviation from the framework specification in section 6.2.4. Moreover, it can
be claimed that the Bootstrap Manager extends into each of the relevant entities, since every FDH
entity in a node connects over TCP to the central Configuration Server and downloads its relevant
configurations, be it for instance a Fault-Propagation Model or any sort of reaction policies. The
Configuration Server is implemented in Java and acts as a TCP server utilizing the standard Java-
TCP-socket libraries. Upon receiving a connection request from an FDH entity within a node, the
correct configuration data to deliver is selected and transmitted to the requesting entity over he
current TCP-channel. The interaction flows relating to the Bootstrap Manager and Configuration
manager are presented in section B.1 within the appendix.

With respect to the utilized Provisioning Tools within the prototype developed in this thesis:
The Protégé [PRO17] ontology editor was used for the description and specification of a Fault-
Propagation Model for the case studies (e.g. section 7.3.3) within the testbed from section 11.
The Fault-Propagation Model is based on the concepts described in section 7.3 and proposed in
[TCC10]. Furthermore, Protégé allows for visualizing the Fault-Propagation Model structure by
using diverse plug-ins as this was exemplified in section 9.2.4.2, dealing with the processes and
models for FDH management from the perspective of the network administrator. The ontology
based Fault-Propagation Model is then further processed by using a command line tool that was
implemented based on the Jena [APA17] API for parsing RDF and OWL ontologies. The out-
put is an XML file that contains only the information required for run-time reasoning. The XML
file is given to an central FDH Configuration Server that interacts with the FPMR repositories of
the FDH nodes in the network and supplies them (over a TCP connection) with the latest ver-
sion of the Fault-Propagation Model. The FPMR repositories in the network devices parse the
conveyed XML file and store the Fault-Propagation Model in a form that enables fast real-time
Fault-Isolation. Similarly, one can distribute FRF configurations, as well as any other information
required for the proper functioning of the FDH components.

The last aspect that needs addressing is the Network Monitoring System to use, in order to enable
the network operations personnel monitoring the FDH self-healing activities. Therefore, a number
of freely available Network Monitoring Systems were evaluated, such as Nagios [Bar08], Open-
NMS [OPE17c], and perfSONAR [PER17]. The choice was made to deploy Nagios due to its pop-
ularity in the network community and its plug-in based extensibility, which allowed to implement
Perl and C based Nagios plug-ins interacting with the FDH components on a host that is meant
to receive each alarm/incident/event occurring in the FDH managed system (the alarms/inciden-
t/events are received over the FDH EvDissAgent overlay). To emphasize: this node consolidates
all the emerging information regarding FDH self-healing in the network. The Network Monitor-
ing System plug-ins are periodically started by the Nagios daemon and check for conditions which
must be escalated based on the criteria defined in section 6.4. Given such a condition, a notification
is alerted to the network administrator over the Nagios web interface. That way, the requirements
and criteria from section 6.4 can be easily realized. Furthermore, the above construction enables
the continuous monitoring of the situation in the network (with respect to faults/errors/failures/al-
arms) and provides the means to observe Control Loop History Logs and monitor the operation of
the FDH agents. Further information on these aspects is provided in chapter 9 on the processes
and models regarding the FDH interactions to/from the network operations personnel.
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Chapter 11

Testbed Environment for Evaluating the
Framework

This section describes the testbed environment that was used for the evaluation of the concepts pro-
posed in this thesis. For this purpose, the FDH prototype - implemented in the course of this work
- was deployed in the testbed presented here, and various tests and experiments were conducted.

The environment that was used for the evaluation of the FDH framework is illustrated in Figure
11.1. This testbed was developed at the Fraunhofer FOKUS institute in the course of the EFIP-
SANS project [efi16a]. It consists of virtual machines (those in grey boxes) being hosted within
a VMware ESXi [Hal11] server environment. In addition, a number of physical machines were
integrated (those out of the grey boxes), in order to explore different situations based on real (and
not only emulated) hardware. Furthermore, in order to concentrate on the IP layer, different types
of lower layer access network technologies and devices (e.g. DSL routers, aggregation routers,
EPON switches ...) are omitted and only the corresponding IP links put in place for the FDH
experimentation. Moreover, IPv6 was used as a network layer protocol. This choice was made for
a number of reasons:

1. the increasing importance of IPv6 as a network layer protocol for Future Internet,

2. a number of exciting new features and automations coming with IPv6 and providing space
for experimenting with FDH in respect to those features (e.g. the IPv6 Black Hole scenario),
and

3. the vision and intensive EFIPSANS effort that was conducted towards implementing (auto-
nomic) Network Management automations on top of IPv6.

Furthermore, a note with respect to the link layer protocols in the Figure 11.1 testbed: The green
links on Figure 11.1 denote Gigabit Ethernet links, whilst the rest are Fast Ethernet links, i.e.
R1↔R4, R9↔R10, and R10↔R11.

In parallel to the IPv6 network running among the nodes illustrated on Figure 11.1, an IPv4 man-
agement network was used to access the machines and manage various aspects of each node (e.g.
addressing and routing). In addition, this IPv4 management network, and the belonging IPv4
management interface of each machine, was further used for (automatically) deploying the FDH
prototype in the network and running experiments on top of the IPv6 infrastructure.

211



212 Chapter 11 Testbed Environment for Evaluating the Framework

Table 11.1: Testbed Hardware Parameters for Testbed Network (Figure 11.1)

Machine Hardware Parameters Network Element
VMware Server 1, 4, 5 DellWorkStation R5400, 4

CPU × 1,944 GHz, 4091,56
MB RAM

R4, R5 R8, Hosts

VMware Server 2, 3 Dell Power Edge SC1435, 8
CPU × 2,493 GHz, 8187,56
MB RAM

R1, R2, R3, R6, Hosts

PC 1 Intel Pentium 4 CPU 3,00
GHz, 992,96 MB RAM

R9

PC 2 Intel Pentium 4 CPU 3,00
GHz, 2003,94 MB RAM

R10

PC 3 Intel Pentium 4 CPU 2,60
GHz, 488,76 MB RAM

R11

The hardware parameters of the testbed are once visualized on Figure 11.1, and in addition summa-
rized in Table 11.1. The hardware that was used is far from the parameters of full scale backbone
routers. However, it provides a reasonable possibility to test the FDH concepts in an environ-
ment based on soft routers (Linux Ubuntu/Debian) and open source libraries and components. In
this line of thought, it should be mentioned that soft routers are increasingly gaining popularity
within the network community, especially when it comes to Local Area Networks and academic
environments. Thereby, various commercial products are available on the market, e.g. firewalls
or Intrusion Detection Systems, which are based on soft routers using open source operating sys-
tems, such as Linux, FreeBSD, NetBSD, or OpenBSD. These facts emphasize the relevance of the
used network environment/testbed despite the fact that it lacks real backbone routers, e.g. Cisco
or Huawei based devices.

Having elaborated on the relevance of the network environment, the different routing platforms
used on the Figure 11.1 network are presented. As previously mentioned, Linux Ubuntu/Debian
was used as an operating system for all the nodes. On top of this, the routers in Figure 11.1
were running different routing daemons depending on the requirements of the different EFIP-
SANS scenarios [KBA+10]. In particular, the Quagga [QUA17] and XORP (eXtensible Open
Router Platform) [XOR17] were used for realizing the IPv6 routing functionality in the testbed.
Thereby, both platforms were set to execute the OSPFv3 routing protocol, which is the IPv6 ready
OSPF version. XORP and Quagga are both platforms that are currently maturing in terms of IPv6
routing support, by providing protocols such as OSPFv3, BGPv4, and RIP-ng. However, both
platforms were experienced to have some bugs, e.g. with respect to OSPFv3 areas for Quagga
in v0.99, which led to the need to switch between them depending on the requirements of the
particular EFIPSANS scenario. For the purpose, of the trials conducted within this thesis, both
platforms were sufficiently good. In the following sections, the experiments are described, which
were conducted based on the prototype and the introduced testbed.
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Figure 11.1: Testbed Environment for the Evaluation of the FDH Framework
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Chapter 12

Overall Scalability and Overhead
Analysis

This chapter presents the scalability and overhead analysis of the proposed FDH framework,
thereby addressing Req 24 and Req 25 from section 5.1.4. Initially, the processes and overall
collaborative behavior of the distributed FDH instances are theoretically analyzed and generally
mapped to the operational patterns of established and widely deployed routing solutions. That
way, it can be shown that the FDH self-healing control loops behave similarly as currently uti-
lized networking technologies that have proven to scale reasonably in production environments.
Secondly, the different modules of the prototype implementation are analyzed by pushing various
operational parameters to the extreme and measuring the performance, overhead and scalability
characteristics of the single processes. In addition, the overall distributed control loop is evaluated
regarding its performance, overhead and scalability in the testbed on Figure 11.1.

12.1 Theoretical Analysis

As pointed out a number of times, the key and most intensive FDH self-healing control loop
- realized by the FaultManAgent - involves the processes of Fault-Detection, Alarm/Incident-
Dissemination, Fault-Isolation and eventually Fault-Removal. In the scope of the theoretical anal-
ysis performed in this section, the above distributed self-healing control loop is mapped to the
OSPF routing control loop. That way, one can observe that in general the self-healing control
loop introduces a structure which is similar to control loops, which are already widely deployed
in production networks. Hence, the general structure of the self-healing control loop would not
be expected to overstrain the FDH managed networks/systems and lead to unexpected anomalies.
In addition, the key processes of the main FDH control loop are theoretically analyzed w.r.t to
expected scalability, performance and overhead in the context of the key FDH self-healing control
loop realized by the FaultManAgent.

12.1.1 General Approach

The general approach towards showing that the primary mechanisms, proposed in chapter 8 and
chapter 8, as well as the overall self-healing control loop have promising scalability properties,
involves two aspects:
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1. Try to map and identify similarities (as far as possible) between the FaultManAgent agent
control loop structures and the OSPF control loop, which is a successful and well-proven
routing solution available in practice, and

2. The complexity analysis and performance evaluations provided along with the proposed
mechanisms (chapter 8 and chapter 8 are discussed in the context of the FaultManAgent
agent control loop.

Coming back to the first point from above, the OSPF protocol is widely used in modern networks
and provides a number of self-X features such as self-healing, self-description and self-adaptation,
in order to automatically establish an optimal and reliable IP topology [RNCS09]. Focusing on
the general structure of the OSPF control loop, one can observe that it is pretty similar to the FDH
FaultManAgent control loop. On the one hand, OSPF uses the Hello Protocol for detecting node
and link failures. On the other hand, the FDH employs diverse monitoring techniques for detecting
incidents in the network. While OSPF disseminates LSAs (Link State Advertisements) - based on
the results from the Hello Protocol [Moy98] - using flooding across the routing area, the FDH
FaultManAgent age control loop employs multicast/unicast based flooding to spread information
about detected incidents across the network ( area).

With the SPF (Shortest Path First) computation, the OSPF control loop analyzes the link state up-
dates, obtained by the Hello Protocol [Moy98] and conveyed to each router by the LSA flooding
mechanism. Similarly, the Fault-Isolation in each FDH node, following the Fault-Detection and
Incident Dissemination processes, analyzes the symptoms of an erroneous state detected across
the network area.

The last step in the OSPF control loop is the FIB (Forwarding Information Base) update in ev-
ery router, and the corresponding phase of the FaultManAgent control loop is the execution of a
Fault-Removal action.

However, the FDH FaultManAgent control loop is more complex than the OSPF one, since it may
require the synchronization (with the goal of optimizing the overall set of FDH actions) of the
Fault-Removal action (potentially also of any Fault-Mitigation action), and involves the assess-
ment of the executed Fault-Removal task, and in the worst-case the escalation to a network level
FaultManAgent agent, and respectively to the network operation personnel.

Within the following sections, the different mechanisms are analyzed which were proposed for
the primary processes of the most intensive FDH control loop - the FaultManAgent control loop.
These mechanisms are also compared to the corresponding mechanisms of the OSPF control loop.

12.1.2 Fault-Detection

The process of Fault-Detection can be realized by monitoring functions which analyze traffic,
monitor the logs of the network nodes, interact with SNMP MIBs, or actively inject traffic into the
network in order to check its health and state. For instance, the Hello Protocol [Moy98] employed
for monitoring adjacent nodes and links within OSPF is an active type of probing technique. It
is obvious that all those techniques will require additional processing, i.e. CPU cycles, and even
bandwidth. In this line of thought, the process of Fault-Detection will be as scalable as the em-
ployed monitoring techniques. Certainly, a trade of is required between the achieved results of the
FDH based self-healing and the overhead for detecting incidents.

Another "monitoring"("information sharing" technique for Fault-Detection that has been men-
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tioned in section 5.1.3 is based on the requirement (Req 12) that functional entities - protocols,
services and applications, should collaboratively share information regarding all incidents they
experience. This is a reactive mechanism (say interruption, trap, or exception like) that will not
introduce additional overhead for Fault-Detection since there would be no special entities looking
for incidents, but the functional entities themselves will report the corresponding incident descrip-
tions as soon as faults get activated. However, this type of requirement is difficult to realize in
an evolutionary type of approach to future networking, where protocols/application/services are
already in place and have been developed without the awareness for FDH based self-healing.

The Fault-Detection process stores the description of the detected incidents into the FDH node
faults/errors/failures/ alarms repositories within a network node. A critical issue with respect to
scalability is related to the amount of information that might be stored in those repositories. A
step towards remediating this issue is the fact that specific repositories, meant to efficiently handle
incident descriptions were implemented in order to reduce the amount of administrative informa-
tion (such as primary and foreign keys) which would be required in case of employing database
products. Moreover, as defined as an escalation criterion in chapter 6.4, a pre-defined threshold
should be used for the maximum number of incidents - reported to the FDH repositories - that
determines the point, at which the current network state should be escalated to the network oper-
ation personnel. This means that an overload of the FDH repositories is indicative for a situation
that cannot be handled even by the FDH control loops, and hence they will stop being active. This
strategy is expected to put limits and control the FDH behaviors with respect to the amount of data
stored in the local node repositories.

12.1.3 Alarm and Incident Sharing

The next scalability issue in the processes of self-healing is related to the alarm/incident informa-
tion dissemination. This process is vital for the FDH agents throughout a network since it enables
them to have a consistent network-wide view of the situation with respect to faults/errors/fail-
ures/alarms. Drawing experiences from the OSPF control loop [STP+15], which is available in
practice, provides hints on how the problem of scalability with respect to the dissemination of
control loop relevant information can be tackled. OSPF disseminates information required for
Shortest Path Computations in the form of LSAs (Link State Advertisements) by employing a
reliable flooding scheme. This flooding scheme guarantees the reliable exchange of LSA informa-
tion between two neighbors. It is obvious that the scope of the flooding must be restricted such
that the produced overhead does not impact the network negatively. This is one of reasons why the
operator’s network is separated in different OSPF areas of a size that can be flooded with LSAs
within a reasonable time [STP+15]. Correspondingly, the operation region of OSPF is restricted
to such a single area. So-called area border routers provide links to other areas (to the backbone
area) within the domain. Discussions within the EFIPSANS project [Tch10] suggest that a typical
size of such an area is around 50 routers. Hence, when it comes to larger (e.g. telecom type of)
networks the alarm/incident dissemination approach should prove scalable in such bounds, i.e. in
networks/areas of around 50 routers.

The techniques for alarm/incident dissemination that were presented in section 7.2 can be consid-
ered scalable or not breaking the traditional bounds of an IP network for the following reasons:

1. The incident information is disseminated (flooded or gossiped) only to those nodes in the
network area where the entities that reside are associated with the incident information to
disseminate,
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2. In the worst-case of an area of N fully connected routers, OSPF would require O(N 2)
packets to deliver an LSA across the area.

The same magnitude of packets is also required by the flooding for alarms and incidents as de-
scribed in section 7.2.

An interesting aspect is given by the LSA dissemination limitations in the scope of OSPF. Experi-
ences with OSPF in the testbeds of large scale European [STP+15] and national projects involving
multiple testbed partners (including Fraunhofer FOKUS) have shown that there are considerable
delays in the recovery of an IPv6 topology after multiple link failures. This delay can be partially
attributed to the LSA flooding procedure that relies on the direct updates of link state information
between neighboring nodes, such that the link state information is gradually distributed across the
routing area. In order to accelerate this process, the FDH alarm/incident dissemination sends the
corresponding messages directly to IP addresses, which may stand for single nodes or for whole
multicast groups of nodes. That way, a step is made towards accelerating the flooding procedure
for the sake of rapid self-healing reactions to alarms and incidents in an FDH managed network.

12.1.4 Fault-Isolation

Once the appropriate FDH nodes in the network have been updated regarding relevant alarms and
incidents, every FDH instance, in the corresponding devices, starts performing the same Fault-
Isolation process/algorithm. Indeed, Fault-Isolation gets automatically initiated within the FDH
nodes in the cases identified in section 6.2.1.3:

1. A pre-defined number of unanalyzed incidents and alarms have been reported to the local
node repositories

2. An incident with a high severity level (according to a pre-defined threshold) has been re-
ported

3. A pre-defined time-slice has expired since the last time Fault-Isolation was initiated

The process of Fault-Isolation is extremely critical with respect to scalability for two reasons:

1. Computing time required for automated Fault-Isolation

2. Size and memory requirements of the Fault-Propagation Model to analyze

Next, these two aspects are analyzed in turn.

12.1.4.1 Time Complexity

The current section elaborates on the time complexity aspects of the Fault-Isolation procedure that
is realized within the FDH node. The potential usage of traditional Bayesian Networks for the
purpose of Fault-Isolation is looked at and contrasted to the Markov Chain based Fault-Isolation
technique, which was developed in the scope of this thesis. In addition, the time complexity as-
pects of the Markov Chain based algorithm (section 7.3.2) are theoretically analyzed.
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With respect to the application of Bayesian Networks for Fault-Isolation, the reasoning algorithm
is in general NP-hard but there exist linear algorithms that work on Bayesian Networks with spe-
cial structures, such as for example for trees [WZC08].

The NP-hardness of the Fault-Isolation based on general Bayesian Networks was the reason to de-
velop the Markov Chain based reasoning framework described in section 7.3.2. For this Markov
Chain based framework the following time complexity was derived - O(|F||E||I|) with |F| denoting
the number of faults in the FPM1, |E| standing for the total amount of events in the FPM, and |I| the
number of detected incidents to correlate. This is a polynomial time complexity similar to those
of many graph algorithms and is not expected to produce any unacceptable overhead. Moreover,
the parameter |I| is explicitly pre-configured by the human experts tweaking the FDH processes.
Thus, by choosing small values for |I| (if reasonable) the time complexity for the Markov Chain
based reasoning framework could be further improved.

The SPF (Shortest Path First) computation within the Dijkstra algorithm [CLRS01] employed
widely in OSPF has a quadratic time complexity with respect to the number of routers. The time
complexity of the Markov Chain based approach to Fault-Isolation, proposed in this thesis, may
be worse or better (w.r.t. the alarms/incidents captured in the FPM) depending on the structure
of the FPM (e.g. number of faults) and the values chosen for the |I| parameter. For example, in
case of 100 incidents, i.e. |E|=100, and |I| = 10, but only 5 root causes/ faults, i.e. |F|=5, then
|F||E||I|=5000 and one can expect around 5000 required operations for Fault- Isolation, which is
less than |E|2=10000 required in the case of pure quadratic complexity (as in the case of the Di-
jkstra SPF computation2). Hence, one can see that at least the theoretical time complexity of the
proposed Markov Chain based approach is in the dimensions of the SPF computations for OSPF.

12.1.4.2 Space Complexity

As previously mentioned, the other critical issue is related to the size of the Fault-Propagation
Model, a copy of which is stored in each device implementing FDH.

In case of a traditional Bayesian Network, a number of conditional probability matrices must be
stored for each single event in the FPM. Each matrix is dimensioned according to the number of
direct graph neighbors of an incident event. Obviously, a Bayesian Network can easily overload
the memory of a router with the growing number of faults/errors/failures/alarms whose relations
must be captured. This was another reason that led to the research on the Markov Chain based
approach presented in section 7.3.2.

The space complexity for the FPM within the Markov Chain based framework is O(|F||E\F|+|E|2+|E|)
or simplified O(2|E|2+|E|) if one takes |E| as an upper bound for |F| and |E\F|. In the following
analysis it is assumed that each incident is referred as a two bytes integer number. Presuming that
10MB are allocated in each network node/device for storing the FPM, the following quadratic
equation emerges for the number of events and their relations that can be captured:

2 | E |2 + | E |= (10 × 1024 × 1024)/2 (12.1)

The positive solution of (12.1) is 1618, which means that with 10MB the relations among 1618

1FPM stands for Fault-Propagation Model.
2The Dijkstra SPF computation is quadratic w.r.t to the vertices of the graph. However, the current comparison

shows that the FDH Fault-Isolation, based on the Markov Chain technique proposed in this thesis, runs in the magni-
tude of the SPF computation within OSPF.
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faults/errors/failures/alarms across the corresponding network area/scope can be captured. For ex-
ample, given a network area of 50 routers, it is possible to have b1618/50c = 32 incident events
related to each router. In case 100MB are allocated for the FPM in each device, the relations among
5119 faults/errors/failures/alarms across the corresponding network area can be captured. This re-
sults in b5119/50c = 102 potential alarm/incident events per node. These calculations are meant
to give the reader a feeling about the amount of data required for the process of Fault-Isolation
when based on the Markov Chain based framework developed in the scope of this thesis.

12.1.5 Fault-Removal and Fault-Mitigation

After the right root cause has been identified, the process of Fault-Removal consists of a direct re-
action to the isolated fault(s) on the corresponding nodes/devices. Similarly, the Fault-Mitigation
Functions of the SurvAgent are activated in order to issue an immediate reaction to alarms or
incidents, which indicate anomalies and potential problems within the networked system in ques-
tion. The overhead produced by the Fault-Removal/Mitigation reaction depends on the scripting
automation or CLI triggered to resolve the problem.

In case the tentative reaction requires synchronization, the SelfOptAgent should be referred. The
SelfOptAgent and the belonging mathematical framework, which was developed in the scope of
this thesis, have been analyzed in terms of response times for different numbers of parallel syn-
chronization requests. The results are presented in the coming section 12.2.5. The upper bounds
of the response times do not exceed 0.12 sec, which is presumed acceptable for the purposes of
FDH in the long-term operation of the network.

The SurvAgent control loop executing fast Fault-Mitigation functions is also expected to refer
to the SelfOptAgent. In case the Fault-Mitigation action is urgently required, then the special
functionality of the SelfOptAgent that triggers immediate synchronization (see message formats
and interface descriptions in section 10.5.2) should be employed in order to speed up the Fault-
Mitigation reaction. Since the FMF are similarly based on script automations and CLI calls, the
considerations (beginning of this paragraph) made regarding Fault-Removal are equally valid here.

12.2 Empirical Analysis

In this section, the analysis of the architecture continues by presenting the results from various
simulations (e.g. OMNET++ simulations) and experiments conducted in the testbed illustrated
in Figure 11.1. The FDH self-healing starts with the task of Fault-Detection, which heavily de-
pends on the deployed monitoring tools and on the overhead they produce within a device. The
tasks which are clearly to be classified as FDH mechanisms are Incident- Dissemination, Fault-
Isolation, Action Synchronization performed by the SelfOptAgent, Fault-Removal/Mitigation and
other tasks which depend on the proprietary policy handler that was implemented for the purposes
of FDH. In the following, each of these tasks is analyzed in turn.

12.2.1 Monitoring and Fault-Detection Processes

Besides the mere execution/invocation of monitoring tools, the Fault-Detection task encompasses
various processes which are implemented by the MonAgent. These include the processes of
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Figure 12.1: Overhead Measurements: Setup Time for an RTT Plug-in

1. setting up a monitoring job based on a request submitted by another FDH agent and of

2. periodically executing monitoring tools within the belonging monitoring plug-ins, which
automate the interplay of single monitoring tools.

Based on the prototype described in section 10.2, it is an interesting task to examine the above pro-
cesses with respect to scalability and resource consumption thereby obtaining a feeling regarding
the belonging operational parameters.

The experiments presented here were conducted on a Linux Ubuntu desktop machine with the fol-
lowing parameters: Kernel Linux 2.6.32-36-generic-pae, Intel(R) Core (TM), 2 × "2.80GHz Duo
CPUs", 3.9 GB RAM. Following aspects were evaluated in particular:

1. required time and memory consumption for setting up a number of monitoring jobs and

2. operational memory consumption while running a maximum number of plug-ins.

