Skip to main content
Log in

Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag@Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, the Keggin type molybdovanadophosphoric acid (PMo12-xVxO40 (x = 1,2,3), abbreviated as PMoV) modified on Ag@Pt/MWCNTs composite catalysts were successfully prepared by a chemical impregnation method. The results of physical characterization revealed that PMoV molecules were incorporated into the Ag@Pt/MWCNTs structure. The effect of the composite catalyst on oxygen reduction was studied by electrochemical analysis. The catalytic performance of the composite catalyst changed with the change of the number of the substituted vanadium atoms in the heteropolyacid. The PMo10V2 catalyst shows the best activity and stability among the three heteropolyacid-modified catalysts evaluated. When the optimum doping ratio is 20%, the electrochemically active surface area (ECSA) of the composite catalyst is 99.69 m2/gPt, and it is increased by 49.11% compared with commercial Pt/C catalysts (65.63 m2/gPt). The initial reduction potential of the composite catalyst is 0.968 V, which is shifted by 73 mV compared with the 20% Pt/C catalyst. Additionally, the mechanism of catalytic reaction is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657. https://doi.org/10.1021/acs.chemrev.5b00462

    Article  PubMed  CAS  Google Scholar 

  2. Hasnat MA, Ben Aoun S, Nizam Uddin SM, Alam MM, Koay PP, Amertharaj S, Rashed MA, Rahman MM, Mohamed N (2014) Copper-immobilized platinum electrocatalyst for the effective reduction of nitrate in a low conductive medium: mechanism, adsorption thermodynamics and stability. Appl Catal A Gen 478:259–266. https://doi.org/10.1016/j.apcata.2014.04.017

    Article  CAS  Google Scholar 

  3. Li B, Higgins DC, Xiao Q, Yang D, Zhng C, Cai M, Chen Z, Ma J (2015) The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. Appl Catal B Environ 162:133–140. https://doi.org/10.1016/j.apcatb.2014.06.040

    Article  CAS  Google Scholar 

  4. Pech-Pech IE, Gervasio DF, Godínez-Garcia A, Solorza-Feria O, Pérez-Robles JF (2015) Nanoparticles of ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: part 1. J Power Sources 276:365–373. https://doi.org/10.1016/j.jpowsour.2014.09.112

    Article  CAS  Google Scholar 

  5. Wang R, Higgins DC, Prabhudev S, Lee DU, Choi JY, Hoque MA, Botton GA, Chen Z (2015) Synthesis and structural evolution of Pt nanotubular skeletons: revealing the source of the instability of nanostructured electrocatalysts. J Mater Chem A 3:12663–12671. https://doi.org/10.1039/c5ta01503k

    Article  CAS  Google Scholar 

  6. Yu S, Liu R, Yang W, Han K, Wang Z, Zhu H (2014) Synthesis and electrocatalytic performance of MnO2-promoted ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction. J Mater Chem A 2:5371–5378. https://doi.org/10.1039/c3ta14564f

    Article  CAS  Google Scholar 

  7. Bhorodwaj SK, Dutta DK (2011) Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol. Appl Clay Sci 53:347–352. https://doi.org/10.1016/j.clay.2011.01.019

    Article  CAS  Google Scholar 

  8. Han X-X, Chen KK, Yan W, Hung CT, Liu LL, Wu PH, Lin KC, Liu SB (2016) Amino acid-functionalized heteropolyacids as efficient and recyclable catalysts for esterification of palmitic acid to biodiesel. Fuel 165:115–122. https://doi.org/10.1016/j.fuel.2015.10.027

    Article  CAS  Google Scholar 

  9. Sun Z, Wang S, Wang X, Jiang Z (2016) Lysine functional heteropolyacid nanospheres as bifunctional acid–base catalysts for cascade conversion of glucose to levulinic acid. Fuel 164:262–266. https://doi.org/10.1016/j.fuel.2015.10.014

    Article  CAS  Google Scholar 

  10. Yuan B, Li Y, Wang Z, Yu F, Xie C, Yu S (2017) A novel Brønsted-Lewis acidic catalyst based on heteropoly phosphotungstates: synthesis and catalysis in benzylation of p-xylene with benzyl alcohol. Mol Catal 443:110–116. https://doi.org/10.1016/j.mcat.2017.10.003

    Article  CAS  Google Scholar 

  11. Han X, Chen K, du H, Tang XJ, Hung CT, Lin KC, Liu SB (2016) Novel Keggin-type H4PVMo11O40 -based ionic liquid catalysts for n-caprylic acid esterification. J Taiwan Inst Chem Eng 58:203–209. https://doi.org/10.1016/j.jtice.2015.07.005

    Article  CAS  Google Scholar 

  12. Feyzi M, Nourozi L, Zakarianezhad M (2014) Preparation and characterization of magnetic CsH2PW12O40/Fe–SiO2 nanocatalysts for biodiesel production. Mater Res Bull 60:412–420. https://doi.org/10.1016/j.materresbull.2014.09.005

    Article  CAS  Google Scholar 

  13. Tang S, She J, Fu Z, Zhang S, Tang Z, Zhang C, Liu Y, Yin D, Li J (2017) Study on the formation of photoactive species in XPMo12-n Vn O40 - HCl system and its effect on photocatalysis oxidation of cyclohexane by dioxygens under visible light irradiation. Appl Catal B Environ 214:89–99. https://doi.org/10.1016/j.apcatb.2017.05.027

    Article  CAS  Google Scholar 

  14. Fakhri H, Mahjoub AR, Aghayan H (2017) Effective removal of methylene blue and cerium by a novel pair set of heteropoly acids based functionalized graphene oxide: adsorption and photocatalytic study. Chem Eng Res Des 120:303–315. https://doi.org/10.1016/j.cherd.2017.02.030

    Article  CAS  Google Scholar 

  15. Li Y, Huang T, Wu Q, Xu L (2015) Synthesis and conductive performance of quaternary molybdotungstovanadophosphoric heteropoly acid with Keggin structure. Mater Lett 157:109–111. https://doi.org/10.1016/j.matlet.2015.05.026

    Article  CAS  Google Scholar 

  16. Fernandes DM, Freire C (2015) Carbon nanomaterial-phosphomolybdate composites for oxidative electrocatalysis. ChemElectroChem 2:269–279. https://doi.org/10.1002/celc.201402271

    Article  CAS  Google Scholar 

  17. Vijayalekshmi V, Khastgir D (2018) Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications. Energy 142:313–330. https://doi.org/10.1016/j.energy.2017.10.019

    Article  CAS  Google Scholar 

  18. Li Y, Wang H, Wu Q, Xu X, Lu S, Xiang Y (2017) A poly(vinyl alcohol)-based composite membrane with immobilized phosphotungstic acid molecules for direct methanol fuel cells. Electrochim Acta 224:369–377. https://doi.org/10.1016/j.electacta.2016.12.076

    Article  CAS  Google Scholar 

  19. Oh SY, Yoshida T, Kawamura G, Muto H, Sakai M, Matsuda A (2010) Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether–ether ketone). J Power Sources 195:5822–5828. https://doi.org/10.1016/j.jpowsour.2010.01.063

    Article  CAS  Google Scholar 

  20. Lu S, Wu C, Liang D, Tan Q, Xiang Y (2014) Layer-by-layer self-assembly of Nafion–[CS–PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Adv 4:24831–24837. https://doi.org/10.1039/c4ra01775g

    Article  CAS  Google Scholar 

  21. Tang H, Pan M, Lu S, Lu J, Jiang SP (2010) One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. Chem Commun (Camb) 46:4351–4353. https://doi.org/10.1039/c003129a