At this point, it must be said that the maximum number of plug-ins that could be run simulta-
neously and in a single FDH MonAgent was around 30. Trying to run larger numbers of simul-
taneous plug-ins resulted quite often in "too many open files" exceptions. Eventhough an effort
was undertaken to close all streams properly, obviously there is more need for optimization and
improvement of the Java code of the MonAgent.

Figure 12.1 illustrates the time required for instrumenting up to 29 RTT monitoring plug-ins,
which may be use to detect connectivity and large delay issues within a network. Similarly, Figure
12.2 shows the time required for instrumenting up to 29 QoS plug-ins. The QoS monitoring plug-
in instruments the iperf [IPE17] tool, in order to measure key QoS related KPIs such as jitter and
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Figure 12.2: Overhead Measurements: Setup Time for a QoS Plug-in

Figure 12.3: Heap Size during Setup for RTT Plug-ins



12.2 Empirical Analysis 223

"out of order packets". In both cases the instrumentation of the monitoring job is achieved pretty
fast, and the monitoring service is ready to provide the required monitoring information within
less than two seconds. This implies that the current FDH MonAgent prototype can potentially be
used for real time tasks since it can quickly prepare to provide required monitoring data.

Figure 12.4: Heap Size during Setup for QoS Plug-ins

Figure 12.3 and Figure 12.4 illustrate the heap memory consumption during the above analyzed
monitoring job setup processes. One can clearly observe the operational cycles of the Java garbage
collector visible through the sudden drops in the amount of consumed memory. Besides, one
can see that memory consumption for the setup operation goes in the magnitude of dozens of
megabytes. This result can possibly be improved within a C/C++ implementation given that the
MonAgent of the FDH needs to operate in environments where memory is an extremely scarce
resource. Finally, Figure 12.5 visualizes the heap size during the operation of 30 simultaneously
running plug-ins. Half of the plug-ins were RTT plug-ins, and the other half QoS plug-ins. The
Java garbage collector is again clearly visible with its operating cycles.

In addition, the previous findings regarding memory consumption are again confirmed since a
magnitude of dozens of megabytes is continuously observed. Thus, it can be recognized that the
current MonAgent prototype is only limited applicable to small devices, e.g. sensors etc. How-
ever, it has quite suitable characteristics for operating within a traditional host machine or in the
control plane of a router. In such deployment scenarios, FDH MonAgents can be either deployed
on each involved node, or just on particular dedicated machines/routers, in a way that they can de-
liver monitoring information and realize Fault-Detection tasks for the purposes of the distributed
FDH based self-healing.
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Figure 12.5: Heap Size during Monitoring Operations

12.2.2 Incident Sharing

As previously mentioned, a canonical type of flooding on top of IP was implemented as a first
solution for the FDH prototype. In the course of the procedure, the symptom detecting node
pushes initially an alarm/incident/event message to a list of IP(v6) addresses, including multicast
addresses as obtained within MLD for IPv6 or IGMP for IPv4. As a result, every receiver node
forwards the alarm/incident/event message to all IPv6 addresses, if it sees the message content
for the first time, or dismisses it in case the message is locally known. This procedure worked
sufficiently during the trials conducted in the testbed illustrated in Figure 11.1.

For the purpose of evaluating the scalability of the Incident-Dissemination an OMNET++ [VH08]
simulation was put in place. In general, the same simulation setup was used which was already
presented in section 7.2.3, in the course of evaluating the quality of the dissemination procedures.
Thereby, networks of different sizes (10,50, 100, 200, ...,1000) were simulated. These were ran-
dom networks based on the Waxman model [Nal05] for Internet topologies. For the generation of
these networks, the BRITE tool [BRI16] [MLMB01] for random Internet topology generation was
utilized. Some of the employed topologies are displayed in Figure 7.6 and in Figure 7.7 in section
7.2.3.

The conducted experiments were used to compare the implemented flooding procedure with the
repetitive retransmission of datagram incident messages issued by the node where Fault-Detection
has taken place. Furthermore, for the time of each trial, every "machine" in the topology was gen-
erating background traffic towards random nodes in the simulated network. In the course of this,
a packet of size 1024 bytes was injected into the network every 100 microseconds by each simu-
lated node. As previously mentioned, this resulted in at least a dozen of Giga-Bytes of background
traffic for each simulated network.

The focus in this section is set on the aspect of the time required for all involved network nodes, in
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Figure 12.6: Incident-Dissemination Convergence Times

order to have received the incident information in question. The simulation results regarding the
convergence times in random networks ( based on the Waxman model [Nal05]) of different sizes
are illustrated in Figure 12.6.

Figure 12.6 shows that the flooding procedure - implemented in the current prototype - achieves
pretty low convergence times, while the datagram retransmission fluctuates in terms of required
convergence time thereby generally performing worse than the implemented canonical flooding.

The evaluation provided in the previous paragraph should be seen as a result of a first proof of
concept attempt to evaluate the Incident Sharing process. However, given the recent advances in
the area of information dissemination and message routing, this topic offers a large potential for
applying diverse techniques and investigating their scalability and effectiveness in large networks.

12.2.3 Fault-Isolation

The Fault-Isolation component of FDH is implemented based on the Markov Chain based al-
gorithm presented in section 7.3.2. This algorithm operates on a Fault-Propagation model that,
similarly as for Bayesian Networks, is represented as a directed acyclic graph of events. Thereby,
the Bayesian Network reasoning procedure was reformulated as to infer the most likely sequence
of events based on the detected symptoms, as opposed to Bayesian Networks that infer the prob-
ability of each single event to have occurred based on the evidence, i.e. the detected symptoms
(incidents and alarms). This allows for implementing a highly efficient Fault-Isolation procedure
which scales with respect to required memory and time for completing the reasoning. The key re-
sults are illustrated in Figure 12.7 and clearly confirm the scalable properties of the Fault-Isolation
mechanism implemented within the FDH prototype.
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Figure 12.7: Scalability Evaluation of the Fault-Isolation Mechanism

12.2.4 Policy Handling

The FDH framework defines a number of components that were realized based on a proprietary
C++ implementation of a policy handler that can operate on XML input artifacts similar to those
described in chapter 10. These components are the Fault-Isolation Assessment Functions, the
Fault-Removal Functions, the Fault-Mitigation Functions, the Fault-Removal Assessment Func-
tions, and the Asserted Incidents Assessment Functions.

In order to get some indicative measurements for the performance of the policy handler, policy sets
with various sizes were randomly generated. The time required for the evaluation of these policy
sets is plotted against the policy set size in Figure 12.8. It can be observed that the policy evalua-
tion time is in the magnitude of microseconds and hence the only potential source of performance
problems remains the execution of the CLI required as a result of the policy evaluation.

12.2.5 Action Synchronization within the SelfOptAgent

The SelfOptAgent implements an action synchronization procedure, which was realized based on
the techniques presented in section 8.2. The idea is to represent the actions with their potential
influence on diverse KPIs in a way that techniques from the area of mathematical optimization are
applicable (more details are given in section 8.2). As previously mentioned, an open source solver
package [COI17] was used for implementing the action synchronization procedure.

The results of the empirical scalability and overhead evaluations - based on directly solving the
binary Action Synchronization Problem - are presented in Figure 12.9. In order to evaluate the
SelftOptAgent and the belonging action synchronization procedure, 1000 instances for each model
size in question were simulated. Thereby, each instance had an equal number of potential actions
and KPIs that are influenced by these actions. In addition, two threads were used, which simulated
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Figure 12.8: Scalability of the Policy Handler based Components

the simultaneous issuing of requests (as expected from the FDH agents) for all the instances of
each model size. The maximum of the response times and the required heap memory for each
model size in the course of these experiments are presented in Figure 12.9. These measurements
indicate reasonable scalability properties and moderate memory requirements for the SelfOptA-
gent part of the FDH prototype.

Furthermore, it is of special interest to observe the empirical scalability characteristics of RASP
(Relaxed ASP) and compare those to the characteristics of ASP. Figure 12.10 visualizes the com-
parison between both approaches with respect to the maximum execution time for the instances
of a particular model size. In addition, Figure 12.11 reflects on the memory consumption when
solving RASP and correspondingly ASP with a growing model size - similarly the maximum
observed heap memory consumption over all instances of a particular size is taken. It can be ob-
served that RASP is clearly superior to ASP with respect to empirical overhead and scalability -
both regarding execution time and memory consumption. Hence, a RASP solving SelfOptAgent
is clearly the better choice in cases when memory is a scarce resource and fast execution times for
the self-optimization task are required.

12.2.6 Scalability and Overhead Evaluation of the overall distributed Control Loop

Next, the presentation proceeds with an overall evaluation of the distributed FDH self-healing
control loop. This includes the interplay between the different processes analyzed before, how-
ever without pushing every single process to the extreme as done in the previous paragraphs. The
experiments were conducted in the testbed described in Figure 11.1.

The scenario for these experiments consisted of the following steps:

1. the process of Fault-Detection was simulated on R4 (a virtual image with Intel(R) Xeon(R),
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Figure 12.9: Scalability of the SelfOptAgent when solving Binary ASP

Figure 12.10: Maximum Response Time for each Model Size when solving ASP and when solving
RASP
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Figure 12.11: Memory Consumption when solving ASP and when solving RASP

"CPU 2.00GHz", 512 MB RAM) by an entity that periodically pushed incident descriptions
to the local set of incident repositories,

2. the information was pushed to the local FaultManAgent and forwarded to the EvDissAgent
on R4,

3. the EvDissAgent on R4 disseminated the incident descriptions across the whole testbed
(including routers and end systems),

4. each router and end system performed Fault-Isolation upon receiving the incident,

5. all devices, except for R3 (virtual image with Quad-Core AMD Opteron(tm) Processor
2380, 1024 MB RAM), were configured to back off with respect to Fault-Removal while R3
performed action synchronization over the SelfOptAgent and executed the touch [TOU17]
Linux command creating a file locally and emulating the process of Fault-Removal,

6. the Fault-Removal Assessment was similarly simulated and followed by the dissemination
of a fault recovery message across the network,

7. finally, after the recovery notification was received back on R4, the time was measured be-
tween the submission of the incident description to the R4 repositories and the arrival of the
recovery message.

The above described procedure was repeated 1000 times in a row in order to gain data regarding
the overall execution time of the distributed control loop. This data is plotted in Figure 12.12 and
shows that in the current test setup, the execution time for the scenario, simulating the overall
distributed FDH self-healing control loop, was in the magnitude of several thousands of microsec-
onds.
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Figure 12.12: Execution Time of the overall AFH Control Loop

In parallel to executing the above procedure and obtaining the data plotted in Figure 12.12, the
top [TOP17] Linux tool was used in order to get a feeling regarding the CPU utilization on the
key routers (R3 and R4) within the experiment. The CPU utilization was measured in intervals
of five seconds. Thereby, the maximum CPU utilization of the overall set of FDH components
was measured to be at most 0.2% within the intervals. This is a very minimal value which can
be explained by the fact that the experiments tested primarily the transfer/communication of al-
arm/incident messages between the different FDH components and the FDH nodes in the Figure
11.1 network. These processes are not as computational intensive as the Fault-Isolation and Action
Synchronization processes, which were evaluated in the previous sections. However, these mea-
surements show that FDH causes minimal CPU utilization - on a Quad-Core AMD Opteron(tm)
Processor 2380 and Intel(R) Xeon(R), "CPU 2.00GHz" - for the pure passing of alarm/incident
messages between the FDH components (as specified in the sequence diagrams in section 6.3).

Finally, additional 50 runs were performed in order to gain experience regarding the FDH mem-
ory consumption on the key routers in the scenario, i.e. R3 and R4. The results regarding the
heap size memory consumption are plotted in Figure 12.13, and show again some minimal over-
head in the magnitude of dozens of Kbytes. These measurements complement the "component
by component" evaluation of the previous sections, where each single component was pushed to
the extreme, and give an idea of the scalability of the interplay among the overall set of employed
mechanisms and algorithms.
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Figure 12.13: Memory Consumption measured during the Execution of the overall FDH Control
Loop
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Chapter 13

Case Studies

The prototype presented in the previous sections was further used to emulate and test the appli-
cability of the FDH framework on different case studies, which are based on IP networks. The
first two case studies deal with networking problems on the level of network, link and physical
layers. The following third case study is a theoretical one and relates to an architecture for mobile
wide-area surveillance running on top of IP technology. Finally, a combined case study consisting
of multiple problems introduced to a larger testbed (refer to Figure 11.1 for the testbed) illus-
trates how FDH can increase the resilience of an operator’s network, even when multiple faults are
continuously introduced.

Some of these case studies are based on a survey of relevant networking problems that was con-
ducted in the scope of the large scale EU EFIPSANS project [Tch10]. In addition, a research
collaboration between Fraunhofer FOKUS and VTT has influenced the case study related to the
mobile surveillance architecture. Finally, the combined case study is a demonstration regarding
how FDH can solve complex challenges, which are largely based on the single case studies - in-
cluding the case studies used for demonstrating aspects like Fault-Detection, Fault-Isolation and
Self-Optimization - in a testbed [KBA+10] that was designed for the needs of the large scale EU
FP7 EFIPSANS project [efi16a].

13.1 A Black Hole Problem in IPv6 Networks

First, a case study is presented which is based on an IPv6 problem that may arise in the process of
IPv4-to-IPv6 transitioning, which is imminent on large scale in the coming years. This network-
ing problem was already described in previous sections and used as basis for the case studies on
Monitoring/Fault-Detection (section 7.1.3), Fault-Isolation (section 7.1.3) and Self-Optimization
(section 8.2.7). For that reason, only a high level recap of the problem characteristics is given
here. After briefly presenting the problem itself, the resolution which was realized and tested in
the scope of FDH is elaborated.

The presented type of Black Hole matches to the type of faulty conditions presented in section
5.3.1 and section 5.3.4, i.e. Faults/Errors/Failures detected at the Network Layer, Link and Physi-
cal Layers and Human Errors during Network and Service Management Phase. The classification
results from the fact that the presented Black Hole type is due to a firewall misconfiguration which
affects the IP layer of an IPv6 network.

233
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13.1.1 Description of PMTU Black Holes in IPv6 Networks

The current case study builds on the PMTU Black Hole problem described in [Lah00]. As
previously mentioned, the following paragraph is a short recap of the Black Hole problem, as
introduced in previous chapters and used there for demonstrating the FDH processes of Fault-
Detection/Monitoring, Fault-Isolation and Self-Optimization.

The term Black Hole stands for a packet forwarding node that discards packets of a flow, without
notifying the node from which the traffic originates. Hence, the sender of the packets is disabled
in reacting to the faulty condition in the network, which results in a communication that stall-
s/freezes on the end user’s system. In [Lah00], a version of the Black Hole problem is presented,
which has the potential to occur in IPv6 networks that have adopted an IPv4 firewall configuration
(e.g. due to IPv4-to-IPv6 transition) suppressing ICMP messages. The suppression of ICMPv6
messages (especially ICMPv6 "Packet too big") means that end systems are not automatically no-
tified, when the PMTU of a flow changes1 and cannot readjust the size of the packets they send
out2. Hence, a Fault-Removal action for this problem would be to reconfigure the firewall on the
router in question, as to allow ICMPv6 messages according to the recommendations in [DKS07].

Figure 13.1: IPv6 Black Hole affecting an FTP Upload

The above described type of Black Holes may be extremely difficult to diagnose using traditional
tools such as ping [PIN17] for reachability checks and traceroute [TRA17] for traffic path analy-
sis. Figure 13.1 illustrates the transient nature of the Black Hole problem. On the one hand, the
FTP upload is stalled and its packets are getting lost on a Black Hole router because of a sudden
change of the PMTU and suppressed ICMPv6 "Packet too big" messages on the Black Hole router.
On the other hand, a reachability test from the client system to the FTP server is successful (see
the shell terminal on Figure 13.1), because of the small size of the used ICMPv6 packets to test
reachability. However, if FDH is correctly introduced and configured within a network, it can

1A change of the PMTU is illustrated in the following
2Recall that packets do not get fragmented on intermediate routers in IPv6
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remediate such issues and remove the fault in the Black Hole router. This is demonstrated within
the next section.

Figure 13.2: Reference Network for the IPv6 Black Hole Case Study

13.1.2 Resolving PMTU Black Holes in IPv6 Networks

The above discussed Black Hole erroneous state appears after a change in the PMTU towards a
host during the lifetime of a flow. This PMTU change will mostly be caused by a link failure and
automatic rerouting (as done in OSPF) over a link with a smaller MTU. Referring to the network
in Figure 13.2, FTP upload type of traffic was pushed over the path End User → R1 → R2 →
R4 → R5 → FTP server 1. After emulating a link failure between R2 and R4, the traffic was
rerouted over the R2→ R3 which led to a decrease in the PMTU of the FTP upload. This decrease
resulted from the fact that the path before the link failure was a pure Gigabit Ethernet path, i.e.
with link MTUs greater than 1500 bytes, and the path after the link failure included the R2 →
R3 Fast Ethernet link with a maximum MTU of 1500 bytes. Hence, for the case study experi-
ments, R2 had a misconfigured firewall suppressing ICMPv6 "Packet too big" messages. Without
the FDH mechanisms, this always resulted in a stalled FTP upload despite the fact that network
connectivity between Bob and FTP server 1 was present (see Figure 13.1). A possible solution for
the above described issues could be the deployment of TCP PMTU discovery on the end system
which is often not the case for standard Linux and Windows end systems. Nevertheless, FDH
could help resolve this type of problems and prolong the lifetime of the connection in the above
context. Within the conducted experiments, this was achieved by installing monitoring sensors
(orchestrated by the MonAgent) on R1, which were monitoring for different traffic anomalies on
the interface towards the end system and were reporting these anomalies to the FDH instances
running across the network. More details on these aspects are given in the following paragraphs.

One of the key aspects that has to be handled at the start is given by the construction of the required
Fault-Propagation Model facilitating the process of Fault-Isolation. [Lah00] provides packet flow
descriptions that illustrate an IP Black Hole as observed on an intermediate router, i.e. a router be-



236 Chapter 13 Case Studies

tween one of the end systems and the black hole router. Such a router would be R1 in Figure 13.2,
because R2 is considered as the black hole router. [Lah00] illustrates a case when large packets
fail to traverse the network. However, since it is difficult to precisely define what a large packet
is, the anomalies of TCP duplicate acks and increased TCO retransmissions as well as sudden
drops in non-complete (i.e. no FIN packet observed) TCP flows were additionally considered as
symptoms for an IP Black Hole3. Once these anomalies were detected, the corresponding incident
descriptions were locally stored in the FDH incidents repositories on R1, and subsequently sent to
R2, where they were processed according to the schemes on Figure 6.10 and Figure 6.13 in sec-
tion 6.3. As previously mentioned, the key process of in the above referred dynamic aspects from
section 6.3 is the process of Fault-Isolation that relies on a Fault-Propagation Model, which must
capture the fault-propagation chain for a potential Black Hole within the network on Figure 13.2.
In order to define a concrete fault-propagation chain, the following incident events were defined:

• IPBH Fault 1: Misconfigured firewall suppressing ICMP packets on R2.

• IPBH Error 1: R2 is unable to send ICMP messages.

• IPBH Error 2: R2 fails to send ICMPv6 Packet Too Big notification to the corresponding
end system.

• IPBH Error 3: Incorrect PMTU assumed on the end system.

• IPBH Error 4: Large TCP packets fail to pass R2.

• IPBH Error 5: Duplicate ACKs in the direction4 from R1 into the network.

• IPBH Error 6: Duplicate ACKs in the direction5 from the network to R1.

• IPBH Failure 1: Duplicate ACKs observed on R1.

• IPBH Failure 2: Increased number of TCP retransmissions observed on R1.

• IPBH Failure 3: Sudden drops in the TCP connections observed on R1.

These are just short descriptions of the events. In the implementation of FDH, these incident de-
scriptions are represented by alarm incident models as defined in [Tch09]. Figure 13.3 illustrates
the corresponding fault- propagation chain, which is to consider when defining a Bayesian Net-
work or Markov Chain based Fault-Propagation Model for resolving the IP Black Hole problem
in the case study network (Figure 13.2). The belonging Fault-Propagation Model facilitated the
successful FDH based diagnosis of the IPv6 Black Hole on R2.

Finally, the Fault-Removal action according to the scheme on Figure 6.13 consisted of remov-
ing "Packet too big" ICMPv6 suppression from the R2 firewall in compliance with the guidelines
given in [DKS07]. This was allowing the FTP upload to continue and influenced positively par-
allel UDP transmissions traversing the affected path. Furthermore, given that the end system has
also deployed the FDH software, it was possible to trigger a Fault-Mitigation reaction to readjust
the PMTU assumed on the end system (in line with the behavior specified in Figure 6.11), thereby

3 In the next section, it will be seen that this can also be considered as a symptom for Ethernet Duplex Mismatch
and that the result of the Fault-Isolation depends on the probabilities in the employed FPM

4This is the case of a TCP flow in which the end user system is sending packets to the FTP server, which is generating
duplicate ACKs in order to indicate packet loss.

5The inverse case of the previous footnote, i.e. the FTP server is sending packets to the end system.
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Figure 13.3: The Fault-Propagation Chain for the IPv6 Black Hole Case Study

successfully handling the present shortcoming due to the missing TCP PMTU discovery on the
end system. This was especially enabled by the true end-to-end paradigm of IPv6 allowing trans-
parent communication with the involved end systems and reaching them directly over an IPv66

address, i.e. without any intermediate NAT boxes.

The case study presented here shows that indeed the principles of FDH are implementable and
once provisioned, can enable self-healing features within the network and the devices. In addition,
it also demonstrates how FDH based self-healing mechanisms can extend the capabilities of IPv6
to overcome ICMPv6 suppressions in the ISP core network.

13.2 Failed Auto-configuration in IEEE 802.3

The second case study7 is based on emergent faulty conditions in an IEEE 802.3 Ethernet en-
vironment. IEEE 802.3 Ethernet networks are an established communication environment for a
variety of networks, e.g. LAN and Enterprise Networks. First, the problem under consideration
is described, followed by a description of the tests which were conducted with automatically re-
solving the belonging fault by means of FDH. Some aspects of this case study were already used
for illustrating the single FDH processes (e.g. Fault-Isolation) in the belonging sections. For that
reason the following paragraphs describe the networking problem on the surface, whilst focusing
on the overall process of self-healing with respect to a failed auto-configuration in IEEE 802.3.

The current case study fits to the type of faulty conditions presented in section 5.3.1 and section
5.3.6, i.e. Faults/Errors/Failures detected at the Network Layer, Link and Physical Layers and
Emergent Behaviors resulting from Software/Hardware Errors, Interoperability, Performance, Se-
curity related, and Automation Issues. The classification results from the fact that the presented
Auto-configuration problem in IEEE 802.3 results from design and quality assurance flows in the
IEEE 802.3 auto-negotiation procedure, which impact the link and network layer of the network

6As previously mentioned, the testbeds used within this thesis are based on the IPv6 protocol.
7Parts of the current case study were initially published in [WTVL13].
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architecture in question.

13.2.1 Auto-Configuration in IEEE 802.3

As discussed in the previous chapters, IEEE 802.3 Ethernet supports an auto-negotiation proce-
dure that allows the Ethernet interfaces on the involved nodes to automatically obtain and establish
suitable parameters for a link. The aforementioned parameters include the speed of the interface
cards (e.g. 10 MBit/s, 100 MBit/s, 1000 MBit/s), the duplex mode, as well as flow control infor-
mation. Whilst this procedure makes the setting up of a network easier, it can lead to a duplex
mode mismatch in the settings assumed by both involved NICs (Network Interface Card). Such
duplex mismatch can potentially slow down network paths and cripple the performance of the
network. This anomaly has been extensively studied in [SC05] where also the symptoms and the
chains of events leading to those symptoms are described in detail. [SC05] gives the following
high level explanation of the conditions leading to a Duplex Mismatch situation on an Ethernet
link:

"A duplex mismatch can happen in one of these ways (among others), but the symptoms seen by
the hosts will be the same regardless of the cause:

1. "One card is hard-coded to use full-duplex and the other is set to autonegotiate: the hard-
coded side will not participate in negotiation and the auto-negotiating side will use its half-
duplex default setting;

2. "The two cards are hard-coded to use different duplex modes;

3. "Both cards are set to auto-negotiate, but one or both of them handles autonegotiation
poorly" ... "; note that, in this case, the problem can occur sporadically and rebooting
or resetting the interface on either side could clear the condition."

Figure 13.4: Network for the Ethernet Duplex Mismatch Case Study

The case that is interesting from FDH’s perspective is the third point above8 By monitoring for
the events defined later on and correlating the observations, an FDH running node should be able

8Tools such as mii [MII00] can be easily employed for fault injection, in order to facilitate the testing of FDH for
this case study.
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to diagnose Ethernet Duplex Mismatch and to automatically reset/reconfigure the concerned inter-
faces.
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Figure 13.5: Fault-propagation Chain for Ethernet Duplex Mismatch

13.2.2 Resolving Duplex Mismatch in IEEE 802.3

Figure 13.4 presents the reference network for the current case study. This network is an example
for a university/campus LAN and has one link (R2↔ R3) that has a Fast Ethernet and a Gigabit
Ethernet card on its endpoints. Given a mismatch of the duplex mode, the instrumented FDH
mechanisms detect the symptoms, isolate the fault, and set both cards in full duplex mode.

As in the previous case study, the Fault-Isolation process is the most challenging one requiring a
Fault-Propagation Model that allows to infer the correct root cause based on the observed symp-
toms. In this line of thought, the network administrator would analyze existing publications, or
would be just experienced enough to recognize the potential for an Ethernet Duplex Mismatch on
the R2↔R3 link. Material for constructing the fault-propagation chain for Ethernet Duplex Mis-
match in the Figure 13.4 network is provided in [SC05]. Based on this information, the following
set of potential incident events were identified, which are used to compile the fault-propagation
chain in Figure 13.5:

• ED R2 Fault 1: The NIC on R2 operates mistakenly in half-dulpex mode.

• ED R2 Error 1: R3 fails to send some frames to R2 because of interferences with the R2
NIC mistakenly operating in half-duplex mode (for more details see [SC05]).

• ED R2 Error 2: TCP packets flowing from R3 to R2 get lost.
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• ED R2 Error 3: Duplicate ACKs in TCP flows streaming over R3 and R2 in a row.

• ED R2 Failure 1: Increased number of dropped packets at the R3 NIC connecting R2
and R3

• ED R3 Fault 1: The NIC on R3 operates mistakenly in half-dulpex mode.

• ED R3 Error 1: R2 fails to send some frames to R3 because of interferences with the R3
NIC mistakenly operating in half-duplex mode (for more details see [SC05]).

• ED R3 Error 2: TCP packets flowing from R2 to R3 get lost.

• ED R3 Error 3: Duplicate ACKs in TCP flows streaming over R2 and R3 in a row.

• ED R3 Failure 1: Increased number of dropped packets at the R2 NIC connecting R3
and R2.

• ED R2 R3 Failure 1: Increased number of duplicate ACKs in TCP connections flowing
over R2 and R3.

The executed experiments consisted of introducing series of duplex mismatches on the link
R2↔R3 and monitoring the behavior of the FDH components in the routers towards a successful
fault resolution. Figure 13.6 shows a snapshot of the Nagios plug-in output that allows the
network administrators to observe the reaction of the Fault-Management control loop on different
routers. The symptom of duplicate acks in TCP flows has been monitored on R1 (the edge of the
network) and after correlating this symptom with the increased number of dropped packets on the
R3 NIC towards R2, the deployed FPM - based on the fault- propagation chain on Figure 13.5 -
facilitates the FaultManAgents to conclude that the R3 NIC connecting to R2 is the one that has
mistakenly auto-configured to operate in half-duplex mode. Consequently, the FaultManAgents
employed the ethtool [ETH05] command line interface to set the correct duplex mode. During
the experiments it was observed that the FDH based Fault-Removal of duplex mismatch faults led
to reduced number of retransmissions and duplicate acks (i.e. out of order packets) in TCP flows.
Indeed, the distributed collaboration of the FaultManAgents in the nodes successfully improved
the overall quality of service provided by the case study network.

Figure 13.6: Ethernet Duplex Mismatch - Nagios
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13.3 Architecture for Distributed Intelligence in an IP-based Surveil-
lance System

The following case study has emerged within a scientific collaboration between Fraunhofer
FOKUS and the VTT Technical Research Centre of Finland. Thereby, the predecessor of the
self-healing architecture presented in this thesis was theoretically applied [TGV09] for increasing
the resilience of the SPY architecture for mobile wide-area surveillance. The latter is one of the
research topics [NRL09] at VTT. In the course of this collaboration, various potential problems9

within the SPY architecture were identified and the way these would be handled by the FDH
framework investigated. In the following, the SPY architecture is briefly described, which is the
prerequisite for presenting the potential problems and determining the way FDH would increase
the SPY resilience with respect to these potential issues.

13.3.1 The SPY Architecture for Mobile Intelligent Surveillance

SPY (Surveillance imProved sYstem) is an architecture for distributed, surveillance of a physical
area, whereby the communication between the various components runs on top of an IP network
technology. Thereby, SPY relies on the use of both distributed and centrally coordinated intelli-
gence, as well as on the use of mobile units for exploring the area under surveillance. A simplified
deployment of the SPY architecture is depicted in Figure 13.7. This deployment consists of an
arbitrary number of mobile units equipped with intelligent sensors, as well as a centralized control
room, which reacts to alerts and manages the mobile units.

The mobile units communicate with the control room side using wireless IP-based networks, e.g.
UMTS, LTE or HSDPA. Control room components would be normally connected among each
other using Ethernet with an IP stack on top of it. The core of a Mobile Sensor Unit (MSU) (on
the left on Figure 13.7) is constituted by a piece of software on-board of a mobile unit deployed
in the area under surveillance. This software processes data from one or more intelligent sensors
( e.g. intelligent video cameras and audio sensors), which provide event data or metadata, such as
"suspicious object detected in video", instead of, or in addition to raw sensor data. Furthermore,
a GPS receiver is required on each MSU in order to periodically report the unit’s position to the
control room. The key functionality of the MSU software is given by its decision making capabil-
ities for processing event input from sensors. In the scenarios presented here, the decision making
of the MSU plays a role for two purposes:

• filtering out redundant or benign events reported by sensors, in order to save wireless net-
work bandwidth and control room processing time, and

• combining together multiple sensor inputs and that way detecting events, which are to be
reported to the control room.

Proceeding with the components on Figure 13.7, the Gateway is responsible for dispatching mes-
sages between the MSUs and the control room components. That way MSUs are required to know
only the IP address of the Gateway and should not be aware of the complexity of the control room
architecture when delivering their information. Furthermore, the control room components do not

9In that case, the FDH was also applied to handle problems within the mobile part of the SPY architecture. Hence,
showing that despite being focused on fixed network structures, the FDH can also be utilized for improving the re-
silience of mobile devices/nodes in some special cases.
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Figure 13.7: SPY Architecture for Mobile Intelligent Surveillance as described in [NTSR14]
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have to maintain permanent connections to each of the MSUs currently online in the system on a
single basis (i.e. for each component). The Mobile Surveillance Positioning Server (MSPS) (on
the top right in Figure 13.7) handles the positions of the MSUs, which are periodically reported
by the MSUs over the Gateway. Thereby, the MSPS offers an interface for the other control loop
components to query the positions of the involved MSUs. Finally, the Logical Decision Making
Server (LDMS) provides functions for automatically utilizing and analyzing data from the MSUs.
It is based on previous VTT work related to a Single Location Surveillance Point System [NRL09].
The MSU data analysis involves aspects such as correlating reports from multiple MSUs into a sin-
gle event, deciding on the significance/seriousness of the event and the need for an action based on
the correlation results. The actions that could be issued by the LDMS include sending commands
to the MSUs - e.g. directing a unit to relocate to the area of the perceived threat, or generating
alarms for the surveillance personnel. Having briefly presented the SPY architecture, the follow-
ing sections identify potential network/infrastructure challenges that may occur during the SPY
operational phase, and describe the way FDH would handle these resilience challenges.

13.3.2 Potential Problems resolvable by FDH Means

This section presents two potential problems with the goal to illustrate the interplay between
the SPY mobile surveillance architecture and the FDH framework for distributed self-healing.
Thereby, the following two scenarios show how the robustness of the surveillance system is in-
creased, which in turn allows for better managing complex emergency situations and can support
lifesaving operations. Hence, it is presumed that all nodes (MSUs and control room components)
are equipped with an FDH instance.

MSU A

MSU C

MSU B Control 
Room

1. MSU A detects 
an event

2. MSU A reports 
event to control room

3. MSU C is 
directed to assist 

MSU E
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4. MSU D is 
directed to 
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5. MSU E is 
directed to 
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Figure 13.8: First SPY-FDH Case Study Illustration
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13.3.2.1 Overcoming Gateway Unavailability through FDH based Self-Healing

The surveillance use case for the first scenario is depicted in Figure 13.8. The use case10 includes
five patrolling MSUs, which are labeled as MSU A through to MSU E. MSUs A to C represent
road vehicles, while MSUs D and E are UAVs (Unmanned Aerial Vehicles) equipped with cam-
eras for overseeing the situation. Based on these prerequisites, the scenario consists of MSU A
detecting an alarming event and reporting it to the control room that in turn concludes that there is
a need for additional MSU support. Based on the MSU’s positioning data, nearby patrolling units
are instructed to assist. In the situation depicted on Figure 13.8, this would mean that road vehicle
MSU C in addition to UAVs D and E is instructed to approach the coordinates of the alarming
event.

Assuming that the initialization process of the SPY components has been successfully accom-
plished - i.e. all MSUs have successfully registered at the LDMS in the control room and are
periodically reporting their position to the MSPS, the specific steps for the current case study are
depicted by the sequence diagram on Figure 13.9:

1. MSU A sends a message to the LDMS, reporting a sensor event determined to be a potential
fire incident (1).

2. The LDMS decides to instruct other MSUs to provide assistance based on the coordinates
and geographical proximity of these MSUs.

3. The LDMS redirects MSU C to move to the coordinates of the potential fire incident as
being one of the MSUs which are close to the reported event, and finally

4. MSU A is notified of the additional MSU C, which has been directed to the area of the
reported alarm (4).

Given a situation in which the burning building is also the one hosting a base station, the MSUs
will experience a loss of network connectivity to the Gateway and correspondingly to the LDMS
and MSPS components. This would severely hamper the functioning of the SPY framework and
might even cause the loss of human life, since the rescue force would miss valuable information.
Therefore, the FDH components in the SPY nodes must react in an attempt to restore the flow of
messages and enable the transmission of events to relevant decision makers.

As mentioned before, this case study and belonging setup exemplify on how the FDH can be uti-
lized for improving the resilience of mobile devices/nodes in a special case. This shows that the
FDH can be also applied beyond the scope of fixed network structures, which are the main focus
of the current thesis.

The reaction of the FDH components embedded in the SPY nodes consists of the following steps:

1. Once the SPY software on the MSUs detects the lack of network connectivity to the Gate-
way, it reports this incident to the local FDH repositories for faults/errors/failures/alarms.

10The presented scenario maps to section 5.3.1 and section 5.3.3 from the classification of faulty conditions, i.e.
Faults/Errors/ Failures detected at the Network Layer, Link and Physical Layers and Traditional Network and Systems
Management Alarms. This comes from the fact that the described scenario deals with an infrastructural problem - out-
age of a communication component - and would normally be handled by the network operations personnel in the long
term. In this context, FDH provides the means to overcome the network component outage and facilitates handling the
emergency situation in question.
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2. These incident descriptions (in each MSU) are then forwarded to the belonging local Fault-
ManAgents and to the local SurvAgents within the SPY nodes.

3. In addition, each incident description is submitted to the local Event Dissemination Agent
of the FDH instances in the SPY nodes, with the goal to convey it to the largest possible
number of MSU nodes.

4. Subsequently, each EvDissAgent broadcasts the incident description over the radio link and
disseminates it that way to the other involved MSUs.

5. Hence, after some time all the involved MSUs (A, C, D, and E) will have informed each
other about their lack of connectivity to the Gateway.

6. Based on this set of incident descriptions, the Fault-Isolation Functions (FIF) inside the
FaultManAgent of each MSU conclude that there is a severe failure of the corresponding
base station.

7. In order to overcome this challenge, the FaultManAgents of each MSU need to react as
to ensure the delivering of messages to the Gateway. In that context, the FRF within the
FaultManAgents of all road vehicles are pre-configured as to influence the network stack on
the belonging MSU to stop sending information to the mobile network (LTE or UMTS), but
instead to just broadcast it to other MSUs over the radio link.

8. In addition, the FRFs on all UAVs are pre-configured as to switch to a store-carry-forward
(SCF) mode as discussed in [Fal03] [SHÇ+10]. In such a mode the UAVs would receive
and store a number of packets sent out by the road vehicles, carry those packets to the next
functioning base station, and off-load them to the network towards the Gateway.

Steered by the FDH components in each MSU, data flow is maintained from the MSUs to the
Gateway and correspondingly to the LDMS and MSPS. Certainly, it is impossible to transmit con-
tinuous data in such a situation. However, in that context, the SCF method would facilitate the
reporting of non-continuous data, such as new events and images, to the Control Room, thereby
allowing relevant decision makers to better take action.

13.3.2.2 Self-Healing within the IT Infrastructure of the Control Room System

The second case study is related to the IT infrastructure running in the Control Room System
and the use of database technology in that context, as illustrated in Figure 13.10. Hence, it fits
to section 5.3.2 (i.e. Faults/Errors/Failures detected at the Services and Application Layers) from
the classification of faulty conditions in chapter 5. Furthermore, given the nature of the presented
problem, it can be also classified and mapped to section 5.3.5, which is described as Unknown
Faults resulting from insufficient Testing of Software.

During the operation of the SPY software, regular interactions and queries are required between
the MSUs and the MSPS, in order, in order to handle the positioning data for the involved MSUs.
All these communication to and from the MSPS implies regular updates and queries issued on the
database running in the background. A possible implementation is given by a setting in which
the MSPS uses a Hibernate [Hib17] persistence layer to communicate with a PostgreSQL [Pos17]
database (see Figure 13.10). Practical experiences with such a setting have shown that a version
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mismatchbetween the Hibernate database driver and the PostgreSQL database can lead to a prob-
lem in the closing of database connections11. This problem might in turn sporadically lead to
failures while opening new database connections, and correspondingly to problems querying and
updating MSU positions within the MSPS. Assuming that the MSPS developers and operators are
not aware of the version mismatch, they would only observe that database connections are some-
times not released resulting in transient problems while handling GPS data. In order to remediate
this problem, the MSPS operators would use the embedded FDH self-healing capabilities and fea-
tures. That is, a lightweight monitoring daemon/sensor would be orchestrated by the MonAgent
on the MSPS node, in order to observe the number of open database connections. This daemon
would interplay with the other FDH agents - e.g. with FaultMangAgent and the SurvAgent - on
the MSPS node in the following way:
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Figure 13.10: VTT Control Room Architecture with Database Subsystem

1. The MonAgent database connections monitoring plug-in would periodically check the num-
ber of open connections.

2. In case a pre-defined number of open connections is being approached, the monitoring plug-
in would create an alarm description, which would be pushed to the FDH repositories on

11It might be a difficult task to identify the version mismatch as responsible for the problem of database connection
closing, since in general the entire set of database features function, and the failure to close database connections ap-
pears non-deterministically. In the scope of different projects, a couple of months and a large number of tests were
required to diagnose such a problem in a (pre-)product.
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the MSPS node.

3. The MSPS-node-EvDissAgent would in turn disseminate the alarm description to the in-
volved machines and would correspondingly notify the FDH components on the machine
hosting the database.

4. Subsequently, the alarm description would be forwarded to the FMF functions of the Sur-
vAgent on the machine hosting the database. These FMF functions are pre-configured as to
react by automatically restarting the PostgreSQL database and that way releasing the large
number of open connections.

5. A restart is also required for the database communicating module of the MSPS, in order to
fully release the connections which were opened on the MSPS node. Therefore, the FMF
functions of the belonging SurvAgent would automatically restart the MSPS server and
trigger the release of all database connections.

By executing these steps, the MSPS services would be only shortly unavailable and would then
continue handling GPS data from the MSUs. Hence, by introducing FDH based self-healing fea-
tures into the SPY architecture, it is possible to remediate emergent erroneous situations in the
IT infrastructure of the Control Room system, e.g. due to the unawareness of the MSPS operator
for a version mismatch between a Hibernate driver and a PostgreSQL database. Such an FDH
self-healing "patch" would help to sustain operations whilst the experts analyze the problem and
find a suitable solution in the long term.

13.4 Combined Case Study

The final case study demonstrates the capability of FDH to remediate multiple parallel challenges
in an ISP network. Thereby, this combined case study builds on some of the case studies presented
in the previous subsections and adds some additional potential problems/faults within an ISP net-
work. Indeed, the key potential problems were selected based on a survey that was conducted in
the course of a large scale European project, related to the topic of combining IPv6 and Autonomic
Computing towards improving various network management aspects.

13.4.1 Case Study Description

The FDH framework was applied to a combined case study, involving a combination of different
networking problems being introduced to the experimental IPv6 network in Figure 11.1. As previ-
ously mentioned, this network was designed in the course of the EU EFIPSANS integrated project
[efi16a] based on the requirements which were consolidated from the participating industrial and
academic partners.

13.4.1.1 Networking Problems Survey

In addition, the partners within EFIPSANS have conducted a survey on potential networking prob-
lems, which provided the base for the combined case study presented here. Thereby, the focus was
set on problems that can occur in IPv6 networks, as the testbed in Figure 11.1.
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The survey involved a two-stage process, the first part being an analysis by the consortium of prob-
lems encountered in the course of installing and operating IPv6 - both from their own experience
as part of the project, and their knowledge of the industry at large. The second stage involved an
analysis of the IPv6 protocols involved in these issues by understanding the IETF RFCs related to
each protocol and an analysis of how each fault occurs and their likelihood. Additionally, a number
of papers, books, and (also non-IPv6) RFCs were examined in order to identify problems suitable
for demonstrating the concepts proposed by EFIPSANS. The types of problems the EFIPSANS
consortium was looking for include:

1. Misconfigurations due to hacker attacks or due to the adoption of configuration profiles
from another network - e.g. parts of an IPv4 configuration inherited after the network has
switched to IPv6

2. Maintenance activities - according to [Tch10] and EFIPSANS industrial partners such in-
terventions account for 20% of all failures

3. Overload of particular nodes or paths

4. Emergent behaviors - i.e. situations in which each functional entity works correctly accord-
ing to its specification, but the overall set of behaviors leads to performance degradation of
the overall system

5. Well studied anomalies, which can be potentially remediated by networking management
automations as investigated within the EFIPSANS project, and

6. Incorrect behaviors of functional entities due to software bugs or hardware defects

These criteria/constraints, according to which the EFIPSANS consortium conducted the survey,
can be directly mapped to some parts of the broader classification of faulty conditions, which was
presented in section 5.3.

As a result of this survey, some problems (faults) were selected according to:

1. The impact of the faults on the IPv6 stack - given the IPv6 based testbed in chapter 11 and
Figure 11.1

2. The likelihood of these faults occurring in industry networks

3. The relevance of these faults to IPv6 and the EFIPSANS project - given that the testbed was
of relevance for this EU-project

The study provided insights and inspirations for the FDH combined case study that was worked
out in the course of this thesis.

13.4.1.2 Setup Description

The following paragraphs elaborate the key aspects of the experimentation setup starting from the
network setup and the concrete problems, which were (periodically) introduced to the testbed in
the course of the combined case study, and proceeding with key configurations for the FDH com-
ponents deployed across the testbed nodes, such as Fault-Propagation Model, monitoring sensors,
and various required reaction policies.
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Infrastructural and Traffic Considerations: Before diving into the details of the FDH configura-
tions and the emulated network problems, a general remark on the case study setup is needed: The
presented case study emulates problems within an ISP network. Thereby, the routers R1-R11 play
the role of the nodes within this ISP network. Furthermore, the client end systems - Alice, Bob,
Charlie, Dave, and Paul - play the role of subscribers to the ISP’s network. Thereby, in order to
focus on the IP layer aspects, the various types of access network components, such as DSLAM,
Diameter/RADIUS server, etc, are omitted. Moreover, the machines on the right side of Figure
11.1 are considered as OTT (Over-the-Top) services12, such as video streaming platforms, FTP or
Webservers. Furthermore, the ISP’s network provides basic networking services like DNS, which
is available in the S3 network in the middle. In addition, it is presumed that the ISP offers a storage
service for its subscribers, which is realized by an additional FTP server in the S3 network in the
ISP’s domain.

In order, to create an environment for testing the FDH behavior, iperf [IPE17] and ping [PIN17]
traffic generators were started on the client end systems (Alice, Bob, Charlie, Dave, and Paul) on
the left side. These generators were pushing traffic towards the OTT servers on the right side as
well as towards the FTP server within the ISP’s network. Thereby, TCP and UDP traffic (based
on iperf ) and ICMPv6 traffic (based on ping) was pushed between the client end systems and the
servers.

Concrete Network Problems: For the sake of the combined case study, the various networking
problems (inspired by the above survey) and corresponding faults were injected by an automated
script that was issuing commands on the network nodes on Figure 11.1 over the management in-
terfaces. In particular, four different types of problems were introduced at multiple points in the
network including:

1. Black Holes ([Lah00] and section 13.1) in IPv6 on R9 and R1

2. Ethernet Duplex Mismatches ([SC05] and section 13.2) on links R9↔R10 and R10↔R11

3. large packet delays resulting in low quality of the link R1↔R213

4. crash of the DNS (Domain Name System) server running in sub network S3 - thereby emu-
lating the problem of a server crash with a serious impact on the ISP infrastructure14.

In addition to the problems from the previous case studies (section 13.1 and section 13.2), the
issues of an increased delay on a link and the crash of a DNS server are used in the case study.
These circumstances might occur due to issues in the design and implementation of involved mod-
ules, e.g. memory leaks and bugs in the realization of link layer switches, drivers, or (DNS) server
components. The DNS availability and the delay on a link are monitored by watchdogs that report
incidents to the FDH machinery resulting in Fault-Isolation and eventually the restart of the server
or the switching off of the NIC in question, such that the traffic avoids the link with the large
delays. Within the experimentation flow, the delay on the R1↔R2 link is incrementally increased

12The term Over-the-Top denotes in general services which are not provided by an ISP (or a network provider in gen-
eral) but rather by a content provider who maintains a set of servers and ideally a belonging CDN (Content Distribution
Network).

13The problem can be seen as belonging to the class Faults/Errors/ Failures detected at the Network layer, Link and
Physical Layers , i.e. section 5.3.1 from the classification of faulty conditions.

14This problem maps to section 5.3.2 from chapter 5 (i.e. from the classification of faulty conditions) and is described
as Faults/Errors/Failures detected at the Services and Application Layers thereby understanding DNS as a network ser-
vice.
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which is detected by the monitoring watchdog orchestrated by the MonAgent in the context of the
FPF module of the SurvAgent, thereby shaping a scenario for the Failure-Prediction aspects of
FDH.

Fault-Propagation Model: The above listed potential issues result in an overall number of five net-
work faults being injected by an automated script at different points (links, routers and servers)
in the testbed network on Figure 11.1. Correspondingly, a Fault-Propagation Model comprising
around 40 events was constructed as to facilitate the Fault-Isolation process in the network nodes.
Thereby, the Fault-Propagation Model includes sub-models for Ethernet Duplex Mismatch and
IPv6 Black Holes which are similarly constructed to the models presented in the previous sections
13.1 and 13.2. These sub-models reflect the particular fault-propagation chains for the specific
problem, either an IPv6 Black Hole on R9 or R1 or a Duplex Mismatch on the link R9↔R10
or the link R10↔R11. Thereby, the above IPv6 Black Hole and Duplex Mismatch problems can
manifest by some common observable errors/failures, according to the deployed Fault-Propagation
Model and monitoring components, e.g. the failure of "Duplicate acks in TCP connections pass-
ing through R4" (a similar event would be also observed on R8) can be a consequence either
from an IPv6 Black Hole on R9, or from an Ethernet Duplex Mismatch. In the course of that,
the Fault-Isolation result is determined by additional events - e.g. "Sudden drops in TCP connec-
tions" (on a router traversed by affected traffic) for IPv6 Black Holes, or the "Increased number
of dropped packets" at the corresponding machine in the case of any Ethernet Duplex Mismatch.
These events influence the event correlation procedure as to narrow down to the most likely root
cause. In addition, a fault- propagation chain that reflects the DNS server crash is embedded in
the Fault-Propagation Model for the combined case study. Thereby, the domain name resolution
of the service provider network is periodically checked on the edge router(s) close to the client
end systems. In case of unsuccessful domain name resolution, several possible fault-propagations
might have caused it, including Black Holes, Duplex Mismatches and a crash of the DNS server
in the S3 network. The most likely root cause depends again on the correlation of the overall set
of observed incidents. In case only the domain name resolution failure was observed as a single
event, the Fault-Propagation Model was designed to lead to the direct conclusion that the DNS
server must have crashed.