    Article  CAS  Google Scholar 

  22. Qian W, Shang Y, Wang S, Xie X, Mao Z (2013) Phosphoric acid doped composite membranes from poly (2,5-benzimidazole) (ABPBI) and CsxH3−xPW12O40/CeO2 for the high temperature PEMFC. Int J Hydrog Energy 38:11053–11059. https://doi.org/10.1016/j.ijhydene.2013.03.039

    Article  CAS  Google Scholar 

  23. Zhang B, Cao Y, Li Z, Wu H, Yin Y, Cao L, He X, Jiang Z (2017) Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochim Acta 240:186–194. https://doi.org/10.1016/j.electacta.2017.04.087

    Article  CAS  Google Scholar 

  24. Malers JL, Sweikart M-A, Horan JL, Turner JA, Herring AM (2007) Studies of heteropoly acid/polyvinylidenedifluoride–hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane. J Power Sources 172:83–88. https://doi.org/10.1016/j.jpowsour.2007.02.009

    Article  CAS  Google Scholar 

  25. Amirinejad M, Madaeni SS, Lee KS, Ko U, Rafiee E, Lee JS (2012) Sulfonated poly(arylene ether)/heteropolyacids nanocomposite membranes for proton exchange membrane fuel cells. Electrochim Acta 62:227–233. https://doi.org/10.1016/j.electacta.2011.12.025

    Article  CAS  Google Scholar 

  26. Kim K, Han J-I (2015) Heteropolyacids as anode catalysts in direct alkaline sulfide fuel cell. Int J Hydrog Energy 40:2979–2983. https://doi.org/10.1016/j.ijhydene.2015.01.011

    Article  CAS  Google Scholar 

  27. Wang D, Lu S, Jiang SP (2010) Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chem Commun (Camb) 46:2058–2060. https://doi.org/10.1039/b927375a

    Article  CAS  Google Scholar 

  28. Ensafi AA, Heydari-Soureshjani E, Jafari-Asl M, Rezaei B (2016) Polyoxometalate-decorated graphene nanosheets and carbon nanotubes, powerful electrocatalysts for hydrogen evolution reaction. Carbon 99:398–406. https://doi.org/10.1016/j.carbon.2015.12.045

    Article  CAS  Google Scholar 

  29. Guo ZP, Han DM, Wexler D, Zeng R, Liu HK (2008) Polyoxometallate-stabilized platinum catalysts on multi-walled carbon nanotubes for fuel cell applications. Electrochim Acta 53:6410–6416. https://doi.org/10.1016/j.electacta.2008.04.050

    Article  CAS  Google Scholar 

  30. Kourasi M, Wills RGA, Shah AA, Walsh FC (2014) Heteropolyacids for fuel cell applications. Electrochim Acta 127:454–466. https://doi.org/10.1016/j.electacta.2014.02.006

    Article  CAS  Google Scholar 

  31. Matsui T, Morikawa E, Nakada S, Okanishi T, Muroyama H, Hirao Y, Takahashi T, Eguchi K (2016) Polymer electrolyte fuel cells employing heteropolyacids as redox mediators for oxygen reduction reactions: Pt-free cathode systems. ACS Appl Mater Interfaces 8:18119–18125. https://doi.org/10.1021/acsami.6b05202

    Article  PubMed  CAS  Google Scholar 

  32. Feng L, Lv Q, Sun X, Yao S, Liu C, Xing W (2012) Enhanced activity of molybdovanadophosphoric acid modified Pt electrode for the electrooxidation of methanol. J Electroanal Chem 664:14–19. https://doi.org/10.1016/j.jelechem.2011.10.006

    Article  CAS  Google Scholar 

  33. Cui Z, Xing W, Liu C, Tian D, Zhang H (2010) Synthesis and characterization of H5PMo10V2O40 deposited Pt/C nanocatalysts for methanol electrooxidation. J Power Sources 195:1619–1623. https://doi.org/10.1016/j.jpowsour.2009.09.040