Fault-Detection and Monitoring: In order to detect different symptoms related to the above net-
working problems, a number of monitoring plug-ins where instrumented within the MonAgents
across the network. In particular, monitoring plug-ins which were sampling traffic passing through
the respective edge router - R1, R4, and R8 - were orchestrated by the belonging FDH MonAgents.
These plug-ins were picking traffic from the passing TCP connections and analyzing it, in order
to detect various anomalies which were indicating a problem in the ISP’s network behind. That
is the monitoring sensors were looking for "sudden drops (without an accomplishing FIN packet)
in TCP throughput on an interface", "increased number of retransmissions in the TCP flows", as
well as "increased number of duplicate acks in the TCP flows". Furthermore, monitoring "sensors"
were installed on relevant edge routerrs as to control the DNS resolution service provided by the
ISP network, as well as to detect the increase in the delay on the R1↔R2 link.

Failure-Prediction Functions: The Failure-Prediction Functions were instrumented as to anticipate
problems on the link R1↔R2 based on the RTT delay measured between the two routers. An in-
crease in such a delay can be the result of various root causes, such as transient errors due to bugs
in the realization of the link layer switches or the NIC drivers on the involved routers - for instance
memory issues leading to fatigue in the operation of the involved modules. As mentioned above,
such increases in the RTT delay on the R1↔R2 link were tracked by a monitoring watchdog on
R1 that was reporting to the FPF module of the SurvAgent on R1. Thereby, the FPF module was
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using the exponential smoothing method that was described as a possible algorithm for Failure-
Prediction in section 7.4.3. The exponential smoothing was giving an indication on whether there
is a stable trend for an increasing low quality of the R1↔R2 link. Given that a particular threshold
- resulting from the exponential smoothing average - was crossed, an alarm was generated by the
FPF (see the sequence diagram in Figure 6.12) that was describing the low quality trend on the
R1↔R2 link. Based on this alarm the Fault-Mitigation Functions were instrumented as to switch
off the involved Network Interface Cards on R1 and R2. As a result the traffic was re-routed over
the R1↔R4 link which is considered as the better option given the low quality of the R1↔R2 link.

Fault-Mitigation Functions: The Fault-Mitigation Functions were instrumented on various nodes
across the testbed on Figure 11.1 whilst experimenting with the combined case study. Firstly, the
R1 router had a Fault-Mitigation policy to switch off the link towards R2 in case of an alarm for
a stable and continuous trend for low quality of the R1↔R2 link. This alarm is generated by
the Failure-Prediction Functions as described above. Furthermore, the client end systems were
equipped with a Fault-Mitigation policy that was allowing them to undertake an action upon get-
ting notified of symptoms indicating IPv6 Black Holes in the network. These symptoms were
given by "sudden drops (without an accomplishing FIN packet) in TCP throughput", "increased
number of retransmissions in the TCP flows" and "increased number of duplicate acks in TCP
flows". The action was constituted by setting the PMTU towards the corresponding servers to
1280 Bytes, which is the minimal MTU for an IPv6 network. That way, it was assured that the
existing connections will proceed to serve the clients as long as the Black Hole problem is being
removed in the network.

Fault-Removal Functions: With respect to the Fault-Removal Functions, various FRF policies
were configured for the purposes of the combined case study. Starting with the IPv6 Black Holes
within the case study, the reconfiguration of the firewalls on R1 and R9 (refer to the testbed net-
work on Figure 11.1) was instrumented as a Fault-Removal behavior. Thereby, the firewalls on
R1 and R9 were reconfigured as to stop blocking ICMPv6 "Packet too big messages" according
to the recommendations in RFC4942 [DKS07]. This was implemented by the use of the ipta-
bles6 [IP617] tool which is provided in Linux based operating systems. Furthermore, the fault
of Ethernet Duplex Mismatch on the links R9↔R10 und R10↔R11 was removed based on pre-
configured Fault-Removal Functions on the involved routers (R9, R19, and R11). Thereby, the
ethtool [ETH05] was used in order to reinitiate the duplex auto-negotiation between the Network
Interface Cards on the links in question, i.e. R9↔R10 and R10↔R11. Finally, a Fault-Removal
action was configured on the DNS server machine in the S3 network - in the center of Figure 11.1.
This action consisted of restarting the DNS server on the machine in order to restore its operation.
Thereby, in case the DNS server has crashed, its shutting down was not needed, otherwise the
restart was considered as a mean to remediate the fatigue in its operation leading to failed DNS
query resolutions for the modeled ISP network.

In addition15, different types of Fault-Removal assessment actions were configured for the FRAF
modules of the FaultManAgents on the corresponding network nodes. These were checking on
whether the firewalls were indeed successfully reconfigured, the domain name resolution was
working correctly after a DNS server restart, or if the Duplex Mismatch on one of the IEEE 802.3
links (R9↔R10 and R10↔R11) was successfully resolved. In case these FRAF actions have iden-
tified a Fault-Removal action as unsuccessful, they would notify the network administrator over

15In the scope of the combined case study, the focus is set on demonstrating the ability of FDH to cope with multiple
faults in a broader network environment. Therefore, the Self-Organization aspects were omitted during the case study
design, given the need to go for an environment and set of problems which convincingly show the self-healing benefits.
The self-optimization aspects were thoroughly analyzed and their benefits demonstrated in section 8.2.7.
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the Operator Console on one of the servers in the S3 network in the center of Figure 11.1.

13.4.2 Qualitative Analysis

The qualitative analysis in this chapter builds on the setup and flows established in the combined
case study from section 13.4.1. In that context, a number of trials with different series of the
above16 described networking problems (i.e. series of fault injections) were executed. Thereby,
the various series were realized by automated scripts that were accessing the network nodes over
the IPv4 management interfaces of the Figure 11.1 testbed. These scripts were automatically log-
ging into the network nodes and reconfiguring them as to introduce the next networking problem.
Subsequently, it was observed how the FDH mechanisms across the network nodes were imple-
menting the belonging behaviors as to mitigate and/or resolve the introduced problems. In the
cases where FDH failed to remove the introduced fault, the automated script for the trial was tak-
ing care of setting things back after some time, such that any after effects are removed before the
next fault of the experimentation is introduced .

As mentioned above, a number of trials with different series of fault injections was executed. The
ratio of successfully resolved faults is depicted in Figure 13.11. Thereby, the horizontal axis marks
the different trials that were executed in turn, whilst the other axis shows the absolute number of
successful fault-resolutions compared to the number of failed ones. In general the FDH managed
to improve the resilience of the IPv6 network on Figure 11.1. There was one main reason why
FDH could not remediate all introduced problems, namely the fact that the monitoring sensors
were periodically sampling traffic, and thus sometimes missed to catch the incidents manifesting
a Black Hole or Duplex Mismatch. However, the percentage of successfully detected, isolated
and removed faults ranges from 50% to 94%, and on average 70% of the introduced faults were
successfully resolved, such that the network could continue its normal operation.

To summarize: The quality experiments conducted within the combined case study setup (section
13.4) show that indeed the principles of FDH are implementable and once provisioned, can en-
able self-healing features within the network and the devices, thereby significantly improving the
quality of a network17.

16see section 13.4 for setup an networking problems of the combined case study
17In addition, the comibned case study and belonging qualitative experiments also demonstrates how the self-healing

mechanisms of FDH can extend the capabilities of IPv6, e.g. to overcome ICMPv6 suppression based Back Holes in
the core network
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Figure 13.11: Number of successful Fault-Resolutions during the conducted Experiments



Chapter 14

Conclusions and Outlook

The following paragraphs provide the summary, conclusions and outlook of this thesis. First, a
comprehensive overview of the presented research is given thereby outlining the key contribu-
tions of the single chapters and correspondingly the technical and scientific achievements. Sub-
sequently, a discussion relating to the presented scientific output is provided. This includes an
elucidation regarding how the problem statement of this thesis - formulated in the introductionary
part - was addressed, followed by mapping the presented scientific work to the targeted research
hypothesis, as well as showing how the pre-defined target objectives (as described in the current
manuscript) are met by the presented research. Furthermore, a comparison to similar approaches
and a general discussion regarding the role of the self-healing approach, which is at the heart of
this thesis, is provided. Finally, future research directions are drafted and an outlook on possible
further developments is given.

14.1 Summary

The current thesis deals with the topic of self-healing based on agents, which are distributed across
the network devices and collaboratively take decisions regarding actions towards remediating er-
roneous states in a network/system. Thereby, the proposed agents are meant to act in a way as
to optimize their overall reaction - i.e. resolve and synchronize (conflicting) actions of multi-
ple involved agents towards increasing the overall performance and operations of the self-healing
framework (consisting of the proposed agents), as well as of the network/system in question.

The proposed framework is meant to fill the gap between the network management layer and
the network protocols itself with respect to handling faults/errors/failures/alarms in a networked
environment. Traditionally, the network management substrate encompasses the processes of
Fault-Management ( according to the FCAPS TMN standard) that deal with aspects such as Fault-
Detection, Fault-Isolation and Fault-Removal being executed in a standardized manner by the
network operations personnel. Different tools, protocols, standards and methods are in place for
facilitating the above listed tasks. These include monitoring protocols and techniques such as
SNMP, NETCONF and RMON, as well as techniques and tools for Fault-Isolation - e.g. Bayesian
Networks, Neural Networks, model based techniques and further. In addition, different protocols
and methods (like CLI, TR-69, COPS, XACML ... ) are available for reconfiguring network de-
vices such that the processes of Fault-Management and correspondingly troubleshooting can be
accomplished. All these techniques and protocols are implemented in various Operations Support-
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ing Systems (OSS) across the network management layers - e.g. Element Management Systems
(EMS) and/or Network Management Systems (NMS).

Looking from a different perspective; a number of fault-tolerant mechanisms are implemented
in today’s network protocols and services thereby realizing various vital aspects for increasing
the resilience and survivability of networked infrastructures. Typical examples are given by the
ICMPv4/v6 messages and mechanisms for network diagnosis and adaptation (e.g. PMTU discov-
ery) as well as by the TCP mechanisms for congestion control and packet retransmission.

Considering the above perspectives, there is an obvious gap for establishing a framework that deals
automatically with faults/errors/failures/alarms without every time involving the network opera-
tions personnel. Thereby, this framework is meant to take into account the intrinsic mechanisms
within the protocols and services, catch the incidents which are not handled on that level, imple-
ment an immediate reaction in terms of Fault-Masking/Mitigation, analyze in parallel multiple
incidents and come up with a strategy for resolving a malicious network state, which strategy is in
turn to be executed in order to remove faults in the long term operation of the network. Further-
more, the framework should be intelligent and context-aware as to understand when it is not coping
with the current network challenges, and should correspondingly escalate the situation to the net-
work operations personnel thereby providing all required information for efficient Fault-Isolation
and Fault-Removal according to traditional troubleshooting and Fault-Management principles.

Having identified the need for an agent based self-healing framework (incorporating self-
optimization features), the thesis proceeds with an extensive analysis of scientific requirements
towards the design and specification of the envisioned Framework for Distributed Self-Healing
(FDH). This includes the identification of both function and non-functional requirements.
Thereby, the functional requirements pertain to the functionalities required in order to fulfill the
envisioned role of FDH in a distributed networked environment. These requirements help identify
necessary components (e.g. agents, modules, libraries ..), processes/tasks, types of algorithms,
and interactions between FDH components for the realization of scalable and efficient self-healing
with self-optimization features. This includes requirements which lead to the key agents of FDH
as well as to the main processes to be realized by the overall set of FDH agents across the network.
Furthermore, the non- functional requirements mainly relate to the question of how the required
functionalities are realized, thereby addressing aspects such as scalability, resource consumption
and induced overhead ( e.g. memory consumption, CPU utilization ...), dependability and stability
of the self-healing control loops as well as security, to give some examples. Finally, different
classes of problems from the area of networking and distributed systems are presented, which
are defined as the target scope of FDH when it comes to automatically resolving erroneous states
within modern and future networks/ systems.

Based on the above elaborated scientific requirements, the thesis proceeds with devising the key
components of the FDH framework. Thereby, the focus is set on the components which operate
within a single node with the presumption that components within single network devices will col-
laborate, in order to achieve self-healing for the network as a whole. Hence, the required processes
inside a network node are described along the definition of the belonging FDH modules. Addi-
tionally, the self- healing and self-optimization tasks (comprising different required control loops)
are specified on network level, whereby the direct and indirect collaboration between the network
nodes is discussed on. This means that various required components are captured in the course
of specifying the architecture of the FDH itself. Furthermore, the dynamic aspects of the FDH
architecture are described, i.e. the interaction flows among the specified components on node and
network level towards the realization of distributed agent-based self-healing with self-optimization
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features.

The designed and specified components include agents such as 1) the node level Fault-
Management Agent - responsible for the automation of Fault-Detection, Fault-Isolation and
Fault-Removal thereby realizing an automated Fault-Management control loop for achieving
self-healing and fault-resolution in the long term operation of the network, 2) the node level
Survivability Agent - responsible for immediate response to a detected fault (in a manner that
considers the intrinsic fault-tolerant mechanisms of the network protocols and services) in
addition to realizing a proactive Failure-Prediction and corresponding reactions avoiding future
fault activations, 3) the node level Monitoring Agent - responsible for orchestrating tools and
entities for monitoring and anomaly detection on node level as well as among nodes with respect
to communicational behavior, 4) the node level Self-Optimization Agent - responsible for the key
functionality of selecting the optimal set of actions initiated by the different control loops (e.g.
Fault-Management control loop, Survivability Agent control loop, internal Monitoring Agent
control loops) towards optimizing the network/system operation as well as the operation of the
FDH framework itself, and last but not least 5) the Event Dissemination Agent of FDH - taking
care of fault/error/failure/alarm and general events sharing across the FDH instances within in
a network in order to enable these entities to react to erroneous states in a distributed manner.
The interactions among those key components and other supporting components are captured in
the form of sequence diagrams describing the flows of the involved control loops and building
a framework, in which key algorithms need to be plugged. During the architectural design of
the FDH components, special emphasis was put on aspects relating to the involvement of the
network operations personnel, which is constituted first by the configuration and provisioning
of required operational models (e.g. models for Fault-Isolation, monitoring policies, Fault-
Removal/Mitigation policies etc.) and to the escalation - from the FDH perspective - of faulty
conditions which are not automatically resolvable to the network administrators, observing and
reacting/tweaking the FDH operations as to achieve improved QoS in the long term operation (i.e.
achieving an effective "human in the loop" involvment).

After capturing the architectural aspects of FDH including its embedded interaction flows, the
current scientific works proceeds with the design of each of the devised components. Thereby,
suitable algorithms are selected and new algorithms are researched, in order to realize the two
main aspects of FDH, i.e. 1) scalable and efficient self-healing, and 2) self- optimization with
respect to the executed self-healing actions in order to improve the overall system’s operation
together with the FDH operations itself. First, the key structures of the Monitoring Agent are
investigated including different policy concepts and abstract interfaces for KPI monitoring and
Fault-Detection. Subsequently, different approaches to alarm/incident/event dissemination over
connectionless packet switched links (e.g. on top of connectionless UDP) are investigated for the
goals of FDH. These techniques include flooding, gossiping and repetitive retransmission incor-
porating mechanisms such as broadcast and multicast. The analyzed techniques are evaluated in
a discrete OMNET++ simulation in various Internet alike topologies and links, in order to prove
their applicability for the purposes of FDH. Furthermore, techniques for scalable and efficient
Fault-Isolation are required as a key part of the Fault-Management agent. The resulting inves-
tigation leads to the invention of a new advanced Markov Chain based technique for Fault-
Isolation, which is one of the key innovations of this thesis. The proposed algorithm turns out to
be quite effective based on the conducted case studies and experimental simulations for large net-
work architectures. Moreover, it shows some low overhead with respect to memory consumption
during the experiments and is extremely fast, which confirms a number of theoretical calcula-
tions regarding the time and space complexity of the proposed Fault-Isolation approach. All these
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properties of the proposed Markov Chain based algorithm turn the most difficult, cumbersome
and computationally hard part of the self-healing control loop into a fast and scalable calculation
allowing the FDH to realize fast self-healing reactions in large scale networks. The outcome of
the Fault-Isolation procedure has to be subsequently processed in various ways leading to a final
reaction of the FDH framework.The reaction might be given by the reconfiguration of a firewall
or the restart of a NIC/ node to give some examples. Therefore, different policy concepts are re-
quired which are again presented and evaluated with respect to scalability and evaluation time in
the corresponding chapters of this thesis. Such policies are utilized for different tasks including
the decision on which Fault- Removal actions to be selected or the assessment (i.e. check) of
either the Fault-Isolation or Fault- Removal outcome is valid and successful. Thereby, in case of a
negative assessment the overall situation should be escalated to the network operations personnel
since obviously the FDH is unable to cope with the challenges to the network.

Having presented the basic self-healing function of the FDH framework, the thesis flow proceeds
with describing the self-optimization aspects of the proposed architecture. Self-optimization is
proposed at various spots within the introduced node and network level agents’ eco-systems:
1) adaptation of Monitoring Job Parameters, 2) Fault-Propagation Model adaptations, 3)
Context-aware Self-healing Actions based on the history of executed control loops, 4) Selec-
tion of Optimal Tentative Actions, and 5) Avoiding Contradictory Tentative Actions. Whilst
the majority of these aspects would be realized by traditional policy concepts or data mining
methods (in case of the Fault-Propagation Model), a main innovation of this thesis is given by
the design/specification, prototyping and evaluation of a dedicated agent (Self- Optimiza-
tion Agent) for synchronizing the tentative actions coming from multiple parallel running
control loops, with the goal of selecting the optimal tentative (agent) activities for execution
and avoiding contradictions in parallel control loop reactions, thereby preventing emerging
situations where multiple contradicting actions worsen the situation in the network/system
instead of resolving an erroneous state. A Self-Optimization Agent can act on node or network
level thereby synchronizing and optimizing the actions of a set of belonging FDH agents. In order
to achieve that, a Self- Optimization Agent solves an optimization problem regarding the submit-
ted tentative actions. The current thesis derives the mathematical form of the optimization problem
and seeks for different ways to efficiently solve it, given that the mathematical formulation leads to
an NP-hard type of problem. Correspondingly, different methods for efficient and scalable (almost)
real-time solving of the action synchronization problem are investigated. These methods include
the machine learning reformulation of the optimization problem leading to a training process for
obtaining key parameters from previously acquired training data (consisted of tentative actions
acquired during FDH operations).The resulting computation proves to be fast and scalable with
minimal memory consumption overhead, allowing to execute tentative actions’ synchronization
and optimization for the purpose of efficient and swift distributed self-healing.

To complete the architectural and algorithmic design aspects of the proposed framework, the the-
sis deals with the involvement of the network operations personnel in the process of self-healing.
Hence, the various pre-configurations are described, to be conducted by the administrators tweak-
ing the FDH operations. This includes the provisioning of different models required for the FDH
operations, including different policy models - e.g. Fault-Removal policies, different monitor-
ing policies ( Admission Policies, Adaptation Policies ...) or Fault-Isolation Assessment policies
- as well as a Fault-Propagation Model that is required for (almost) real-time Fault-Isolation in
the network devices. In addition, a set of configurations are required for the Self-Optimization
agent including the provisioning of a so-called impact matrix which captures the impact of the
pre-configured FDH actions (resulting from various policies) on different KPIs relating to the per-
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formance of the network/system in question. Based on the provisioning procedures elucidated in
this thesis, the admin team is facilitated to provide FDH with all required artifacts for improving
the QoS of the managed network and services. On the contrary, in cases when the deployed FDH
agents determine that the self- healing processes do not cope with the challenges to the network,
they should be able to escalate the current faulty conditions to the network operations personnel
and describe the current situation as thoroughly as possible - including various monitored KPIs,
deployed model instances, logs of executed control loops and alarm/incident/event descriptions of
relevance. Thereby, a set of criteria is required and correspondingly defined enabling the FDH
agents to decide on whether a particular situation should be escalated or not. The above elucidated
escalation data allows the administrators to take corrective actions, restore network/service func-
tionality, analyze the provided history and improve the FDH operational models, based on some
data mining or machine/statistical learning techniques.

After completing the conceptual discussions, the following chapters proceed with the experiments’
part of this thesis. This includes the description of the implemented experimental FDH prototype
as well as the testbed used for trials and evaluation. Thereby, it should be noted that the testbed
originates from a large scale European FP7 project involving several research and industrial part-
ners - including operators and vendors. Subsequently, scalability and overhead investigations are
provided which consist of a theoretical complexity analysis and different experiments pushing key
input parameters to the extreme, in order to investigate the practical FDH performance based on
the developed prototype. The obtained results clearly demonstrate the scalability and effectiveness
of the FDH framework thereby inducing minimal overhead in the network devices. Subsequently,
a set of case studies are presented which were conducted based on the FDH architecture and pro-
totype and proved the usefulness of the self-healing concepts for different networking problems
identified within the aforementioned large scale European FP7 project. The main insights are
given by a combined complex case study involving multiple fault-injections over a longer period
of time and measuring the FDH performance with respect to the number of automatically re-
moved networking problems. The conducted experiments demonstrate the improvements brought
by FDH regarding the processes of network management and control with the goal of providing
and improved QoS in distributed network environments.

14.2 Discussion

After the summary of the performed research, the following subsections discuss on how the goals
of this thesis - defined in chapter 1 - were achieved, as well as how the conducted scientific work
relates in general to the current dynamics of relevant scientific and technological developments.
At first, the thesis problem statement from section 1.1.1 is elucidated, followed by relating the
obtained results the stated research hypothesis from section 1.1.2. Moreover, the target objectives
are put into the picture - these target objectives were defined in section 1.2.1 and section 1.2.2
in the form of expected scientific output and technological objectives regarding the execution of
the envisioned thesis research. Finally, the FDH framework and its conceptual and technology
background are overally related to current research and development efforts in the domain.

14.2.1 Addressing the Problem Statement

According to the problem statement description in section 1.1.1, this dissertation deals with a cou-
ple of challenges the first being the identification of software components which operate in a
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distributed manner inside the network elements, and increase the self-healing capabilities
of a fixed IP network infrastructure. The required software components were identified after
a thorough requirements’ analysis in chapter 5 based on various inputs including a literature/s-
tandards and best practices review of the current situation as well feedback from various vendors
and operators - e.g. from a large scale European project but also from industrial projects con-
ducted at the Fraunhofer FOKUS institute during the past years. Thereby, each component was
described in detail in chapter 6 and designed to be operating in a distributed manner towards en-
hancing the self-healing capabilities of a particular fixed IP network infrastructure. Furthermore,
the distributed interaction flows among the FDH components across an FDH managed/controlled
network are described in detail thereby capturing and illustrating how distributed self-healing with
self-optimization features is intended within the current dissertation.

Additional modules of this dissertation’s problem statement aim at proving the feasibility, effi-
ciency and scalability of the proposed FDH framework. The feasibility was mainly shown by the
prototype described in chapter 10 and deployed in the testbed from chapter 11, in order to conduct
various trials and experiments. Thereby, the conducted experiments were based on case studies
which were defined based on literature research and feedback from network operators involved
in the aforementioned large scale EFIPSANS EU research project. The case studies were used
to test the ability of FDH to detect erroneous states and remediate/resolve those in the long term
operation of the network. Thereby, it is shown that FDH can efficiently improve the QoS and
the resilience/robustness of the network in question. In addition, these case studies are the basis
for a series of experiments pushing different operational parameters (e.g. network size, number
of simultaneous faults, number of actions for self-optimization ...) to the extreme thereby exper-
imentally evaluating the scalability and overhead of the implemented prototype. The conducted
measurements indicate excellent scalability features of the FDH framework based on the imple-
mented prototype, as part of the feasibility study of the current dissertation. These evaluations
match the theoretical results - i.e. complexity analysis - that was performed ahead for the various
algorithms and design patterns, which were researched, specified and utilized for the FDH.

14.2.2 Research Hypothesis

The corresponding research hypothesis was elucidated on in section 1.1.2. It basically consists of a
set of author’s claims relating to the key aspects of the problem statement. Within the first one the
author claims that it is possible to (1) design and specify a software agent based framework for
distributed self-healing in fixed IP networks. This claim was clearly addressed by the require-
ments analysis chapter 5 and the chapter on the framework design (i.e. chapter 6). The second
author’s claim states that it is possible to (2) select or devise efficient and scalable algorithms for
the different tasks within the emerging self-healing framework. In that context, chapter 7 deals
with the selection of existing and the definition of new algorithms for the different tasks around the
processes of self-healing - including Fault-Detection, Fault-Mitigation, Fault-Isolation and Fault-
Removal. The main innovation of chapter 7 is given by the definition of a novel Markov Chain
based reasoning scheme for Fault-Isolation, which proves to be scalable and very efficient thereby
solving the complex and cumbersome Fault-Isolation problem. Moreover, chapter 7 selects, adapts
and modifies different algorithmic schemes for the purposes of FDH, thereby presenting a large
range of theoretical and experimental results confirming the claimed scalability. The next module
of the research hypothesis is given by the claim that (3) FDH can be designed in a way that it
optimizes its reactions and operational parameters (i.e. self-optimization features), in order
to continuously improve the QoS of the network. This third aspect is addressed on architec-
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tural level ( see section 6.2.2) as well as on algorithmic framework level in chapter 8. Thereby,
the main innovation is given by an advanced scheme for tentative action synchronization, which
means that the proposed reactions coming from the multiple control loops are analyzed and only
those are allowed to proceed, which are going to provide the best QoS network/system optimiza-
tion as a combined set of actions. Furthermore, the research hypothesis claims that it is possible
to (4) design the framework in a way, such that the network operations personnel does not
lose control over the network/system in question, but rather stays in the loop by monitoring
and intervening (if required), in order to resolve problems or improve the operation of FDH.
This fourth aspect has been addressed on architectural design level in chapter 6 and chapter 9,
where a special set of interfaces has been devised between the FDH components across the net-
work and the human administrators. Thereby, various required interaction flows were specified
which determine either the provisioning of FDH operational models by the network operations
personnel, or the escalation of erroneous states, which are not resolvable by FDH means, to the
network operations personnel. In this line of thought, chapter 6 defines a set of criteria which the
distributed FDH components should use, in order to determine whether a faulty condition should
be escalated to the operations personnel. In addition, chapter 6 discusses on technical aspects
regarding the realization of the interfaces between the FDH instances and the human experts mon-
itoring, observing and tweaking the self-healing operations. This includes the provisioning of
operational models based on different meta-models and ontologies as well as the communication
mechanisms for escalation to the employed Network/Element Management System. Having met
all the previous conceptual claims, the thesis proceeds with addressing the author’s hypothesis
that it is possible to (5) implement the proposed FDH framework for distributed self-healing.
This aspect is addressed by the prototype described in chapter 10 and deployed for the purpose
of various experimentations in the testbed described in chapter 11, originating from a large scale
FP7 EU project. The prototype components are employed for evaluating the sixth claim of the
research hypothesis, which is formulated as (6) the FDH capability to increase the availability
of fixed IP networks. For this purpose, a number of case studies (chapter 13) were described,
illustrating the capabilities of FDH to detect, isolate and remove different network problems. In
addition, a complex case study - composed from the different network problems and involving the
continuous fault-injection (based on the aforementioned network challenges) of longer series of
erroneous states - was used in order to evaluate the FDH reactions in the long term operation of a
network. In this case, it was observed that FDH could significantly improve the resilience of the
underlying network/system by automatically removing and mitigating faulty conditions, thereby
resolving on average 70% of the introduced faults. A number of further experiments (e.g. chapter
7 and chapter 12) relating to the single FDH components (i.e. agents) combined with theoretical
complexity analysis (with respect to time and space) were used for proving the next claim of the
research hypothesis - (7) FDH can scale its operations with a growing size of relevant param-
eters (e.g. number of incidents). Thereby, one can clearly observe that all the involved processes
and algorithms were designed in a way that they scale with growing network size and incident
numbers to be processed simultaneously. During these experiments, the overhead produced by the
FDH components was monitored and corresponding results were presented in chapter 7 and chap-
ter 12, thereby proving the last claim of the research hypothesis -namely that (8) FDH operates
efficiently with minimal overhead ( e.g. memory consumption and CPU utilization) within
the network devices.
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14.2.3 Meeting the Target Objectives

In addition to the above research hypothesis, section 1.2 and section 1.2.1 defined a number of tar-
get objectives, which were listed as thesis’ objectives and expected scientific output. Thereby,
the objectives are mainly formulated as the means and aims to be achieved, in order to fulfill
the research hypothesis as discussed in the previous section. Hence, in many aspects the current
manuscript addresses these aspects similarly as it does with the research hypothesis from above.

The formulated target objectives include the identification of software components, which op-
erate in a distributed manner inside the network nodes, and increase the self-healing ca-
pabilities of routers and end systems within a fixed IP network infrastructure - addressed
mainly by chapter 5 (Requirements Analysis), chapter 6 (Framework Specification) and chapter 7
(Realization of the Self-Healing Function). Furthermore, the target objectives encompass the need
for the specified components and mechanisms to proactively and reactively respond to faulty
conditions, which is addressed in the chapters listed for the first point. The goal for the evalua-
tion of existing mechanisms, and where required, the development of new algorithms for the
emerging framework are handled mainly in chapters 7 and 8, dealing with the selection and def-
inition of efficient mechanisms for the self-healing processes (Fault-Mitigation, Fault-Detection,
Fault-Isolation, Fault-Removal ...) and for the self-optimization features of FDH. Thereby, the
target objective of incorporating self-optimization features is incorporated on multiple levels
of the FDH framework starting from the requirements (chapter 5), proceeding to the architectural
specification (chapter 6) and rounding up the picture with the development of sophisticated algo-
rithms for tentative action selection and optimization (chapter 8), as well as different evaluations of
the effectiveness, scalability and overhead produced by the self-optimization features (chapter 12).
This is complemented by an extensive theoretical and experimental evaluation to prove the ef-
fectiveness of the components and algorithms with respect to self-healing, self-optimization
as well as scalability and overhead (e.g. CPU utilization or memory consumption) in the
network elements, addressed whilst deriving each algorithm/mechanism/component as well as in
the dedicated case study chapter 13 and in the belonging chapter12 on scalability and experimen-
tal performance/overhead evaluation. Furthermore, the target of experimentally showing that
the framework as a whole can function and successfully increase the QoS of a network/sys-
tem is achieved through a combined case study within section 13.4. Thereby, one can observe
that on average 70% of the experimentally introduced fault-injections were resolved by FDH in
a longer series of experiments within the testbed of a large scale European FP7 project. This -
combined with the single case studies of the same chapter and the various elucidations across the
thesis - leads to scientifically showing that the proposed concepts have the potential to im-
prove the reliability of significant parts of the Internet. All the conducted experiments, case
studies and measurements were performed based on a prototype that was implemented and
utilized to execute the selected case studies of industrial and scientific relevance - these case
studies (chapter 13) were discussed and worked with multiple research and industrial partners
from a large European project context, and executed in a large scale testbed (chapter 11) based on
the FDH prototype (chapter 10). As an overall conclusion: based on the prototype, case studies
and belonging evaluations, it can be claimed that FDH simplifies traditional Fault-Management
processes for the network operations personnel, and correspondingly can help achieving an
OPEX (operational expenditure) reduction, which is also the last target objective in section
1.2.1 that remained unaddressed.
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14.2.4 Relation to Modern Trends

The current section summarizes briefly the relation between the presented FDH research concepts
and various trends in modern networking and distributed systems.

Autonomic Computing and Networking: Autonomic Computing is a trend that was extremely
popular in the past decade leading to a large number of research projects and scientific pub-
lications, as well as numerous industry fora and standardization activities. Thereby, different
initiatives dealt with refining and re-defining agent based concepts, in order to specify different
autonomic entities that are capable of executing feedback control loops (e.g. IBM MAPE)
to control their assigned resources. In that context, the FDH entities can be easily mapped
to different autonomic entity models (e.g. GANA Decision Elements, Autonomic Computing
Elements from the CASCADAS initiative, Autonomic Network Managers from IBM ...) thereby
relating the different FDH self-healing and self-optimization processes to the steps within the
corresponding autonomic control loops. Hence, the FDH can be easily viewed and understood in
the picture/context of Autonomic Computing and Networking.

Cloud Computing: Cloud Computing is a trend that comes with an increased virtualization of
networks and services. To a large extent, Cloud Computing simplifies the management of com-
plex distributed infrastructures and increases the robustness and self-healing of those by providing
the option to easily restart and migrate virtual machines, as well as to scale automatically the
resources (i.e. virtual machines). In that sense, Cloud Computing can be understood as a compe-
tition to the ideas of FDH, given that both increase the robustness and self-healing of a distributed
system. However, it is indeed possible to combine aspects of Cloud Computing and FDH thereby
increasing the effectiveness of both approaches. On one hand, it is possible to deploy FDH in
virtual machines and let it act as controller for a particular network/system, thereby ensuring the
resilience and robustness of FDH itself. On the other hand, it is possible to utilize FDH in order
to manage virtual appliances thereby boosting the effectiveness of the Fault-Removal and Fault-
Mitigation processes - e.g. VM restart, VM migration, and elastic resource scaling are techniques
which can be easily applied for the purposes of FDH.

SDN/NFV: SDN and NFV have been thoroughly reviewed in section 2.2.9 and constitute the latest
advance in research and development with respect to network control and management. Thereby,
the basic idea is to separate the data and control planes by placing special SDN/ NFV controller
outside the network nodes - in contrast to Autonomic Networking where the autonomic entities are
mostly meant to operate within the devices - and allow those controllers to steer and control the
nodes over special interfaces, e.g. SDN/OpenFlow based interfaces or hypervisor/container inter-
faces in relation to NFV. As reviewed in section 2.2.9, different initiatives have followed the path
to implement various network functions (e.g. routing) in the form of SDN controllers. Hence, it is
possible to view FDH as a controller for a node or a particular network area, thereby incorporating
Fault-Mitigation/Removal and Monitoring mechanisms based on SDN/NFV techniques. Hence,
FDH instances would be placed in distinct nodes (i.e. not within the forwarding and comput-
ing/service providing devices) in the control plane of a network and will increase the robustness of
the distributed network infrastructure by implementing self-healing behaviors with device access
over the special SDN/NFV interfaces (e.g. OpenFlow) in addition to traditional protocols such as
SNMP, NETCONF, TR-69 and CLI.

Modern Network Management: Modern Network Management is largely influenced by the above
elucidated trends (i.e. Autonomic Management, Cloud Computing and SDN/NFV). In this line of
thought, the previous paragraphs have explained on the relation and possible integration of FDH
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into the concepts in question. Hence, the shift towards latest network management and control
practices is indeed possible. A vital aspect - when relating and placing FDH in the light of Mod-
ern Network Management - is given by the need to increase the level and improve the integration
with existing NMS/EMS/OSS systems. A first exemplary integration of FDH to the open source
Nagios NMS was demonstrated in chapter 10. However, the research topic has the potential for a
larger range of activities including processes and concepts for developing NMS/EMS/OSS-FDH
integration components, tools for the provisioning of FDH operational models, analytical tools
for understanding the large amounts of FDH operational data and deriving improved operational
models, as well the modularity and composability of FDH operational models depending on the
various network parameters such as network topology, deployed protocols/service and specific
network element implementation aspects. All these aspects are elucidated in the outlook section
of this chapter.

Self-Organizing Networks (SON): SON has established itself as part of 3G/4G and potentially 5G
mobile communication networks that deals with various self-* aspects including self-healing. The
SON aspects were reviewed throughout this thesis, especially in chapter 3 and chapter 4. One of
the things that stand out is that SON is very focused on particular scenarios without capturing the
various aspects, processes, operational models and required algorithms for efficient self-healing
with self-optimization features. Hence, FDH can also be deployed in the context of mobile net-
works - e.g. in combination with the above elucidated SDN/NFV aspects - and can enhance the
capabilities of SON when it comes to the resilience of 3G/4G and potentially 5G networks.

The above discussions point out some of the possible futures research directions in the scope of
FDH. Therefore, the following section provides a general outlook on potential research beyond the
horizon of this thesis and identifies further activities towards increasing the potential for industrial
FDH deployments.

14.3 Outlook

A number of exciting research topics emerge as a result of the (conceptual) groundwork, which
was laid down in this thesis. In general, it can be observed that the prototype provides a good
starting point for the execution of further case studies in more sophisticated network environments
with further network technologies, topologies and services. In addition, the emerged prototype
needs further hardening, which will come with the application to additional case studies and the
execution of various scenarios involving different fault-injection/attacks in the long term oper-
ation of belonging experimental network/system. Thereby, a lot of research and development
potential is given by the interface between the network operations personnel and the FDH compo-
nents across the network. On one hand, this relates to the provisioning of the required operational
models for the FDH components. On the other hand, there is a need to research and improve
the integration of the belonging FDH interfaces into traditional network monitoring/management
systems, thereby increasing the level of "human in the loop" involvement. Regarding the pro-
visioning of FDH operational models: an integrated toolset is required that enables the network
administrator to conveniently define the reaction policies (e.g. Fault-Removal policies, monitor-
ing Admission/Adaptation/Notification Policies ...) for the relevant FDH components/processes,
the Fault-Propagation Model for the process of Fault-Isolation, as well as the different models
required for the action synchronization procedures of the SelfOpt-Agent - i.e. among others the
potentially influenced metrics/KPIs, their importance for the system fitness, and the impact of the
possible actions on the KPIs. Indeed, one can think of a modular approach to the provisioning of
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FDH operational models based on the topology of the network, the employed technologies (and
implementations) with their known problems, including the possible fault-propagation chains and
belonging reactions. Thereby, different business models have the potential to be developed on top
of this modular structure for FDH provisioning relating to various SLAs and expected levels of
QoS and end customers’ satisfaction.

Regarding the integration of FDH with modern trends in the area of networking and distributed
system, a natural development would be constituted by incorporating techniques from the domains
of SDN, NFV and cloud computing into the FDH mechanisms. More specifically, FDH can play
the role of a self-healing SDN controller utilizing SDN/NFV (e.g. OpenFlow) features, in order
to dynamically steer and control the network in question. Thereby, it should be possible to control
various types of network nodes and segments, including physical hardware, virtual machines and
even Linux/Unix containers, e.g. Docker type of containers. Hence, there is a way to easily shift
FDH to the modern research and development technologies. By integrating the SDN/NFV/Hy-
pervisor possibilities to influence the network/system within the pre-defined FDH actions, as well
as by placing the FDH components on various controller nodes according to the principles of the
corresponding reference model (be it SDN or ETSI NFV).

On top of the above considerations, related to increasing the deployment readiness of FDH, fur-
ther research can be pursued with respect to the algorithms employed for the various tasks and
processes of FDH. For example, different monitoring and analysis techniques can be utilized for
the tasks of Fault-Isolation and Failure-Prediction, including Support Vector Machines, Ontolo-
gies, Gaussian Processes, and Neural Networks. It is also possible, to explore the utilization of
Markov Decision Processes for the purpose of Fault-Removal and Fault-Mitigation with intrin-
sic self-optimization features, thereby embedding the utilization function of interest within the
Markov Decision Process. In addition, the topic of alarm/incident dissemination would require
further investigation beyond the scope of the research presented in this thesis. It is possible, to
apply and develop special dissemination techniques such as multicast trees, reliable multicast, and
further intelligent gossiping and flooding methods, in order to intelligently and reliably distribute
alarm/incident messages across an FDH controlled network experiencing a faulty condition. Fi-
nally, depending on the success of the alarm/incident dissemination research, the application of
FDH to dynamic mobile ad-hoc networks with various degrees of link stability can be examined,
in order to extend the scope beyond the fixed IP networks, which were at the heart of the current
thesis.
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Abbreviations

3G Third generation of wireless mobile telecommunications technology

3GPP Third Generation Partnership Project (3GPP) focusing on specifications in the area of mo-
bile networking technology.

4G Fourth generation of wireless mobile telecommunications technology

4D 4D is a proposed architecture for network management that consists of 4 planes including
Data Plane, Discovery Plane, Dissemination Plane and Decision Plane

5G Fifth generation of wireless mobile telecommunications technology

ACK A message within the Transmission Control Protocol (TCP) used to acknowledge the re-
ceipt of packets

AFI Autonomic network engineering for the self-managing Future Internet - an ETSI industry
specification group

ANA Autonomic Network Architecture, a network architecture that emerged from the corre-
sponding FP6 ANA project

AM Autonomic Manager

ANEMA Autonomic Network Management Architecture to Support Self-configuration and Self-
optimization in IP Networks

BGP Border Gateway Protocol

BSI Bundesamt für Sicherheit in der Informationstechnik

BSS Business Support System

CASCADAS FP6 CASCADAS Project - Component-ware for Automatic aware Situations Com-
munications for a Dynamic and Adaptable Service

CAPEX CAPital EXpenditure

CIM Common Information Model

CIM-SPL CIM Simplified Policy Language

CLI Command Line Interface
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CONMan Complexity Oblivious Network Management is another proposed architecture for net-
work management which was widely discussed within the research community

COPS Common Open Policy Service - a protocol for distributing and executing policies across a
networked system

API Application Programming Interface

DE Decision Element - a key component of the GANA architecture

Den-ng Next generation of the Directory Enabled Networks model aiming at improved policy
based network management

CMIP Common Management Information Protocol

DHCP Dynamic Host Configuration Protocol

DHCPv6 Dynamic Host Configuration Protocol version 6

DMTF Distributed Management Task Force - an independent standardization body

DNS Domain Name System

DOM Document Object Model - an XML parsing and handling paradigm

DSL Digital Subscriber Line

ECA Event-Condition-Action

EFIPSANS FP7 EFIPSANS project - Exposing the Features in IP version Six protocols that can
be exploited/extended for the purposes of designing/building Autonomic Networks and Ser-
vices

ENISA European Network and Information Security Agency

EMF Eclipse Modeling Framework

EMS Element Management System

EPC Evolved Packet Core - the core network architecture of the LTE mobile communications
standard

ETSI European Telecommunications Standards Institute

FCAPS FCAPS is an acronym for Fault, Configuration, Accounting, Performance, Security re-
lating to TMN

FDDI Fiber Distributed Data Interface

FDH Framework for Distributed Self-Healing

FOCALE An Architecture for Autonomic Networking which was proposed and widely discussed
in the research community

FR Functional Requirements

GANA Generic Autonomic Networking Architecture
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GB Gigabyte

GLPK GNU Linear Programming Kit

GME Generic Modeling Environment

(G)MPLS (Generalized) Multi-Protocol Label Switching - protocol for routing, QoS and virtual
private networking based on label switching

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol version 6

IDS Intrusion Detection System

IGMP Internet Group Management Protocol - an IPv4 based protocol for enabling multicast

ISO International Organisation for Standardisation

IoT Internet of Things

IP Internet Protocol

IPFix Internet Protocol Flow Information Export - an architecture/protocol for monitoring IP net-
works

IPS Intrusion Prevention System

ITU International Telecommunication Union

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISP Internet Service Provider

ICT Information and Communication Technology

IT Information Technology

KB Kilobyte

KPI Key Performance Indicator

LAN Local Area Network

LTE Long Term Evolution - a standard for high-speed mobile communication networks

M2M Machine-2-Machine communication
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MAPE Monitor-Analyse-Plan-Execute - the phases of the autonomic control loop proposed by
IBM

MB Megabyte

MIB Management Information Base - a key information base of the SNMP network monitoring
protocol

MLD Multicast Listener Discovery - an IPv6 based protocol for establishing multicast trees over
IPv6 networks

MSU Mobile Sensor Unit

MTTR Mean Time To Repair

NETCONF Network Configuration Protocol

NFR Non-functional Requirements

NMS Network Management System

OSI Open Systems Interconnection (OSI)

OSPF Open Shortest Path First - a widely deployed IP routing protocol in today’s networks

OPEX Operational expenditure

OCSP Online Certificate Status Protocol

OWL Web Ontology Language

OSS Operation Support Systems

P2P Peer-to-Peer Networking

PCAP Packet Capture library

PDP Policy Decision Point - a concept within the COPS protocol for policy distribution and man-
agement

PEP Policy Enforcement Point - a concept within the COPS protocol for policy distribution and
management

PGM Pragmatic Generic Multicast - a reliable multicast protocol

PMTU Path Maximum Transmission Unit

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

Req Requirement
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RDF Resource Description Framework

RFC Request for Comments

RIP-ng Routing Information Protocol - next generation

RMON Remote Network MONitoring - a network monitoring protocol specified at IETF

RTT Round Trip Time

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SDN Software Defined Networking

SDH Synchronous Digital Hierarchy is a standardized protocol for data transmission over optical
fiber

SDR Software Defined Radio

SID Shared Information and Data model of TMF

SNMP Simple Network Management Protocol

SONET Synchronous optical networking is another standardized physical layer protocol for
transmitting data over optical fiber links

TCP Transmission Control Protocol

TLV Type-Length-Value or Tag-Length-Value

TMN Telecommunications Management Network

TMF TeleManagement Forum

TR-69 Technical Report 069 - a technical specification of the Broadband Forum defining a pro-
tocol for remote management of devices at the customer-premises

NIC Network Interface Card

NFV Network Functions Virtualization

VNF Virtualized Network Function

UDP User Datagram Protocol

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System - third generation mobile cellular system
for mobile networks.

UTRAN Universal Terrestrial Radio Access Network - an access mobile communication network
corresponding to the UMTS standard

VoIP Voice over Internet Protocol
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VM Virtual Machine

VPN Virtual Private Network

WiMAX Worldwide Interoperability for Microwave Access - a family of IEEE based wireless
communication standards

WLAN Wireless Local Area Network

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

XORP eXtensible Open Router Platform
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Network Programming. SIGPLAN Not., 51(6):369–385, June 2016.

[MIB+08] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah, Y. Ganjali, and
C. Diot. Characterization of Failures in an Operational IP Backbone Network.
IEEE/ACM Transactions on Networking, 16(4):749–762, Aug 2008.

[MII00] Man page: mii-tool - view, manipulate media-independent interface status.
https://www.netadmintools.com/html/mii-tool.man.html, April 2000.

https://www.mathworks.com/products/matlab.html
https://www.netadmintools.com/html/mii-tool.man.html


BIBLIOGRAPHY 291

[Min17] Mininet: An Instant Virtual Network on your Laptop (or other PC). http:
//mininet.org/, Apr 2017.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:
An Approach to Universal Topology Generation. In Proceedings of the Ninth
International Symposium in Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOTS ’01, pages 346–, Washington, DC,
USA, 2001. IEEE Computer Society.

[MMMS16] F. Morone, L. Ma, H. Makse, and A. Scala. Enhancing network resilience via
self-healing. In 2016 IEEE Workshop on Environmental, Energy, and Structural
Monitoring Systems (EESMS), pages 1–5, June 2016.

[MMS+17] P. Maciel, R. Matos, B. Silva, J. Figueiredo, D. Oliveira, I. Fé, R. Maciel, and
J. Dantas. Mercury: Performance and Dependability Evaluation of Systems with
Exponential, Expolynomial, and General Distributions. In 2017 IEEE 22nd Pa-
cific Rim International Symposium on Dependable Computing (PRDC), pages 50–
57, Jan 2017.

[Mor11] K. T. Morrison. Rapidly recovering from the catastrophic loss of a major telecom-
munications office. IEEE Communications Magazine, 49(1):28–35, January
2011.

[Moy98] John T. Moy. OSPF Version 2. RFC 2328, April 1998.

[MRF+13] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing Software-defined Networks. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation, nsdi’13,
pages 1–14, Berkeley, CA, USA, 2013. USENIX Association.

[MSBY16] Quang Tran Minh, Yoshitaka Shibata, Cristian Borcea, and Shigeki Yamada. On-
site configuration of disaster recovery access networks made easy. Ad Hoc Net-
works, 40:46 – 60, 2016.

[MSG+16] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.
Network Function Virtualization: State-of-the-Art and Research Challenges.
IEEE Communications Surveys Tutorials, 18(1):236–262, Firstquarter 2016.

[MSW16] M. McCormick, C.S. Saunderson, and R. Whinnery. System and method for im-
proving recovery of a telecommunications network from an unscheduled loss of
service using repeatable requirements for applications by design criticality classi-
fication, Nov 2016. US Patent 9,483,743.

[Mus15] Mark A. Musen. The ProtÉGÉ Project: A Look Back and a Look Forward. AI
Matters, 1(4):4–12, June 2015.

[MYS17] MySQL. https://www.mysql.com/, Jan 2017.

[Nal05] M. Naldi. Connectivity of Waxman Topology Models. Comput. Commun.,
29(1):24–31, December 2005.

[Nat12] Mary Natrella. NIST/SEMATECH e-Handbook of Statistical Methods. NIST/SE-
MATECH, 2012.

http://mininet.org/
http://mininet.org/
https://www.mysql.com/


292 BIBLIOGRAPHY

[NBM15] T.P. Khanh Nguyen, Julie Beugin, and Juliette Marais. Method for evaluating
an extended fault tree to analyse the dependability of complex systems: Applica-
tion to a satellite-based railway system. Reliability Engineering & System Safety,
133:300 – 313, 2015.