    Article  CAS  Google Scholar 

  34. Arichi J, Pereira MM, Esteves PM, Louis B (2010) Synthesis of Keggin-type polyoxometalate crystals. Solid State Sci 12:1866–1869. https://doi.org/10.1016/j.solidstatesciences.2010.01.022

    Article  CAS  Google Scholar 

  35. Yu S, Lou Q, Han K, Wang Z, Zhu H (2012) Synthesis and electrocatalytic performance of MWCNT-supported Ag@Pt core–shell nanoparticles for ORR. Int J Hydrog Energy 37:13365–13370. https://doi.org/10.1016/j.ijhydene.2012.06.109

    Article  CAS  Google Scholar 

  36. Yu S, Wang Y, Zhu H, Wang Z, Han K (2016) Synthesis and electrocatalytic performance of phosphotungstic acid-modified ag@Pt/MWCNTs catalysts for oxygen reduction reaction. J Appl Electrochem 46:917–928. https://doi.org/10.1007/s10800-016-0976-7

    Article  CAS  Google Scholar 

  37. Cai Y, Gao P, Wang F, Zhu H (2017) Surface tuning of carbon supported chemically ordered nanoparticles for promoting their catalysis toward the oxygen reduction reaction. Electrochim Acta 246:671–679. https://doi.org/10.1016/j.electacta.2017.05.068

    Article  CAS  Google Scholar 

  38. Wang D, Lu S, Xiang Y, Jiang SP (2011) Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Appl Catal B Environ 103:311–317. https://doi.org/10.1016/j.apcatb.2011.01.037

    Article  CAS  Google Scholar 

  39. Song J, Bazant MZ (2013) Effects of nanoparticle geometry and size distribution on diffusion impedance of battery electrodes. J Electrochem Soc 160:A15–A24. https://doi.org/10.1149/2.023301jes

    Article  CAS  Google Scholar 

  40. Bassam El Ali AMEG, Fettouhi M (2001) H3+nPMo12-nVnO40-catalyzed selective oxidation of benzoins to benzils or aldehydes and esters by dioxygen. J Mol Catal A Chem 165:283–290

    Article  Google Scholar 

  41. Yan Z, Zhang M, Xie J, Zhu J, Shen PK (2015) A bimetallic carbide Fe2MoC promoted Pd electrocatalyst with performance superior to Pt/C towards the oxygen reduction reaction in acidic media. Appl Catal B Environ 165:636–641. https://doi.org/10.1016/j.apcatb.2014.10.070

    Article  CAS  Google Scholar 

  42. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5–25. https://doi.org/10.1016/0304-5102(86)87045-6

    Article  CAS  Google Scholar 

  43. Adzic R (1996) Recent advances in the kinetics of oxygen reduction. N Y J Math 17:683–697. https://doi.org/10.2172/259357

    Article  Google Scholar 

  44. Yang F, Hou Y, Niu M, Lu T, Wu W, Liu Z (2017) Catalytic oxidation of lignite to carboxylic acids in aqueous H5PV2Mo10O40/H2SO4 solution with molecular oxygen. Energy Fuel 31:3830–3837. https://doi.org/10.1021/acs.energyfuels.6b03479

    Article  CAS  Google Scholar 

  45. Gunn NLO, Ward DB, Menelaou C, Herbert MA, Davies TJ (2017) Investigation of a chemically regenerative redox cathode polymer electrolyte fuel cell using a phosphomolybdovanadate polyoxoanion catholyte. J Power Sources 348:107–117. https://doi.org/10.1016/j.jpowsour.2017.02.048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 21176022, 21176023, 21276021, and 21376022), the International S&T Cooperation Program of China (No.2013DFA51860), the National High Technology Research and Development Program of China (No. 2011AA11A273), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1205), and the Fundamental Research Funds for the Central Universities (YS1406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuping Yu or Hong Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Zhao, X., Su, G. et al. Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag@Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell. Ionics 25, 5141–5152 (2019). https://doi.org/10.1007/s11581-019-03090-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03090-6

Keywords

Navigation