[NCC+16] Pedro Neves, Rui Calé, Mário Rui Costa, Carlos Parada, Bruno Parreira, Jose
Alcaraz-Calero, Qi Wang, James Nightingale, Enrique Chirivella-Perez, Wei
Jiang, Hans Dieter Schotten, Konstantinos Koutsopoulos, Anastasius Gavras, and
Maria João Barros. The SELFNET Approach for Autonomic Management in an
NFV/SDN Networking Paradigm. Int. J. Distrib. Sen. Netw., 2016:2:2–2:2, Jan-
uary 2016.

[NCM16] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing
dependability with software fault injection: A survey. ACM Comput. Surv.,
48(3):44:1–44:55, February 2016.

[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2003.

[NET17] The netfilter.org project. https://www.netfilter.org/, 2017.

[NFV12] Network Functions Virtualisation – Introductory White Paper. https://
portal.etsi.org/NFV/NFV_White_Paper.pdf, Oct 2012.

[NHG+16] Gianfranco Nencioni, Bjarne E. Helvik, Andrés J. Gonzalez, Poul E. Heegaard,
and Andrzej Kamisinski. Availability Modelling of Software-Defined Backbone
Networks. In 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops, DSN Workshops 2016, Toulouse, France, June
28 - July 1, 2016, pages 105–112, 2016.

[NIC15] NICE. https://github.com/mcanini/nice/wiki, Aug 2015.

[NLO16] NLOPT library. http://ab-initio.mit.edu/wiki/index.php/NLopt, Dec
2016.

[NOX17] The NOX Controller. https://github.com/noxrepo/nox, Apr 2017.

[NRL09] Mikko Nieminen, Tomi Räty, and Mikko Lindholm. Multi-sensor Logical De-
cision Making in the Single Location Surveillance Point System. In The Fourth
International Conference on Systems, ICONS 2009, Gosier, Guadeloupe, France,
1-6 March 2009, pages 86–90, 2009.

[NRS+11] Marcelo R. Nascimento, Christian E. Rothenberg, Marcos R. Salvador, Carlos
N. A. Corrêa, Sidney C. de Lucena, and Maurício F. Magalhães. Virtual Routers
As a Service: The RouteFlow Approach Leveraging Software-defined Networks.
In Proceedings of the 6th International Conference on Future Internet Technolo-
gies, CFI ’11, pages 34–37, New York, NY, USA, 2011. ACM.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. SIGPLAN Not., 42(6):89–100, June 2007.

https://www.netfilter.org/
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://github.com/mcanini/nice/wiki
http://ab-initio.mit.edu/wiki/index.php/NLopt
https://github.com/noxrepo/nox


BIBLIOGRAPHY 293

[NTSR14] Mikko Nieminen, Nikolay Tcholtchev, Ina Schieferdecker, and Tomi Räty. Robust
architecture for distributed intelligence in an IP-based mobile wide-area surveil-
lance system. The Journal of Supercomputing, 70(3):1120–1141, 2014.

[OAS17] OASIS eXtensible Access Control Markup Language (XACML) TC. https:
//www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml,
2017.

[OCT16] GNU Octave. http://wiki.octave.org, Dec 2016.

[OMG04] OMG IDL Syntax and Semantics. http://www.omg.org/cgi-bin/doc?
formal/02-06-39.pdf, Jul 2004.

[ONF12] Software-Defined Networking: The New Norm for Networks. https://www.
opennetworking.org/images/stories/downloads/sdn-resources/
white-papers/wp-sdn-newnorm.pdf, April 2012.

[ONF17] ONF: Open Networking Foundation. https://www.opennetworking.org/,
Apr 2017.

[Ope11] OpenFlow Reference Implementation. http://www.openflow.org/wp/
downloads/, 2011.

[Ope16] Open Virtual Switch. http://vswitch.org, 2016.

[Ope17a] OpenAz. http://incubator.apache.org/projects/openaz.html, Apr
2017.

[Ope17b] OpenFlow. https://www.opennetworking.org/sdn-resources/
openflow, Apr 2017.

[OPE17c] OpenNMS. https://www.opennms.org, Jan 2017.

[OWM11] J. C. Oberg, A. G. Whitt, and R. M. Mills. Disasters will happen - are you ready?
IEEE Communications Magazine, 49(1):36–42, January 2011.

[Pap03] Christos H. Papadimitriou. Computational Complexity. In Encyclopedia of Com-
puter Science, pages 260–265. John Wiley and Sons Ltd., Chichester, UK, 2003.

[Pas16] Adrian Paschke. Provalets: Component-based mobile agents as microservices for
rule-based data access, processing and analytics. Business & Information Systems
Engineering, 58(5):329–340, Oct 2016.

[PBR17] Software Configuration Guide—Release 12.2, Catalyst 4500, Chapter 25: Con-
figuring Policy-Based Routing. http://www.cisco.com/c/en/us/support/
docs/security/ios-firewall/23602-confaccesslists.pdf, 2017.

[PCA17] Man page: PCAP - Packet Capture library. http://www.tcpdump.org/
manpages/pcap.3pcap.html, January 2017.

[PCS11] A. Prakash, R. Chaparadza, and A. Starschenko. A Model-driven approach to
design and verify autonomic network behaviors. In 2011 IEEE GLOBECOM
Workshops (GC Wkshps), pages 701–706, Dec 2011.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://wiki.octave.org
http://www.omg.org/cgi-bin/doc?formal/02-06-39.pdf
http://www.omg.org/cgi-bin/doc?formal/02-06-39.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/
http://www.openflow.org/wp/downloads/
http://www.openflow.org/wp/downloads/
http://vswitch.org
http://incubator.apache.org/projects/openaz.html
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennms.org
http://www.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-confaccesslists.pdf
http://www.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-confaccesslists.pdf
http://www.tcpdump.org/manpages/pcap.3pcap.html
http://www.tcpdump.org/manpages/pcap.3pcap.html


294 BIBLIOGRAPHY

[PER17] perfSONAR. http://www.perfsonar.net/, Jan 2017.

[Pil04] A. Pilz. "Policy-Maker": a toolkit for policy-based security management. In
2004 IEEE/IFIP Network Operations and Management Symposium (IEEE Cat.
No.04CH37507), volume 1, pages 263–276 Vol.1, April 2004.

[PIN17] Man page: ping, ping6 - send ICMP ECHO REQUEST to network hosts.
https://linux.die.net/man/8/ping, Jan 2017.

[PLG+16] M. Pourvali, K. Liang, F. Gu, H. Bai, K. Shaban, S. Khan, and N. Ghani. Pro-
gressive recovery for network virtualization after large-scale disasters. In 2016 In-
ternational Conference on Computing, Networking and Communications (ICNC),
pages 1–5, Feb 2016.

[PMT16] C. V. Phung, Q. T. Minh, and M. Toulouse. Routing Optimization Model in Mul-
tihop Wireless Access Networks for Disaster Recovery. In 2016 International
Conference on Advanced Computing and Applications (ACOMP), pages 135–140,
Nov 2016.

[PNL03] Probabilistic Network Library: User Guide and Reference Manual. 2003.

[PNL16] Probabilistic Network Library: PNL. http://sourceforge.net/projects/
openpnl/, Dec 2016.

[Pon17] Ponder2. http://ponder2.net/, Apr 2017.

[Pos81] J. Postel. Internet Control Message Protocol. RFC 792, September 1981.

[Pos17] PostgreSQL. https://www.postgresql.org/, Jan 2017.

[Pow98] M. J. D. Powell. Direct Search Algorithms for Optimization Calculations. Acta
Numerica, 7:287–336, 1998.

[POX17] The POX Controller. https://github.com/noxrepo/pox, Apr 2017.

[PRO13] Prova Rule Language. https://prova.ws/, Jan 2013.

[PRO17] Protégé: A free, open-source ontology editor and framework for building intelli-
gent systems. http://protege.stanford.edu/, Jan 2017.

[PRS16] Vitor Pereira, Miguel Rocha, and Pedro Sousa. Automated Network Re-
silience Optimization Using Computational Intelligence Methods, pages 485–
495. Springer International Publishing, Cham, 2016.

[PTC12] Arun Prakash, Zoltán Theisz, and Ranganai Chaparadza. Formal Methods for
Modeling, Refining and Verifying Autonomic Components of Computer Networks,
pages 1–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[PvHG14] T. Pitakrat, A. v. Hoorn, and L. Grunske. Increasing dependability of component-
based software systems by online failure prediction (short paper). In 2014 Tenth
European Dependable Computing Conference, pages 66–69, May 2014.

[QMSW17] J. Qin, Q. Ma, Y. Shi, and L. Wang. Recent Advances in Consensus of Multi-
Agent Systems: A Brief Survey. IEEE Transactions on Industrial Electronics,
64(6):4972–4983, June 2017.

http://www.perfsonar.net/
https://linux.die.net/man/8/ping
http://sourceforge.net/projects/openpnl/
http://sourceforge.net/projects/openpnl/
http://ponder2.net/
https://www.postgresql.org/
https://github.com/noxrepo/pox
https://prova.ws/
http://protege.stanford.edu/


BIBLIOGRAPHY 295

[QUA17] Quagga Routing Suite. http://www.nongnu.org/quagga/, Jan 2017.

[Rab90] Lawrence R. Rabiner. Readings in Speech Recognition. chapter A Tutorial on
Hidden Markov Models and Selected Applications in Speech Recognition, pages
267–296. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[Ran98] B. Randell. Dependability-a unifying concept. In Proceedings Computer Secu-
rity, Dependability, and Assurance: From Needs to Solutions (Cat. No.98EX358),
pages 16–25, 1998.

[Ran00] Brian Randell. Facing up to faults. The Computer Journal, 43:95–106, 2000.

[Ran11] Y. Ran. Considerations and suggestions on improvement of communication net-
work disaster countermeasures after the wenchuan earthquake. IEEE Communi-
cations Magazine, 49(1):44–47, January 2011.

[RASM17] Saeid Rastegar, Rui Araújo, Jalil Sadati, and Jérôme Mendes. A novel robust
control scheme for {LTV} systems using output integral discrete-time synergetic
control theory. European Journal of Control, 34:39 – 48, 2017.

[RBA10] XACML v3.0 Core and Hierarchical Role Based Access Control (RBAC)
Profile Version 1.0. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-rbac-v1-spec-cd-03-en.html, March 2010.

[Res17] ResiliNets project definitions. https://wiki.ittc.ku.edu/resilinets_
wiki/index.php/Definitions, April 2017.

[RFGS10] Carlos Rodriguez-Fernández and Jorge Jesús Gómez-Sanz. Self-management
Capability Requirements with SelfMML &#38; INGENIAS to Attain Self-
organising Behaviours. In Proceedings of the Second International Workshop
on Self-organizing Architectures, SOAR ’10, pages 11–20, New York, NY, USA,
2010. ACM.

[RFR+12] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for Network Update. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’12, pages 323–334, New York,
NY, USA, 2012. ACM.

[RFRW11] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Consistent Up-
dates for Software-defined Networks: Change You Can Believe in! In Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages
7:1–7:6, New York, NY, USA, 2011. ACM.

[RHLP16] Alban Rousset, Bénédicte Herrmann, Christophe Lang, and Laurent Philippe. A
survey on parallel and distributed multi-agent systems for high performance com-
puting simulations. Computer Science Review, 22:27 – 46, 2016.

[Rij79] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition, 1979.

http://www.nongnu.org/quagga/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html
https://wiki.ittc.ku.edu/resilinets_wiki/index.php/Definitions
https://wiki.ittc.ku.edu/resilinets_wiki/index.php/Definitions


296 BIBLIOGRAPHY

[RMD05] S. Rai, B. Mukherjee, and O. Deshpande. IP resilience within an autonomous
system: current approaches, challenges, and future directions. IEEE Communi-
cations Magazine, 43(10):142–149, Oct 2005.

[RNCS09] Gábor Rétvári, Felician Németh, Ranganai Chaparadza, and Róbert Szabó. OSPF
for Implementing Self-adaptive Routing in Autonomic Networks: A Case Study.
In Modelling Autonomic Communications Environments, Fourth IEEE Interna-
tional Workshop, MACE 2009, Venice, Italy, October 26-27, 2009. Proceedings,
pages 72–85, 2009.

[Rou17] RouteFlow. http://routeflow.github.io/RouteFlow/, Apr 2017.

[RPNR17] Jacek Rak, Dimitri Papadimitriou, Heiko Niedermayer, and Pablo Romero.
Information-driven network resilience: Research challenges and perspectives.
Optical Switching and Networking, 23, Part 2:156 – 178, 2017. Design and mod-
eling of Resilient optical networks {RNDM} 2015.

[RPR16] C. Ramirez-Perez and V. Ramos. SDN meets SDR in self-organizing networks:
fitting the pieces of network management. IEEE Communications Magazine,
54(1):48–57, January 2016.

[RTCM11] Y. Rebahi, N. Tcholtchev, R. Chaparadza, and V. N. Merekoulias. Addressing
security issues in the autonomic Future Internet. In 2011 IEEE Consumer Com-
munications and Networking Conference (CCNC), pages 517–518, Jan 2011.

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[RY05] Thomas Philip Runarsson and Xin Yao. Search biases in constrained evolutionary
optimization. IEEE Trans. Systems, Man, and Cybernetics, Part C, 35(2):233–
243, 2005.

[Sah07] Goutam Kumar Saha. Self-healing Software. Ubiquity, 2007(March):4:1–4:1,
March 2007.

[SAL06] John Strassner, N. Agoulmine, and E. Lehtihet. FOCALE: A Novel Autonomic
Networking Architecture. 2006.

[Sam16] Sami J. Habib and Paulvanna Nayaki Marimuthu. Managing Enterprise Network
Resilience Through the Mimicking of Bio-Organisms. In New Advances in In-
formation Systems and Technologies - Volume 1 [WorldCIST’16, Recife, Pernam-
buco, Brazil, March 22-24, 2016]., pages 901–910, 2016.

[SB13] Florian Schneider and Brian Berenbach. A literature survey on international stan-
dards for systems requirements engineering. Procedia Computer Science, 16:796
– 805, 2013.

[SBD+17] Thiago Santini, Christoph Borchert, Christian Dietrich, Horst Schirmeier, Mar-
tin Hoffmann, Olaf Spinczyk, Daniel Lohmann, Flávio Rech Wagner, and Paolo
Rech. Effectiveness of Software-Based Hardening for Radiation-Induced Soft Er-
rors in Real-Time Operating Systems, pages 3–15. Springer International Publish-
ing, Cham, 2017.

http://routeflow.github.io/RouteFlow/


BIBLIOGRAPHY 297

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition,
2009.

[SC05] Stanislav Shalunov and Richard Carlson. Detecting Duplex Mismatch on Ether-
net, pages 135–148. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[SC15] Sukhpal Singh and Inderveer Chana. Qos-aware autonomic resource management
in cloud computing: A systematic review. ACM Comput. Surv., 48(3):42:1–42:46,
December 2015.

[Sch11] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[Sch12] Rainer Schlittgen. Einführung in die Statistik. Analyse und Modellierung von
Daten. Oldenbourg Verlag, München, Germany, 2012.

[SCU16] S-Cube, the European Network of Excellence in Software Services and Systems.
http://www.s-cube-network.eu, dec 2016.

[SFR03] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. UNIX Network Pro-
gramming, Vol. 1. Pearson Education, 3 edition, 2003.

[SHÇ+10] James P. G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar,
Justin P. Rohrer, Marcus Schöller, and Paul Smith. Resilience and survivabil-
ity in communication networks: Strategies, principles, and survey of disciplines.
Computer Networks, 54(8):1245–1265, 2010.

[She07] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-
dures. Chapman & Hall/CRC, 4 edition, 2007.

[She09] Haibo Shen. A Semantic-Aware Attribute-Based Access Control Model for Web
Services. In Arrems Hua and Shih-Liang Chang, editors, ICA3PP, volume 5574
of Lecture Notes in Computer Science, pages 693–703. Springer, 2009.

[Shi07] Robert W. Shirey. Internet Security Glossary, Version 2. RFC 4949, August 2007.

[SID17a] GB922 Information Framework (SID) R16.5.0. https://www.tmforum.org/
resources/suite/gb922-information-framework-sid-r16-5-0/, Jan
2017.

[SID17b] The Information Framework (SID). https://www.tmforum.org/
information-framework-sid, Jan 2017.

[SJ17] Sanjeev Singh and Rakesh Kumar Jha. A Survey on Software Defined Net-
working: Architecture for Next Generation Network. J. Netw. Syst. Manage.,
25(2):321–374, April 2017.

[SKGR15] S. Sun, M. Kadoch, L. Gong, and B. Rong. Integrating network function virtu-
alization with SDR and SDN for 4G/5G networks. IEEE Network, 29(3):54–59,
May 2015.

[SLBK13] Richard William Skowyra, Andrei Lapets, Azer Bestavros, and Assaf Kfoury.
Verifiably-safe Software-defined Networks for CPS. In Proceedings of the 2Nd
ACM International Conference on High Confidence Networked Systems, HiCoNS
’13, pages 101–110, New York, NY, USA, 2013. ACM.

http://www.s-cube-network.eu
https://www.tmforum.org/resources/suite/gb922-information-framework-sid-r16-5-0/
https://www.tmforum.org/resources/suite/gb922-information-framework-sid-r16-5-0/
https://www.tmforum.org/information-framework-sid
https://www.tmforum.org/information-framework-sid


298 BIBLIOGRAPHY

[SM03] Ravi Sahita and Keith McCloghrie. Framework Policy Information Base. RFC
3318, March 2003.

[SMA+16] K. Safi, S. Mohammed, F. Attal, M. Khalil, and Y. Amirat. Recognition of dif-
ferent daily living activities using hidden Markov model regression. In 2016 3rd
Middle East Conference on Biomedical Engineering (MECBME), pages 16–19,
Oct 2016.

[SMTZ13] B. Silva, P. Maciel, E. Tavares, and A. Zimmermann. Dependability models
for designing disaster tolerant cloud computing systems. In 2013 43rd An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 1–6, June 2013.

[SPS00] Gerald L. Thompson Suresh P. Sethi. Optimal Control Theory: Applications to
Management Science and Economics. Springer US, 2000.

[SRKO16] Mehdi Mohammad Salehi, Mehdi Rahmati, Masoud Karimnezhad, and Pouria
Omidvar. Estimation of the non records logs from existing logs using artificial
neural networks. Egyptian Journal of Petroleum, pages –, 2016.

[SS04a] Malgorzata Steinder and Adarshpal S. Sethi. A survey of fault localization tech-
niques in computer networks. Sci. Comput. Program., 53(2):165–194, 2004.

[SS04b] Malgorzata Steinder and Adarshpal S. Sethi. Probabilistic Fault Localization
in Communication Systems Using Belief Networks. IEEE/ACM Trans. Netw.,
12(5):809–822, October 2004.

[SS04c] G. Suwala and G. Swallow. SONET/SDH-like resilience for IP networks: a sur-
vey of traffic protection mechanisms. IEEE Network, 18(2):20–25, Mar 2004.

[Sta98] William Stallings. SNMP,SNMPV2,Snmpv3,and RMON 1 and 2. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1998.

[STP+15] Alexej Starschenko, Nikolay Tcholtchev, Arun Prakash, Ina Schieferdecker, and
Ranganai Chaparadza. Auto-configuration of OSPFv3 routing in fixed IPv6 net-
works. In 7th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops, ICUMT 2015, Brno, Czech Republic, October
6-8, 2015, pages 196–205, 2015.

[Str02] J. Strassner. DEN-ng: achieving business-driven network management. In NOMS
2002. IEEE/IFIP Network Operations and Management Symposium. ’ Manage-
ment Solutions for the New Communications World’(Cat. No.02CH37327), pages
753–766. IEEE, August 2002.

[Str03a] John Strassner. Policy-Based Network Management: Solutions for the Next Gen-
eration (The Morgan Kaufmann Series in Networking). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2003.

[Str03b] John Strassner. Policy-Based Network Management: Solutions for the Next Gen-
eration (The Morgan Kaufmann Series in Networking). Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2003.



BIBLIOGRAPHY 299

[SWC+] Szymon Szott, Michal Wódczak, Ranganai Chaparadza, Tayeb Ben Meriem,
Kostas Tsagkaris, Apostolos Kousaridas, Benoit Radier, Andrej Mihailovic,
Marek Natkaniec, Krzysztof Loziak, Katarzyna Kosek-Szott, and Michal Wa-
growski. Standardization of an autonomicity-enabled mesh architecture frame-
work, from ETSI-AFI group perspective: Work in progress (Part 2 of 2). In
Workshops Proceedings of the Global Communications Conference, GLOBE-
COM 2012, 3-7 December 2012, Anaheim, California, USA.

[SWC+12] Szymon Szott, Michal Wódczak, Ranganai Chaparadza, Tayeb Ben Meriem,
Kostas Tsagkaris, Apostolos Kousaridas, Benoit Radier, Andrej Mihailovic,
Marek Natkaniec, Krzysztof Loziak, Katarzyna Kosek-Szott, and Michal Wa-
growski. Standardization of an autonomicity-enabled mesh architecture frame-
work, from ETSI-AFI group perspective: Work in progress (Part 1 of 2). In
Workshops Proceedings of the Global Communications Conference, GLOBE-
COM 2012, 3-7 December 2012, Anaheim, California, USA, pages 847–851,
2012.

[SWLVH13] D. Schütz, A. Wannagat, C. Legat, and B. Vogel-Heuser. Development of PLC-
Based Software for Increasing the Dependability of Production Automation Sys-
tems. IEEE Transactions on Industrial Informatics, 9(4):2397–2406, Nov 2013.

[SYS17] Man page: sysklogd - Linux system logging utilities. https://linux.die.
net/man/8/syslogd, 2017.

[TC08] Editors: Nikolay Tcholtchev and Ranganai Chaparadza. FP6-IST-
27489/WP3/D.3.9v1: Implementation of Selected Components of the Failure
Detection and Fault Management part of the ANA architecture . Dec 2008.

[TC10a] N. Tcholtchev and R. Chaparadza. Autonomic Fault-Management and resilience
from the perspective of the network operation personnel. In 2010 IEEE Globecom
Workshops, pages 469–474, Dec 2010.

[TC10b] Nikolay Tcholtchev and Ranganai Chaparadza. On Self-healing Based on Collab-
orating End-Systems, Access, Edge and Core Network Components. In Access
Networks - 5th International ICST Conference on Access Networks, AccessNets
2010 and First ICST International Workshop on Autonomic Networking and Self-
Management in Access Networks, SELFMAGICNETS 2010, Budapest, Hungary,
November 3-5, 2010, Revised Selected Papers, pages 283–298, 2010.

[TCC10] Nikolay Tcholtchev, Agnieszka Betkowska Cavalcante, and Ranganai Cha-
paradza. Scalable Markov Chain Based Algorithm for Fault-Isolation in Auto-
nomic Networks. In Proceedings of the Global Communications Conference,
2010. GLOBECOM 2010, 6-10 December 2010, Miami, Florida, USA, pages 1–
6, 2010.

[TÇE17] LanAnh Trinh, Baran Çürüklü, and Mikael Ekström. Fault Tolerance Analysis for
Dependable Autonomous Agents Using Colored Time Petri Nets. In 9th Interna-
tional Conference on Agents and Artificial Intelligence 2017. Springer, January
2017.

[TCG17] TCG: Trusted Computing Group. http://www.trustedcomputinggroup.
org/, 2017.

https://linux.die.net/man/8/syslogd
https://linux.die.net/man/8/syslogd
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/


300 BIBLIOGRAPHY

[Tch09] N. Tcholtchev. Components and Mechanisms of Autonomic Fault-Management
for Self-Managing Networks. Imprint Berlin, TU Berlin, Dipl.-Arb., pages 1–139,
January 2009.

[Tch10] Editor: Nikolay Tcholtchev. INFSO-ICT-215549-EFIPSANS-WP4-D4.5: Com-
ponents and Mechanisms for Autonomic Fault-Management. Jan 2010.

[TCP09] Nikolay Tcholtchev, Ranganai Chaparadza, and Arun Prakash. Addressing Stabil-
ity of Control-Loops in the Context of the GANA Architecture: Synchronization
of Actions and Policies. In Self-Organizing Systems, 4th IFIP TC 6 International
Workshop, IWSOS 2009, Zurich, Switzerland, December 9-11, 2009. Proceed-
ings, pages 262–268, 2009.

[TCP15] Man page: tcpdump - dump traffic on a network . http://www.tcpdump.org/
tcpdump_man.html, Sept 2015.

[TCP16] Tcptrace. http://www.tcptrace.org/, Jan 2016.

[TCRMDlF16] Esteban Tlelo-Cuautle, José de Jesús Rangel-Magdaleno, and Luis Gerardo De la
Fraga. Matlab-Simulink Co-Simulation, pages 61–75. Springer International Pub-
lishing, Cham, 2016.

[TDM16] Huy T. Tran, Jean Charles Domerçant, and Dimitri N. Mavris. A Network-based
Cost Comparison of Resilient and Robust System-of-Systems. Procedia Com-
puter Science, 95:126 – 133, 2016.

[TDW+14] N. Tcholtchev, G. Dudeck, M. Wagner, C. Hein, A. Prakash, and T. Ritter. Inte-
grating the Modelica DSL into a Platform for Model-Based Tool Interoperability.
In 2014 IEEE 38th International Computer Software and Applications Confer-
ence Workshops, pages 528–534, July 2014.

[TEL09] Telcordia GR-253-CORE, Synchronous Optical Network (SONET) Transport
Systems: Common Generic Criteria, Issue 5, 2009.

[Teo09] Iuliana Teodorescu. Maximum Likelihood Estimation for Markov Chains. May
2009.

[TGSB15] Matthias C. M. Troffaes, Jacob Gledhill, Damjan Skulj, and Simon Blake. Using
imprecise continuous time Markov chains for assessing the reliability of power
networks with common cause failure and non-immediate repair. In Thomas Au-
gustin, Serena Doria, Enrique Miranda, and Erik Quaeghebeur, editors, ISIPTA
’15: Proceedings of the Ninth International Symposium on Imprecise Probabil-
ity: Theories and Applications, pages 287–294, 2015.

[TGV09] Nikolay Tcholtchev, Monika Grajzer, and Bruno Vidalenc. Towards a Unified
Architecture for Resilience, Survivability and Autonomic Fault-Management for
Self-managing Networks. In Service-Oriented Computing. ICSOC/ServiceWave
2009 Workshops - International Workshops, ICSOC/ServiceWave 2009, Stock-
holm, Sweden, November 23-27, 2009, Revised Selected Papers, pages 335–344,
2009.

http://www.tcpdump.org/tcpdump_man.html
http://www.tcpdump.org/tcpdump_man.html
http://www.tcptrace.org/


BIBLIOGRAPHY 301

[TH01] F. Touvet and D. Harle. Network Resilience in Multilayer Networks: A Critical
Review and Open Issues, pages 829–837. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[Tiv16] Tivoli Intelligent Orchestrator. https://www-01.ibm.com/marketing/iwm/
tnd/demo.jsp?id=Tivoli+Intelligent+Orchestrator+Jan05, Dec 2016.

[TK04] Gerald Tesauro and Jeffrey O. Kephart. Utility Functions in Autonomic Systems.
In Proceedings of the First International Conference on Autonomic Computing,
ICAC ’04, pages 70–77, Washington, DC, USA, 2004. IEEE Computer Society.

[TMF17] TMF: TeleManagement Forum. http://www.tmforum.org/, 2017.

[TOC06] Stuart R. Thorncraft, Hugh R. Outhred, and David J. Clements. Evaluation of
Open-Source LP Optimization Codes in Solving Electricity Spot Market Opti-
mization Problems. In 19th Mini-Euro Conference on Operation Research Models
and Methods in the Energy Sector, Coimbra, Portugal, Sep 2006.

[TOP17] Man page: top - display Linux tasks. https://linux.die.net/man/1/top,
Jan 2017.

[TOU17] Man page: touch - change file timestamps. http://man7.org/linux/
man-pages/man1/touch.1.html, Jan 2017.

[TP12] Nikolay Tcholtchev and Razvan Petre. Design, Implementation and Evaluation
of a Framework for Adaptive Monitoring in IP Networks. pages 1–10, 2012.

[TPS+12] Nikolay Tcholtchev, Arun Prakash, Ina Schieferdecker, Ranganai Chaparadza,
and Razvan Petre. Auto-Collaboration for optimal network resource utilization in
fixed IPv6 networks. In Workshops Proceedings of the Global Communications
Conference, GLOBECOM 2012, 3-7 December 2012, Anaheim, California, USA,
pages 807–812, 2012.

[TRA17] Man page: traceroute - print the route packets trace to network host. https:
//linux.die.net/man/8/traceroute, Jan 2017.

[Tre17] Full-Stack OpenFlow Framework in Ruby and C. http://trema.github.io/
trema/, Apr 2017.

[TS14a] Nikolay Tcholtchev and Ina Schieferdecker. Framework for distributed autonomic
self-healing in fixed IPv6 networks. Int. J. Communication Systems, 27(12):4103–
4125, 2014.

[TS14b] Nikolay Tcholtchev and Ina Schieferdecker. Framework for Ensuring Runtime
Stability of Control Loops in Multi-agent Networked Environments. Trans. Com-
putational Science, 22:64–92, 2014.

[TZ04] Paul Weber Tammy Zitello, Deborah Williams. HP OpenView System Adminis-
tration Handbook: Network Node Manager, Customer Views, Service Information
Portal, OpenView Operations. Prentice Hall, 2004.

[Uni17] UniverSelf. http://www.univerself-project.eu/, 2017.

[VAL16] Valgrind. http://valgrind.org/, Dec 2016.

https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=Tivoli+Intelligent+Orchestrator+Jan05
https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=Tivoli+Intelligent+Orchestrator+Jan05
http://www.tmforum.org/
https://linux.die.net/man/1/top
http://man7.org/linux/man-pages/man1/touch.1.html
http://man7.org/linux/man-pages/man1/touch.1.html
https://linux.die.net/man/8/traceroute
https://linux.die.net/man/8/traceroute
http://trema.github.io/trema/
http://trema.github.io/trema/
http://www.univerself-project.eu/
http://valgrind.org/


302 BIBLIOGRAPHY

[Vas09] Emil Vassev. ASSL - Autonomic System Specification Language: A Framework
for Specification and Code Generation of Autonomic Systems. LAP Lambert Aca-
demic Publishing, Germany, 2009.

[VCF+00] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn,
C. de Laat, M. Holdrege, and D. Spence. AAA Authorization Framework. RFC
2904 (Informational), August 2000.

[VCNR13] Bruno Vidalenc, Laurent Ciavaglia, Ludovic Noirie, and Eric Renault. Dynamic
risk-aware routing for OSPF networks. In 2013 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2013), Ghent, Belgium, May 27-31,
2013, pages 226–234, 2013.

[VH08] András Varga and Rudolf Hornig. An Overview of the OMNeT++ Simulation
Environment. In Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops,
Simutools ’08, pages 60:1–60:10, ICST, Brussels, Belgium, Belgium, 2008. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[VH12] Emil Vassev and Mike Hinchey. The ASSL Approach to Specifying Self-
managing Embedded Systems. Concurr. Comput. : Pract. Exper., 24(16):1860–
1878, November 2012.

[VNC12] B. Vidalenc, L. Noirie, and L. Ciavaglia. GMPLS adaptive level of recovery.
In 2012 IEEE International Conference on Communications (ICC), pages 2735–
2740, June 2012.

[VPD04] Jean-Philippe Vasseur, Mario Pickavet, and Piet Demeester. Network Recovery:
Protection and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[vW17] Wessel N. van Wieringen. On the mean squared error of the ridge estimator of
the covariance and precision matrix. Statistics & Probability Letters, 123:88 – 92,
2017.

[Wal09] Stefan Wallin. Chasing a Definition of "Alarm". J. Netw. Syst. Manage.,
17(4):457–481, December 2009.

[WCLL08] Fang Wang, Shanzhi Chen, Xin Li, and Yuhong Li. A Route Flap Suppression
Mechanism Based on Dynamic Timers in OSPF Network. In Proceedings of the
9th International Conference for Young Computer Scientists, ICYCS 2008, Zhang
Jia Jie, Hunan, China, November 18-21, 2008, pages 2154–2159, 2008.

[WCW+98] Zheng Wang, Mark A. Carlson, Walter Weiss, Elwyn B. Davies, and Steven L.
Blake. An Architecture for Differentiated Services. RFC 2475, December 1998.

[Wer07] Matthias Werner. Eigenschaften verlässlicher Systeme. habilitation, Berlin Uni-
versity of Technology, 2007.

[Whi08] Juniper Network Whitepaper. What’s Behind Network Downtime? Proactive
Steps to Reduce Human Error and Improve Availability of Networks. Technical
report, Juniper Networks Inc., 2008.



BIBLIOGRAPHY 303

[WL09] Stefan Wallin and Viktor Leijon. Telecom Network and Service Management: An
Operator Survey, pages 15–26. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[WMR+11] Michal Wodczak, Tayeb Ben Meriem, Benoit Radier, Ranganai Chaparadza,
Kevin Quinn, Jesse Kielthy, Brian A. Lee, Laurent Ciavaglia, Kostas Tsagkaris,
Szymon Szott, Anastasios Zafeiropoulos, Athanassios Liakopoulos, Apostolos
Kousaridas, and Maurice Duault. Standardizing a Reference Model and Auto-
nomic Network Architectures for the self-managing Future Internet. IEEE Net-
work, 25(6):50–56, 2011.

[WRH+15] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang. Toward a
software-based network: integrating software defined networking and network
function virtualization. IEEE Network, 29(3):36–41, May 2015.

[Wro97] John T. Wroclawski. The Use of RSVP with IETF Integrated Services. RFC
2210, September 1997.

[WS04] A. Westerinen and J. Schott. Implementation of the CIM Policy Model using
PONDER. In Proceedings. Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2004. POLICY 2004., pages 207–210, June
2004.

[WSS+01] Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling, Bob Quinn,
Jay Perry, Shai Herzog, An-Ni Huynh, Mark Carlson, and Steve Waldbusser. Ter-
minology for Policy-Based Management. Internet RFC 3198, November 2001.

[WTVL13] Michal Wódczak, Nikolay Tcholtchev, Bruno Vidalenc, and Yuhong Li. Design
and Evaluation of Techniques for Resilience and Survivability of the Routing
Node. IJARAS, 4(4):36–63, 2013.

[WZC08] Yi Wang, Nevin L. Zhang, and Tao Chen. Latent Tree Models and Approximate
Inference in Bayesian Networks. J. Artif. Int. Res., 32(1):879–900, August 2008.

[XAC17] OASIS eXtensible Access Control Markup Language (XACML). https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xacml, 2017.

[XAY+16] L. Xu, H. Assem, I. G. B. Yahia, T. S. Buda, A. Martin, D. Gallico, M. Biancani,
A. Pastor, P. A. Aranda, M. Smirnov, D. Raz, O. Uryupina, A. Mozo, B. Ordoz-
goiti, M. I. Corici, P. O’Sullivan, and R. Mullins. CogNet: A network manage-
ment architecture featuring cognitive capabilities. In 2016 European Conference
on Networks and Communications (EuCNC), pages 325–329, June 2016.

[XEn12] XEngine Project. http://xacmlpdp.sourceforge.net/, 2008-2012.

[XER17] The Apache Xerces Project. http://xerces.apache.org/, 2017.

[XG04] Yangsheng Xu and Ming Ge. Hidden markov model-based process monitoring
system. Journal of Intelligent Manufacturing, 15(3):337–350, 2004.

[XHLH13] X. Xu, Z. Hou, C. Lian, and H. He. Online Learning Control Using Adaptive
Critic Designs With Sparse Kernel Machines. IEEE Transactions on Neural Net-
works and Learning Systems, 24(5):762–775, May 2013.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://xacmlpdp.sourceforge.net/
http://xerces.apache.org/


304 BIBLIOGRAPHY

[XOR17] XORP: eXtensible Open Router Platform. http://www.xorp.org/, Jan 2017.

[XPA17] XPath specification. http://www.w3.org/TR/xpath, Jan 2017.

[YFN+14] Vitaliy Yakovyna, Dmytro Fedasyuk, Oksana Nytrebych, Iurii Parfenyuk, and
Volodymyr Matselyukh. Software Reliability Assessment Using High-Order
Markov Chains. International Journal of Engineering Science Invention, 3(7),
July 2014.

[YJH+16] S. Yin, Chen Jing, Jian Hou, O. Kaynak, and H. Gao. PCA and KPCA integrated
Support Vector Machine for multi-fault classification. In IECON 2016 - 42nd
Annual Conference of the IEEE Industrial Electronics Society, pages 7215–7220,
Oct 2016.

[YLTP16] Lingjian Yang, Songsong Liu, Sophia Tsoka, and Lazaros G. Papageorgiou.
Mathematical programming for piecewise linear regression analysis. Expert Sys-
tems with Applications, 44:156 – 167, 2016.

[YS09] Xin Yan and Xiao Gang Su. Linear Regression Analysis: Theory and Computing.
World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2009.

http://www.xorp.org/
http://www.w3.org/TR/xpath


Appendix A

ISO/OSI, TCP/IP and Common
Network Technologies

Figure A.1: Illustrative Comparison of the ISO/OSI and TCP/IP Reference Models
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Appendix B

Additional FDH Dynamic Aspects

The following section focuses on the initialization and bootstrapping of the FDH components
within a node. This is a very vital aspect of the proposed framework. However, since it is not at
the heart of the designed algorithmic frameworks and control loops, it was not presented in the
main design and specification part of the thesis (section 6.7).

B.1 Initialization of the FDH Components on Node Level

The overall initialization of the FDH components on node level is described in a set of sequence
diagrams, namely those on Figure B.1, Figure B.3, and Figure B.4. The initialization of the sup-
porting components as well as of the MonAgent and SelfOptAgent are both presented on Figure
B.3 and Figure B.4.

In general, all bootstrapping interactions follow the principle of the local Bootstrap Manager start-
ing the node FDH components in the right order, after which each of the components establishes
a connection to the central FDH Configuration Server. This Configuration Server keeps, on one
hand, the network-wide and, on the other hand, the node-specific FDH configurations. Thereby,
each component downloads its belonging models, which facilitate its operation in the course of
achieving distributed self-healing on top of the network to take care of. Besides downloading its
configurations from the centralized server, each node level FDH component establishes communi-
cation channels to the other FDH node components it has to pass information to. The establishment
of these communication channels poses constraints with respect to which components should be
already running before a particular FDH module can be successfully started. Correspondingly, the
constraints determine the order in which the FDH components are bootstrapping within a network
node.

As already mentioned, each FDH component gets its specific configurations from the centralized
FDH Configuration Server. In the following, the different configurations - policies and models -
are pointed out, which determine the run-time operation of the FDH framework and are obtained
from the FDH Configuration Server. The steps of obtaining these models and policies are visible
on the sequence diagrams describing the bootstrap and initialization processes, i.e. Figure B.1,
Figure B.3, and Figure B.4:

• The FDH node local SelfOptAgent downloads its node-specific optimization and action
synchronization models (getOptimizationAndActionSynchronizationModels on Figure B.3)
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Figure B.1: FDH Initialization on Node Level: Bootstrapping the key Self-Healing Agents
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from the Configuration Server.

• The Fault-Propagation Model Repository in each FDH node downloads the network-wide
Fault-Propagation Model from the Configuration Server (getNetworkWideFaultPropaga-
tionModel on Figure B.3).

• Furthermore, each FDH MonAgent in a node obtains the different types of policies it re-
quires - Admission, Notification, and Adaptation Policies - from the centralized FDH Con-
figuration Server.

• The Event Dissemination Agent requires a list of IP addresses of FDH nodes, such that it
can perform alarm/incident/event dissemination. These addresses are also downloaded from
the centralized Configuration Server after the EvDissAgent has established a connection to
it (getListOfAddressesOfInvolvedNetworkNodes on Figure B.4).

• Moreover, the policies that steer the Asserted Incidents Assessment Functions are also sup-
plied by the network operations personnel to the FDH Configuration Server and downloaded
(getNodeSpecificAssIncAssFuncPolicies on Figure B.4) by the corresponding node support-
ing components (i.e. Node Incident Repositories during the boot up of the local FDH in-
stance.

• During the bootstrapping of the FaultManAgent and the SurvAgent, described in detail next
and depicted on Figure B.1, following configurations are downloaded by the FaultManAgent
from the Configuration Server:

– Different types of reaction policies for the tasks of Fault-Isolation Assessment, Fault-
Removal, and Fault-Removal Assessment - getNodeSpecificFaultManAgentReaction-
Policies on Figure B.1

– Monitoring requests to be submitted by the FaultManAgent to the MonAgent for the
purposes of Fault-Detection - getNodeSpecificFaultManAgentMonitoringRequests on
Figure B.1

• In addition, the SurvAgent downloads:

– The node-specific Fault-Mitigation policies required in order to implement rapid im-
mediate reactions to the symptoms of a faulty condition - getNodeSpecificFaultMiti-
gationPolicies on Figure B.1

– The node-specific Failure-Prediction Models for the FPF functions - getNodeSpecific-
FailurePredictionModels on Figure B.1

– The node-specific monitoring requests required for the Failure-Prediction within the
SurvAgent - getNodeSpecificFailurePredictionMonitoringRequests on Figure B.1.

Having described the general structure of the FDH bootstrapping procedure, the process of FDH
initialization is next zoomed into from the perspective of the key self-healing agents, i.e. the Fault-
ManAgent and the SurvAgent. As previously mentioned, the belonging interactions are visualized
in Figure B.1. For the interactions on Figure B.1, it is presumed that the MonAgent, FPMRep and
the SelfOptAgent are already started (according to the procedure described on Figure B.3).

The flow on Figure B.1 proceeds with the Bootstrap Manager starting the FaultManAgent (start-
FaultManAgent). Initially, the FaultManAgent performs its local initialization, which might in-
clude various aspects such as allocating required memory etc. Subsequently, the FaultManAgent
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establishes a communication channel to the local SelfOptAgent, in order to access it for the pur-
pose of action synchronization during the operation of the network. Next, a connection is estab-
lished to the FDH Configuration Server and a set of reaction policies is downloaded for the differ-
ent tasks of the FaultManAgent control loop (getNodeSpecificFaultManAgentReactionPolicies),
as described above. These include node-specific policies for the Fault-Isolation Assessment, the
Fault-Removal, and the Fault-Removal Assessment tasks of the local control loop. In addition, the
monitoring requests are downloaded (getNodeSpecificFaultManAgentMonitoringRequests), which
are used by the FaultManAgent to request the MonAgent to instrument the monitoring jobs re-
quired for local Fault-Detection (submitFaultManagementAgentMonitoringRequests). These re-
quests are submitted after the belonging communication channels towards the MonAgent have
been established. After all these steps have been conducted, the bootstrapping of the FaultMan-
Agent within an FDH node is concluded and a corresponding notification sent to the Bootstrap
Manager (notifyBootstrapManagerOfSuccessfulStart).

After the FaultManAgent was successfully started, the Bootstrap Manager initiates the start of the
SurvAgent within an FDH node. The SurvAgent also performs its local initialization at first,
and proceeds with establishing its communication channels to the local SelfOptAgent, for the
purpose of action synchronization and optimization during the operation of the network. Sub-
sequently, the SurvAgent connects to the Configuration Server and downloads its node-specific
Fault-Mitigation Policies (getNodeSpecificFaultMitigationPolicies on Figure B.1), Failure Predic-
tion Models (getNodeSpecificFailurePredictionModels), and monitoring requests (getNodeSpeci-
ficFailurePredictionMonitoringRequests) for the data required in the scope of the FPF module of
the SurvAgent. Having downloaded all these configuration data/models from the FDH Configu-
ration Server, the SurvAgent proceeds with establishing its required communication channels to
the local MonAgent, and submitting the monitoring requests to support the process of Failure-
Prediction (submitFailurePredictionMonitoringRequests). Finally, the Bootstrap Manager is noti-
fied of the successful start of the SurvAgent and proceeds with the interactions depicted on Figure
B.4, which describes the starting of the key supporting components such as the alarm/incident
repositories and the Event Dissemination Agent. The bootstrapping of these components follows
a similar scheme as the one described in detail for the FaultManAgent and the SurvAgent.

The above bootstrapping description contains two calls, which trigger the instrumentation of mon-
itoring services for the needs of Fault-Detection (submitFaultManagementAgentMonitoringRe-
quests) and Failure-Prediction (submitFailurePredictionMonitoringRequests). These two calls
stand for the process of monitoring request admission and the setting up of monitoring jobs for
the needs of the FDH self-healing agents. Therefore, the following text elaborates on the Mon-
Agent interaction sequences behind these two calls. Figure B.2 details the process of setting up
a monitoring job within the FDH MonAgent. It starts with a client agent submitting a monitor-
ing request (submitMonitoringRequest), which is in turn evaluated by the Orchestration Engine
regarding whether it can be accepted for execution (evaluateAdmissionPolicies). This evaluation
is determined by some admission policies that may concern security or performance aspects, e.g.
whether there are enough memory resources to setup the job. In case the monitoring request can-
not be satisfied, a reject type of message is sent back to the requester (rejectMonitoringRequest).
In case the admission policies have allowed the request to pass, its instrumentation needs to be
synchronized (synchronizeTentativeAction) over the SelfOptAgent with other potential tentative
actions coming from the FDH agents. Given that the SelfOptAgent has allowed the setting up of
the monitoring job, the Orchestration Engine has to recognize the type of request - traffic or node
monitoring - and forward (forwardTrafficMonitoringRequestToTrafficMonCoord or forwardNode-
MonitoringRequestToNodeMonCoord) it to the belonging monitoring coordination component,
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Figure B.2: Setting up a Monitoring Job
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Figure B.3: FDH Initialization on Node Level: Bootstrapping of the SelfOptAgent, the MonAgent
and the Fault-Propagation Model Repository

i.e. Traffic Monitoring Coordination (TMC) or Node Monitoring Coordination (NMC). The mon-
itoring coordination component has in turn to scroll over the available plug-ins and select the
one capable of processing the request - selectTrafficMonitoringPlugin or selectNodeMonitoring-
Plugin. In case no such plug-in is available, a reject type of message is communicated back to
the requester. Finally, in case the right plug-in was identified, the monitoring job is setup and
the belonging monitoring tools are used to observe relevant key performance indicators (orches-
trateRequiredTrafficMonitoringTools or orchestrateRequiredNodeMonitoringTools).
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Figure B.4: FDH Initialization on Node Level: Bootstrapping of key Supporting Components
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Appendix C

Examples of Faulty Conditions
resolvable by FDH

In this section, some examples of concrete operational issues/problems are given, which can be re-
solved in case different access/core nodes and end systems implementing FDH collaborate. Some
of these problems were used within the case studies - in section 13 as well as in the specific case
studies in the chapters on various algorithms and/or components - to exemplify various aspects
of the proposed FDH framework. The following list is meant to give an idea of problems where
FDH can be extremely helpful in increasing the overall Quality of Service of the network/system
in question. This list complements the general classification of network/system problems provided
in section 5.3.

Black Holes: Black Holes in IPv6 networks, due to misconfiguration in the course of IPv4-to-IPv6
transitioning, constitute one of the key case studies in chapter 7, chapter 8 and chapter 13 in this
thesis.The general term Black Hole - beyond the scope of IPv6 - represents a family of packet de-
livery problems where the physical (and in some cases even logical/routing) connectivity between
two systems is present, but however the packets sent between the two nodes (e.g. hosts) don’t
reach their destination. The erroneous state results from the fact that the systems, even having the
capabilities to react to the fault activation, do not get notified of packet delivery failures and can
not even localize the fault. That is, the sender may continue sending packets without detecting the
packet loss problem and cannot correspondingly react. The forwarding nodes are also not aware
of the problem and do not adapt their behavior correspondingly. The phenomenon of Black Holes
has been extensively studied and its relevance for ISP operators is now well known [KYGS07]
[KBMJ+08]. Potentially, Black Holes may occur due to:

1. Loss of connection because of an incorrect PMTU or broken tunnels, e.g. MPLS

2. Software bugs

3. Delayed routing protocol convergence etc.

The FDH architecture can remediate some Black Hole issues by detecting and isolating them, re-
configuring the corresponding core network components, and informing the end systems in ques-
tion to adapt their behaviors.

Duplex mismatches: IEEE 802.3 Ethernet networks constitute a widely used link layer commu-
nication technology for local area networks. In that context, the IEEE 802.3 defines an auto-
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negotiation procedure between the network interfaces of the involved nodes, such that no or less
manual configuration is needed when setting up a local area network. This is of great use, since
local area networks are often managed and set up by non-experts or just users of ICT technology.
The steps and elaborations, on how a duplex mismatch based on the auto-configuration procedure
can emerge, are described in detail in the main part of this thesis (e.g. section 13.2). The manifes-
tation of such a problem can range from duplicate ACKs in TCP flows, fluctuations in the CWND
(congestion window) size of TCP connections, to increased frame collisions and losses within the
network interfaces [SC05]. The majority of these manifestations are experienced on the end sys-
tems, e.g. CWND size fluctuations. In case, symptoms of a duplex mismatch are observed within
the nodes on a network path, then the FDH framework would disseminate the information to the
involved network components and facilitate a resilient reaction in order to sustain QoS.

A possible reaction (as implemented in the case studies from the main part of the thesis) might be
to restart the mismatching NICs on the nodes in question, in order to re-trigger auto-negotiation.
A short term reaction for mitigating the duplex mismatch problem would consist of triggering the
end system, which are pushing traffic over the affected link, to hold back outgoing packets for a
while, whilst the NICs in questioned have finished restarting and auto-negotiating the link layer
settings. That way, traffic is not unnecessarily (since it will for sure get lost during the Fault-
Removal phase) pushed into the network, and the user will probably experience just a short de-
lay.Further details and concrete examples can be found in the case studies throughout the main
part of the thesis, especially section 13.2.

(D)DoS detection: Obviously, the mechanisms of the FDH architecture can also be employed for
security related issues realizing a self-protecting/defending functionality. Recently, a lot of re-
search has been conducted in the area of intrusion and cyber attack detection. The study and clas-
sification of traffic anomalies towards the detection of malicious software preparing a Distributed
Denial of Service (DDoS) attack is an ongoing research topic. The results of this advanced re-
search can be easily integrated with the FDH incident sharing mechanisms. In this way, end
systems that detect such suspicious activities may send this information to the FDH instance at the
edge of the ISP’s network. After having correlated these notifications, and having identified the
threat of a DDoS attack, the FDH instance on the edge can implement a policy in order to counter
the intended attack.

Corrupted services (e.g. DNS, OCSP ...): Given that an end system or any functional entity has
detected a malfunctioning service, the FDH incident sharing mechanisms can be employed to dis-
seminate this information and inform other potentially affected end systems. For instance, an end
system may detect the unavailability of a DNS server and use the FDH mechanisms, in order to
share this information and enable other end systems to switch to another DNS server, as long as
the primary one is offline. Furthermore, the FDH mechanisms can identify the crashed DNS server
and restart it correspondingly, thereby notifying the network operations personnel regarding the
occurred situation and the undertaken actions.

Maintenance activities: According to [MIB+08], maintenance activities are responsible for around
20% of the failures observed in an operational IP backbone. The FDH architecture can potentially
detect the corresponding outage, identify the reason for it and apply, for example, some admission
control policies in order to guarantee best QoS for the already subscribed end systems.

PMTU issues: Traditionally, IP protocols implement a PMTU (Path Maximum Transmission Unit)
discovery procedure on end systems. PMTU discovery is performed before the data transmission
has started. This enables the end systems to obtain a valid PMTU for a connection towards another
end system using the services of an operator’s network. However, it is possible that the PMTU
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towards a host decreases during the lifetime of a connection. In such cases, the router at which the
PMTU has decreased will fail to forward a packet and is expected to respond to the end system
with an ICMP message indicating the packet loss and the reason. The IP module on the sender
end system is expected in turn to readjust its PMTU settings towards the receiver. However, this
procedure is very often not possible due to reasons such as firewall ICMP suppression on routers
- as in the case of the IPv6 Black Holes used for the case studies - or simply because the traffic
that cannot be forwarded is being tunneled (e.g. a VPN tunnel) and the ICMP messages are cor-
respondingly not relayed. In such cases the sending host fails to adapt its fragmenting behavior
and the packets towards the receiver fail to reach their destination eventhough there is an intact
physical connectivity. Obviously, this constitutes a specific type of a Black Hole as previously
described. In that context, a framework such as FDH can enable the implementation of mecha-
nisms which allow the collaborating end systems, access and network components to overcome
such issues with sudden PMTU changes.
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Appendix D

Bayesian Networks

The elucidations below represent a mathematical definition of the Bayesian Network framework.
Thereby, the following items constitute the main mathematical components for defining the be-
longing inference problem:

• n - number of random variables/nodes in the DAG

• Xi : Ωi → Di , with i ∈ {1, . . . ,n} - random variables where Di is a finite set. The tuple
(Ωi ,Fi ,P ) denotes a probability space, where Ωi is the sure event, Fi is the σ-field/algebra
of events, and P is the belonging probability measure.

• V := {X1,X2, . . . ,Xn } - set of random variables/nodes in the DAG. Usually, they represent
states of network objects/components/entities (in the case of a Dependency Graph [SS04a])
or the occurrence of network events (in case of a Causality Graph [SS04a]).

• E := {eij }, i , j ∈ {1, . . . ,n} - set of edges in the DAG. They usually represent cause-effect
relationships between two connected nodes Xi and Xj (e.g. Xi causes Xj ).

• Pa(Xi ) := {Xi1,Xi1, . . . ,Xil }, i ∈ {1, . . . ,n}, l < n , Xij ∈ V - set of parent nodes for Xi ,
i.e. nodes which influence/cause Xi .

• Mi − (| Pa(Xi ) | +1)-dimensional conditional probabilistic matrix of size | Di | × |

Di1 | × . . .× | Dil | associated with the random variable Xi . The component at position
(xi , xi1, xi2, . . . , xil ) of the matrix Mi is given by [SS04b]: Mi (xi , xi1, xi2, . . . , xil ) = P (Xi =

xi | Xi1 = xi1,Xi2 = xi2, . . . ,Xil = xil ), xij ∈ Dij , j ∈ {1, . . . , l }, l < n , with Dij a set of
possible values taken by Xij .

A Bayesian network can then be precisely defined as a pair (G ,P ), where G = (V ,E ) is a DAG
satisfying the Markov condition, which means that the probabilities associated to each node of G
are influenced only by the direct neighbors/predecessors of the node. Hence, each variable X ∈ V
is conditionally independent of the set of all its non-direct neighbors, given the set of all its parents
(i.e. direct predecessors in the DAG) [Nea03], i.e.

P = (X1 = x1, . . . ,Xn = xn ) =

n∏
i=1

P (Xi = xi | Xj = xj ,∀Xj ∈ Pa(Xi )) (D.1)
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Furthermore, denote by C ⊂ {1, . . . ,n} the index set of random variables with known/observed
sample values and by oj ∈ Dj , j ∈ C , the known/observed value taken by the random variable Xj .
A Fault-Localization problem can be seen as the problem of finding the most probable explanation
of the observed symptoms/alarms based on the Belief Network used as a fault-propagation model
[Nea03]:

A∗ = argmax
A∗∈S

P (X1 = a1, . . . ,Xn = an ) (D.2)

with S = {(a1, . . . , an ) ∈ D1 × . . . × Dn | aj = oj ,∀ j ∈ C }. This problem is obviously NP-hard
and despite the existence of polynomial algorithms for some specific types of belief networks -
such as singly connected networks [SS04a] - the algorithmic solution of the above formulated
Fault-Isolation problem is a difficult task in the scope of the envisioned automated self-healing.



Appendix E

Example of an Adaptive Monitoring
Behavior

Given the FDH monitoring framework, described in section 6.2.1.1 and section 7.1, the following
pragraphs provide an example of an adaptive monitoring behavior that can be realized by means
of the Adaptation Policies of the FDH MonAgent.

E.1 Monitoring QoS Violations

Monitoring QoS violations is an important aspect for network operators in the course of fulfilling
contractual SLA agreements. Vital QoS metrics include jitter (delay variation), round trip time
(RTT), throughput, and bandwidth among the edge routers of a service provider network. Hence,
during the FDH MonAgent design and development, it was experimented with mechanisms for
monitoring these metrics and adapting the belonging monitoring behaviors, processes and corre-
spondingly plug-ins of the FDH MonAgent.

For the purpose of monitoring the above QoS metrics, an FDH MonAgent instance was deployed
on the edge routers of the network in Figure 11.1, i.e. on R1, R4, R8, R3, R7, and R11. Two plug-
ins were developed in order to measure the aforementioned metrics between any combination of
ingress (R4 and R8) and egress router (R1, R3, R7, and R11). The first plug-in wraps the ping
tool for measuring the round trip time between the ingress-egress pairs. The second one wraps the
iperf tool - client component on the ingress routers and server component on the egress side - in
order to actively measure the rest of the metrics - jitter, throughput, and bandwidth for UDP and
TCP connections, as well as out of order packets. In the following, the ping - wrapping plug-in is
denoted as RTT plug-in, and the iperf - wrapping one as QoS plug-in1.

An exciting part of this setup is given by the efforts to develop adaptation strategies for the RTT
plug-in. Similar efforts are given by [HCG01] and [AAFR10]. In general, the adaptation of dif-
ferent monitoring behaviors is a large research area which is not the focus of this thesis. In that
context, the example given here is mainly meant to illustrate the potential for implementing such
adaptation behaviors within the FDH MonAgent framework.

Based on RTT data recorded in real service provider networks,a simple controller was developed
that adapts its sampling rate dynamically in an effort to reduce the amount of active pings. The

1These plug-ins were also used as a basis for various discussions and measurements in section 7.1.3 and chapter 13
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main idea is to record some RTT measurements and to use them as "trainings data" for obtaining
an interval within which some significant changes in the RTT dynamics are expected. Moreover,
the data monitored within these intervals is every time evaluated regarding whether it really
contains some significant dynamics. If none, then some new "trainings data" is obtained and a
new interval calculated. The controller works as follows in a summarized form:

Input:
1) N - number of training measurements.
2) clSize - cluster size for the significant changes in the training data
3) tol - determines whether the difference between measurements is significant or not
4) α- confidence level for constructing a confidence interval with the t-distribution [Sch12]
Preconditions: N > 0, clSize > 0, tol > 0, 0 < α < 1

1. Record N RTT values
2. Obtain clusters of significant changes (based on tol), within the recorded values, according

to a pre-specified cluster size clSize
3. Calculate a mean value for the distance between significant changes in the RTT dynamics

based on the center positions of the clusters
4. Calculate a confidence interval of level α around the mean value using the t-distribution

[Sch12]
5. Monitor RTT values between the points in time suggested by the lower and upper bounds

of the confidence interval
6. Conduct a test on the monitored RTT values

→ If no significant change found, go to (1)
→ If any significant changes found, go to (5)

Obviously, such an adaptation strategy is easily implementable within the adaptation policy hook
of the FDH MonAgent prototype. As previously mentioned, the strategy was used on RTT data
obtained from different service provider networks, in order to judge on its applicability. Within
a MATLAB simulation, it turned out that this strategy is a good choice in case the RTT values
are stable with periodical bursts of significant changes. In that case, it was possible to reduce the
number of measurements thereby still being able to reasonably reconstruct the RTT signal dynam-
ics. This is illustrated in Figure E.1 for N = 100, clSize = 20, tol=20, and α= 0.6. Thereby, a
minimal mean error between the actual data and the signal extrapolated from the observed data
was achieved (0.7), and the monitored values were reduced by 10%. In overall, a training session -
step (1) from the algorithmic description- was initiated only once in that setup. On the other hand,
this technique performed poor in cases of continuous dynamics, where the confidence intervals
were not really bringing any benefit with respect to reduction of observed data and the capability
to reconstruct the RTT signal from the observed data.
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Figure E.1: Actual RTT data and observed RTT data with Adaptation
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Appendix F

FDH Collaboration between ISPs and
End Systems

In this section, the different FDH aspects of collaboration among end systems, access network and
core network components are presented 1. These aspects should be considered in implementing
self-healing based on collaboration of FDH instances across multiple network segments. Further-
more, situations and issues are identified where the collaboration can be beneficial for enabling
self-healing and fault resolution in the long-term operation of the involved networks. Thereby, it is
assumed that the devices across the different networks are equipped with FDH components. Cor-
respondingly, the collaboration aspects are specified as interactions between the FDH instances.
The presented specifications and flows are described on an abstract level and can be implemented
on top of various types of access technologies (e.g. DSL, 3GPP, UTRAN, or EPC).

F.1 Means for Auto-Collaboration

In general, the base for FDH collaboration over the domains in question is provided by the ex-
change of different types of information, either during the device/terminal subscription phase for
the end systems, or during the phase in which the end users’ equipment is utilizing the ISP’s
network. The information used by an FDH instance can be classified as follows:

1. run-time information about detected incidents - stored in the incident repositories of an FDH
implementing device

2. Fault-Propagation Model that describes information about potential chains of events (fault
→ error ... →failure) - stored in the FPMR repository of a node

3. policy configurations for the FRF, FIAF, and the FRAF modules within the FaultManAgent

4. policy configurations for the FMF module of the SurvAgent

5. monitoring requests for Fault-Detection (FDH FaultManAgent in the nodes) and Failure-
Prediction (FDH SurvAgent in a node) and

6. action synchronization and optimization models for the SelfOptAgent
1The work presented in this chapter was initially published in [TC10b].
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Figure F.1: Aspects of FDH Collaboration for Distributed Self-Healing
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Figure F.1 gives an overview of the information flows required to facilitate collaborative self-
healing. In the following subsections, the importance of the different types of information - out-
lined in Figure F.1 - is discussed - thereby distinguishing between the subscription phase of a
device to the ISP network, and the operating phase when the network is utilized by the end system
for accessing services and applications.

F.2 Auto-Configuration: Enabling FDH based Self-Healing across
Multiple Network Segments

Starting with the subscription phase of end systems and devices: The end systems are expected
to share - with the operator’s network - information about their settings and configurations, e.g.
OS (Operating System) type and characteristics, type and version of the employed protocol stack
- including enabled protocol features (e.g. PMTU discovery), as well as information regarding ap-
plications and services hosted on the end system. This information - denote it device capabilities -
is provided during the subscription phase of the device into the operator’s network. The device ca-
pabilities can be seen as accumulated capabilities of the plethora of software and hardware compo-
nents of an end system. As described in Figure F.2, the capabilities are required by the ISP network
in order to select the appropriate FDH related configurations, which are sent back to the end sys-
tem. This configuration/information may include (as illustrated in Figure F.1) a Fault-Propagation
Model related to potential problems, which can occur in the network, such that the end system
can better understand certain anomalies, furthermore Fault-Removal/Mitigation, Fault-Isolation
Assessment and Fault-Removal Assessment policies, which enhance the set of such policies al-
ready in place on the end-system, as well as monitoring requests and action optimization models
for the SelfOptAgent on the end system. An interesting issue is that of the information model
that facilitates the processes in Figure F.2. The current trends in telecommunications are striving
to reduce the usage of proprietary models and promote the usage of a single standardized model
such as or CIM [CIM16]. For the purpose of self-description by end systems, one has to be aware
that due to different standards and technological domains, the exchanged information will suffer
major drawbacks because of the lack of a standardized terminology. Hence, the usage of seman-
tic based model concepts such as ontologies is imperative for the process of self-description and
auto-configuration for FDH. That is, the end system must submit (to the network) its capabilities
in an ontological format such that the obstacle of different terminologies across software/hardware
vendors, standardization bodies, etc. can be avoided.

Another aspect that must be addressed when specifying the Fault-Propagation Model as well as
the various types of policies to be supplied to an end system, is that of confidentiality of the ex-
ported information. If not designed properly, the aforementioned models and policies may contain
information that directly or indirectly reveals some sensitive information about the operator’s net-
work. Such information can be easily exploited by hackers. Therefore, it may be useful to use
only cryptographically generated strings (i.e. avoid using full descriptions of the events) in the
version of the Fault- Propagation Model which is given to an end system, or to delegate as many
as possible reactions (e.g. Fault-Mitigation/ Removal) of the control loops to the edge or access
network components.

Additionally, after getting to know the capabilities of the new subscriber, the FDH mechanisms of
the network have to prepare the information flows from the network to the subscriber such that the
end system can access information about incidents in the ISP network, and can correspondingly
react according to the aforementioned Fault-Mitigation policies. This means that the FDH op-
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Access Network ISP Core Network

5. Deliver FDH related configurations to end system

3. Compile/select FDH related configurations for end system

End System

1. Subscribe and get authenticated

2. Submit device capabilities

3. Forward device capabilities

4. Respond with FDH related configurations

Figure F.2: FDH Auto-configuration of an End System
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Figure F.3: Information Model for Survivability Requirements
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erator’s network mechanisms formulate Survivability Requirements (SR) for the applications and
services on the newly subscribed end system. These SRs are then used as filters associated with the
FDH Node Repositories and EvDissAgents, such that particular incidents and alarms (according to
the SRs) are sent to the subscriber end systems. A similar concept of a Survivability Requirement
was proposed by [Cha09], however without being elaborated in detail.

Access Network ISP Core Network

5. Deliver detected incident to end system

1. Detect an incident or generate an alarm

End System

3. Process incident forwarding request

2. Send alarm/incident to end system

6. Mitigate local impact of the erroneous state

Edge

4. Forward (anonymized) alarm/incident description

Figure F.4: An FDH Implementing End System Mitigating the Local Impact of an Erroneous State
in the ISP Network

Figure F.3 depicts the proposed meta-model for a Survivability Requirement. This meta-model is
based on alarm/incident event descriptions as recommended by ITU-T [ITU92] and CIM [CIM16].
According to the meta-model on Figure F.3, a Survivability Requirement has a particular urgency
level, which might be used for prioritizing the dissemination of certain type of incidents/alarms
over others. Furthermore, an SR can be of two types: 1) an incident based SR, or 2) an alarm
based SR. The alarm type is described by some standard fields such as AlarmID, AlarmDescrip-
tion, etc. In addition, the alarm type might link to a specific KPI which has crossed or is close
to crossing a particular threshold. The threshold itself relates once again to a functional entity,
e.g. a protocol module such as IP forwarding or an OSPF daemon inside a router. Moreover, an
incident based SR is again described by some typical fields such as incidentType, incidentID, and
Keywords, whilst at the same time referring to a particular networking service, which is fulfilled
by a functional entity. In addition, it is possible to give some characteristics of the entity which
is expected to detect the incident that this SR refers to. Based on such SR models, the network
side FDH instances would be able to know which types of alarms/incidents must be sent to the
subscribing end systems.
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Access Network ISP Core Network

5. Deliver detected incident to end system

1. Detect an incident

End System

3. Process incident forwarding request

2. Send detected incident to end system

6. Perform Fault-Isolation

Edge

4. Forward (anonymized) incident description

8. Perform Fault-Removal

7. Perform Fault-Isolation Assessment

9. Perform Fault-Removal Assessment

10. Send (anonymized) recovery notification

11. Forward (anonymized) recovery notification

12. Deliver (anonymized) recovery notification

Figure F.5: An End System Performing Fault-Isolation and Fault-Removal in Case the Incident,
detected in the ISP Network, indicates a Fault (Root Cause) on the End System
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F.3 Collaboration and Information Flow during the Operation Phase

After an end system has subscribed to the ISP over the access network, selected types of moni-
toring information are expected to flow between the end system, the access network and the ISP’s
network. Figure F.4 describes a generic scheme of how an end system can mask the local impact
of an erroneous state that has been detected in the core network (step 1). The node in the core
network, on which the erroneous state was detected, reasons about the need to send the incident
description to the corresponding end system, i.e. the decision would be based on a previously
expressed/generated Survivability Requirement and/or on the end system being one of the end
points in a flow in which some traffic anomalies were detected. Moreover, the Edge of the ISP
network intercepts (step 3) the message (after it has been sent in step 2), and checks whether the
information inside can be sent to the end system based on the security policies in place - e.g. in
regard to privacy or confidentiality constraints. Obviously, such an incident message can contain
information, which the operator does not want to share, in order to keep certain structures and
configurations of her network a secret. Hence, the Edge should be equipped with a policy that al-
lows/disallows, or manipulates alarm/incident descriptions being sent to end systems. Given that
the message has been allowed or anonymized, step 4 and 5 deliver it to the end system. Based
on the Fault-Mitigation policy, which has been supplied during the subscription phase of the end
system (Figure F.2), the belonging FDH instance on the end system is expected to react and mask
the local impact of the erroneous state indicated by the received alarm/incident description.

Access Network ISP Core Network

1. Detect an incident or generate an alarm

End System

2. Send alarm/incident to ISP network

Edge

3. Froward alarm/incident description

4. Froward alarm/incident description

5. Perform Fault-Mitigation inside the core network

Figure F.6: Fault-Mitigation in the ISP Network based on Information Supplied by an End System

In addition to the mitigation behavior of the end system, which is realized by the SurvAgent of
FDH, a behavior as the one described in Figure F.5 is also required. In this case the end-system
FaultManAgent gets activated and performs Fault-Isolation (step 6), followed by the assessment
of the Fault-Isolation result (step 7), and consequently Fault-Removal (step 8) in case the root
cause for the traffic anomaly observed in the core network is located on the end-system. Finally,
the removal of the fault is locally verified (step 9), and a recovery notification is sent back to the
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ISP’s network 2. The logistic that facilitates these processes includes the Fault-Propagation Model
as well as all the FaultManAgent policies - for Fault-Isolation Assessment, Fault-Removal and
Fault-Removal Assessment - that must have been supplied during the subscription phase of the
end system - see Figure F.2.

An additional aspect is given by monitoring information, i.e. metric values or incident descriptions
of observed anomalies, which may flow from the end systems to the ISP core network, thereby
enabling self-healing in the access network, the edge and the ISP core network. The signaling that
realizes fault tolerant behaviors in the ISP core network is described in Figure F.6. In the course of
this, an alarm/incident is conveyed from an end system to the relevant nodes in the ISP’s network
(steps 1, 2, 3 and 4). Subsequently, the relevant nodes in the ISP network perform Fault-Mitigation
in order to handle the immediate local impact of the communicated symptoms.

In addition to the FDH behavior on Figure F.6, the sequence of interactions and actions towards
eliminating the root cause(s) of a faulty condition in the core network are illustrated on Figure
F.7. Again, the incident detected on an end system (step 1) is conveyed to the FDH instances
in the ISP’s network (steps 2, 3 and 4 on Figure F.7 where the relevant nodes (and belonging
FDH instances) perform the tasks of Fault-Isolation (step 5 on Figure F.7, Fault- Isolation Assess-
ment (step 6), Fault-Removal (step 7) and Fault-Removal Assessment (step 8). As in the previous
descriptions, only the "straight forward" case when all steps are accomplished successfully is pre-
sented for illustrative purposes. The way various exceptions are handled in the course of achieving
fault resolution is presented on the sequence diagrams in section 6.3.

Coming back to the interaction flows on Figure F.7: Presuming that a fault has been successfully
removed in the ISP network, a recovery notification is disseminated to all the routers as wells as
to the relevant end system subscribers (steps 10, 11 and 12 on Figure F.7). Thereby, the recovery
notification would require to be anonymized/processed (step 10) according to confidentiality con-
straints such that sensitive information, e.g. regarding the topology of the operator’s network, is
not sent outside the belonging operator’s domain.

Finally, as illustrated on Figure F.8, the sharing of incident event descriptions among end systems
can enable FDH based resilient behaviors on the subscribed end user equipment. This sharing can
be realized over the SOHO (Small Office Home Office) network or directly over the communica-
tion medium of the access network. It is also possible that different access network components
(e.g. different "Node B"s and Remote Network Controllers in the context of UMTS), serving
different subscribers, collaborate and enable the exchange of incident information between the
subscribed end systems. An example of such interactions, facilitated by the FDH incident sharing
mechanisms among end systems, is given by the possible realization of self-protection mech-
anisms in case of a distributed attack (i.e. DDoS), where multiple FDH instances on the end
systems could exchange information related to the distributed preparation of a DDoS, and would
synchronize in order to undertake countermeasures.

The collaboration aspects described in this chapter would enable FDH instances deployed across
different domains - especially on end systems, different types of access networks, and ISP core
networks - to exchange information required for the efficient management of alarms and incidents
towards the realization of distributed self-healing. The above presented sequence diagrams cap-
ture the high level interactions required for the realization of Fault-Removal and Fault- Mitigation

2For illustrative purposes, the sequence diagrams are kept abstract without going into all the special cases, e.g. in
case the Fault-Isolation result was not correct etc. Hence, the diagrams show only the "straight forward" cases when
all the undertaken operations are considered successful. Detailed descriptions with possible exceptions to the flows are
presented in section 6.3.
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End System

2. Send detected incident to ISP network

Edge

3. Froward detected incident description

4. Froward detected incident description

5. Perform Fault-Isolation

6. Perform Fault-Isolation Assessment

7. Perform Fault-Removal

8. Perform Fault-Removal Assessment

9. Send recovery notification

11. Forward (anonymized) recovery notification

10. Process recovery notification forwarding request
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Figure F.7: Removing a Fault in the ISP Network based on Incident Detection on an End System
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Figure F.8: Information Sharing between End Systems and Consequent Fault-Mitigation of the
Local Impact of a Faulty Condition

based on FDH instances collaborating across multiple network segments.
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